Home | History | Annotate | Line # | Download | only in pci
      1 /*	$NetBSD: if_sk.c,v 1.114 2025/10/04 04:44:21 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     30 
     31 /*
     32  * Copyright (c) 1997, 1998, 1999, 2000
     33  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by Bill Paul.
     46  * 4. Neither the name of the author nor the names of any co-contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     60  * THE POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     63  */
     64 
     65 /*
     66  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     67  *
     68  * Permission to use, copy, modify, and distribute this software for any
     69  * purpose with or without fee is hereby granted, provided that the above
     70  * copyright notice and this permission notice appear in all copies.
     71  *
     72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     79  */
     80 
     81 /*
     82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     83  * the SK-984x series adapters, both single port and dual port.
     84  * References:
     85  *	The XaQti XMAC II datasheet,
     86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     88  *
     89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     91  * convenience to others until Vitesse corrects this problem:
     92  *
     93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *
     95  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
     96  * Department of Electrical Engineering
     97  * Columbia University, New York City
     98  */
     99 
    100 /*
    101  * The SysKonnect gigabit ethernet adapters consist of two main
    102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    104  * components and a PHY while the GEnesis controller provides a PCI
    105  * interface with DMA support. Each card may have between 512K and
    106  * 2MB of SRAM on board depending on the configuration.
    107  *
    108  * The SysKonnect GEnesis controller can have either one or two XMAC
    109  * chips connected to it, allowing single or dual port NIC configurations.
    110  * SysKonnect has the distinction of being the only vendor on the market
    111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    113  * XMAC registers. This driver takes advantage of these features to allow
    114  * both XMACs to operate as independent interfaces.
    115  */
    116 
    117 #include <sys/cdefs.h>
    118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.114 2025/10/04 04:44:21 thorpej Exp $");
    119 
    120 #include <sys/param.h>
    121 #include <sys/systm.h>
    122 #include <sys/sockio.h>
    123 #include <sys/mbuf.h>
    124 #include <sys/malloc.h>
    125 #include <sys/mutex.h>
    126 #include <sys/kernel.h>
    127 #include <sys/socket.h>
    128 #include <sys/device.h>
    129 #include <sys/queue.h>
    130 #include <sys/callout.h>
    131 #include <sys/sysctl.h>
    132 #include <sys/endian.h>
    133 
    134 #include <net/if.h>
    135 #include <net/if_dl.h>
    136 #include <net/if_types.h>
    137 
    138 #include <net/if_media.h>
    139 
    140 #include <net/bpf.h>
    141 #include <sys/rndsource.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 #include <dev/mii/brgphyreg.h>
    146 
    147 #include <dev/pci/pcireg.h>
    148 #include <dev/pci/pcivar.h>
    149 #include <dev/pci/pcidevs.h>
    150 
    151 /* #define SK_USEIOSPACE */
    152 
    153 #include <dev/pci/if_skreg.h>
    154 #include <dev/pci/if_skvar.h>
    155 
    156 static int skc_probe(device_t, cfdata_t, void *);
    157 static void skc_attach(device_t, device_t, void *);
    158 static int sk_probe(device_t, cfdata_t, void *);
    159 static void sk_attach(device_t, device_t, void *);
    160 static int skcprint(void *, const char *);
    161 static int sk_intr(void *);
    162 static void sk_intr_bcom(struct sk_if_softc *);
    163 static void sk_intr_xmac(struct sk_if_softc *);
    164 static void sk_intr_yukon(struct sk_if_softc *);
    165 static void sk_rxeof(struct sk_if_softc *);
    166 static void sk_txeof(struct sk_if_softc *);
    167 static int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
    168 static void sk_start(struct ifnet *);
    169 static int sk_ioctl(struct ifnet *, u_long, void *);
    170 static int sk_init(struct ifnet *);
    171 static void sk_unreset_xmac(struct sk_if_softc *);
    172 static void sk_init_xmac(struct sk_if_softc *);
    173 static void sk_unreset_yukon(struct sk_if_softc *);
    174 static void sk_init_yukon(struct sk_if_softc *);
    175 static void sk_stop(struct ifnet *, int);
    176 static void sk_watchdog(struct ifnet *);
    177 static int sk_ifmedia_upd(struct ifnet *);
    178 static void sk_reset(struct sk_softc *);
    179 static int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    180 static int sk_alloc_jumbo_mem(struct sk_if_softc *);
    181 static void *sk_jalloc(struct sk_if_softc *);
    182 static void sk_jfree(struct mbuf *, void *, size_t, void *);
    183 static int sk_init_rx_ring(struct sk_if_softc *);
    184 static int sk_init_tx_ring(struct sk_if_softc *);
    185 static uint8_t sk_vpd_readbyte(struct sk_softc *, int);
    186 static void sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
    187 static void sk_vpd_read(struct sk_softc *);
    188 
    189 static void sk_update_int_mod(struct sk_softc *);
    190 
    191 static int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
    192 static int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
    193 static void sk_xmac_miibus_statchg(struct ifnet *);
    194 
    195 static int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
    196 static int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
    197 static void sk_marv_miibus_statchg(struct ifnet *);
    198 
    199 static uint32_t sk_xmac_hash(void *);
    200 static uint32_t sk_yukon_hash(void *);
    201 static void sk_setfilt(struct sk_if_softc *, void *, int);
    202 static void sk_setmulti(struct sk_if_softc *);
    203 static void sk_tick(void *);
    204 
    205 static bool skc_suspend(device_t, const pmf_qual_t *);
    206 static bool skc_resume(device_t, const pmf_qual_t *);
    207 static bool sk_resume(device_t dv, const pmf_qual_t *);
    208 
    209 /* #define SK_DEBUG 2 */
    210 #ifdef SK_DEBUG
    211 #define DPRINTF(x)	if (skdebug) printf x
    212 #define DPRINTFN(n, x)	if (skdebug >= (n)) printf x
    213 int	skdebug = SK_DEBUG;
    214 
    215 static void sk_dump_txdesc(struct sk_tx_desc *, int);
    216 static void sk_dump_mbuf(struct mbuf *);
    217 static void sk_dump_bytes(const char *, int);
    218 #else
    219 #define DPRINTF(x)
    220 #define DPRINTFN(n, x)
    221 #endif
    222 
    223 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    224 static int sk_root_num;
    225 
    226 /* supported device vendors */
    227 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    228 static const struct device_compatible_entry compat_data[] = {
    229 	{ .id = PCI_ID_CODE(PCI_VENDOR_3COM,
    230 		PCI_PRODUCT_3COM_3C940) },
    231 
    232 	{ .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
    233 		PCI_PRODUCT_DLINK_DGE530T) },
    234 
    235 	{ .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
    236 		PCI_PRODUCT_DLINK_DGE560T_2) },
    237 
    238 	{ .id = PCI_ID_CODE(PCI_VENDOR_LINKSYS,
    239 		PCI_PRODUCT_LINKSYS_EG1064) },
    240 
    241 	{ .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
    242 		PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE) },
    243 
    244 	{ .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
    245 		PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2) },
    246 
    247 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
    248 		PCI_PRODUCT_MARVELL_SKNET) },
    249 
    250 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
    251 		PCI_PRODUCT_MARVELL_BELKIN) },
    252 
    253 	PCI_COMPAT_EOL
    254 };
    255 
    256 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    257 
    258 static inline uint32_t
    259 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
    260 {
    261 #ifdef SK_USEIOSPACE
    262 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    263 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    264 #else
    265 	return CSR_READ_4(sc, reg);
    266 #endif
    267 }
    268 
    269 static inline uint16_t
    270 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
    271 {
    272 #ifdef SK_USEIOSPACE
    273 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    274 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    275 #else
    276 	return CSR_READ_2(sc, reg);
    277 #endif
    278 }
    279 
    280 static inline uint8_t
    281 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
    282 {
    283 #ifdef SK_USEIOSPACE
    284 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    285 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    286 #else
    287 	return CSR_READ_1(sc, reg);
    288 #endif
    289 }
    290 
    291 static inline void
    292 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
    293 {
    294 #ifdef SK_USEIOSPACE
    295 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    296 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    297 #else
    298 	CSR_WRITE_4(sc, reg, x);
    299 #endif
    300 }
    301 
    302 static inline void
    303 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
    304 {
    305 #ifdef SK_USEIOSPACE
    306 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    307 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    308 #else
    309 	CSR_WRITE_2(sc, reg, x);
    310 #endif
    311 }
    312 
    313 static inline void
    314 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
    315 {
    316 #ifdef SK_USEIOSPACE
    317 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    318 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    319 #else
    320 	CSR_WRITE_1(sc, reg, x);
    321 #endif
    322 }
    323 
    324 /*
    325  * The VPD EEPROM contains Vital Product Data, as suggested in
    326  * the PCI 2.1 specification. The VPD data is separated into areas
    327  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    328  * resource (the name of the adapter), a read-only area resource
    329  * containing various key/data fields and a read/write area which
    330  * can be used to store asset management information or log messages.
    331  * We read the ID string and read-only into buffers attached to
    332  * the controller softc structure for later use. At the moment,
    333  * we only use the ID string during sk_attach().
    334  */
    335 static uint8_t
    336 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    337 {
    338 	int			i;
    339 
    340 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    341 	for (i = 0; i < SK_TIMEOUT; i++) {
    342 		DELAY(1);
    343 		if (sk_win_read_2(sc,
    344 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    345 			break;
    346 	}
    347 
    348 	if (i == SK_TIMEOUT)
    349 		return 0;
    350 
    351 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    352 }
    353 
    354 static void
    355 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    356 {
    357 	int			i;
    358 	uint8_t		*ptr;
    359 
    360 	ptr = (uint8_t *)res;
    361 	for (i = 0; i < sizeof(struct vpd_res); i++)
    362 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    363 }
    364 
    365 static void
    366 sk_vpd_read(struct sk_softc *sc)
    367 {
    368 	int			pos = 0, i;
    369 	struct vpd_res		res;
    370 
    371 	if (sc->sk_vpd_prodname != NULL)
    372 		free(sc->sk_vpd_prodname, M_DEVBUF);
    373 	if (sc->sk_vpd_readonly != NULL)
    374 		free(sc->sk_vpd_readonly, M_DEVBUF);
    375 	sc->sk_vpd_prodname = NULL;
    376 	sc->sk_vpd_readonly = NULL;
    377 
    378 	sk_vpd_read_res(sc, &res, pos);
    379 
    380 	if (res.vr_id != VPD_RES_ID) {
    381 		aprint_error_dev(sc->sk_dev,
    382 		    "bad VPD resource id: expected %x got %x\n",
    383 		    VPD_RES_ID, res.vr_id);
    384 		return;
    385 	}
    386 
    387 	pos += sizeof(res);
    388 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_WAITOK);
    389 	for (i = 0; i < res.vr_len; i++)
    390 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    391 	sc->sk_vpd_prodname[i] = '\0';
    392 	pos += i;
    393 
    394 	sk_vpd_read_res(sc, &res, pos);
    395 
    396 	if (res.vr_id != VPD_RES_READ) {
    397 		aprint_error_dev(sc->sk_dev,
    398 		    "bad VPD resource id: expected %x got %x\n",
    399 		    VPD_RES_READ, res.vr_id);
    400 		return;
    401 	}
    402 
    403 	pos += sizeof(res);
    404 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_WAITOK);
    405 	for (i = 0; i < res.vr_len ; i++)
    406 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    407 }
    408 
    409 static int
    410 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    411 {
    412 	struct sk_if_softc *sc_if = device_private(dev);
    413 	int i;
    414 
    415 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    416 
    417 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    418 		return -1;
    419 
    420 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    421 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    422 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    423 		for (i = 0; i < SK_TIMEOUT; i++) {
    424 			DELAY(1);
    425 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    426 			    XM_MMUCMD_PHYDATARDY)
    427 				break;
    428 		}
    429 
    430 		if (i == SK_TIMEOUT) {
    431 			aprint_error_dev(sc_if->sk_dev,
    432 			    "phy failed to come ready\n");
    433 			return ETIMEDOUT;
    434 		}
    435 	}
    436 	DELAY(1);
    437 	*val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
    438 	return 0;
    439 }
    440 
    441 static int
    442 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    443 {
    444 	struct sk_if_softc *sc_if = device_private(dev);
    445 	int i;
    446 
    447 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    448 
    449 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    450 	for (i = 0; i < SK_TIMEOUT; i++) {
    451 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    452 			break;
    453 	}
    454 
    455 	if (i == SK_TIMEOUT) {
    456 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    457 		return ETIMEDOUT;
    458 	}
    459 
    460 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    461 	for (i = 0; i < SK_TIMEOUT; i++) {
    462 		DELAY(1);
    463 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    464 			break;
    465 	}
    466 
    467 	if (i == SK_TIMEOUT) {
    468 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
    469 		return ETIMEDOUT;
    470 	}
    471 
    472 	return 0;
    473 }
    474 
    475 static void
    476 sk_xmac_miibus_statchg(struct ifnet *ifp)
    477 {
    478 	struct sk_if_softc *sc_if = ifp->if_softc;
    479 	struct mii_data *mii = &sc_if->sk_mii;
    480 
    481 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    482 
    483 	/*
    484 	 * If this is a GMII PHY, manually set the XMAC's
    485 	 * duplex mode accordingly.
    486 	 */
    487 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    488 		if ((mii->mii_media_active & IFM_FDX) != 0)
    489 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    490 		else
    491 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    492 	}
    493 }
    494 
    495 static int
    496 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    497 {
    498 	struct sk_if_softc *sc_if = device_private(dev);
    499 	uint16_t data;
    500 	int i;
    501 
    502 	if (phy != 0 ||
    503 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    504 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    505 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    506 			     phy, reg));
    507 		return -1;
    508 	}
    509 
    510 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    511 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    512 
    513 	for (i = 0; i < SK_TIMEOUT; i++) {
    514 		DELAY(1);
    515 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
    516 		if (data & YU_SMICR_READ_VALID)
    517 			break;
    518 	}
    519 
    520 	if (i == SK_TIMEOUT) {
    521 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    522 		return ETIMEDOUT;
    523 	}
    524 
    525 	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    526 		     SK_TIMEOUT));
    527 
    528 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    529 
    530 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
    531 		     phy, reg, *val));
    532 
    533 	return 0;
    534 }
    535 
    536 static int
    537 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    538 {
    539 	struct sk_if_softc *sc_if = device_private(dev);
    540 	int i;
    541 
    542 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
    543 		     phy, reg, val));
    544 
    545 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    546 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    547 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    548 
    549 	for (i = 0; i < SK_TIMEOUT; i++) {
    550 		DELAY(1);
    551 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    552 			break;
    553 	}
    554 
    555 	if (i == SK_TIMEOUT) {
    556 		printf("%s: phy write timed out\n",
    557 		    device_xname(sc_if->sk_dev));
    558 		return ETIMEDOUT;
    559 	}
    560 
    561 	return 0;
    562 }
    563 
    564 static void
    565 sk_marv_miibus_statchg(struct ifnet *ifp)
    566 {
    567 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    568 		     SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
    569 		     YUKON_GPCR)));
    570 }
    571 
    572 static uint32_t
    573 sk_xmac_hash(void *addr)
    574 {
    575 	uint32_t		crc;
    576 
    577 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
    578 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    579 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
    580 	return crc;
    581 }
    582 
    583 static uint32_t
    584 sk_yukon_hash(void *addr)
    585 {
    586 	uint32_t		crc;
    587 
    588 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
    589 	crc &= ((1 << SK_HASH_BITS) - 1);
    590 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
    591 	return crc;
    592 }
    593 
    594 static void
    595 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    596 {
    597 	char *addr = addrv;
    598 	int base = XM_RXFILT_ENTRY(slot);
    599 
    600 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
    601 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
    602 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
    603 }
    604 
    605 static void
    606 sk_setmulti(struct sk_if_softc *sc_if)
    607 {
    608 	struct sk_softc *sc = sc_if->sk_softc;
    609 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    610 	uint32_t hashes[2] = { 0, 0 };
    611 	int h = 0, i;
    612 	struct ethercom *ec = &sc_if->sk_ethercom;
    613 	struct ether_multi *enm;
    614 	struct ether_multistep step;
    615 	uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
    616 
    617 	/* First, zot all the existing filters. */
    618 	switch (sc->sk_type) {
    619 	case SK_GENESIS:
    620 		for (i = 1; i < XM_RXFILT_MAX; i++)
    621 			sk_setfilt(sc_if, (void *)&dummy, i);
    622 
    623 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    624 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    625 		break;
    626 	case SK_YUKON:
    627 	case SK_YUKON_LITE:
    628 	case SK_YUKON_LP:
    629 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    630 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    631 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    632 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    633 		break;
    634 	}
    635 
    636 	/* Now program new ones. */
    637 allmulti:
    638 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    639 		hashes[0] = 0xFFFFFFFF;
    640 		hashes[1] = 0xFFFFFFFF;
    641 	} else {
    642 		i = 1;
    643 		/* First find the tail of the list. */
    644 		ETHER_LOCK(ec);
    645 		ETHER_FIRST_MULTI(step, ec, enm);
    646 		while (enm != NULL) {
    647 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    648 				 ETHER_ADDR_LEN)) {
    649 				ifp->if_flags |= IFF_ALLMULTI;
    650 				ETHER_UNLOCK(ec);
    651 				goto allmulti;
    652 			}
    653 			DPRINTFN(2,("multicast address %s\n",
    654 				ether_sprintf(enm->enm_addrlo)));
    655 			/*
    656 			 * Program the first XM_RXFILT_MAX multicast groups
    657 			 * into the perfect filter. For all others,
    658 			 * use the hash table.
    659 			 */
    660 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    661 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    662 				i++;
    663 			}
    664 			else {
    665 				switch (sc->sk_type) {
    666 				case SK_GENESIS:
    667 					h = sk_xmac_hash(enm->enm_addrlo);
    668 					break;
    669 				case SK_YUKON:
    670 				case SK_YUKON_LITE:
    671 				case SK_YUKON_LP:
    672 					h = sk_yukon_hash(enm->enm_addrlo);
    673 					break;
    674 				}
    675 				if (h < 32)
    676 					hashes[0] |= (1 << h);
    677 				else
    678 					hashes[1] |= (1 << (h - 32));
    679 			}
    680 
    681 			ETHER_NEXT_MULTI(step, enm);
    682 		}
    683 		ETHER_UNLOCK(ec);
    684 	}
    685 
    686 	switch (sc->sk_type) {
    687 	case SK_GENESIS:
    688 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
    689 			       XM_MODE_RX_USE_PERFECT);
    690 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    691 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    692 		break;
    693 	case SK_YUKON:
    694 	case SK_YUKON_LITE:
    695 	case SK_YUKON_LP:
    696 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    697 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    698 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    699 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    700 		break;
    701 	}
    702 }
    703 
    704 static int
    705 sk_init_rx_ring(struct sk_if_softc *sc_if)
    706 {
    707 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    708 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    709 	int			i;
    710 
    711 	memset((char *)rd->sk_rx_ring, 0,
    712 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    713 
    714 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    715 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    716 		if (i == (SK_RX_RING_CNT - 1)) {
    717 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    718 			rd->sk_rx_ring[i].sk_next =
    719 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    720 		} else {
    721 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    722 			rd->sk_rx_ring[i].sk_next =
    723 				htole32(SK_RX_RING_ADDR(sc_if, i+1));
    724 		}
    725 	}
    726 
    727 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    728 		if (sk_newbuf(sc_if, i, NULL,
    729 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    730 			aprint_error_dev(sc_if->sk_dev,
    731 			    "failed alloc of %dth mbuf\n", i);
    732 			return ENOBUFS;
    733 		}
    734 	}
    735 	sc_if->sk_cdata.sk_rx_prod = 0;
    736 	sc_if->sk_cdata.sk_rx_cons = 0;
    737 
    738 	return 0;
    739 }
    740 
    741 static int
    742 sk_init_tx_ring(struct sk_if_softc *sc_if)
    743 {
    744 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    745 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    746 	int			i;
    747 
    748 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
    749 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    750 
    751 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    752 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    753 		if (i == (SK_TX_RING_CNT - 1)) {
    754 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    755 			rd->sk_tx_ring[i].sk_next =
    756 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    757 		} else {
    758 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    759 			rd->sk_tx_ring[i].sk_next =
    760 				htole32(SK_TX_RING_ADDR(sc_if, i+1));
    761 		}
    762 	}
    763 
    764 	sc_if->sk_cdata.sk_tx_prod = 0;
    765 	sc_if->sk_cdata.sk_tx_cons = 0;
    766 	sc_if->sk_cdata.sk_tx_cnt = 0;
    767 
    768 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    769 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    770 
    771 	return 0;
    772 }
    773 
    774 static int
    775 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    776 	  bus_dmamap_t dmamap)
    777 {
    778 	struct mbuf		*m_new = NULL;
    779 	struct sk_chain		*c;
    780 	struct sk_rx_desc	*r;
    781 
    782 	if (m == NULL) {
    783 		void *buf = NULL;
    784 
    785 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    786 		if (m_new == NULL) {
    787 			aprint_error_dev(sc_if->sk_dev,
    788 			    "no memory for rx list -- packet dropped!\n");
    789 			return ENOBUFS;
    790 		}
    791 
    792 		/* Allocate the jumbo buffer */
    793 		buf = sk_jalloc(sc_if);
    794 		if (buf == NULL) {
    795 			m_freem(m_new);
    796 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    797 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    798 			return ENOBUFS;
    799 		}
    800 
    801 		/* Attach the buffer to the mbuf */
    802 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    803 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    804 
    805 	} else {
    806 		/*
    807 		 * We're re-using a previously allocated mbuf;
    808 		 * be sure to re-init pointers and lengths to
    809 		 * default values.
    810 		 */
    811 		m_new = m;
    812 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    813 		m_new->m_data = m_new->m_ext.ext_buf;
    814 	}
    815 	m_adj(m_new, ETHER_ALIGN);
    816 
    817 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    818 	r = c->sk_desc;
    819 	c->sk_mbuf = m_new;
    820 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    821 	    (((vaddr_t)m_new->m_data
    822 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    823 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    824 
    825 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    826 
    827 	return 0;
    828 }
    829 
    830 /*
    831  * Memory management for jumbo frames.
    832  */
    833 
    834 static int
    835 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    836 {
    837 	struct sk_softc		*sc = sc_if->sk_softc;
    838 	char *ptr, *kva;
    839 	bus_dma_segment_t	seg;
    840 	int		i, rseg, state, error;
    841 	struct sk_jpool_entry	*entry;
    842 
    843 	state = error = 0;
    844 
    845 	/* Grab a big chunk o' storage. */
    846 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    847 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    848 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
    849 		return ENOBUFS;
    850 	}
    851 
    852 	state = 1;
    853 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    854 			   BUS_DMA_NOWAIT)) {
    855 		aprint_error_dev(sc->sk_dev,
    856 		    "can't map dma buffers (%d bytes)\n",
    857 		    SK_JMEM);
    858 		error = ENOBUFS;
    859 		goto out;
    860 	}
    861 
    862 	state = 2;
    863 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    864 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    865 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
    866 		error = ENOBUFS;
    867 		goto out;
    868 	}
    869 
    870 	state = 3;
    871 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    872 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    873 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
    874 		error = ENOBUFS;
    875 		goto out;
    876 	}
    877 
    878 	state = 4;
    879 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    880 	DPRINTFN(1,("sk_jumbo_buf = %p\n", sc_if->sk_cdata.sk_jumbo_buf));
    881 
    882 	LIST_INIT(&sc_if->sk_jfree_listhead);
    883 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    884 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
    885 
    886 	/*
    887 	 * Now divide it up into 9K pieces and save the addresses
    888 	 * in an array.
    889 	 */
    890 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    891 	for (i = 0; i < SK_JSLOTS; i++) {
    892 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    893 		ptr += SK_JLEN;
    894 		entry = malloc(sizeof(struct sk_jpool_entry),
    895 		    M_DEVBUF, M_WAITOK);
    896 		entry->slot = i;
    897 		if (i)
    898 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    899 				 entry, jpool_entries);
    900 		else
    901 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    902 				 entry, jpool_entries);
    903 	}
    904 out:
    905 	if (error != 0) {
    906 		switch (state) {
    907 		case 4:
    908 			bus_dmamap_unload(sc->sc_dmatag,
    909 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    910 			/* FALLTHROUGH */
    911 		case 3:
    912 			bus_dmamap_destroy(sc->sc_dmatag,
    913 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    914 			/* FALLTHROUGH */
    915 		case 2:
    916 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    917 			/* FALLTHROUGH */
    918 		case 1:
    919 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    920 			break;
    921 		default:
    922 			break;
    923 		}
    924 	}
    925 
    926 	return error;
    927 }
    928 
    929 /*
    930  * Allocate a jumbo buffer.
    931  */
    932 static void *
    933 sk_jalloc(struct sk_if_softc *sc_if)
    934 {
    935 	struct sk_jpool_entry	*entry;
    936 
    937 	mutex_enter(&sc_if->sk_jpool_mtx);
    938 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    939 
    940 	if (entry == NULL) {
    941 		mutex_exit(&sc_if->sk_jpool_mtx);
    942 		return NULL;
    943 	}
    944 
    945 	LIST_REMOVE(entry, jpool_entries);
    946 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    947 	mutex_exit(&sc_if->sk_jpool_mtx);
    948 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    949 }
    950 
    951 /*
    952  * Release a jumbo buffer.
    953  */
    954 static void
    955 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    956 {
    957 	struct sk_jpool_entry *entry;
    958 	struct sk_if_softc *sc;
    959 	int i;
    960 
    961 	/* Extract the softc struct pointer. */
    962 	sc = (struct sk_if_softc *)arg;
    963 
    964 	if (sc == NULL)
    965 		panic("sk_jfree: can't find softc pointer!");
    966 
    967 	/* calculate the slot this buffer belongs to */
    968 
    969 	i = ((vaddr_t)buf
    970 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    971 
    972 	if ((i < 0) || (i >= SK_JSLOTS))
    973 		panic("sk_jfree: asked to free buffer that we don't manage!");
    974 
    975 	mutex_enter(&sc->sk_jpool_mtx);
    976 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    977 	if (entry == NULL)
    978 		panic("sk_jfree: buffer not in use!");
    979 	entry->slot = i;
    980 	LIST_REMOVE(entry, jpool_entries);
    981 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    982 	mutex_exit(&sc->sk_jpool_mtx);
    983 
    984 	if (__predict_true(m != NULL))
    985 		pool_cache_put(mb_cache, m);
    986 }
    987 
    988 /*
    989  * Set media options.
    990  */
    991 static int
    992 sk_ifmedia_upd(struct ifnet *ifp)
    993 {
    994 	struct sk_if_softc *sc_if = ifp->if_softc;
    995 	int rc;
    996 
    997 	(void) sk_init(ifp);
    998 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    999 		return 0;
   1000 	return rc;
   1001 }
   1002 
   1003 static void
   1004 sk_promisc(struct sk_if_softc *sc_if, int on)
   1005 {
   1006 	struct sk_softc *sc = sc_if->sk_softc;
   1007 	switch (sc->sk_type) {
   1008 	case SK_GENESIS:
   1009 		if (on)
   1010 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   1011 		else
   1012 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   1013 		break;
   1014 	case SK_YUKON:
   1015 	case SK_YUKON_LITE:
   1016 	case SK_YUKON_LP:
   1017 		if (on)
   1018 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1019 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1020 		else
   1021 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1022 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1023 		break;
   1024 	default:
   1025 		aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
   1026 			sc->sk_type);
   1027 		break;
   1028 	}
   1029 }
   1030 
   1031 static int
   1032 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
   1033 {
   1034 	struct sk_if_softc *sc_if = ifp->if_softc;
   1035 	int s, error = 0;
   1036 
   1037 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1038 
   1039 	s = splnet();
   1040 
   1041 	switch (command) {
   1042 
   1043 	case SIOCSIFFLAGS:
   1044 		DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1045 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   1046 			break;
   1047 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
   1048 		case IFF_RUNNING:
   1049 			sk_stop(ifp, 1);
   1050 			break;
   1051 		case IFF_UP:
   1052 			sk_init(ifp);
   1053 			break;
   1054 		case IFF_UP | IFF_RUNNING:
   1055 			if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC)			{
   1056 				sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
   1057 				sk_setmulti(sc_if);
   1058 			} else
   1059 				sk_init(ifp);
   1060 			break;
   1061 		}
   1062 		sc_if->sk_if_flags = ifp->if_flags;
   1063 		error = 0;
   1064 		break;
   1065 
   1066 	default:
   1067 		DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1068 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1069 			break;
   1070 
   1071 		error = 0;
   1072 
   1073 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1074 			;
   1075 		else if (ifp->if_flags & IFF_RUNNING) {
   1076 			sk_setmulti(sc_if);
   1077 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1078 		}
   1079 		break;
   1080 	}
   1081 
   1082 	splx(s);
   1083 	return error;
   1084 }
   1085 
   1086 static void
   1087 sk_update_int_mod(struct sk_softc *sc)
   1088 {
   1089 	uint32_t imtimer_ticks;
   1090 
   1091 	/*
   1092 	 * Configure interrupt moderation. The moderation timer
   1093 	 * defers interrupts specified in the interrupt moderation
   1094 	 * timer mask based on the timeout specified in the interrupt
   1095 	 * moderation timer init register. Each bit in the timer
   1096 	 * register represents one tick, so to specify a timeout in
   1097 	 * microseconds, we have to multiply by the correct number of
   1098 	 * ticks-per-microsecond.
   1099 	 */
   1100 	switch (sc->sk_type) {
   1101 	case SK_GENESIS:
   1102 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1103 		break;
   1104 	case SK_YUKON_EC:
   1105 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1106 		break;
   1107 	default:
   1108 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1109 	}
   1110 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
   1111 	    sc->sk_int_mod);
   1112 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1113 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
   1114 	    SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
   1115 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1116 	sc->sk_int_mod_pending = 0;
   1117 }
   1118 
   1119 /*
   1120  * Lookup: Check the PCI vendor and device, and return a pointer to
   1121  * The structure if the IDs match against our list.
   1122  */
   1123 
   1124 /*
   1125  * Probe for a SysKonnect GEnesis chip.
   1126  */
   1127 
   1128 static int
   1129 skc_probe(device_t parent, cfdata_t match, void *aux)
   1130 {
   1131 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1132 	pcireg_t subid;
   1133 
   1134 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1135 
   1136 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1137 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1138 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1139 	    subid == SK_LINKSYS_EG1032_SUBID)
   1140 		return 1;
   1141 
   1142 	return pci_compatible_match(pa, compat_data);
   1143 }
   1144 
   1145 /*
   1146  * Force the GEnesis into reset, then bring it out of reset.
   1147  */
   1148 static void
   1149 sk_reset(struct sk_softc *sc)
   1150 {
   1151 	DPRINTFN(2, ("sk_reset\n"));
   1152 
   1153 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1154 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1155 	if (SK_YUKON_FAMILY(sc->sk_type))
   1156 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1157 
   1158 	DELAY(1000);
   1159 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1160 	DELAY(2);
   1161 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1162 	if (SK_YUKON_FAMILY(sc->sk_type))
   1163 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1164 
   1165 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1166 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1167 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1168 
   1169 	if (sc->sk_type == SK_GENESIS) {
   1170 		/* Configure packet arbiter */
   1171 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1172 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1173 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1174 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1175 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1176 	}
   1177 
   1178 	/* Enable RAM interface */
   1179 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1180 
   1181 	sk_update_int_mod(sc);
   1182 }
   1183 
   1184 static int
   1185 sk_probe(device_t parent, cfdata_t match, void *aux)
   1186 {
   1187 	struct skc_attach_args *sa = aux;
   1188 
   1189 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1190 		return 0;
   1191 
   1192 	return 1;
   1193 }
   1194 
   1195 /*
   1196  * Each XMAC chip is attached as a separate logical IP interface.
   1197  * Single port cards will have only one logical interface of course.
   1198  */
   1199 static void
   1200 sk_attach(device_t parent, device_t self, void *aux)
   1201 {
   1202 	struct sk_if_softc *sc_if = device_private(self);
   1203 	struct mii_data *mii = &sc_if->sk_mii;
   1204 	struct sk_softc *sc = device_private(parent);
   1205 	struct skc_attach_args *sa = aux;
   1206 	struct sk_txmap_entry	*entry;
   1207 	struct ifnet *ifp;
   1208 	bus_dma_segment_t seg;
   1209 	bus_dmamap_t dmamap;
   1210 	void *kva;
   1211 	int i, rseg;
   1212 	int mii_flags = 0;
   1213 
   1214 	aprint_naive("\n");
   1215 
   1216 	sc_if->sk_dev = self;
   1217 	sc_if->sk_port = sa->skc_port;
   1218 	sc_if->sk_softc = sc;
   1219 	sc->sk_if[sa->skc_port] = sc_if;
   1220 
   1221 	if (sa->skc_port == SK_PORT_A)
   1222 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1223 	if (sa->skc_port == SK_PORT_B)
   1224 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1225 
   1226 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1227 
   1228 	/*
   1229 	 * Get station address for this interface. Note that
   1230 	 * dual port cards actually come with three station
   1231 	 * addresses: one for each port, plus an extra. The
   1232 	 * extra one is used by the SysKonnect driver software
   1233 	 * as a 'virtual' station address for when both ports
   1234 	 * are operating in failover mode. Currently we don't
   1235 	 * use this extra address.
   1236 	 */
   1237 	if (! ether_getaddr(self, sc_if->sk_enaddr)) {
   1238 		for (i = 0; i < ETHER_ADDR_LEN; i++)
   1239 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
   1240 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
   1241 	}
   1242 
   1243 	aprint_normal(": Ethernet address %s\n",
   1244 	    ether_sprintf(sc_if->sk_enaddr));
   1245 
   1246 	/*
   1247 	 * Set up RAM buffer addresses. The NIC will have a certain
   1248 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1249 	 * need to divide this up a) between the transmitter and
   1250 	 * receiver and b) between the two XMACs, if this is a
   1251 	 * dual port NIC. Our algorithm is to divide up the memory
   1252 	 * evenly so that everyone gets a fair share.
   1253 	 */
   1254 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1255 		uint32_t		chunk, val;
   1256 
   1257 		chunk = sc->sk_ramsize / 2;
   1258 		val = sc->sk_rboff / sizeof(uint64_t);
   1259 		sc_if->sk_rx_ramstart = val;
   1260 		val += (chunk / sizeof(uint64_t));
   1261 		sc_if->sk_rx_ramend = val - 1;
   1262 		sc_if->sk_tx_ramstart = val;
   1263 		val += (chunk / sizeof(uint64_t));
   1264 		sc_if->sk_tx_ramend = val - 1;
   1265 	} else {
   1266 		uint32_t		chunk, val;
   1267 
   1268 		chunk = sc->sk_ramsize / 4;
   1269 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1270 		    sizeof(uint64_t);
   1271 		sc_if->sk_rx_ramstart = val;
   1272 		val += (chunk / sizeof(uint64_t));
   1273 		sc_if->sk_rx_ramend = val - 1;
   1274 		sc_if->sk_tx_ramstart = val;
   1275 		val += (chunk / sizeof(uint64_t));
   1276 		sc_if->sk_tx_ramend = val - 1;
   1277 	}
   1278 
   1279 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1280 		     "		 tx_ramstart=%#x tx_ramend=%#x\n",
   1281 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1282 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1283 
   1284 	/* Read and save PHY type and set PHY address */
   1285 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1286 	switch (sc_if->sk_phytype) {
   1287 	case SK_PHYTYPE_XMAC:
   1288 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1289 		break;
   1290 	case SK_PHYTYPE_BCOM:
   1291 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1292 		break;
   1293 	case SK_PHYTYPE_MARV_COPPER:
   1294 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1295 		break;
   1296 	default:
   1297 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
   1298 		    sc_if->sk_phytype);
   1299 		return;
   1300 	}
   1301 
   1302 	/* Allocate the descriptor queues. */
   1303 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1304 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1305 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
   1306 		goto fail;
   1307 	}
   1308 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1309 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1310 		aprint_error_dev(sc_if->sk_dev,
   1311 		    "can't map dma buffers (%lu bytes)\n",
   1312 		    (u_long) sizeof(struct sk_ring_data));
   1313 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1314 		goto fail;
   1315 	}
   1316 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1317 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1318 	    &sc_if->sk_ring_map)) {
   1319 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
   1320 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1321 		    sizeof(struct sk_ring_data));
   1322 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1323 		goto fail;
   1324 	}
   1325 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1326 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1327 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
   1328 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1329 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1330 		    sizeof(struct sk_ring_data));
   1331 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1332 		goto fail;
   1333 	}
   1334 
   1335 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1336 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1337 
   1338 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1339 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1340 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1341 
   1342 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1343 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1344 			aprint_error_dev(sc_if->sk_dev,
   1345 			    "Can't create TX dmamap\n");
   1346 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1347 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1348 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1349 			    sizeof(struct sk_ring_data));
   1350 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1351 			goto fail;
   1352 		}
   1353 
   1354 		entry = malloc(sizeof(*entry), M_DEVBUF, M_WAITOK);
   1355 		entry->dmamap = dmamap;
   1356 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1357 	}
   1358 
   1359 	sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1360 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
   1361 
   1362 	ifp = &sc_if->sk_ethercom.ec_if;
   1363 	/* Try to allocate memory for jumbo buffers. */
   1364 	if (sk_alloc_jumbo_mem(sc_if)) {
   1365 		aprint_error("%s: jumbo buffer allocation failed\n",
   1366 		    ifp->if_xname);
   1367 		goto fail;
   1368 	}
   1369 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1370 		| ETHERCAP_JUMBO_MTU;
   1371 
   1372 	ifp->if_softc = sc_if;
   1373 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1374 	ifp->if_ioctl = sk_ioctl;
   1375 	ifp->if_start = sk_start;
   1376 	ifp->if_stop = sk_stop;
   1377 	ifp->if_init = sk_init;
   1378 	ifp->if_watchdog = sk_watchdog;
   1379 	ifp->if_capabilities = 0;
   1380 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1381 	IFQ_SET_READY(&ifp->if_snd);
   1382 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
   1383 
   1384 	/*
   1385 	 * Do miibus setup.
   1386 	 */
   1387 	switch (sc->sk_type) {
   1388 	case SK_GENESIS:
   1389 		sk_unreset_xmac(sc_if);
   1390 		break;
   1391 	case SK_YUKON:
   1392 	case SK_YUKON_LITE:
   1393 	case SK_YUKON_LP:
   1394 		sk_unreset_yukon(sc_if);
   1395 		break;
   1396 	default:
   1397 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
   1398 			sc->sk_type);
   1399 		goto fail;
   1400 	}
   1401 
   1402 	DPRINTFN(2, ("sk_attach: 1\n"));
   1403 
   1404 	mii->mii_ifp = ifp;
   1405 	switch (sc->sk_type) {
   1406 	case SK_GENESIS:
   1407 		mii->mii_readreg = sk_xmac_miibus_readreg;
   1408 		mii->mii_writereg = sk_xmac_miibus_writereg;
   1409 		mii->mii_statchg = sk_xmac_miibus_statchg;
   1410 		break;
   1411 	case SK_YUKON:
   1412 	case SK_YUKON_LITE:
   1413 	case SK_YUKON_LP:
   1414 		mii->mii_readreg = sk_marv_miibus_readreg;
   1415 		mii->mii_writereg = sk_marv_miibus_writereg;
   1416 		mii->mii_statchg = sk_marv_miibus_statchg;
   1417 		mii_flags = MIIF_DOPAUSE;
   1418 		break;
   1419 	}
   1420 
   1421 	sc_if->sk_ethercom.ec_mii = mii;
   1422 	ifmedia_init(&mii->mii_media, 0, sk_ifmedia_upd, ether_mediastatus);
   1423 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
   1424 	    MII_OFFSET_ANY, mii_flags);
   1425 	if (LIST_EMPTY(&mii->mii_phys)) {
   1426 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
   1427 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
   1428 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
   1429 	} else
   1430 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   1431 
   1432 	callout_init(&sc_if->sk_tick_ch, 0);
   1433 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   1434 
   1435 	DPRINTFN(2, ("sk_attach: 1\n"));
   1436 
   1437 	/*
   1438 	 * Call MI attach routines.
   1439 	 */
   1440 	if_attach(ifp);
   1441 	if_deferred_start_init(ifp, NULL);
   1442 
   1443 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1444 
   1445 	if (sc->rnd_attached++ == 0) {
   1446 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
   1447 		    RND_TYPE_NET, RND_FLAG_DEFAULT);
   1448 	}
   1449 
   1450 	if (pmf_device_register(self, NULL, sk_resume))
   1451 		pmf_class_network_register(self, ifp);
   1452 	else
   1453 		aprint_error_dev(self, "couldn't establish power handler\n");
   1454 
   1455 	DPRINTFN(2, ("sk_attach: end\n"));
   1456 
   1457 	return;
   1458 
   1459 fail:
   1460 	sc->sk_if[sa->skc_port] = NULL;
   1461 }
   1462 
   1463 static int
   1464 skcprint(void *aux, const char *pnp)
   1465 {
   1466 	struct skc_attach_args *sa = aux;
   1467 
   1468 	if (pnp)
   1469 		aprint_normal("sk port %c at %s",
   1470 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1471 	else
   1472 		aprint_normal(" port %c",
   1473 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1474 	return UNCONF;
   1475 }
   1476 
   1477 /*
   1478  * Attach the interface. Allocate softc structures, do ifmedia
   1479  * setup and ethernet/BPF attach.
   1480  */
   1481 static void
   1482 skc_attach(device_t parent, device_t self, void *aux)
   1483 {
   1484 	struct sk_softc *sc = device_private(self);
   1485 	struct pci_attach_args *pa = aux;
   1486 	struct skc_attach_args skca;
   1487 	pci_chipset_tag_t pc = pa->pa_pc;
   1488 #ifndef SK_USEIOSPACE
   1489 	pcireg_t memtype;
   1490 #endif
   1491 	pci_intr_handle_t ih;
   1492 	const char *intrstr = NULL;
   1493 	bus_addr_t iobase;
   1494 	bus_size_t iosize;
   1495 	int rc, sk_nodenum;
   1496 	uint32_t command;
   1497 	const char *revstr;
   1498 	const struct sysctlnode *node;
   1499 	char intrbuf[PCI_INTRSTR_LEN];
   1500 
   1501 	sc->sk_dev = self;
   1502 	aprint_naive("\n");
   1503 
   1504 	DPRINTFN(2, ("begin skc_attach\n"));
   1505 
   1506 	/*
   1507 	 * Handle power management nonsense.
   1508 	 */
   1509 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1510 
   1511 	if (command == 0x01) {
   1512 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1513 		if (command & SK_PSTATE_MASK) {
   1514 			uint32_t		xiobase, membase, irq;
   1515 
   1516 			/* Save important PCI config data. */
   1517 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1518 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1519 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1520 
   1521 			/* Reset the power state. */
   1522 			aprint_normal_dev(sc->sk_dev,
   1523 			    "chip is in D%d power mode -- setting to D0\n",
   1524 			    command & SK_PSTATE_MASK);
   1525 			command &= 0xFFFFFFFC;
   1526 			pci_conf_write(pc, pa->pa_tag,
   1527 			    SK_PCI_PWRMGMTCTRL, command);
   1528 
   1529 			/* Restore PCI config data. */
   1530 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1531 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1532 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1533 		}
   1534 	}
   1535 
   1536 	/*
   1537 	 * The firmware might have configured the interface to revert the
   1538 	 * byte order in all descriptors. Make that undone.
   1539 	 */
   1540 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
   1541 	if (command & SK_REG2_REV_DESC)
   1542 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
   1543 		    command & ~SK_REG2_REV_DESC);
   1544 
   1545 	/*
   1546 	 * Map control/status registers.
   1547 	 */
   1548 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1549 	command |= PCI_COMMAND_IO_ENABLE |
   1550 	    PCI_COMMAND_MEM_ENABLE |
   1551 	    PCI_COMMAND_MASTER_ENABLE;
   1552 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1553 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1554 
   1555 #ifdef SK_USEIOSPACE
   1556 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1557 		aprint_error(": failed to enable I/O ports!\n");
   1558 		return;
   1559 	}
   1560 	/*
   1561 	 * Map control/status registers.
   1562 	 */
   1563 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1564 			&sc->sk_btag, &sc->sk_bhandle,
   1565 			&iobase, &iosize)) {
   1566 		aprint_error(": can't find i/o space\n");
   1567 		return;
   1568 	}
   1569 #else
   1570 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1571 		aprint_error(": failed to enable memory mapping!\n");
   1572 		return;
   1573 	}
   1574 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1575 	switch (memtype) {
   1576 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1577 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1578 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1579 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1580 				   &iobase, &iosize) == 0)
   1581 			break;
   1582 		/* FALLTHROUGH */
   1583 	default:
   1584 		aprint_error_dev(sc->sk_dev, "can't find mem space\n");
   1585 		return;
   1586 	}
   1587 
   1588 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
   1589 	    iobase, iosize));
   1590 #endif
   1591 	sc->sc_dmatag = pa->pa_dmat;
   1592 
   1593 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1594 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1595 
   1596 	/* bail out here if chip is not recognized */
   1597 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1598 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
   1599 		goto fail;
   1600 	}
   1601 	if (SK_IS_YUKON2(sc)) {
   1602 		aprint_error_dev(sc->sk_dev,
   1603 		    "Does not support Yukon2--try msk(4).\n");
   1604 		goto fail;
   1605 	}
   1606 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1607 
   1608 	/* Allocate interrupt */
   1609 	if (pci_intr_map(pa, &ih)) {
   1610 		aprint_error(": couldn't map interrupt\n");
   1611 		goto fail;
   1612 	}
   1613 
   1614 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   1615 	sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr,
   1616 	    sc, device_xname(sc->sk_dev));
   1617 	if (sc->sk_intrhand == NULL) {
   1618 		aprint_error(": couldn't establish interrupt");
   1619 		if (intrstr != NULL)
   1620 			aprint_error(" at %s", intrstr);
   1621 		aprint_error("\n");
   1622 		goto fail;
   1623 	}
   1624 	aprint_normal(": %s\n", intrstr);
   1625 
   1626 	/* Reset the adapter. */
   1627 	sk_reset(sc);
   1628 
   1629 	/* Read and save vital product data from EEPROM. */
   1630 	sk_vpd_read(sc);
   1631 
   1632 	if (sc->sk_type == SK_GENESIS) {
   1633 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
   1634 		/* Read and save RAM size and RAMbuffer offset */
   1635 		switch (val) {
   1636 		case SK_RAMSIZE_512K_64:
   1637 			sc->sk_ramsize = 0x80000;
   1638 			sc->sk_rboff = SK_RBOFF_0;
   1639 			break;
   1640 		case SK_RAMSIZE_1024K_64:
   1641 			sc->sk_ramsize = 0x100000;
   1642 			sc->sk_rboff = SK_RBOFF_80000;
   1643 			break;
   1644 		case SK_RAMSIZE_1024K_128:
   1645 			sc->sk_ramsize = 0x100000;
   1646 			sc->sk_rboff = SK_RBOFF_0;
   1647 			break;
   1648 		case SK_RAMSIZE_2048K_128:
   1649 			sc->sk_ramsize = 0x200000;
   1650 			sc->sk_rboff = SK_RBOFF_0;
   1651 			break;
   1652 		default:
   1653 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
   1654 			       val);
   1655 			goto fail_1;
   1656 			break;
   1657 		}
   1658 
   1659 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1660 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1661 			     sc->sk_rboff));
   1662 	} else {
   1663 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
   1664 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1665 		sc->sk_rboff = SK_RBOFF_0;
   1666 
   1667 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1668 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1669 			     sc->sk_rboff));
   1670 	}
   1671 
   1672 	/* Read and save physical media type */
   1673 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1674 	case SK_PMD_1000BASESX:
   1675 		sc->sk_pmd = IFM_1000_SX;
   1676 		break;
   1677 	case SK_PMD_1000BASELX:
   1678 		sc->sk_pmd = IFM_1000_LX;
   1679 		break;
   1680 	case SK_PMD_1000BASECX:
   1681 		sc->sk_pmd = IFM_1000_CX;
   1682 		break;
   1683 	case SK_PMD_1000BASETX:
   1684 	case SK_PMD_1000BASETX_ALT:
   1685 		sc->sk_pmd = IFM_1000_T;
   1686 		break;
   1687 	default:
   1688 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
   1689 		    sk_win_read_1(sc, SK_PMDTYPE));
   1690 		goto fail_1;
   1691 	}
   1692 
   1693 	/* determine whether to name it with vpd or just make it up */
   1694 	/* Marvell Yukon VPD's can freqently be bogus */
   1695 
   1696 	switch (pa->pa_id) {
   1697 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1698 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1699 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1700 	case PCI_PRODUCT_3COM_3C940:
   1701 	case PCI_PRODUCT_DLINK_DGE530T:
   1702 	case PCI_PRODUCT_DLINK_DGE560T:
   1703 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1704 	case PCI_PRODUCT_LINKSYS_EG1032:
   1705 	case PCI_PRODUCT_LINKSYS_EG1064:
   1706 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1707 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1708 	case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
   1709 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
   1710 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
   1711 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
   1712 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
   1713 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
   1714 		sc->sk_name = sc->sk_vpd_prodname;
   1715 		break;
   1716 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
   1717 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1718 		switch (sc->sk_type) {
   1719 		case SK_GENESIS:
   1720 			sc->sk_name = sc->sk_vpd_prodname;
   1721 			break;
   1722 		case SK_YUKON:
   1723 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1724 			break;
   1725 		case SK_YUKON_LITE:
   1726 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1727 			break;
   1728 		case SK_YUKON_LP:
   1729 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1730 			break;
   1731 		default:
   1732 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1733 		}
   1734 
   1735 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1736 
   1737 		if ( sc->sk_type == SK_YUKON ) {
   1738 			uint32_t flashaddr;
   1739 			uint8_t testbyte;
   1740 
   1741 			flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
   1742 
   1743 			/* test Flash-Address Register */
   1744 			sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
   1745 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1746 
   1747 			if (testbyte != 0) {
   1748 				/* this is yukon lite Rev. A0 */
   1749 				sc->sk_type = SK_YUKON_LITE;
   1750 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1751 				/* restore Flash-Address Register */
   1752 				sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
   1753 			}
   1754 		}
   1755 		break;
   1756 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
   1757 		sc->sk_name = sc->sk_vpd_prodname;
   1758 		break;
   1759 	default:
   1760 		sc->sk_name = "Unknown Marvell";
   1761 	}
   1762 
   1763 
   1764 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1765 		switch (sc->sk_rev) {
   1766 		case SK_YUKON_LITE_REV_A0:
   1767 			revstr = "A0";
   1768 			break;
   1769 		case SK_YUKON_LITE_REV_A1:
   1770 			revstr = "A1";
   1771 			break;
   1772 		case SK_YUKON_LITE_REV_A3:
   1773 			revstr = "A3";
   1774 			break;
   1775 		default:
   1776 			revstr = "";
   1777 		}
   1778 	} else {
   1779 		revstr = "";
   1780 	}
   1781 
   1782 	/* Announce the product name. */
   1783 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
   1784 			      sc->sk_name, revstr, sc->sk_rev);
   1785 
   1786 	skca.skc_port = SK_PORT_A;
   1787 	(void)config_found(sc->sk_dev, &skca, skcprint, CFARGS_NONE);
   1788 
   1789 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1790 		skca.skc_port = SK_PORT_B;
   1791 		(void)config_found(sc->sk_dev, &skca, skcprint, CFARGS_NONE);
   1792 	}
   1793 
   1794 	/* Turn on the 'driver is loaded' LED. */
   1795 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1796 
   1797 	/* skc sysctl setup */
   1798 
   1799 	sc->sk_int_mod = SK_IM_DEFAULT;
   1800 	sc->sk_int_mod_pending = 0;
   1801 
   1802 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1803 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
   1804 	    SYSCTL_DESCR("skc per-controller controls"),
   1805 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1806 	    CTL_EOL)) != 0) {
   1807 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
   1808 		goto fail_1;
   1809 	}
   1810 
   1811 	sk_nodenum = node->sysctl_num;
   1812 
   1813 	/* interrupt moderation time in usecs */
   1814 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1815 	    CTLFLAG_READWRITE,
   1816 	    CTLTYPE_INT, "int_mod",
   1817 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1818 	    sk_sysctl_handler, 0, (void *)sc,
   1819 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1820 	    CTL_EOL)) != 0) {
   1821 		aprint_normal_dev(sc->sk_dev,
   1822 		    "couldn't create int_mod sysctl node\n");
   1823 		goto fail_1;
   1824 	}
   1825 
   1826 	if (!pmf_device_register(self, skc_suspend, skc_resume))
   1827 		aprint_error_dev(self, "couldn't establish power handler\n");
   1828 
   1829 	return;
   1830 
   1831 fail_1:
   1832 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1833 fail:
   1834 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1835 }
   1836 
   1837 static int
   1838 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
   1839 {
   1840 	struct sk_softc		*sc = sc_if->sk_softc;
   1841 	struct sk_tx_desc	*f = NULL;
   1842 	uint32_t		frag, cur, cnt = 0, sk_ctl;
   1843 	int			i;
   1844 	struct sk_txmap_entry	*entry;
   1845 	bus_dmamap_t		txmap;
   1846 
   1847 	DPRINTFN(3, ("sk_encap\n"));
   1848 
   1849 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1850 	if (entry == NULL) {
   1851 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1852 		return ENOBUFS;
   1853 	}
   1854 	txmap = entry->dmamap;
   1855 
   1856 	cur = frag = *txidx;
   1857 
   1858 #ifdef SK_DEBUG
   1859 	if (skdebug >= 3)
   1860 		sk_dump_mbuf(m_head);
   1861 #endif
   1862 
   1863 	/*
   1864 	 * Start packing the mbufs in this chain into
   1865 	 * the fragment pointers. Stop when we run out
   1866 	 * of fragments or hit the end of the mbuf chain.
   1867 	 */
   1868 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1869 	    BUS_DMA_NOWAIT)) {
   1870 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1871 		return ENOBUFS;
   1872 	}
   1873 
   1874 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1875 
   1876 	/* Sync the DMA map. */
   1877 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1878 	    BUS_DMASYNC_PREWRITE);
   1879 
   1880 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1881 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1882 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1883 			return ENOBUFS;
   1884 		}
   1885 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1886 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1887 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1888 		if (cnt == 0)
   1889 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1890 		else
   1891 			sk_ctl |= SK_TXCTL_OWN;
   1892 		f->sk_ctl = htole32(sk_ctl);
   1893 		cur = frag;
   1894 		SK_INC(frag, SK_TX_RING_CNT);
   1895 		cnt++;
   1896 	}
   1897 
   1898 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1899 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1900 
   1901 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1902 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1903 		htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
   1904 
   1905 	/* Sync descriptors before handing to chip */
   1906 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1907 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1908 
   1909 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1910 		htole32(SK_TXCTL_OWN);
   1911 
   1912 	/* Sync first descriptor to hand it off */
   1913 	SK_CDTXSYNC(sc_if, *txidx, 1,
   1914 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1915 
   1916 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1917 
   1918 #ifdef SK_DEBUG
   1919 	if (skdebug >= 3) {
   1920 		struct sk_tx_desc *desc;
   1921 		uint32_t idx;
   1922 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1923 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1924 			sk_dump_txdesc(desc, idx);
   1925 		}
   1926 	}
   1927 #endif
   1928 
   1929 	*txidx = frag;
   1930 
   1931 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1932 
   1933 	return 0;
   1934 }
   1935 
   1936 static void
   1937 sk_start(struct ifnet *ifp)
   1938 {
   1939 	struct sk_if_softc	*sc_if = ifp->if_softc;
   1940 	struct sk_softc		*sc = sc_if->sk_softc;
   1941 	struct mbuf		*m_head = NULL;
   1942 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1943 	int			pkts = 0;
   1944 
   1945 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1946 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1947 
   1948 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1949 		IFQ_POLL(&ifp->if_snd, m_head);
   1950 		if (m_head == NULL)
   1951 			break;
   1952 
   1953 		/*
   1954 		 * Pack the data into the transmit ring. If we
   1955 		 * don't have room, set the OACTIVE flag and wait
   1956 		 * for the NIC to drain the ring.
   1957 		 */
   1958 		if (sk_encap(sc_if, m_head, &idx)) {
   1959 			ifp->if_flags |= IFF_OACTIVE;
   1960 			break;
   1961 		}
   1962 
   1963 		/* now we are committed to transmit the packet */
   1964 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1965 		pkts++;
   1966 
   1967 		/*
   1968 		 * If there's a BPF listener, bounce a copy of this frame
   1969 		 * to him.
   1970 		 */
   1971 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   1972 	}
   1973 	if (pkts == 0)
   1974 		return;
   1975 
   1976 	/* Transmit */
   1977 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1978 		sc_if->sk_cdata.sk_tx_prod = idx;
   1979 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1980 
   1981 		/* Set a timeout in case the chip goes out to lunch. */
   1982 		ifp->if_timer = 5;
   1983 	}
   1984 }
   1985 
   1986 
   1987 static void
   1988 sk_watchdog(struct ifnet *ifp)
   1989 {
   1990 	struct sk_if_softc *sc_if = ifp->if_softc;
   1991 
   1992 	/*
   1993 	 * Reclaim first as there is a possibility of losing Tx completion
   1994 	 * interrupts.
   1995 	 */
   1996 	sk_txeof(sc_if);
   1997 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   1998 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
   1999 
   2000 		if_statinc(ifp, if_oerrors);
   2001 
   2002 		sk_init(ifp);
   2003 	}
   2004 }
   2005 
   2006 #if 0 /* XXX XXX XXX UNUSED */
   2007 static void
   2008 sk_shutdown(void *v)
   2009 {
   2010 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2011 	struct sk_softc		*sc = sc_if->sk_softc;
   2012 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2013 
   2014 	DPRINTFN(2, ("sk_shutdown\n"));
   2015 	sk_stop(ifp, 1);
   2016 
   2017 	/* Turn off the 'driver is loaded' LED. */
   2018 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2019 
   2020 	/*
   2021 	 * Reset the GEnesis controller. Doing this should also
   2022 	 * assert the resets on the attached XMAC(s).
   2023 	 */
   2024 	sk_reset(sc);
   2025 }
   2026 #endif
   2027 
   2028 static void
   2029 sk_rxeof(struct sk_if_softc *sc_if)
   2030 {
   2031 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2032 	struct mbuf		*m;
   2033 	struct sk_chain		*cur_rx;
   2034 	struct sk_rx_desc	*cur_desc;
   2035 	int			i, cur, total_len = 0;
   2036 	uint32_t		rxstat, sk_ctl;
   2037 	bus_dmamap_t		dmamap;
   2038 
   2039 	i = sc_if->sk_cdata.sk_rx_prod;
   2040 
   2041 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2042 
   2043 	for (;;) {
   2044 		cur = i;
   2045 
   2046 		/* Sync the descriptor */
   2047 		SK_CDRXSYNC(sc_if, cur,
   2048 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2049 
   2050 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2051 		if (sk_ctl & SK_RXCTL_OWN) {
   2052 			/* Invalidate the descriptor -- it's not ready yet */
   2053 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2054 			sc_if->sk_cdata.sk_rx_prod = i;
   2055 			break;
   2056 		}
   2057 
   2058 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2059 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2060 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2061 
   2062 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2063 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2064 
   2065 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2066 		m = cur_rx->sk_mbuf;
   2067 		cur_rx->sk_mbuf = NULL;
   2068 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2069 
   2070 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2071 
   2072 		SK_INC(i, SK_RX_RING_CNT);
   2073 
   2074 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2075 			if_statinc(ifp, if_ierrors);
   2076 			sk_newbuf(sc_if, cur, m, dmamap);
   2077 			continue;
   2078 		}
   2079 
   2080 		/*
   2081 		 * Try to allocate a new jumbo buffer. If that
   2082 		 * fails, copy the packet to mbufs and put the
   2083 		 * jumbo buffer back in the ring so it can be
   2084 		 * re-used. If allocating mbufs fails, then we
   2085 		 * have to drop the packet.
   2086 		 */
   2087 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2088 			struct mbuf		*m0;
   2089 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2090 			    total_len + ETHER_ALIGN, 0, ifp);
   2091 			sk_newbuf(sc_if, cur, m, dmamap);
   2092 			if (m0 == NULL) {
   2093 				aprint_error_dev(sc_if->sk_dev, "no receive "
   2094 				    "buffers available -- packet dropped!\n");
   2095 				if_statinc(ifp, if_ierrors);
   2096 				continue;
   2097 			}
   2098 			m_adj(m0, ETHER_ALIGN);
   2099 			m = m0;
   2100 		} else {
   2101 			m_set_rcvif(m, ifp);
   2102 			m->m_pkthdr.len = m->m_len = total_len;
   2103 		}
   2104 
   2105 		/* pass it on. */
   2106 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2107 	}
   2108 }
   2109 
   2110 static void
   2111 sk_txeof(struct sk_if_softc *sc_if)
   2112 {
   2113 	struct sk_softc		*sc = sc_if->sk_softc;
   2114 	struct sk_tx_desc	*cur_tx;
   2115 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2116 	uint32_t		idx, sk_ctl;
   2117 	struct sk_txmap_entry	*entry;
   2118 
   2119 	DPRINTFN(3, ("sk_txeof\n"));
   2120 
   2121 	/*
   2122 	 * Go through our tx ring and free mbufs for those
   2123 	 * frames that have been sent.
   2124 	 */
   2125 	idx = sc_if->sk_cdata.sk_tx_cons;
   2126 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2127 		SK_CDTXSYNC(sc_if, idx, 1,
   2128 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2129 
   2130 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2131 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2132 #ifdef SK_DEBUG
   2133 		if (skdebug >= 3)
   2134 			sk_dump_txdesc(cur_tx, idx);
   2135 #endif
   2136 		if (sk_ctl & SK_TXCTL_OWN) {
   2137 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2138 			break;
   2139 		}
   2140 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2141 			if_statinc(ifp, if_opackets);
   2142 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2143 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2144 
   2145 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2146 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2147 
   2148 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2149 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2150 					  link);
   2151 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2152 
   2153 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2154 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2155 		}
   2156 		sc_if->sk_cdata.sk_tx_cnt--;
   2157 		SK_INC(idx, SK_TX_RING_CNT);
   2158 	}
   2159 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2160 		ifp->if_timer = 0;
   2161 	else /* nudge chip to keep tx ring moving */
   2162 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2163 
   2164 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2165 		ifp->if_flags &= ~IFF_OACTIVE;
   2166 
   2167 	sc_if->sk_cdata.sk_tx_cons = idx;
   2168 }
   2169 
   2170 static void
   2171 sk_tick(void *xsc_if)
   2172 {
   2173 	struct sk_if_softc *sc_if = xsc_if;
   2174 	struct mii_data *mii = &sc_if->sk_mii;
   2175 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2176 	int i;
   2177 
   2178 	DPRINTFN(3, ("sk_tick\n"));
   2179 
   2180 	if (!(ifp->if_flags & IFF_UP))
   2181 		return;
   2182 
   2183 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2184 		sk_intr_bcom(sc_if);
   2185 		return;
   2186 	}
   2187 
   2188 	/*
   2189 	 * According to SysKonnect, the correct way to verify that
   2190 	 * the link has come back up is to poll bit 0 of the GPIO
   2191 	 * register three times. This pin has the signal from the
   2192 	 * link sync pin connected to it; if we read the same link
   2193 	 * state 3 times in a row, we know the link is up.
   2194 	 */
   2195 	for (i = 0; i < 3; i++) {
   2196 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2197 			break;
   2198 	}
   2199 
   2200 	if (i != 3) {
   2201 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2202 		return;
   2203 	}
   2204 
   2205 	/* Turn the GP0 interrupt back on. */
   2206 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2207 	SK_XM_READ_2(sc_if, XM_ISR);
   2208 	mii_tick(mii);
   2209 	if (ifp->if_link_state != LINK_STATE_UP)
   2210 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2211 	else
   2212 		callout_stop(&sc_if->sk_tick_ch);
   2213 }
   2214 
   2215 static void
   2216 sk_intr_bcom(struct sk_if_softc *sc_if)
   2217 {
   2218 	struct mii_data *mii = &sc_if->sk_mii;
   2219 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2220 	uint16_t status;
   2221 
   2222 
   2223 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2224 
   2225 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2226 
   2227 	/*
   2228 	 * Read the PHY interrupt register to make sure
   2229 	 * we clear any pending interrupts.
   2230 	 */
   2231 	sk_xmac_miibus_readreg(sc_if->sk_dev,
   2232 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
   2233 
   2234 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2235 		sk_init_xmac(sc_if);
   2236 		return;
   2237 	}
   2238 
   2239 	if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
   2240 		uint16_t lstat;
   2241 		sk_xmac_miibus_readreg(sc_if->sk_dev,
   2242 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
   2243 
   2244 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2245 			(void)mii_mediachg(mii);
   2246 			/* Turn off the link LED. */
   2247 			SK_IF_WRITE_1(sc_if, 0,
   2248 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2249 			sc_if->sk_link = 0;
   2250 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2251 			sk_xmac_miibus_writereg(sc_if->sk_dev,
   2252 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2253 			mii_tick(mii);
   2254 			sc_if->sk_link = 1;
   2255 			/* Turn on the link LED. */
   2256 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2257 			    SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
   2258 			    SK_LINKLED_BLINK_OFF);
   2259 			mii_pollstat(mii);
   2260 		} else {
   2261 			mii_tick(mii);
   2262 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2263 		}
   2264 	}
   2265 
   2266 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2267 }
   2268 
   2269 static void
   2270 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2271 {
   2272 	uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2273 
   2274 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2275 
   2276 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2277 		if (status & XM_ISR_GP0_SET) {
   2278 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2279 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2280 		}
   2281 
   2282 		if (status & XM_ISR_AUTONEG_DONE) {
   2283 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2284 		}
   2285 	}
   2286 
   2287 	if (status & XM_IMR_TX_UNDERRUN)
   2288 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2289 
   2290 	if (status & XM_IMR_RX_OVERRUN)
   2291 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2292 }
   2293 
   2294 static void
   2295 sk_intr_yukon(struct sk_if_softc *sc_if)
   2296 {
   2297 #ifdef SK_DEBUG
   2298 	int status;
   2299 
   2300 	status =
   2301 #endif
   2302 		SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2303 
   2304 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2305 }
   2306 
   2307 static int
   2308 sk_intr(void *xsc)
   2309 {
   2310 	struct sk_softc		*sc = xsc;
   2311 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2312 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2313 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2314 	uint32_t		status;
   2315 	int			claimed = 0;
   2316 
   2317 	if (sc_if0 != NULL)
   2318 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2319 	if (sc_if1 != NULL)
   2320 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2321 
   2322 	for (;;) {
   2323 		status = CSR_READ_4(sc, SK_ISSR);
   2324 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2325 
   2326 		if (!(status & sc->sk_intrmask))
   2327 			break;
   2328 
   2329 		claimed = 1;
   2330 
   2331 		/* Handle receive interrupts first. */
   2332 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2333 			sk_rxeof(sc_if0);
   2334 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2335 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
   2336 		}
   2337 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2338 			sk_rxeof(sc_if1);
   2339 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2340 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
   2341 		}
   2342 
   2343 		/* Then transmit interrupts. */
   2344 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2345 			sk_txeof(sc_if0);
   2346 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2347 			    SK_TXBMU_CLR_IRQ_EOF);
   2348 		}
   2349 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2350 			sk_txeof(sc_if1);
   2351 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2352 			    SK_TXBMU_CLR_IRQ_EOF);
   2353 		}
   2354 
   2355 		/* Then MAC interrupts. */
   2356 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2357 		    (ifp0->if_flags & IFF_RUNNING)) {
   2358 			if (sc->sk_type == SK_GENESIS)
   2359 				sk_intr_xmac(sc_if0);
   2360 			else
   2361 				sk_intr_yukon(sc_if0);
   2362 		}
   2363 
   2364 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2365 		    (ifp1->if_flags & IFF_RUNNING)) {
   2366 			if (sc->sk_type == SK_GENESIS)
   2367 				sk_intr_xmac(sc_if1);
   2368 			else
   2369 				sk_intr_yukon(sc_if1);
   2370 
   2371 		}
   2372 
   2373 		if (status & SK_ISR_EXTERNAL_REG) {
   2374 			if (sc_if0 != NULL &&
   2375 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2376 				sk_intr_bcom(sc_if0);
   2377 
   2378 			if (sc_if1 != NULL &&
   2379 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2380 				sk_intr_bcom(sc_if1);
   2381 		}
   2382 	}
   2383 
   2384 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2385 
   2386 	if (ifp0 != NULL)
   2387 		if_schedule_deferred_start(ifp0);
   2388 	if (ifp1 != NULL)
   2389 		if_schedule_deferred_start(ifp1);
   2390 
   2391 	KASSERT(sc->rnd_attached > 0);
   2392 	rnd_add_uint32(&sc->rnd_source, status);
   2393 
   2394 	if (sc->sk_int_mod_pending)
   2395 		sk_update_int_mod(sc);
   2396 
   2397 	return claimed;
   2398 }
   2399 
   2400 static void
   2401 sk_unreset_xmac(struct sk_if_softc *sc_if)
   2402 {
   2403 	struct sk_softc		*sc = sc_if->sk_softc;
   2404 	static const struct sk_bcom_hack     bhack[] = {
   2405 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2406 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2407 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2408 	{ 0, 0 } };
   2409 
   2410 	DPRINTFN(1, ("sk_unreset_xmac\n"));
   2411 
   2412 	/* Unreset the XMAC. */
   2413 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2414 	DELAY(1000);
   2415 
   2416 	/* Reset the XMAC's internal state. */
   2417 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2418 
   2419 	/* Save the XMAC II revision */
   2420 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2421 
   2422 	/*
   2423 	 * Perform additional initialization for external PHYs,
   2424 	 * namely for the 1000baseTX cards that use the XMAC's
   2425 	 * GMII mode.
   2426 	 */
   2427 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2428 		int			i = 0;
   2429 		uint32_t		val;
   2430 		uint16_t		phyval;
   2431 
   2432 		/* Take PHY out of reset. */
   2433 		val = sk_win_read_4(sc, SK_GPIO);
   2434 		if (sc_if->sk_port == SK_PORT_A)
   2435 			val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
   2436 		else
   2437 			val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
   2438 		sk_win_write_4(sc, SK_GPIO, val);
   2439 
   2440 		/* Enable GMII mode on the XMAC. */
   2441 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2442 
   2443 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2444 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2445 		DELAY(10000);
   2446 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2447 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2448 
   2449 		/*
   2450 		 * Early versions of the BCM5400 apparently have
   2451 		 * a bug that requires them to have their reserved
   2452 		 * registers initialized to some magic values. I don't
   2453 		 * know what the numbers do, I'm just the messenger.
   2454 		 */
   2455 		sk_xmac_miibus_readreg(sc_if->sk_dev,
   2456 		    SK_PHYADDR_BCOM, 0x03, &phyval);
   2457 		if (phyval == 0x6041) {
   2458 			while (bhack[i].reg) {
   2459 				sk_xmac_miibus_writereg(sc_if->sk_dev,
   2460 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2461 				    bhack[i].val);
   2462 				i++;
   2463 			}
   2464 		}
   2465 	}
   2466 }
   2467 
   2468 static void
   2469 sk_init_xmac(struct sk_if_softc *sc_if)
   2470 {
   2471 	struct sk_softc		*sc = sc_if->sk_softc;
   2472 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2473 
   2474 	sk_unreset_xmac(sc_if);
   2475 
   2476 	/* Set station address */
   2477 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2478 		      *(uint16_t *)(&sc_if->sk_enaddr[0]));
   2479 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2480 		      *(uint16_t *)(&sc_if->sk_enaddr[2]));
   2481 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2482 		      *(uint16_t *)(&sc_if->sk_enaddr[4]));
   2483 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2484 
   2485 	if (ifp->if_flags & IFF_PROMISC)
   2486 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2487 	else
   2488 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2489 
   2490 	if (ifp->if_flags & IFF_BROADCAST)
   2491 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2492 	else
   2493 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2494 
   2495 	/* We don't need the FCS appended to the packet. */
   2496 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2497 
   2498 	/* We want short frames padded to 60 bytes. */
   2499 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2500 
   2501 	/*
   2502 	 * Enable the reception of all error frames. This is
   2503 	 * a necessary evil due to the design of the XMAC. The
   2504 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2505 	 * frames can be up to 9000 bytes in length. When bad
   2506 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2507 	 * in 'store and forward' mode. For this to work, the
   2508 	 * entire frame has to fit into the FIFO, but that means
   2509 	 * that jumbo frames larger than 8192 bytes will be
   2510 	 * truncated. Disabling all bad frame filtering causes
   2511 	 * the RX FIFO to operate in streaming mode, in which
   2512 	 * case the XMAC will start transferring frames out of the
   2513 	 * RX FIFO as soon as the FIFO threshold is reached.
   2514 	 */
   2515 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
   2516 	    XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
   2517 	    XM_MODE_RX_INRANGELEN);
   2518 
   2519 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2520 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2521 	else
   2522 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2523 
   2524 	/*
   2525 	 * Bump up the transmit threshold. This helps hold off transmit
   2526 	 * underruns when we're blasting traffic from both ports at once.
   2527 	 */
   2528 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2529 
   2530 	/* Set multicast filter */
   2531 	sk_setmulti(sc_if);
   2532 
   2533 	/* Clear and enable interrupts */
   2534 	SK_XM_READ_2(sc_if, XM_ISR);
   2535 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2536 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2537 	else
   2538 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2539 
   2540 	/* Configure MAC arbiter */
   2541 	switch (sc_if->sk_xmac_rev) {
   2542 	case XM_XMAC_REV_B2:
   2543 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2544 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2545 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2546 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2547 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2548 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2549 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2550 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2551 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2552 		break;
   2553 	case XM_XMAC_REV_C1:
   2554 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2555 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2556 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2557 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2558 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2559 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2560 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2561 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2562 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2563 		break;
   2564 	default:
   2565 		break;
   2566 	}
   2567 	sk_win_write_2(sc, SK_MACARB_CTL,
   2568 	    SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
   2569 
   2570 	sc_if->sk_link = 1;
   2571 }
   2572 
   2573 static void
   2574 sk_unreset_yukon(struct sk_if_softc *sc_if)
   2575 {
   2576 	uint32_t		/*mac, */phy;
   2577 	struct sk_softc		*sc;
   2578 
   2579 	DPRINTFN(1, ("sk_unreset_yukon: start: sk_csr=%#x\n",
   2580 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2581 
   2582 	sc = sc_if->sk_softc;
   2583 	if (sc->sk_type == SK_YUKON_LITE &&
   2584 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2585 		/* Take PHY out of reset. */
   2586 		sk_win_write_4(sc, SK_GPIO,
   2587 		    (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9)
   2588 		    & ~SK_GPIO_DAT9);
   2589 	}
   2590 
   2591 	/* GMAC and GPHY Reset */
   2592 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2593 
   2594 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2595 
   2596 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2597 	DELAY(1000);
   2598 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2599 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2600 	DELAY(1000);
   2601 
   2602 
   2603 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2604 
   2605 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2606 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2607 
   2608 	switch (sc_if->sk_softc->sk_pmd) {
   2609 	case IFM_1000_SX:
   2610 	case IFM_1000_LX:
   2611 		phy |= SK_GPHY_FIBER;
   2612 		break;
   2613 
   2614 	case IFM_1000_CX:
   2615 	case IFM_1000_T:
   2616 		phy |= SK_GPHY_COPPER;
   2617 		break;
   2618 	}
   2619 
   2620 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2621 
   2622 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2623 	DELAY(1000);
   2624 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2625 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2626 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2627 
   2628 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2629 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2630 }
   2631 
   2632 static void
   2633 sk_init_yukon(struct sk_if_softc *sc_if)
   2634 {
   2635 	uint16_t		reg;
   2636 	int			i;
   2637 
   2638 	DPRINTFN(1, ("sk_init_yukon: start\n"));
   2639 	sk_unreset_yukon(sc_if);
   2640 
   2641 	/* unused read of the interrupt source register */
   2642 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2643 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2644 
   2645 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2646 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2647 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2648 
   2649 	/* MIB Counter Clear Mode set */
   2650 	reg |= YU_PAR_MIB_CLR;
   2651 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2652 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2653 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2654 
   2655 	/* MIB Counter Clear Mode clear */
   2656 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2657 	reg &= ~YU_PAR_MIB_CLR;
   2658 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2659 
   2660 	/* receive control reg */
   2661 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2662 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2663 		      YU_RCR_CRCR);
   2664 
   2665 	/* transmit parameter register */
   2666 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2667 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2668 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a));
   2669 
   2670 	/* serial mode register */
   2671 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2672 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2673 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2674 		      YU_SMR_IPG_DATA(0x1e));
   2675 
   2676 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2677 	/* Setup Yukon's address */
   2678 	for (i = 0; i < 3; i++) {
   2679 		/* Write Source Address 1 (unicast filter) */
   2680 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2681 			      sc_if->sk_enaddr[i * 2] |
   2682 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2683 	}
   2684 
   2685 	for (i = 0; i < 3; i++) {
   2686 		reg = sk_win_read_2(sc_if->sk_softc,
   2687 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2688 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2689 	}
   2690 
   2691 	/* Set multicast filter */
   2692 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2693 	sk_setmulti(sc_if);
   2694 
   2695 	/* enable interrupt mask for counter overflows */
   2696 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2697 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2698 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2699 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2700 
   2701 	/* Configure RX MAC FIFO */
   2702 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2703 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2704 
   2705 	/* Configure TX MAC FIFO */
   2706 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2707 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2708 
   2709 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2710 }
   2711 
   2712 /*
   2713  * Note that to properly initialize any part of the GEnesis chip,
   2714  * you first have to take it out of reset mode.
   2715  */
   2716 static int
   2717 sk_init(struct ifnet *ifp)
   2718 {
   2719 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2720 	struct sk_softc		*sc = sc_if->sk_softc;
   2721 	struct mii_data		*mii = &sc_if->sk_mii;
   2722 	int			rc = 0, s;
   2723 	uint32_t		imr, imtimer_ticks;
   2724 
   2725 	DPRINTFN(1, ("sk_init\n"));
   2726 
   2727 	s = splnet();
   2728 
   2729 	if (ifp->if_flags & IFF_RUNNING) {
   2730 		splx(s);
   2731 		return 0;
   2732 	}
   2733 
   2734 	/* Cancel pending I/O and free all RX/TX buffers. */
   2735 	sk_stop(ifp, 0);
   2736 
   2737 	if (sc->sk_type == SK_GENESIS) {
   2738 		/* Configure LINK_SYNC LED */
   2739 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2740 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2741 			      SK_LINKLED_LINKSYNC_ON);
   2742 
   2743 		/* Configure RX LED */
   2744 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2745 			      SK_RXLEDCTL_COUNTER_START);
   2746 
   2747 		/* Configure TX LED */
   2748 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2749 			      SK_TXLEDCTL_COUNTER_START);
   2750 	}
   2751 
   2752 	/* Configure I2C registers */
   2753 
   2754 	/* Configure XMAC(s) */
   2755 	switch (sc->sk_type) {
   2756 	case SK_GENESIS:
   2757 		sk_init_xmac(sc_if);
   2758 		break;
   2759 	case SK_YUKON:
   2760 	case SK_YUKON_LITE:
   2761 	case SK_YUKON_LP:
   2762 		sk_init_yukon(sc_if);
   2763 		break;
   2764 	}
   2765 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2766 		rc = 0;
   2767 	else if (rc != 0)
   2768 		goto out;
   2769 
   2770 	if (sc->sk_type == SK_GENESIS) {
   2771 		/* Configure MAC FIFOs */
   2772 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2773 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2774 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2775 
   2776 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2777 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2778 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2779 	}
   2780 
   2781 	/* Configure transmit arbiter(s) */
   2782 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2783 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
   2784 
   2785 	/* Configure RAMbuffers */
   2786 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2787 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2788 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2789 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2790 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2791 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2792 
   2793 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2794 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2795 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2796 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2797 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2798 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2799 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2800 
   2801 	/* Configure BMUs */
   2802 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2803 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2804 	    SK_RX_RING_ADDR(sc_if, 0));
   2805 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2806 
   2807 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2808 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2809 	    SK_TX_RING_ADDR(sc_if, 0));
   2810 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2811 
   2812 	/* Init descriptors */
   2813 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2814 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2815 		    "memory for rx buffers\n");
   2816 		sk_stop(ifp, 0);
   2817 		splx(s);
   2818 		return ENOBUFS;
   2819 	}
   2820 
   2821 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2822 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2823 		    "memory for tx buffers\n");
   2824 		sk_stop(ifp, 0);
   2825 		splx(s);
   2826 		return ENOBUFS;
   2827 	}
   2828 
   2829 	/* Set interrupt moderation if changed via sysctl. */
   2830 	switch (sc->sk_type) {
   2831 	case SK_GENESIS:
   2832 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2833 		break;
   2834 	case SK_YUKON_EC:
   2835 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2836 		break;
   2837 	default:
   2838 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2839 	}
   2840 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2841 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2842 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2843 		    SK_IM_USECS(sc->sk_int_mod));
   2844 		aprint_verbose_dev(sc->sk_dev,
   2845 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
   2846 	}
   2847 
   2848 	/* Configure interrupt handling */
   2849 	CSR_READ_4(sc, SK_ISSR);
   2850 	if (sc_if->sk_port == SK_PORT_A)
   2851 		sc->sk_intrmask |= SK_INTRS1;
   2852 	else
   2853 		sc->sk_intrmask |= SK_INTRS2;
   2854 
   2855 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2856 
   2857 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2858 
   2859 	/* Start BMUs. */
   2860 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2861 
   2862 	if (sc->sk_type == SK_GENESIS) {
   2863 		/* Enable XMACs TX and RX state machines */
   2864 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2865 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2866 			       XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2867 	}
   2868 
   2869 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2870 		uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2871 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2872 #if 0
   2873 		/* XXX disable 100Mbps and full duplex mode? */
   2874 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2875 #endif
   2876 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2877 	}
   2878 
   2879 
   2880 	ifp->if_flags |= IFF_RUNNING;
   2881 	ifp->if_flags &= ~IFF_OACTIVE;
   2882 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2883 
   2884 out:
   2885 	splx(s);
   2886 	return rc;
   2887 }
   2888 
   2889 static void
   2890 sk_stop(struct ifnet *ifp, int disable)
   2891 {
   2892 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2893 	struct sk_softc		*sc = sc_if->sk_softc;
   2894 	int			i;
   2895 
   2896 	DPRINTFN(1, ("sk_stop\n"));
   2897 
   2898 	callout_stop(&sc_if->sk_tick_ch);
   2899 
   2900 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2901 		uint32_t		val;
   2902 
   2903 		/* Put PHY back into reset. */
   2904 		val = sk_win_read_4(sc, SK_GPIO);
   2905 		if (sc_if->sk_port == SK_PORT_A) {
   2906 			val |= SK_GPIO_DIR0;
   2907 			val &= ~SK_GPIO_DAT0;
   2908 		} else {
   2909 			val |= SK_GPIO_DIR2;
   2910 			val &= ~SK_GPIO_DAT2;
   2911 		}
   2912 		sk_win_write_4(sc, SK_GPIO, val);
   2913 	}
   2914 
   2915 	/* Turn off various components of this interface. */
   2916 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2917 	switch (sc->sk_type) {
   2918 	case SK_GENESIS:
   2919 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2920 			      SK_TXMACCTL_XMAC_RESET);
   2921 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2922 		break;
   2923 	case SK_YUKON:
   2924 	case SK_YUKON_LITE:
   2925 	case SK_YUKON_LP:
   2926 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2927 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2928 		break;
   2929 	}
   2930 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2931 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
   2932 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2933 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2934 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2935 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2936 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2937 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2938 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2939 
   2940 	/* Disable interrupts */
   2941 	if (sc_if->sk_port == SK_PORT_A)
   2942 		sc->sk_intrmask &= ~SK_INTRS1;
   2943 	else
   2944 		sc->sk_intrmask &= ~SK_INTRS2;
   2945 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2946 
   2947 	SK_XM_READ_2(sc_if, XM_ISR);
   2948 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2949 
   2950 	/* Free RX and TX mbufs still in the queues. */
   2951 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2952 		m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2953 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2954 	}
   2955 
   2956 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2957 		m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2958 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2959 	}
   2960 
   2961 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2962 }
   2963 
   2964 /* Power Management Framework */
   2965 
   2966 static bool
   2967 skc_suspend(device_t dv, const pmf_qual_t *qual)
   2968 {
   2969 	struct sk_softc *sc = device_private(dv);
   2970 
   2971 	DPRINTFN(2, ("skc_suspend\n"));
   2972 
   2973 	/* Turn off the driver is loaded LED */
   2974 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2975 
   2976 	return true;
   2977 }
   2978 
   2979 static bool
   2980 skc_resume(device_t dv, const pmf_qual_t *qual)
   2981 {
   2982 	struct sk_softc *sc = device_private(dv);
   2983 
   2984 	DPRINTFN(2, ("skc_resume\n"));
   2985 
   2986 	sk_reset(sc);
   2987 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   2988 
   2989 	return true;
   2990 }
   2991 
   2992 static bool
   2993 sk_resume(device_t dv, const pmf_qual_t *qual)
   2994 {
   2995 	struct sk_if_softc *sc_if = device_private(dv);
   2996 
   2997 	sk_init_yukon(sc_if);
   2998 	return true;
   2999 }
   3000 
   3001 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
   3002     skc_probe, skc_attach, NULL, NULL);
   3003 
   3004 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
   3005     sk_probe, sk_attach, NULL, NULL);
   3006 
   3007 #ifdef SK_DEBUG
   3008 static void
   3009 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   3010 {
   3011 #define DESC_PRINT(X)					\
   3012 	if (X)						\
   3013 		printf("txdesc[%d]." #X "=%#x\n",	\
   3014 		       idx, X);
   3015 
   3016 	DESC_PRINT(le32toh(desc->sk_ctl));
   3017 	DESC_PRINT(le32toh(desc->sk_next));
   3018 	DESC_PRINT(le32toh(desc->sk_data_lo));
   3019 	DESC_PRINT(le32toh(desc->sk_data_hi));
   3020 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   3021 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   3022 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   3023 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   3024 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   3025 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   3026 #undef PRINT
   3027 }
   3028 
   3029 static void
   3030 sk_dump_bytes(const char *data, int len)
   3031 {
   3032 	int c, i, j;
   3033 
   3034 	for (i = 0; i < len; i += 16) {
   3035 		printf("%08x  ", i);
   3036 		c = len - i;
   3037 		if (c > 16) c = 16;
   3038 
   3039 		for (j = 0; j < c; j++) {
   3040 			printf("%02x ", data[i + j] & 0xff);
   3041 			if ((j & 0xf) == 7 && j > 0)
   3042 				printf(" ");
   3043 		}
   3044 
   3045 		for (; j < 16; j++)
   3046 			printf("   ");
   3047 		printf("  ");
   3048 
   3049 		for (j = 0; j < c; j++) {
   3050 			int ch = data[i + j] & 0xff;
   3051 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   3052 		}
   3053 
   3054 		printf("\n");
   3055 
   3056 		if (c < 16)
   3057 			break;
   3058 	}
   3059 }
   3060 
   3061 static void
   3062 sk_dump_mbuf(struct mbuf *m)
   3063 {
   3064 	int count = m->m_pkthdr.len;
   3065 
   3066 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3067 
   3068 	while (count > 0 && m) {
   3069 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3070 		       m, m->m_data, m->m_len);
   3071 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3072 
   3073 		count -= m->m_len;
   3074 		m = m->m_next;
   3075 	}
   3076 }
   3077 #endif
   3078 
   3079 static int
   3080 sk_sysctl_handler(SYSCTLFN_ARGS)
   3081 {
   3082 	int error, t;
   3083 	struct sysctlnode node;
   3084 	struct sk_softc *sc;
   3085 
   3086 	node = *rnode;
   3087 	sc = node.sysctl_data;
   3088 	t = sc->sk_int_mod;
   3089 	node.sysctl_data = &t;
   3090 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3091 	if (error || newp == NULL)
   3092 		return error;
   3093 
   3094 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3095 		return EINVAL;
   3096 
   3097 	/* update the softc with sysctl-changed value, and mark
   3098 	   for hardware update */
   3099 	sc->sk_int_mod = t;
   3100 	sc->sk_int_mod_pending = 1;
   3101 	return 0;
   3102 }
   3103 
   3104 /*
   3105  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3106  * set up in skc_attach()
   3107  */
   3108 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3109 {
   3110 	int rc;
   3111 	const struct sysctlnode *node;
   3112 
   3113 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3114 	    0, CTLTYPE_NODE, "sk",
   3115 	    SYSCTL_DESCR("sk interface controls"),
   3116 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3117 		goto err;
   3118 	}
   3119 
   3120 	sk_root_num = node->sysctl_num;
   3121 	return;
   3122 
   3123 err:
   3124 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3125 }
   3126