Home | History | Annotate | Line # | Download | only in pci
      1 /*	$NetBSD: if_sk.c,v 1.113 2024/07/05 04:31:51 rin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
     30 
     31 /*
     32  * Copyright (c) 1997, 1998, 1999, 2000
     33  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by Bill Paul.
     46  * 4. Neither the name of the author nor the names of any co-contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     60  * THE POSSIBILITY OF SUCH DAMAGE.
     61  *
     62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
     63  */
     64 
     65 /*
     66  * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
     67  *
     68  * Permission to use, copy, modify, and distribute this software for any
     69  * purpose with or without fee is hereby granted, provided that the above
     70  * copyright notice and this permission notice appear in all copies.
     71  *
     72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     79  */
     80 
     81 /*
     82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
     83  * the SK-984x series adapters, both single port and dual port.
     84  * References:
     85  *	The XaQti XMAC II datasheet,
     86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
     88  *
     89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
     90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
     91  * convenience to others until Vitesse corrects this problem:
     92  *
     93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
     94  *
     95  * Written by Bill Paul <wpaul (at) ee.columbia.edu>
     96  * Department of Electrical Engineering
     97  * Columbia University, New York City
     98  */
     99 
    100 /*
    101  * The SysKonnect gigabit ethernet adapters consist of two main
    102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
    103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
    104  * components and a PHY while the GEnesis controller provides a PCI
    105  * interface with DMA support. Each card may have between 512K and
    106  * 2MB of SRAM on board depending on the configuration.
    107  *
    108  * The SysKonnect GEnesis controller can have either one or two XMAC
    109  * chips connected to it, allowing single or dual port NIC configurations.
    110  * SysKonnect has the distinction of being the only vendor on the market
    111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
    112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
    113  * XMAC registers. This driver takes advantage of these features to allow
    114  * both XMACs to operate as independent interfaces.
    115  */
    116 
    117 #include <sys/cdefs.h>
    118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.113 2024/07/05 04:31:51 rin Exp $");
    119 
    120 #include <sys/param.h>
    121 #include <sys/systm.h>
    122 #include <sys/sockio.h>
    123 #include <sys/mbuf.h>
    124 #include <sys/malloc.h>
    125 #include <sys/mutex.h>
    126 #include <sys/kernel.h>
    127 #include <sys/socket.h>
    128 #include <sys/device.h>
    129 #include <sys/queue.h>
    130 #include <sys/callout.h>
    131 #include <sys/sysctl.h>
    132 #include <sys/endian.h>
    133 
    134 #include <net/if.h>
    135 #include <net/if_dl.h>
    136 #include <net/if_types.h>
    137 
    138 #include <net/if_media.h>
    139 
    140 #include <net/bpf.h>
    141 #include <sys/rndsource.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 #include <dev/mii/brgphyreg.h>
    146 
    147 #include <dev/pci/pcireg.h>
    148 #include <dev/pci/pcivar.h>
    149 #include <dev/pci/pcidevs.h>
    150 
    151 /* #define SK_USEIOSPACE */
    152 
    153 #include <dev/pci/if_skreg.h>
    154 #include <dev/pci/if_skvar.h>
    155 
    156 static int skc_probe(device_t, cfdata_t, void *);
    157 static void skc_attach(device_t, device_t, void *);
    158 static int sk_probe(device_t, cfdata_t, void *);
    159 static void sk_attach(device_t, device_t, void *);
    160 static int skcprint(void *, const char *);
    161 static int sk_intr(void *);
    162 static void sk_intr_bcom(struct sk_if_softc *);
    163 static void sk_intr_xmac(struct sk_if_softc *);
    164 static void sk_intr_yukon(struct sk_if_softc *);
    165 static void sk_rxeof(struct sk_if_softc *);
    166 static void sk_txeof(struct sk_if_softc *);
    167 static int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
    168 static void sk_start(struct ifnet *);
    169 static int sk_ioctl(struct ifnet *, u_long, void *);
    170 static int sk_init(struct ifnet *);
    171 static void sk_unreset_xmac(struct sk_if_softc *);
    172 static void sk_init_xmac(struct sk_if_softc *);
    173 static void sk_unreset_yukon(struct sk_if_softc *);
    174 static void sk_init_yukon(struct sk_if_softc *);
    175 static void sk_stop(struct ifnet *, int);
    176 static void sk_watchdog(struct ifnet *);
    177 static int sk_ifmedia_upd(struct ifnet *);
    178 static void sk_reset(struct sk_softc *);
    179 static int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
    180 static int sk_alloc_jumbo_mem(struct sk_if_softc *);
    181 static void *sk_jalloc(struct sk_if_softc *);
    182 static void sk_jfree(struct mbuf *, void *, size_t, void *);
    183 static int sk_init_rx_ring(struct sk_if_softc *);
    184 static int sk_init_tx_ring(struct sk_if_softc *);
    185 static uint8_t sk_vpd_readbyte(struct sk_softc *, int);
    186 static void sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
    187 static void sk_vpd_read(struct sk_softc *);
    188 
    189 static void sk_update_int_mod(struct sk_softc *);
    190 
    191 static int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
    192 static int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
    193 static void sk_xmac_miibus_statchg(struct ifnet *);
    194 
    195 static int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
    196 static int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
    197 static void sk_marv_miibus_statchg(struct ifnet *);
    198 
    199 static uint32_t sk_xmac_hash(void *);
    200 static uint32_t sk_yukon_hash(void *);
    201 static void sk_setfilt(struct sk_if_softc *, void *, int);
    202 static void sk_setmulti(struct sk_if_softc *);
    203 static void sk_tick(void *);
    204 
    205 static bool skc_suspend(device_t, const pmf_qual_t *);
    206 static bool skc_resume(device_t, const pmf_qual_t *);
    207 static bool sk_resume(device_t dv, const pmf_qual_t *);
    208 
    209 /* #define SK_DEBUG 2 */
    210 #ifdef SK_DEBUG
    211 #define DPRINTF(x)	if (skdebug) printf x
    212 #define DPRINTFN(n, x)	if (skdebug >= (n)) printf x
    213 int	skdebug = SK_DEBUG;
    214 
    215 static void sk_dump_txdesc(struct sk_tx_desc *, int);
    216 static void sk_dump_mbuf(struct mbuf *);
    217 static void sk_dump_bytes(const char *, int);
    218 #else
    219 #define DPRINTF(x)
    220 #define DPRINTFN(n, x)
    221 #endif
    222 
    223 static int sk_sysctl_handler(SYSCTLFN_PROTO);
    224 static int sk_root_num;
    225 
    226 /* supported device vendors */
    227 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
    228 static const struct device_compatible_entry compat_data[] = {
    229 	{ .id = PCI_ID_CODE(PCI_VENDOR_3COM,
    230 		PCI_PRODUCT_3COM_3C940) },
    231 
    232 	{ .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
    233 		PCI_PRODUCT_DLINK_DGE530T) },
    234 
    235 	{ .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
    236 		PCI_PRODUCT_DLINK_DGE560T_2) },
    237 
    238 	{ .id = PCI_ID_CODE(PCI_VENDOR_LINKSYS,
    239 		PCI_PRODUCT_LINKSYS_EG1064) },
    240 
    241 	{ .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
    242 		PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE) },
    243 
    244 	{ .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
    245 		PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2) },
    246 
    247 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
    248 		PCI_PRODUCT_MARVELL_SKNET) },
    249 
    250 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
    251 		PCI_PRODUCT_MARVELL_BELKIN) },
    252 
    253 	PCI_COMPAT_EOL
    254 };
    255 
    256 #define SK_LINKSYS_EG1032_SUBID	0x00151737
    257 
    258 static inline uint32_t
    259 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
    260 {
    261 #ifdef SK_USEIOSPACE
    262 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    263 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
    264 #else
    265 	return CSR_READ_4(sc, reg);
    266 #endif
    267 }
    268 
    269 static inline uint16_t
    270 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
    271 {
    272 #ifdef SK_USEIOSPACE
    273 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    274 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
    275 #else
    276 	return CSR_READ_2(sc, reg);
    277 #endif
    278 }
    279 
    280 static inline uint8_t
    281 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
    282 {
    283 #ifdef SK_USEIOSPACE
    284 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    285 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
    286 #else
    287 	return CSR_READ_1(sc, reg);
    288 #endif
    289 }
    290 
    291 static inline void
    292 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
    293 {
    294 #ifdef SK_USEIOSPACE
    295 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    296 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
    297 #else
    298 	CSR_WRITE_4(sc, reg, x);
    299 #endif
    300 }
    301 
    302 static inline void
    303 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
    304 {
    305 #ifdef SK_USEIOSPACE
    306 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    307 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
    308 #else
    309 	CSR_WRITE_2(sc, reg, x);
    310 #endif
    311 }
    312 
    313 static inline void
    314 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
    315 {
    316 #ifdef SK_USEIOSPACE
    317 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
    318 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
    319 #else
    320 	CSR_WRITE_1(sc, reg, x);
    321 #endif
    322 }
    323 
    324 /*
    325  * The VPD EEPROM contains Vital Product Data, as suggested in
    326  * the PCI 2.1 specification. The VPD data is separated into areas
    327  * denoted by resource IDs. The SysKonnect VPD contains an ID string
    328  * resource (the name of the adapter), a read-only area resource
    329  * containing various key/data fields and a read/write area which
    330  * can be used to store asset management information or log messages.
    331  * We read the ID string and read-only into buffers attached to
    332  * the controller softc structure for later use. At the moment,
    333  * we only use the ID string during sk_attach().
    334  */
    335 static uint8_t
    336 sk_vpd_readbyte(struct sk_softc *sc, int addr)
    337 {
    338 	int			i;
    339 
    340 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
    341 	for (i = 0; i < SK_TIMEOUT; i++) {
    342 		DELAY(1);
    343 		if (sk_win_read_2(sc,
    344 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
    345 			break;
    346 	}
    347 
    348 	if (i == SK_TIMEOUT)
    349 		return 0;
    350 
    351 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
    352 }
    353 
    354 static void
    355 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
    356 {
    357 	int			i;
    358 	uint8_t		*ptr;
    359 
    360 	ptr = (uint8_t *)res;
    361 	for (i = 0; i < sizeof(struct vpd_res); i++)
    362 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
    363 }
    364 
    365 static void
    366 sk_vpd_read(struct sk_softc *sc)
    367 {
    368 	int			pos = 0, i;
    369 	struct vpd_res		res;
    370 
    371 	if (sc->sk_vpd_prodname != NULL)
    372 		free(sc->sk_vpd_prodname, M_DEVBUF);
    373 	if (sc->sk_vpd_readonly != NULL)
    374 		free(sc->sk_vpd_readonly, M_DEVBUF);
    375 	sc->sk_vpd_prodname = NULL;
    376 	sc->sk_vpd_readonly = NULL;
    377 
    378 	sk_vpd_read_res(sc, &res, pos);
    379 
    380 	if (res.vr_id != VPD_RES_ID) {
    381 		aprint_error_dev(sc->sk_dev,
    382 		    "bad VPD resource id: expected %x got %x\n",
    383 		    VPD_RES_ID, res.vr_id);
    384 		return;
    385 	}
    386 
    387 	pos += sizeof(res);
    388 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_WAITOK);
    389 	for (i = 0; i < res.vr_len; i++)
    390 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
    391 	sc->sk_vpd_prodname[i] = '\0';
    392 	pos += i;
    393 
    394 	sk_vpd_read_res(sc, &res, pos);
    395 
    396 	if (res.vr_id != VPD_RES_READ) {
    397 		aprint_error_dev(sc->sk_dev,
    398 		    "bad VPD resource id: expected %x got %x\n",
    399 		    VPD_RES_READ, res.vr_id);
    400 		return;
    401 	}
    402 
    403 	pos += sizeof(res);
    404 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_WAITOK);
    405 	for (i = 0; i < res.vr_len ; i++)
    406 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
    407 }
    408 
    409 static int
    410 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    411 {
    412 	struct sk_if_softc *sc_if = device_private(dev);
    413 	int i;
    414 
    415 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
    416 
    417 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
    418 		return -1;
    419 
    420 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    421 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
    422 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    423 		for (i = 0; i < SK_TIMEOUT; i++) {
    424 			DELAY(1);
    425 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
    426 			    XM_MMUCMD_PHYDATARDY)
    427 				break;
    428 		}
    429 
    430 		if (i == SK_TIMEOUT) {
    431 			aprint_error_dev(sc_if->sk_dev,
    432 			    "phy failed to come ready\n");
    433 			return ETIMEDOUT;
    434 		}
    435 	}
    436 	DELAY(1);
    437 	*val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
    438 	return 0;
    439 }
    440 
    441 static int
    442 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    443 {
    444 	struct sk_if_softc *sc_if = device_private(dev);
    445 	int i;
    446 
    447 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
    448 
    449 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
    450 	for (i = 0; i < SK_TIMEOUT; i++) {
    451 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    452 			break;
    453 	}
    454 
    455 	if (i == SK_TIMEOUT) {
    456 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    457 		return ETIMEDOUT;
    458 	}
    459 
    460 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
    461 	for (i = 0; i < SK_TIMEOUT; i++) {
    462 		DELAY(1);
    463 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
    464 			break;
    465 	}
    466 
    467 	if (i == SK_TIMEOUT) {
    468 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
    469 		return ETIMEDOUT;
    470 	}
    471 
    472 	return 0;
    473 }
    474 
    475 static void
    476 sk_xmac_miibus_statchg(struct ifnet *ifp)
    477 {
    478 	struct sk_if_softc *sc_if = ifp->if_softc;
    479 	struct mii_data *mii = &sc_if->sk_mii;
    480 
    481 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
    482 
    483 	/*
    484 	 * If this is a GMII PHY, manually set the XMAC's
    485 	 * duplex mode accordingly.
    486 	 */
    487 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
    488 		if ((mii->mii_media_active & IFM_FDX) != 0)
    489 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    490 		else
    491 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
    492 	}
    493 }
    494 
    495 static int
    496 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    497 {
    498 	struct sk_if_softc *sc_if = device_private(dev);
    499 	uint16_t data;
    500 	int i;
    501 
    502 	if (phy != 0 ||
    503 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
    504 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
    505 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
    506 			     phy, reg));
    507 		return -1;
    508 	}
    509 
    510 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    511 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
    512 
    513 	for (i = 0; i < SK_TIMEOUT; i++) {
    514 		DELAY(1);
    515 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
    516 		if (data & YU_SMICR_READ_VALID)
    517 			break;
    518 	}
    519 
    520 	if (i == SK_TIMEOUT) {
    521 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
    522 		return ETIMEDOUT;
    523 	}
    524 
    525 	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
    526 		     SK_TIMEOUT));
    527 
    528 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
    529 
    530 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
    531 		     phy, reg, *val));
    532 
    533 	return 0;
    534 }
    535 
    536 static int
    537 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    538 {
    539 	struct sk_if_softc *sc_if = device_private(dev);
    540 	int i;
    541 
    542 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
    543 		     phy, reg, val));
    544 
    545 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
    546 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
    547 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
    548 
    549 	for (i = 0; i < SK_TIMEOUT; i++) {
    550 		DELAY(1);
    551 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
    552 			break;
    553 	}
    554 
    555 	if (i == SK_TIMEOUT) {
    556 		printf("%s: phy write timed out\n",
    557 		    device_xname(sc_if->sk_dev));
    558 		return ETIMEDOUT;
    559 	}
    560 
    561 	return 0;
    562 }
    563 
    564 static void
    565 sk_marv_miibus_statchg(struct ifnet *ifp)
    566 {
    567 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
    568 		     SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
    569 		     YUKON_GPCR)));
    570 }
    571 
    572 static uint32_t
    573 sk_xmac_hash(void *addr)
    574 {
    575 	uint32_t		crc;
    576 
    577 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
    578 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
    579 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
    580 	return crc;
    581 }
    582 
    583 static uint32_t
    584 sk_yukon_hash(void *addr)
    585 {
    586 	uint32_t		crc;
    587 
    588 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
    589 	crc &= ((1 << SK_HASH_BITS) - 1);
    590 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
    591 	return crc;
    592 }
    593 
    594 static void
    595 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
    596 {
    597 	char *addr = addrv;
    598 	int base = XM_RXFILT_ENTRY(slot);
    599 
    600 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
    601 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
    602 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
    603 }
    604 
    605 static void
    606 sk_setmulti(struct sk_if_softc *sc_if)
    607 {
    608 	struct sk_softc *sc = sc_if->sk_softc;
    609 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
    610 	uint32_t hashes[2] = { 0, 0 };
    611 	int h = 0, i;
    612 	struct ethercom *ec = &sc_if->sk_ethercom;
    613 	struct ether_multi *enm;
    614 	struct ether_multistep step;
    615 	uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
    616 
    617 	/* First, zot all the existing filters. */
    618 	switch (sc->sk_type) {
    619 	case SK_GENESIS:
    620 		for (i = 1; i < XM_RXFILT_MAX; i++)
    621 			sk_setfilt(sc_if, (void *)&dummy, i);
    622 
    623 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
    624 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
    625 		break;
    626 	case SK_YUKON:
    627 	case SK_YUKON_LITE:
    628 	case SK_YUKON_LP:
    629 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
    630 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
    631 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
    632 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
    633 		break;
    634 	}
    635 
    636 	/* Now program new ones. */
    637 allmulti:
    638 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
    639 		hashes[0] = 0xFFFFFFFF;
    640 		hashes[1] = 0xFFFFFFFF;
    641 	} else {
    642 		i = 1;
    643 		/* First find the tail of the list. */
    644 		ETHER_LOCK(ec);
    645 		ETHER_FIRST_MULTI(step, ec, enm);
    646 		while (enm != NULL) {
    647 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    648 				 ETHER_ADDR_LEN)) {
    649 				ifp->if_flags |= IFF_ALLMULTI;
    650 				ETHER_UNLOCK(ec);
    651 				goto allmulti;
    652 			}
    653 			DPRINTFN(2,("multicast address %s\n",
    654 				ether_sprintf(enm->enm_addrlo)));
    655 			/*
    656 			 * Program the first XM_RXFILT_MAX multicast groups
    657 			 * into the perfect filter. For all others,
    658 			 * use the hash table.
    659 			 */
    660 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
    661 				sk_setfilt(sc_if, enm->enm_addrlo, i);
    662 				i++;
    663 			}
    664 			else {
    665 				switch (sc->sk_type) {
    666 				case SK_GENESIS:
    667 					h = sk_xmac_hash(enm->enm_addrlo);
    668 					break;
    669 				case SK_YUKON:
    670 				case SK_YUKON_LITE:
    671 				case SK_YUKON_LP:
    672 					h = sk_yukon_hash(enm->enm_addrlo);
    673 					break;
    674 				}
    675 				if (h < 32)
    676 					hashes[0] |= (1 << h);
    677 				else
    678 					hashes[1] |= (1 << (h - 32));
    679 			}
    680 
    681 			ETHER_NEXT_MULTI(step, enm);
    682 		}
    683 		ETHER_UNLOCK(ec);
    684 	}
    685 
    686 	switch (sc->sk_type) {
    687 	case SK_GENESIS:
    688 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
    689 			       XM_MODE_RX_USE_PERFECT);
    690 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
    691 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
    692 		break;
    693 	case SK_YUKON:
    694 	case SK_YUKON_LITE:
    695 	case SK_YUKON_LP:
    696 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
    697 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
    698 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
    699 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
    700 		break;
    701 	}
    702 }
    703 
    704 static int
    705 sk_init_rx_ring(struct sk_if_softc *sc_if)
    706 {
    707 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    708 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    709 	int			i;
    710 
    711 	memset((char *)rd->sk_rx_ring, 0,
    712 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
    713 
    714 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    715 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
    716 		if (i == (SK_RX_RING_CNT - 1)) {
    717 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
    718 			rd->sk_rx_ring[i].sk_next =
    719 				htole32(SK_RX_RING_ADDR(sc_if, 0));
    720 		} else {
    721 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
    722 			rd->sk_rx_ring[i].sk_next =
    723 				htole32(SK_RX_RING_ADDR(sc_if, i+1));
    724 		}
    725 	}
    726 
    727 	for (i = 0; i < SK_RX_RING_CNT; i++) {
    728 		if (sk_newbuf(sc_if, i, NULL,
    729 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
    730 			aprint_error_dev(sc_if->sk_dev,
    731 			    "failed alloc of %dth mbuf\n", i);
    732 			return ENOBUFS;
    733 		}
    734 	}
    735 	sc_if->sk_cdata.sk_rx_prod = 0;
    736 	sc_if->sk_cdata.sk_rx_cons = 0;
    737 
    738 	return 0;
    739 }
    740 
    741 static int
    742 sk_init_tx_ring(struct sk_if_softc *sc_if)
    743 {
    744 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
    745 	struct sk_ring_data	*rd = sc_if->sk_rdata;
    746 	int			i;
    747 
    748 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
    749 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
    750 
    751 	for (i = 0; i < SK_TX_RING_CNT; i++) {
    752 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
    753 		if (i == (SK_TX_RING_CNT - 1)) {
    754 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
    755 			rd->sk_tx_ring[i].sk_next =
    756 				htole32(SK_TX_RING_ADDR(sc_if, 0));
    757 		} else {
    758 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
    759 			rd->sk_tx_ring[i].sk_next =
    760 				htole32(SK_TX_RING_ADDR(sc_if, i+1));
    761 		}
    762 	}
    763 
    764 	sc_if->sk_cdata.sk_tx_prod = 0;
    765 	sc_if->sk_cdata.sk_tx_cons = 0;
    766 	sc_if->sk_cdata.sk_tx_cnt = 0;
    767 
    768 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
    769 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    770 
    771 	return 0;
    772 }
    773 
    774 static int
    775 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
    776 	  bus_dmamap_t dmamap)
    777 {
    778 	struct mbuf		*m_new = NULL;
    779 	struct sk_chain		*c;
    780 	struct sk_rx_desc	*r;
    781 
    782 	if (m == NULL) {
    783 		void *buf = NULL;
    784 
    785 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    786 		if (m_new == NULL) {
    787 			aprint_error_dev(sc_if->sk_dev,
    788 			    "no memory for rx list -- packet dropped!\n");
    789 			return ENOBUFS;
    790 		}
    791 
    792 		/* Allocate the jumbo buffer */
    793 		buf = sk_jalloc(sc_if);
    794 		if (buf == NULL) {
    795 			m_freem(m_new);
    796 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
    797 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
    798 			return ENOBUFS;
    799 		}
    800 
    801 		/* Attach the buffer to the mbuf */
    802 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    803 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
    804 
    805 	} else {
    806 		/*
    807 		 * We're re-using a previously allocated mbuf;
    808 		 * be sure to re-init pointers and lengths to
    809 		 * default values.
    810 		 */
    811 		m_new = m;
    812 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
    813 		m_new->m_data = m_new->m_ext.ext_buf;
    814 	}
    815 	m_adj(m_new, ETHER_ALIGN);
    816 
    817 	c = &sc_if->sk_cdata.sk_rx_chain[i];
    818 	r = c->sk_desc;
    819 	c->sk_mbuf = m_new;
    820 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
    821 	    (((vaddr_t)m_new->m_data
    822 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
    823 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
    824 
    825 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    826 
    827 	return 0;
    828 }
    829 
    830 /*
    831  * Memory management for jumbo frames.
    832  */
    833 
    834 static int
    835 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
    836 {
    837 	struct sk_softc		*sc = sc_if->sk_softc;
    838 	char *ptr, *kva;
    839 	bus_dma_segment_t	seg;
    840 	int		i, rseg, state, error;
    841 	struct sk_jpool_entry	*entry;
    842 
    843 	state = error = 0;
    844 
    845 	/* Grab a big chunk o' storage. */
    846 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
    847 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    848 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
    849 		return ENOBUFS;
    850 	}
    851 
    852 	state = 1;
    853 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
    854 			   BUS_DMA_NOWAIT)) {
    855 		aprint_error_dev(sc->sk_dev,
    856 		    "can't map dma buffers (%d bytes)\n",
    857 		    SK_JMEM);
    858 		error = ENOBUFS;
    859 		goto out;
    860 	}
    861 
    862 	state = 2;
    863 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
    864 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
    865 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
    866 		error = ENOBUFS;
    867 		goto out;
    868 	}
    869 
    870 	state = 3;
    871 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
    872 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
    873 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
    874 		error = ENOBUFS;
    875 		goto out;
    876 	}
    877 
    878 	state = 4;
    879 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
    880 	DPRINTFN(1,("sk_jumbo_buf = %p\n", sc_if->sk_cdata.sk_jumbo_buf));
    881 
    882 	LIST_INIT(&sc_if->sk_jfree_listhead);
    883 	LIST_INIT(&sc_if->sk_jinuse_listhead);
    884 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
    885 
    886 	/*
    887 	 * Now divide it up into 9K pieces and save the addresses
    888 	 * in an array.
    889 	 */
    890 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
    891 	for (i = 0; i < SK_JSLOTS; i++) {
    892 		sc_if->sk_cdata.sk_jslots[i] = ptr;
    893 		ptr += SK_JLEN;
    894 		entry = malloc(sizeof(struct sk_jpool_entry),
    895 		    M_DEVBUF, M_WAITOK);
    896 		entry->slot = i;
    897 		if (i)
    898 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
    899 				 entry, jpool_entries);
    900 		else
    901 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
    902 				 entry, jpool_entries);
    903 	}
    904 out:
    905 	if (error != 0) {
    906 		switch (state) {
    907 		case 4:
    908 			bus_dmamap_unload(sc->sc_dmatag,
    909 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    910 			/* FALLTHROUGH */
    911 		case 3:
    912 			bus_dmamap_destroy(sc->sc_dmatag,
    913 			    sc_if->sk_cdata.sk_rx_jumbo_map);
    914 			/* FALLTHROUGH */
    915 		case 2:
    916 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
    917 			/* FALLTHROUGH */
    918 		case 1:
    919 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
    920 			break;
    921 		default:
    922 			break;
    923 		}
    924 	}
    925 
    926 	return error;
    927 }
    928 
    929 /*
    930  * Allocate a jumbo buffer.
    931  */
    932 static void *
    933 sk_jalloc(struct sk_if_softc *sc_if)
    934 {
    935 	struct sk_jpool_entry	*entry;
    936 
    937 	mutex_enter(&sc_if->sk_jpool_mtx);
    938 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
    939 
    940 	if (entry == NULL) {
    941 		mutex_exit(&sc_if->sk_jpool_mtx);
    942 		return NULL;
    943 	}
    944 
    945 	LIST_REMOVE(entry, jpool_entries);
    946 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
    947 	mutex_exit(&sc_if->sk_jpool_mtx);
    948 	return sc_if->sk_cdata.sk_jslots[entry->slot];
    949 }
    950 
    951 /*
    952  * Release a jumbo buffer.
    953  */
    954 static void
    955 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
    956 {
    957 	struct sk_jpool_entry *entry;
    958 	struct sk_if_softc *sc;
    959 	int i;
    960 
    961 	/* Extract the softc struct pointer. */
    962 	sc = (struct sk_if_softc *)arg;
    963 
    964 	if (sc == NULL)
    965 		panic("sk_jfree: can't find softc pointer!");
    966 
    967 	/* calculate the slot this buffer belongs to */
    968 
    969 	i = ((vaddr_t)buf
    970 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
    971 
    972 	if ((i < 0) || (i >= SK_JSLOTS))
    973 		panic("sk_jfree: asked to free buffer that we don't manage!");
    974 
    975 	mutex_enter(&sc->sk_jpool_mtx);
    976 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
    977 	if (entry == NULL)
    978 		panic("sk_jfree: buffer not in use!");
    979 	entry->slot = i;
    980 	LIST_REMOVE(entry, jpool_entries);
    981 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
    982 	mutex_exit(&sc->sk_jpool_mtx);
    983 
    984 	if (__predict_true(m != NULL))
    985 		pool_cache_put(mb_cache, m);
    986 }
    987 
    988 /*
    989  * Set media options.
    990  */
    991 static int
    992 sk_ifmedia_upd(struct ifnet *ifp)
    993 {
    994 	struct sk_if_softc *sc_if = ifp->if_softc;
    995 	int rc;
    996 
    997 	(void) sk_init(ifp);
    998 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
    999 		return 0;
   1000 	return rc;
   1001 }
   1002 
   1003 static void
   1004 sk_promisc(struct sk_if_softc *sc_if, int on)
   1005 {
   1006 	struct sk_softc *sc = sc_if->sk_softc;
   1007 	switch (sc->sk_type) {
   1008 	case SK_GENESIS:
   1009 		if (on)
   1010 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   1011 		else
   1012 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   1013 		break;
   1014 	case SK_YUKON:
   1015 	case SK_YUKON_LITE:
   1016 	case SK_YUKON_LP:
   1017 		if (on)
   1018 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
   1019 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1020 		else
   1021 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
   1022 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
   1023 		break;
   1024 	default:
   1025 		aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
   1026 			sc->sk_type);
   1027 		break;
   1028 	}
   1029 }
   1030 
   1031 static int
   1032 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
   1033 {
   1034 	struct sk_if_softc *sc_if = ifp->if_softc;
   1035 	int s, error = 0;
   1036 
   1037 	/* DPRINTFN(2, ("sk_ioctl\n")); */
   1038 
   1039 	s = splnet();
   1040 
   1041 	switch (command) {
   1042 
   1043 	case SIOCSIFFLAGS:
   1044 		DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
   1045 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   1046 			break;
   1047 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
   1048 		case IFF_RUNNING:
   1049 			sk_stop(ifp, 1);
   1050 			break;
   1051 		case IFF_UP:
   1052 			sk_init(ifp);
   1053 			break;
   1054 		case IFF_UP | IFF_RUNNING:
   1055 			if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC)			{
   1056 				sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
   1057 				sk_setmulti(sc_if);
   1058 			} else
   1059 				sk_init(ifp);
   1060 			break;
   1061 		}
   1062 		sc_if->sk_if_flags = ifp->if_flags;
   1063 		error = 0;
   1064 		break;
   1065 
   1066 	default:
   1067 		DPRINTFN(2, ("sk_ioctl ETHER\n"));
   1068 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   1069 			break;
   1070 
   1071 		error = 0;
   1072 
   1073 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   1074 			;
   1075 		else if (ifp->if_flags & IFF_RUNNING) {
   1076 			sk_setmulti(sc_if);
   1077 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
   1078 		}
   1079 		break;
   1080 	}
   1081 
   1082 	splx(s);
   1083 	return error;
   1084 }
   1085 
   1086 static void
   1087 sk_update_int_mod(struct sk_softc *sc)
   1088 {
   1089 	uint32_t imtimer_ticks;
   1090 
   1091 	/*
   1092 	 * Configure interrupt moderation. The moderation timer
   1093 	 * defers interrupts specified in the interrupt moderation
   1094 	 * timer mask based on the timeout specified in the interrupt
   1095 	 * moderation timer init register. Each bit in the timer
   1096 	 * register represents one tick, so to specify a timeout in
   1097 	 * microseconds, we have to multiply by the correct number of
   1098 	 * ticks-per-microsecond.
   1099 	 */
   1100 	switch (sc->sk_type) {
   1101 	case SK_GENESIS:
   1102 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   1103 		break;
   1104 	case SK_YUKON_EC:
   1105 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   1106 		break;
   1107 	default:
   1108 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   1109 	}
   1110 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
   1111 	    sc->sk_int_mod);
   1112 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
   1113 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
   1114 	    SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
   1115 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
   1116 	sc->sk_int_mod_pending = 0;
   1117 }
   1118 
   1119 /*
   1120  * Lookup: Check the PCI vendor and device, and return a pointer to
   1121  * The structure if the IDs match against our list.
   1122  */
   1123 
   1124 /*
   1125  * Probe for a SysKonnect GEnesis chip.
   1126  */
   1127 
   1128 static int
   1129 skc_probe(device_t parent, cfdata_t match, void *aux)
   1130 {
   1131 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1132 	pcireg_t subid;
   1133 
   1134 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
   1135 
   1136 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
   1137 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
   1138 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
   1139 	    subid == SK_LINKSYS_EG1032_SUBID)
   1140 		return 1;
   1141 
   1142 	return pci_compatible_match(pa, compat_data);
   1143 }
   1144 
   1145 /*
   1146  * Force the GEnesis into reset, then bring it out of reset.
   1147  */
   1148 static void
   1149 sk_reset(struct sk_softc *sc)
   1150 {
   1151 	DPRINTFN(2, ("sk_reset\n"));
   1152 
   1153 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
   1154 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
   1155 	if (SK_YUKON_FAMILY(sc->sk_type))
   1156 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
   1157 
   1158 	DELAY(1000);
   1159 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
   1160 	DELAY(2);
   1161 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
   1162 	if (SK_YUKON_FAMILY(sc->sk_type))
   1163 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
   1164 
   1165 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
   1166 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
   1167 		     CSR_READ_2(sc, SK_LINK_CTRL)));
   1168 
   1169 	if (sc->sk_type == SK_GENESIS) {
   1170 		/* Configure packet arbiter */
   1171 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
   1172 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1173 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
   1174 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1175 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
   1176 	}
   1177 
   1178 	/* Enable RAM interface */
   1179 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
   1180 
   1181 	sk_update_int_mod(sc);
   1182 }
   1183 
   1184 static int
   1185 sk_probe(device_t parent, cfdata_t match, void *aux)
   1186 {
   1187 	struct skc_attach_args *sa = aux;
   1188 
   1189 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
   1190 		return 0;
   1191 
   1192 	return 1;
   1193 }
   1194 
   1195 /*
   1196  * Each XMAC chip is attached as a separate logical IP interface.
   1197  * Single port cards will have only one logical interface of course.
   1198  */
   1199 static void
   1200 sk_attach(device_t parent, device_t self, void *aux)
   1201 {
   1202 	struct sk_if_softc *sc_if = device_private(self);
   1203 	struct mii_data *mii = &sc_if->sk_mii;
   1204 	struct sk_softc *sc = device_private(parent);
   1205 	struct skc_attach_args *sa = aux;
   1206 	struct sk_txmap_entry	*entry;
   1207 	struct ifnet *ifp;
   1208 	bus_dma_segment_t seg;
   1209 	bus_dmamap_t dmamap;
   1210 	prop_data_t data;
   1211 	void *kva;
   1212 	int i, rseg;
   1213 	int mii_flags = 0;
   1214 
   1215 	aprint_naive("\n");
   1216 
   1217 	sc_if->sk_dev = self;
   1218 	sc_if->sk_port = sa->skc_port;
   1219 	sc_if->sk_softc = sc;
   1220 	sc->sk_if[sa->skc_port] = sc_if;
   1221 
   1222 	if (sa->skc_port == SK_PORT_A)
   1223 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
   1224 	if (sa->skc_port == SK_PORT_B)
   1225 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
   1226 
   1227 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
   1228 
   1229 	/*
   1230 	 * Get station address for this interface. Note that
   1231 	 * dual port cards actually come with three station
   1232 	 * addresses: one for each port, plus an extra. The
   1233 	 * extra one is used by the SysKonnect driver software
   1234 	 * as a 'virtual' station address for when both ports
   1235 	 * are operating in failover mode. Currently we don't
   1236 	 * use this extra address.
   1237 	 */
   1238 	data = prop_dictionary_get(device_properties(self), "mac-address");
   1239 	if (data != NULL) {
   1240 		/*
   1241 		 * Try to get the station address from device properties
   1242 		 * first, in case the ROM is missing.
   1243 		 */
   1244 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
   1245 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
   1246 		memcpy(sc_if->sk_enaddr, prop_data_value(data),
   1247 		    ETHER_ADDR_LEN);
   1248 	} else
   1249 		for (i = 0; i < ETHER_ADDR_LEN; i++)
   1250 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
   1251 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
   1252 
   1253 	aprint_normal(": Ethernet address %s\n",
   1254 	    ether_sprintf(sc_if->sk_enaddr));
   1255 
   1256 	/*
   1257 	 * Set up RAM buffer addresses. The NIC will have a certain
   1258 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
   1259 	 * need to divide this up a) between the transmitter and
   1260 	 * receiver and b) between the two XMACs, if this is a
   1261 	 * dual port NIC. Our algorithm is to divide up the memory
   1262 	 * evenly so that everyone gets a fair share.
   1263 	 */
   1264 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
   1265 		uint32_t		chunk, val;
   1266 
   1267 		chunk = sc->sk_ramsize / 2;
   1268 		val = sc->sk_rboff / sizeof(uint64_t);
   1269 		sc_if->sk_rx_ramstart = val;
   1270 		val += (chunk / sizeof(uint64_t));
   1271 		sc_if->sk_rx_ramend = val - 1;
   1272 		sc_if->sk_tx_ramstart = val;
   1273 		val += (chunk / sizeof(uint64_t));
   1274 		sc_if->sk_tx_ramend = val - 1;
   1275 	} else {
   1276 		uint32_t		chunk, val;
   1277 
   1278 		chunk = sc->sk_ramsize / 4;
   1279 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
   1280 		    sizeof(uint64_t);
   1281 		sc_if->sk_rx_ramstart = val;
   1282 		val += (chunk / sizeof(uint64_t));
   1283 		sc_if->sk_rx_ramend = val - 1;
   1284 		sc_if->sk_tx_ramstart = val;
   1285 		val += (chunk / sizeof(uint64_t));
   1286 		sc_if->sk_tx_ramend = val - 1;
   1287 	}
   1288 
   1289 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
   1290 		     "		 tx_ramstart=%#x tx_ramend=%#x\n",
   1291 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
   1292 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
   1293 
   1294 	/* Read and save PHY type and set PHY address */
   1295 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
   1296 	switch (sc_if->sk_phytype) {
   1297 	case SK_PHYTYPE_XMAC:
   1298 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
   1299 		break;
   1300 	case SK_PHYTYPE_BCOM:
   1301 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
   1302 		break;
   1303 	case SK_PHYTYPE_MARV_COPPER:
   1304 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
   1305 		break;
   1306 	default:
   1307 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
   1308 		    sc_if->sk_phytype);
   1309 		return;
   1310 	}
   1311 
   1312 	/* Allocate the descriptor queues. */
   1313 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
   1314 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1315 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
   1316 		goto fail;
   1317 	}
   1318 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
   1319 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
   1320 		aprint_error_dev(sc_if->sk_dev,
   1321 		    "can't map dma buffers (%lu bytes)\n",
   1322 		    (u_long) sizeof(struct sk_ring_data));
   1323 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1324 		goto fail;
   1325 	}
   1326 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
   1327 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
   1328 	    &sc_if->sk_ring_map)) {
   1329 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
   1330 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1331 		    sizeof(struct sk_ring_data));
   1332 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1333 		goto fail;
   1334 	}
   1335 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
   1336 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
   1337 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
   1338 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1339 		bus_dmamem_unmap(sc->sc_dmatag, kva,
   1340 		    sizeof(struct sk_ring_data));
   1341 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1342 		goto fail;
   1343 	}
   1344 
   1345 	for (i = 0; i < SK_RX_RING_CNT; i++)
   1346 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   1347 
   1348 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
   1349 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   1350 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   1351 
   1352 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
   1353 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
   1354 			aprint_error_dev(sc_if->sk_dev,
   1355 			    "Can't create TX dmamap\n");
   1356 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
   1357 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
   1358 			bus_dmamem_unmap(sc->sc_dmatag, kva,
   1359 			    sizeof(struct sk_ring_data));
   1360 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
   1361 			goto fail;
   1362 		}
   1363 
   1364 		entry = malloc(sizeof(*entry), M_DEVBUF, M_WAITOK);
   1365 		entry->dmamap = dmamap;
   1366 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
   1367 	}
   1368 
   1369 	sc_if->sk_rdata = (struct sk_ring_data *)kva;
   1370 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
   1371 
   1372 	ifp = &sc_if->sk_ethercom.ec_if;
   1373 	/* Try to allocate memory for jumbo buffers. */
   1374 	if (sk_alloc_jumbo_mem(sc_if)) {
   1375 		aprint_error("%s: jumbo buffer allocation failed\n",
   1376 		    ifp->if_xname);
   1377 		goto fail;
   1378 	}
   1379 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
   1380 		| ETHERCAP_JUMBO_MTU;
   1381 
   1382 	ifp->if_softc = sc_if;
   1383 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1384 	ifp->if_ioctl = sk_ioctl;
   1385 	ifp->if_start = sk_start;
   1386 	ifp->if_stop = sk_stop;
   1387 	ifp->if_init = sk_init;
   1388 	ifp->if_watchdog = sk_watchdog;
   1389 	ifp->if_capabilities = 0;
   1390 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
   1391 	IFQ_SET_READY(&ifp->if_snd);
   1392 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
   1393 
   1394 	/*
   1395 	 * Do miibus setup.
   1396 	 */
   1397 	switch (sc->sk_type) {
   1398 	case SK_GENESIS:
   1399 		sk_unreset_xmac(sc_if);
   1400 		break;
   1401 	case SK_YUKON:
   1402 	case SK_YUKON_LITE:
   1403 	case SK_YUKON_LP:
   1404 		sk_unreset_yukon(sc_if);
   1405 		break;
   1406 	default:
   1407 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
   1408 			sc->sk_type);
   1409 		goto fail;
   1410 	}
   1411 
   1412 	DPRINTFN(2, ("sk_attach: 1\n"));
   1413 
   1414 	mii->mii_ifp = ifp;
   1415 	switch (sc->sk_type) {
   1416 	case SK_GENESIS:
   1417 		mii->mii_readreg = sk_xmac_miibus_readreg;
   1418 		mii->mii_writereg = sk_xmac_miibus_writereg;
   1419 		mii->mii_statchg = sk_xmac_miibus_statchg;
   1420 		break;
   1421 	case SK_YUKON:
   1422 	case SK_YUKON_LITE:
   1423 	case SK_YUKON_LP:
   1424 		mii->mii_readreg = sk_marv_miibus_readreg;
   1425 		mii->mii_writereg = sk_marv_miibus_writereg;
   1426 		mii->mii_statchg = sk_marv_miibus_statchg;
   1427 		mii_flags = MIIF_DOPAUSE;
   1428 		break;
   1429 	}
   1430 
   1431 	sc_if->sk_ethercom.ec_mii = mii;
   1432 	ifmedia_init(&mii->mii_media, 0, sk_ifmedia_upd, ether_mediastatus);
   1433 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
   1434 	    MII_OFFSET_ANY, mii_flags);
   1435 	if (LIST_EMPTY(&mii->mii_phys)) {
   1436 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
   1437 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
   1438 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
   1439 	} else
   1440 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   1441 
   1442 	callout_init(&sc_if->sk_tick_ch, 0);
   1443 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   1444 
   1445 	DPRINTFN(2, ("sk_attach: 1\n"));
   1446 
   1447 	/*
   1448 	 * Call MI attach routines.
   1449 	 */
   1450 	if_attach(ifp);
   1451 	if_deferred_start_init(ifp, NULL);
   1452 
   1453 	ether_ifattach(ifp, sc_if->sk_enaddr);
   1454 
   1455 	if (sc->rnd_attached++ == 0) {
   1456 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
   1457 		    RND_TYPE_NET, RND_FLAG_DEFAULT);
   1458 	}
   1459 
   1460 	if (pmf_device_register(self, NULL, sk_resume))
   1461 		pmf_class_network_register(self, ifp);
   1462 	else
   1463 		aprint_error_dev(self, "couldn't establish power handler\n");
   1464 
   1465 	DPRINTFN(2, ("sk_attach: end\n"));
   1466 
   1467 	return;
   1468 
   1469 fail:
   1470 	sc->sk_if[sa->skc_port] = NULL;
   1471 }
   1472 
   1473 static int
   1474 skcprint(void *aux, const char *pnp)
   1475 {
   1476 	struct skc_attach_args *sa = aux;
   1477 
   1478 	if (pnp)
   1479 		aprint_normal("sk port %c at %s",
   1480 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
   1481 	else
   1482 		aprint_normal(" port %c",
   1483 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
   1484 	return UNCONF;
   1485 }
   1486 
   1487 /*
   1488  * Attach the interface. Allocate softc structures, do ifmedia
   1489  * setup and ethernet/BPF attach.
   1490  */
   1491 static void
   1492 skc_attach(device_t parent, device_t self, void *aux)
   1493 {
   1494 	struct sk_softc *sc = device_private(self);
   1495 	struct pci_attach_args *pa = aux;
   1496 	struct skc_attach_args skca;
   1497 	pci_chipset_tag_t pc = pa->pa_pc;
   1498 #ifndef SK_USEIOSPACE
   1499 	pcireg_t memtype;
   1500 #endif
   1501 	pci_intr_handle_t ih;
   1502 	const char *intrstr = NULL;
   1503 	bus_addr_t iobase;
   1504 	bus_size_t iosize;
   1505 	int rc, sk_nodenum;
   1506 	uint32_t command;
   1507 	const char *revstr;
   1508 	const struct sysctlnode *node;
   1509 	char intrbuf[PCI_INTRSTR_LEN];
   1510 
   1511 	sc->sk_dev = self;
   1512 	aprint_naive("\n");
   1513 
   1514 	DPRINTFN(2, ("begin skc_attach\n"));
   1515 
   1516 	/*
   1517 	 * Handle power management nonsense.
   1518 	 */
   1519 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
   1520 
   1521 	if (command == 0x01) {
   1522 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
   1523 		if (command & SK_PSTATE_MASK) {
   1524 			uint32_t		xiobase, membase, irq;
   1525 
   1526 			/* Save important PCI config data. */
   1527 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
   1528 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
   1529 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
   1530 
   1531 			/* Reset the power state. */
   1532 			aprint_normal_dev(sc->sk_dev,
   1533 			    "chip is in D%d power mode -- setting to D0\n",
   1534 			    command & SK_PSTATE_MASK);
   1535 			command &= 0xFFFFFFFC;
   1536 			pci_conf_write(pc, pa->pa_tag,
   1537 			    SK_PCI_PWRMGMTCTRL, command);
   1538 
   1539 			/* Restore PCI config data. */
   1540 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
   1541 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
   1542 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
   1543 		}
   1544 	}
   1545 
   1546 	/*
   1547 	 * The firmware might have configured the interface to revert the
   1548 	 * byte order in all descriptors. Make that undone.
   1549 	 */
   1550 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
   1551 	if (command & SK_REG2_REV_DESC)
   1552 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
   1553 		    command & ~SK_REG2_REV_DESC);
   1554 
   1555 	/*
   1556 	 * Map control/status registers.
   1557 	 */
   1558 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1559 	command |= PCI_COMMAND_IO_ENABLE |
   1560 	    PCI_COMMAND_MEM_ENABLE |
   1561 	    PCI_COMMAND_MASTER_ENABLE;
   1562 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1563 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1564 
   1565 #ifdef SK_USEIOSPACE
   1566 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
   1567 		aprint_error(": failed to enable I/O ports!\n");
   1568 		return;
   1569 	}
   1570 	/*
   1571 	 * Map control/status registers.
   1572 	 */
   1573 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
   1574 			&sc->sk_btag, &sc->sk_bhandle,
   1575 			&iobase, &iosize)) {
   1576 		aprint_error(": can't find i/o space\n");
   1577 		return;
   1578 	}
   1579 #else
   1580 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1581 		aprint_error(": failed to enable memory mapping!\n");
   1582 		return;
   1583 	}
   1584 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
   1585 	switch (memtype) {
   1586 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1587 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1588 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
   1589 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
   1590 				   &iobase, &iosize) == 0)
   1591 			break;
   1592 		/* FALLTHROUGH */
   1593 	default:
   1594 		aprint_error_dev(sc->sk_dev, "can't find mem space\n");
   1595 		return;
   1596 	}
   1597 
   1598 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
   1599 	    iobase, iosize));
   1600 #endif
   1601 	sc->sc_dmatag = pa->pa_dmat;
   1602 
   1603 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
   1604 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
   1605 
   1606 	/* bail out here if chip is not recognized */
   1607 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
   1608 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
   1609 		goto fail;
   1610 	}
   1611 	if (SK_IS_YUKON2(sc)) {
   1612 		aprint_error_dev(sc->sk_dev,
   1613 		    "Does not support Yukon2--try msk(4).\n");
   1614 		goto fail;
   1615 	}
   1616 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
   1617 
   1618 	/* Allocate interrupt */
   1619 	if (pci_intr_map(pa, &ih)) {
   1620 		aprint_error(": couldn't map interrupt\n");
   1621 		goto fail;
   1622 	}
   1623 
   1624 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   1625 	sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr,
   1626 	    sc, device_xname(sc->sk_dev));
   1627 	if (sc->sk_intrhand == NULL) {
   1628 		aprint_error(": couldn't establish interrupt");
   1629 		if (intrstr != NULL)
   1630 			aprint_error(" at %s", intrstr);
   1631 		aprint_error("\n");
   1632 		goto fail;
   1633 	}
   1634 	aprint_normal(": %s\n", intrstr);
   1635 
   1636 	/* Reset the adapter. */
   1637 	sk_reset(sc);
   1638 
   1639 	/* Read and save vital product data from EEPROM. */
   1640 	sk_vpd_read(sc);
   1641 
   1642 	if (sc->sk_type == SK_GENESIS) {
   1643 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
   1644 		/* Read and save RAM size and RAMbuffer offset */
   1645 		switch (val) {
   1646 		case SK_RAMSIZE_512K_64:
   1647 			sc->sk_ramsize = 0x80000;
   1648 			sc->sk_rboff = SK_RBOFF_0;
   1649 			break;
   1650 		case SK_RAMSIZE_1024K_64:
   1651 			sc->sk_ramsize = 0x100000;
   1652 			sc->sk_rboff = SK_RBOFF_80000;
   1653 			break;
   1654 		case SK_RAMSIZE_1024K_128:
   1655 			sc->sk_ramsize = 0x100000;
   1656 			sc->sk_rboff = SK_RBOFF_0;
   1657 			break;
   1658 		case SK_RAMSIZE_2048K_128:
   1659 			sc->sk_ramsize = 0x200000;
   1660 			sc->sk_rboff = SK_RBOFF_0;
   1661 			break;
   1662 		default:
   1663 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
   1664 			       val);
   1665 			goto fail_1;
   1666 			break;
   1667 		}
   1668 
   1669 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
   1670 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
   1671 			     sc->sk_rboff));
   1672 	} else {
   1673 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
   1674 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
   1675 		sc->sk_rboff = SK_RBOFF_0;
   1676 
   1677 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
   1678 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
   1679 			     sc->sk_rboff));
   1680 	}
   1681 
   1682 	/* Read and save physical media type */
   1683 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
   1684 	case SK_PMD_1000BASESX:
   1685 		sc->sk_pmd = IFM_1000_SX;
   1686 		break;
   1687 	case SK_PMD_1000BASELX:
   1688 		sc->sk_pmd = IFM_1000_LX;
   1689 		break;
   1690 	case SK_PMD_1000BASECX:
   1691 		sc->sk_pmd = IFM_1000_CX;
   1692 		break;
   1693 	case SK_PMD_1000BASETX:
   1694 	case SK_PMD_1000BASETX_ALT:
   1695 		sc->sk_pmd = IFM_1000_T;
   1696 		break;
   1697 	default:
   1698 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
   1699 		    sk_win_read_1(sc, SK_PMDTYPE));
   1700 		goto fail_1;
   1701 	}
   1702 
   1703 	/* determine whether to name it with vpd or just make it up */
   1704 	/* Marvell Yukon VPD's can freqently be bogus */
   1705 
   1706 	switch (pa->pa_id) {
   1707 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1708 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
   1709 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
   1710 	case PCI_PRODUCT_3COM_3C940:
   1711 	case PCI_PRODUCT_DLINK_DGE530T:
   1712 	case PCI_PRODUCT_DLINK_DGE560T:
   1713 	case PCI_PRODUCT_DLINK_DGE560T_2:
   1714 	case PCI_PRODUCT_LINKSYS_EG1032:
   1715 	case PCI_PRODUCT_LINKSYS_EG1064:
   1716 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
   1717 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
   1718 	case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
   1719 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
   1720 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
   1721 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
   1722 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
   1723 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
   1724 		sc->sk_name = sc->sk_vpd_prodname;
   1725 		break;
   1726 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
   1727 	/* whoops yukon vpd prodname bears no resemblance to reality */
   1728 		switch (sc->sk_type) {
   1729 		case SK_GENESIS:
   1730 			sc->sk_name = sc->sk_vpd_prodname;
   1731 			break;
   1732 		case SK_YUKON:
   1733 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
   1734 			break;
   1735 		case SK_YUKON_LITE:
   1736 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
   1737 			break;
   1738 		case SK_YUKON_LP:
   1739 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
   1740 			break;
   1741 		default:
   1742 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
   1743 		}
   1744 
   1745 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
   1746 
   1747 		if ( sc->sk_type == SK_YUKON ) {
   1748 			uint32_t flashaddr;
   1749 			uint8_t testbyte;
   1750 
   1751 			flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
   1752 
   1753 			/* test Flash-Address Register */
   1754 			sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
   1755 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
   1756 
   1757 			if (testbyte != 0) {
   1758 				/* this is yukon lite Rev. A0 */
   1759 				sc->sk_type = SK_YUKON_LITE;
   1760 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
   1761 				/* restore Flash-Address Register */
   1762 				sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
   1763 			}
   1764 		}
   1765 		break;
   1766 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
   1767 		sc->sk_name = sc->sk_vpd_prodname;
   1768 		break;
   1769 	default:
   1770 		sc->sk_name = "Unknown Marvell";
   1771 	}
   1772 
   1773 
   1774 	if ( sc->sk_type == SK_YUKON_LITE ) {
   1775 		switch (sc->sk_rev) {
   1776 		case SK_YUKON_LITE_REV_A0:
   1777 			revstr = "A0";
   1778 			break;
   1779 		case SK_YUKON_LITE_REV_A1:
   1780 			revstr = "A1";
   1781 			break;
   1782 		case SK_YUKON_LITE_REV_A3:
   1783 			revstr = "A3";
   1784 			break;
   1785 		default:
   1786 			revstr = "";
   1787 		}
   1788 	} else {
   1789 		revstr = "";
   1790 	}
   1791 
   1792 	/* Announce the product name. */
   1793 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
   1794 			      sc->sk_name, revstr, sc->sk_rev);
   1795 
   1796 	skca.skc_port = SK_PORT_A;
   1797 	(void)config_found(sc->sk_dev, &skca, skcprint, CFARGS_NONE);
   1798 
   1799 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
   1800 		skca.skc_port = SK_PORT_B;
   1801 		(void)config_found(sc->sk_dev, &skca, skcprint, CFARGS_NONE);
   1802 	}
   1803 
   1804 	/* Turn on the 'driver is loaded' LED. */
   1805 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   1806 
   1807 	/* skc sysctl setup */
   1808 
   1809 	sc->sk_int_mod = SK_IM_DEFAULT;
   1810 	sc->sk_int_mod_pending = 0;
   1811 
   1812 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1813 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
   1814 	    SYSCTL_DESCR("skc per-controller controls"),
   1815 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
   1816 	    CTL_EOL)) != 0) {
   1817 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
   1818 		goto fail_1;
   1819 	}
   1820 
   1821 	sk_nodenum = node->sysctl_num;
   1822 
   1823 	/* interrupt moderation time in usecs */
   1824 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
   1825 	    CTLFLAG_READWRITE,
   1826 	    CTLTYPE_INT, "int_mod",
   1827 	    SYSCTL_DESCR("sk interrupt moderation timer"),
   1828 	    sk_sysctl_handler, 0, (void *)sc,
   1829 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
   1830 	    CTL_EOL)) != 0) {
   1831 		aprint_normal_dev(sc->sk_dev,
   1832 		    "couldn't create int_mod sysctl node\n");
   1833 		goto fail_1;
   1834 	}
   1835 
   1836 	if (!pmf_device_register(self, skc_suspend, skc_resume))
   1837 		aprint_error_dev(self, "couldn't establish power handler\n");
   1838 
   1839 	return;
   1840 
   1841 fail_1:
   1842 	pci_intr_disestablish(pc, sc->sk_intrhand);
   1843 fail:
   1844 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
   1845 }
   1846 
   1847 static int
   1848 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
   1849 {
   1850 	struct sk_softc		*sc = sc_if->sk_softc;
   1851 	struct sk_tx_desc	*f = NULL;
   1852 	uint32_t		frag, cur, cnt = 0, sk_ctl;
   1853 	int			i;
   1854 	struct sk_txmap_entry	*entry;
   1855 	bus_dmamap_t		txmap;
   1856 
   1857 	DPRINTFN(3, ("sk_encap\n"));
   1858 
   1859 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
   1860 	if (entry == NULL) {
   1861 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
   1862 		return ENOBUFS;
   1863 	}
   1864 	txmap = entry->dmamap;
   1865 
   1866 	cur = frag = *txidx;
   1867 
   1868 #ifdef SK_DEBUG
   1869 	if (skdebug >= 3)
   1870 		sk_dump_mbuf(m_head);
   1871 #endif
   1872 
   1873 	/*
   1874 	 * Start packing the mbufs in this chain into
   1875 	 * the fragment pointers. Stop when we run out
   1876 	 * of fragments or hit the end of the mbuf chain.
   1877 	 */
   1878 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
   1879 	    BUS_DMA_NOWAIT)) {
   1880 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
   1881 		return ENOBUFS;
   1882 	}
   1883 
   1884 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
   1885 
   1886 	/* Sync the DMA map. */
   1887 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
   1888 	    BUS_DMASYNC_PREWRITE);
   1889 
   1890 	for (i = 0; i < txmap->dm_nsegs; i++) {
   1891 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
   1892 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
   1893 			return ENOBUFS;
   1894 		}
   1895 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
   1896 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
   1897 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
   1898 		if (cnt == 0)
   1899 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
   1900 		else
   1901 			sk_ctl |= SK_TXCTL_OWN;
   1902 		f->sk_ctl = htole32(sk_ctl);
   1903 		cur = frag;
   1904 		SK_INC(frag, SK_TX_RING_CNT);
   1905 		cnt++;
   1906 	}
   1907 
   1908 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
   1909 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
   1910 
   1911 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
   1912 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
   1913 		htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
   1914 
   1915 	/* Sync descriptors before handing to chip */
   1916 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
   1917 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1918 
   1919 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
   1920 		htole32(SK_TXCTL_OWN);
   1921 
   1922 	/* Sync first descriptor to hand it off */
   1923 	SK_CDTXSYNC(sc_if, *txidx, 1,
   1924 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1925 
   1926 	sc_if->sk_cdata.sk_tx_cnt += cnt;
   1927 
   1928 #ifdef SK_DEBUG
   1929 	if (skdebug >= 3) {
   1930 		struct sk_tx_desc *desc;
   1931 		uint32_t idx;
   1932 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
   1933 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
   1934 			sk_dump_txdesc(desc, idx);
   1935 		}
   1936 	}
   1937 #endif
   1938 
   1939 	*txidx = frag;
   1940 
   1941 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
   1942 
   1943 	return 0;
   1944 }
   1945 
   1946 static void
   1947 sk_start(struct ifnet *ifp)
   1948 {
   1949 	struct sk_if_softc	*sc_if = ifp->if_softc;
   1950 	struct sk_softc		*sc = sc_if->sk_softc;
   1951 	struct mbuf		*m_head = NULL;
   1952 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
   1953 	int			pkts = 0;
   1954 
   1955 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
   1956 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
   1957 
   1958 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
   1959 		IFQ_POLL(&ifp->if_snd, m_head);
   1960 		if (m_head == NULL)
   1961 			break;
   1962 
   1963 		/*
   1964 		 * Pack the data into the transmit ring. If we
   1965 		 * don't have room, set the OACTIVE flag and wait
   1966 		 * for the NIC to drain the ring.
   1967 		 */
   1968 		if (sk_encap(sc_if, m_head, &idx)) {
   1969 			ifp->if_flags |= IFF_OACTIVE;
   1970 			break;
   1971 		}
   1972 
   1973 		/* now we are committed to transmit the packet */
   1974 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   1975 		pkts++;
   1976 
   1977 		/*
   1978 		 * If there's a BPF listener, bounce a copy of this frame
   1979 		 * to him.
   1980 		 */
   1981 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   1982 	}
   1983 	if (pkts == 0)
   1984 		return;
   1985 
   1986 	/* Transmit */
   1987 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
   1988 		sc_if->sk_cdata.sk_tx_prod = idx;
   1989 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   1990 
   1991 		/* Set a timeout in case the chip goes out to lunch. */
   1992 		ifp->if_timer = 5;
   1993 	}
   1994 }
   1995 
   1996 
   1997 static void
   1998 sk_watchdog(struct ifnet *ifp)
   1999 {
   2000 	struct sk_if_softc *sc_if = ifp->if_softc;
   2001 
   2002 	/*
   2003 	 * Reclaim first as there is a possibility of losing Tx completion
   2004 	 * interrupts.
   2005 	 */
   2006 	sk_txeof(sc_if);
   2007 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
   2008 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
   2009 
   2010 		if_statinc(ifp, if_oerrors);
   2011 
   2012 		sk_init(ifp);
   2013 	}
   2014 }
   2015 
   2016 #if 0 /* XXX XXX XXX UNUSED */
   2017 static void
   2018 sk_shutdown(void *v)
   2019 {
   2020 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
   2021 	struct sk_softc		*sc = sc_if->sk_softc;
   2022 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2023 
   2024 	DPRINTFN(2, ("sk_shutdown\n"));
   2025 	sk_stop(ifp, 1);
   2026 
   2027 	/* Turn off the 'driver is loaded' LED. */
   2028 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2029 
   2030 	/*
   2031 	 * Reset the GEnesis controller. Doing this should also
   2032 	 * assert the resets on the attached XMAC(s).
   2033 	 */
   2034 	sk_reset(sc);
   2035 }
   2036 #endif
   2037 
   2038 static void
   2039 sk_rxeof(struct sk_if_softc *sc_if)
   2040 {
   2041 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2042 	struct mbuf		*m;
   2043 	struct sk_chain		*cur_rx;
   2044 	struct sk_rx_desc	*cur_desc;
   2045 	int			i, cur, total_len = 0;
   2046 	uint32_t		rxstat, sk_ctl;
   2047 	bus_dmamap_t		dmamap;
   2048 
   2049 	i = sc_if->sk_cdata.sk_rx_prod;
   2050 
   2051 	DPRINTFN(3, ("sk_rxeof %d\n", i));
   2052 
   2053 	for (;;) {
   2054 		cur = i;
   2055 
   2056 		/* Sync the descriptor */
   2057 		SK_CDRXSYNC(sc_if, cur,
   2058 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2059 
   2060 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
   2061 		if (sk_ctl & SK_RXCTL_OWN) {
   2062 			/* Invalidate the descriptor -- it's not ready yet */
   2063 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
   2064 			sc_if->sk_cdata.sk_rx_prod = i;
   2065 			break;
   2066 		}
   2067 
   2068 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
   2069 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
   2070 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
   2071 
   2072 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
   2073 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2074 
   2075 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
   2076 		m = cur_rx->sk_mbuf;
   2077 		cur_rx->sk_mbuf = NULL;
   2078 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
   2079 
   2080 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
   2081 
   2082 		SK_INC(i, SK_RX_RING_CNT);
   2083 
   2084 		if (rxstat & XM_RXSTAT_ERRFRAME) {
   2085 			if_statinc(ifp, if_ierrors);
   2086 			sk_newbuf(sc_if, cur, m, dmamap);
   2087 			continue;
   2088 		}
   2089 
   2090 		/*
   2091 		 * Try to allocate a new jumbo buffer. If that
   2092 		 * fails, copy the packet to mbufs and put the
   2093 		 * jumbo buffer back in the ring so it can be
   2094 		 * re-used. If allocating mbufs fails, then we
   2095 		 * have to drop the packet.
   2096 		 */
   2097 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
   2098 			struct mbuf		*m0;
   2099 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
   2100 			    total_len + ETHER_ALIGN, 0, ifp);
   2101 			sk_newbuf(sc_if, cur, m, dmamap);
   2102 			if (m0 == NULL) {
   2103 				aprint_error_dev(sc_if->sk_dev, "no receive "
   2104 				    "buffers available -- packet dropped!\n");
   2105 				if_statinc(ifp, if_ierrors);
   2106 				continue;
   2107 			}
   2108 			m_adj(m0, ETHER_ALIGN);
   2109 			m = m0;
   2110 		} else {
   2111 			m_set_rcvif(m, ifp);
   2112 			m->m_pkthdr.len = m->m_len = total_len;
   2113 		}
   2114 
   2115 		/* pass it on. */
   2116 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2117 	}
   2118 }
   2119 
   2120 static void
   2121 sk_txeof(struct sk_if_softc *sc_if)
   2122 {
   2123 	struct sk_softc		*sc = sc_if->sk_softc;
   2124 	struct sk_tx_desc	*cur_tx;
   2125 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2126 	uint32_t		idx, sk_ctl;
   2127 	struct sk_txmap_entry	*entry;
   2128 
   2129 	DPRINTFN(3, ("sk_txeof\n"));
   2130 
   2131 	/*
   2132 	 * Go through our tx ring and free mbufs for those
   2133 	 * frames that have been sent.
   2134 	 */
   2135 	idx = sc_if->sk_cdata.sk_tx_cons;
   2136 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
   2137 		SK_CDTXSYNC(sc_if, idx, 1,
   2138 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2139 
   2140 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
   2141 		sk_ctl = le32toh(cur_tx->sk_ctl);
   2142 #ifdef SK_DEBUG
   2143 		if (skdebug >= 3)
   2144 			sk_dump_txdesc(cur_tx, idx);
   2145 #endif
   2146 		if (sk_ctl & SK_TXCTL_OWN) {
   2147 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
   2148 			break;
   2149 		}
   2150 		if (sk_ctl & SK_TXCTL_LASTFRAG)
   2151 			if_statinc(ifp, if_opackets);
   2152 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
   2153 			entry = sc_if->sk_cdata.sk_tx_map[idx];
   2154 
   2155 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
   2156 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2157 
   2158 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
   2159 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
   2160 					  link);
   2161 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
   2162 
   2163 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
   2164 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
   2165 		}
   2166 		sc_if->sk_cdata.sk_tx_cnt--;
   2167 		SK_INC(idx, SK_TX_RING_CNT);
   2168 	}
   2169 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
   2170 		ifp->if_timer = 0;
   2171 	else /* nudge chip to keep tx ring moving */
   2172 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
   2173 
   2174 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
   2175 		ifp->if_flags &= ~IFF_OACTIVE;
   2176 
   2177 	sc_if->sk_cdata.sk_tx_cons = idx;
   2178 }
   2179 
   2180 static void
   2181 sk_tick(void *xsc_if)
   2182 {
   2183 	struct sk_if_softc *sc_if = xsc_if;
   2184 	struct mii_data *mii = &sc_if->sk_mii;
   2185 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2186 	int i;
   2187 
   2188 	DPRINTFN(3, ("sk_tick\n"));
   2189 
   2190 	if (!(ifp->if_flags & IFF_UP))
   2191 		return;
   2192 
   2193 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2194 		sk_intr_bcom(sc_if);
   2195 		return;
   2196 	}
   2197 
   2198 	/*
   2199 	 * According to SysKonnect, the correct way to verify that
   2200 	 * the link has come back up is to poll bit 0 of the GPIO
   2201 	 * register three times. This pin has the signal from the
   2202 	 * link sync pin connected to it; if we read the same link
   2203 	 * state 3 times in a row, we know the link is up.
   2204 	 */
   2205 	for (i = 0; i < 3; i++) {
   2206 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
   2207 			break;
   2208 	}
   2209 
   2210 	if (i != 3) {
   2211 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2212 		return;
   2213 	}
   2214 
   2215 	/* Turn the GP0 interrupt back on. */
   2216 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2217 	SK_XM_READ_2(sc_if, XM_ISR);
   2218 	mii_tick(mii);
   2219 	if (ifp->if_link_state != LINK_STATE_UP)
   2220 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2221 	else
   2222 		callout_stop(&sc_if->sk_tick_ch);
   2223 }
   2224 
   2225 static void
   2226 sk_intr_bcom(struct sk_if_softc *sc_if)
   2227 {
   2228 	struct mii_data *mii = &sc_if->sk_mii;
   2229 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
   2230 	uint16_t status;
   2231 
   2232 
   2233 	DPRINTFN(3, ("sk_intr_bcom\n"));
   2234 
   2235 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2236 
   2237 	/*
   2238 	 * Read the PHY interrupt register to make sure
   2239 	 * we clear any pending interrupts.
   2240 	 */
   2241 	sk_xmac_miibus_readreg(sc_if->sk_dev,
   2242 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
   2243 
   2244 	if (!(ifp->if_flags & IFF_RUNNING)) {
   2245 		sk_init_xmac(sc_if);
   2246 		return;
   2247 	}
   2248 
   2249 	if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
   2250 		uint16_t lstat;
   2251 		sk_xmac_miibus_readreg(sc_if->sk_dev,
   2252 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
   2253 
   2254 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
   2255 			(void)mii_mediachg(mii);
   2256 			/* Turn off the link LED. */
   2257 			SK_IF_WRITE_1(sc_if, 0,
   2258 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2259 			sc_if->sk_link = 0;
   2260 		} else if (status & BRGPHY_ISR_LNK_CHG) {
   2261 			sk_xmac_miibus_writereg(sc_if->sk_dev,
   2262 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
   2263 			mii_tick(mii);
   2264 			sc_if->sk_link = 1;
   2265 			/* Turn on the link LED. */
   2266 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2267 			    SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
   2268 			    SK_LINKLED_BLINK_OFF);
   2269 			mii_pollstat(mii);
   2270 		} else {
   2271 			mii_tick(mii);
   2272 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2273 		}
   2274 	}
   2275 
   2276 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2277 }
   2278 
   2279 static void
   2280 sk_intr_xmac(struct sk_if_softc	*sc_if)
   2281 {
   2282 	uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
   2283 
   2284 	DPRINTFN(3, ("sk_intr_xmac\n"));
   2285 
   2286 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
   2287 		if (status & XM_ISR_GP0_SET) {
   2288 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
   2289 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2290 		}
   2291 
   2292 		if (status & XM_ISR_AUTONEG_DONE) {
   2293 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2294 		}
   2295 	}
   2296 
   2297 	if (status & XM_IMR_TX_UNDERRUN)
   2298 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
   2299 
   2300 	if (status & XM_IMR_RX_OVERRUN)
   2301 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
   2302 }
   2303 
   2304 static void
   2305 sk_intr_yukon(struct sk_if_softc *sc_if)
   2306 {
   2307 #ifdef SK_DEBUG
   2308 	int status;
   2309 
   2310 	status =
   2311 #endif
   2312 		SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2313 
   2314 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
   2315 }
   2316 
   2317 static int
   2318 sk_intr(void *xsc)
   2319 {
   2320 	struct sk_softc		*sc = xsc;
   2321 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
   2322 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
   2323 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
   2324 	uint32_t		status;
   2325 	int			claimed = 0;
   2326 
   2327 	if (sc_if0 != NULL)
   2328 		ifp0 = &sc_if0->sk_ethercom.ec_if;
   2329 	if (sc_if1 != NULL)
   2330 		ifp1 = &sc_if1->sk_ethercom.ec_if;
   2331 
   2332 	for (;;) {
   2333 		status = CSR_READ_4(sc, SK_ISSR);
   2334 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
   2335 
   2336 		if (!(status & sc->sk_intrmask))
   2337 			break;
   2338 
   2339 		claimed = 1;
   2340 
   2341 		/* Handle receive interrupts first. */
   2342 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
   2343 			sk_rxeof(sc_if0);
   2344 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
   2345 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
   2346 		}
   2347 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
   2348 			sk_rxeof(sc_if1);
   2349 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
   2350 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
   2351 		}
   2352 
   2353 		/* Then transmit interrupts. */
   2354 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
   2355 			sk_txeof(sc_if0);
   2356 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
   2357 			    SK_TXBMU_CLR_IRQ_EOF);
   2358 		}
   2359 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
   2360 			sk_txeof(sc_if1);
   2361 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
   2362 			    SK_TXBMU_CLR_IRQ_EOF);
   2363 		}
   2364 
   2365 		/* Then MAC interrupts. */
   2366 		if (sc_if0 && (status & SK_ISR_MAC1) &&
   2367 		    (ifp0->if_flags & IFF_RUNNING)) {
   2368 			if (sc->sk_type == SK_GENESIS)
   2369 				sk_intr_xmac(sc_if0);
   2370 			else
   2371 				sk_intr_yukon(sc_if0);
   2372 		}
   2373 
   2374 		if (sc_if1 && (status & SK_ISR_MAC2) &&
   2375 		    (ifp1->if_flags & IFF_RUNNING)) {
   2376 			if (sc->sk_type == SK_GENESIS)
   2377 				sk_intr_xmac(sc_if1);
   2378 			else
   2379 				sk_intr_yukon(sc_if1);
   2380 
   2381 		}
   2382 
   2383 		if (status & SK_ISR_EXTERNAL_REG) {
   2384 			if (sc_if0 != NULL &&
   2385 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
   2386 				sk_intr_bcom(sc_if0);
   2387 
   2388 			if (sc_if1 != NULL &&
   2389 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
   2390 				sk_intr_bcom(sc_if1);
   2391 		}
   2392 	}
   2393 
   2394 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2395 
   2396 	if (ifp0 != NULL)
   2397 		if_schedule_deferred_start(ifp0);
   2398 	if (ifp1 != NULL)
   2399 		if_schedule_deferred_start(ifp1);
   2400 
   2401 	KASSERT(sc->rnd_attached > 0);
   2402 	rnd_add_uint32(&sc->rnd_source, status);
   2403 
   2404 	if (sc->sk_int_mod_pending)
   2405 		sk_update_int_mod(sc);
   2406 
   2407 	return claimed;
   2408 }
   2409 
   2410 static void
   2411 sk_unreset_xmac(struct sk_if_softc *sc_if)
   2412 {
   2413 	struct sk_softc		*sc = sc_if->sk_softc;
   2414 	static const struct sk_bcom_hack     bhack[] = {
   2415 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
   2416 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
   2417 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
   2418 	{ 0, 0 } };
   2419 
   2420 	DPRINTFN(1, ("sk_unreset_xmac\n"));
   2421 
   2422 	/* Unreset the XMAC. */
   2423 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
   2424 	DELAY(1000);
   2425 
   2426 	/* Reset the XMAC's internal state. */
   2427 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2428 
   2429 	/* Save the XMAC II revision */
   2430 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
   2431 
   2432 	/*
   2433 	 * Perform additional initialization for external PHYs,
   2434 	 * namely for the 1000baseTX cards that use the XMAC's
   2435 	 * GMII mode.
   2436 	 */
   2437 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2438 		int			i = 0;
   2439 		uint32_t		val;
   2440 		uint16_t		phyval;
   2441 
   2442 		/* Take PHY out of reset. */
   2443 		val = sk_win_read_4(sc, SK_GPIO);
   2444 		if (sc_if->sk_port == SK_PORT_A)
   2445 			val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
   2446 		else
   2447 			val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
   2448 		sk_win_write_4(sc, SK_GPIO, val);
   2449 
   2450 		/* Enable GMII mode on the XMAC. */
   2451 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
   2452 
   2453 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2454 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
   2455 		DELAY(10000);
   2456 		sk_xmac_miibus_writereg(sc_if->sk_dev,
   2457 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
   2458 
   2459 		/*
   2460 		 * Early versions of the BCM5400 apparently have
   2461 		 * a bug that requires them to have their reserved
   2462 		 * registers initialized to some magic values. I don't
   2463 		 * know what the numbers do, I'm just the messenger.
   2464 		 */
   2465 		sk_xmac_miibus_readreg(sc_if->sk_dev,
   2466 		    SK_PHYADDR_BCOM, 0x03, &phyval);
   2467 		if (phyval == 0x6041) {
   2468 			while (bhack[i].reg) {
   2469 				sk_xmac_miibus_writereg(sc_if->sk_dev,
   2470 				    SK_PHYADDR_BCOM, bhack[i].reg,
   2471 				    bhack[i].val);
   2472 				i++;
   2473 			}
   2474 		}
   2475 	}
   2476 }
   2477 
   2478 static void
   2479 sk_init_xmac(struct sk_if_softc *sc_if)
   2480 {
   2481 	struct sk_softc		*sc = sc_if->sk_softc;
   2482 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
   2483 
   2484 	sk_unreset_xmac(sc_if);
   2485 
   2486 	/* Set station address */
   2487 	SK_XM_WRITE_2(sc_if, XM_PAR0,
   2488 		      *(uint16_t *)(&sc_if->sk_enaddr[0]));
   2489 	SK_XM_WRITE_2(sc_if, XM_PAR1,
   2490 		      *(uint16_t *)(&sc_if->sk_enaddr[2]));
   2491 	SK_XM_WRITE_2(sc_if, XM_PAR2,
   2492 		      *(uint16_t *)(&sc_if->sk_enaddr[4]));
   2493 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
   2494 
   2495 	if (ifp->if_flags & IFF_PROMISC)
   2496 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2497 	else
   2498 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
   2499 
   2500 	if (ifp->if_flags & IFF_BROADCAST)
   2501 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2502 	else
   2503 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
   2504 
   2505 	/* We don't need the FCS appended to the packet. */
   2506 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
   2507 
   2508 	/* We want short frames padded to 60 bytes. */
   2509 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
   2510 
   2511 	/*
   2512 	 * Enable the reception of all error frames. This is
   2513 	 * a necessary evil due to the design of the XMAC. The
   2514 	 * XMAC's receive FIFO is only 8K in size, however jumbo
   2515 	 * frames can be up to 9000 bytes in length. When bad
   2516 	 * frame filtering is enabled, the XMAC's RX FIFO operates
   2517 	 * in 'store and forward' mode. For this to work, the
   2518 	 * entire frame has to fit into the FIFO, but that means
   2519 	 * that jumbo frames larger than 8192 bytes will be
   2520 	 * truncated. Disabling all bad frame filtering causes
   2521 	 * the RX FIFO to operate in streaming mode, in which
   2522 	 * case the XMAC will start transferring frames out of the
   2523 	 * RX FIFO as soon as the FIFO threshold is reached.
   2524 	 */
   2525 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
   2526 	    XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
   2527 	    XM_MODE_RX_INRANGELEN);
   2528 
   2529 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2530 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2531 	else
   2532 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
   2533 
   2534 	/*
   2535 	 * Bump up the transmit threshold. This helps hold off transmit
   2536 	 * underruns when we're blasting traffic from both ports at once.
   2537 	 */
   2538 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
   2539 
   2540 	/* Set multicast filter */
   2541 	sk_setmulti(sc_if);
   2542 
   2543 	/* Clear and enable interrupts */
   2544 	SK_XM_READ_2(sc_if, XM_ISR);
   2545 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
   2546 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
   2547 	else
   2548 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2549 
   2550 	/* Configure MAC arbiter */
   2551 	switch (sc_if->sk_xmac_rev) {
   2552 	case XM_XMAC_REV_B2:
   2553 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
   2554 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
   2555 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
   2556 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
   2557 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
   2558 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
   2559 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
   2560 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
   2561 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2562 		break;
   2563 	case XM_XMAC_REV_C1:
   2564 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
   2565 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
   2566 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
   2567 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
   2568 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
   2569 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
   2570 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
   2571 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
   2572 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
   2573 		break;
   2574 	default:
   2575 		break;
   2576 	}
   2577 	sk_win_write_2(sc, SK_MACARB_CTL,
   2578 	    SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
   2579 
   2580 	sc_if->sk_link = 1;
   2581 }
   2582 
   2583 static void
   2584 sk_unreset_yukon(struct sk_if_softc *sc_if)
   2585 {
   2586 	uint32_t		/*mac, */phy;
   2587 	struct sk_softc		*sc;
   2588 
   2589 	DPRINTFN(1, ("sk_unreset_yukon: start: sk_csr=%#x\n",
   2590 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
   2591 
   2592 	sc = sc_if->sk_softc;
   2593 	if (sc->sk_type == SK_YUKON_LITE &&
   2594 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
   2595 		/* Take PHY out of reset. */
   2596 		sk_win_write_4(sc, SK_GPIO,
   2597 		    (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9)
   2598 		    & ~SK_GPIO_DAT9);
   2599 	}
   2600 
   2601 	/* GMAC and GPHY Reset */
   2602 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
   2603 
   2604 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
   2605 
   2606 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2607 	DELAY(1000);
   2608 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
   2609 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
   2610 	DELAY(1000);
   2611 
   2612 
   2613 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
   2614 
   2615 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
   2616 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
   2617 
   2618 	switch (sc_if->sk_softc->sk_pmd) {
   2619 	case IFM_1000_SX:
   2620 	case IFM_1000_LX:
   2621 		phy |= SK_GPHY_FIBER;
   2622 		break;
   2623 
   2624 	case IFM_1000_CX:
   2625 	case IFM_1000_T:
   2626 		phy |= SK_GPHY_COPPER;
   2627 		break;
   2628 	}
   2629 
   2630 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
   2631 
   2632 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
   2633 	DELAY(1000);
   2634 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
   2635 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
   2636 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
   2637 
   2638 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
   2639 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
   2640 }
   2641 
   2642 static void
   2643 sk_init_yukon(struct sk_if_softc *sc_if)
   2644 {
   2645 	uint16_t		reg;
   2646 	int			i;
   2647 
   2648 	DPRINTFN(1, ("sk_init_yukon: start\n"));
   2649 	sk_unreset_yukon(sc_if);
   2650 
   2651 	/* unused read of the interrupt source register */
   2652 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
   2653 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
   2654 
   2655 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
   2656 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
   2657 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2658 
   2659 	/* MIB Counter Clear Mode set */
   2660 	reg |= YU_PAR_MIB_CLR;
   2661 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
   2662 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
   2663 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2664 
   2665 	/* MIB Counter Clear Mode clear */
   2666 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
   2667 	reg &= ~YU_PAR_MIB_CLR;
   2668 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
   2669 
   2670 	/* receive control reg */
   2671 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
   2672 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
   2673 		      YU_RCR_CRCR);
   2674 
   2675 	/* transmit parameter register */
   2676 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
   2677 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
   2678 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a));
   2679 
   2680 	/* serial mode register */
   2681 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
   2682 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
   2683 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
   2684 		      YU_SMR_IPG_DATA(0x1e));
   2685 
   2686 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
   2687 	/* Setup Yukon's address */
   2688 	for (i = 0; i < 3; i++) {
   2689 		/* Write Source Address 1 (unicast filter) */
   2690 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
   2691 			      sc_if->sk_enaddr[i * 2] |
   2692 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
   2693 	}
   2694 
   2695 	for (i = 0; i < 3; i++) {
   2696 		reg = sk_win_read_2(sc_if->sk_softc,
   2697 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
   2698 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
   2699 	}
   2700 
   2701 	/* Set multicast filter */
   2702 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
   2703 	sk_setmulti(sc_if);
   2704 
   2705 	/* enable interrupt mask for counter overflows */
   2706 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
   2707 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
   2708 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
   2709 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
   2710 
   2711 	/* Configure RX MAC FIFO */
   2712 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
   2713 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
   2714 
   2715 	/* Configure TX MAC FIFO */
   2716 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
   2717 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
   2718 
   2719 	DPRINTFN(6, ("sk_init_yukon: end\n"));
   2720 }
   2721 
   2722 /*
   2723  * Note that to properly initialize any part of the GEnesis chip,
   2724  * you first have to take it out of reset mode.
   2725  */
   2726 static int
   2727 sk_init(struct ifnet *ifp)
   2728 {
   2729 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2730 	struct sk_softc		*sc = sc_if->sk_softc;
   2731 	struct mii_data		*mii = &sc_if->sk_mii;
   2732 	int			rc = 0, s;
   2733 	uint32_t		imr, imtimer_ticks;
   2734 
   2735 	DPRINTFN(1, ("sk_init\n"));
   2736 
   2737 	s = splnet();
   2738 
   2739 	if (ifp->if_flags & IFF_RUNNING) {
   2740 		splx(s);
   2741 		return 0;
   2742 	}
   2743 
   2744 	/* Cancel pending I/O and free all RX/TX buffers. */
   2745 	sk_stop(ifp, 0);
   2746 
   2747 	if (sc->sk_type == SK_GENESIS) {
   2748 		/* Configure LINK_SYNC LED */
   2749 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
   2750 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
   2751 			      SK_LINKLED_LINKSYNC_ON);
   2752 
   2753 		/* Configure RX LED */
   2754 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
   2755 			      SK_RXLEDCTL_COUNTER_START);
   2756 
   2757 		/* Configure TX LED */
   2758 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
   2759 			      SK_TXLEDCTL_COUNTER_START);
   2760 	}
   2761 
   2762 	/* Configure I2C registers */
   2763 
   2764 	/* Configure XMAC(s) */
   2765 	switch (sc->sk_type) {
   2766 	case SK_GENESIS:
   2767 		sk_init_xmac(sc_if);
   2768 		break;
   2769 	case SK_YUKON:
   2770 	case SK_YUKON_LITE:
   2771 	case SK_YUKON_LP:
   2772 		sk_init_yukon(sc_if);
   2773 		break;
   2774 	}
   2775 	if ((rc = mii_mediachg(mii)) == ENXIO)
   2776 		rc = 0;
   2777 	else if (rc != 0)
   2778 		goto out;
   2779 
   2780 	if (sc->sk_type == SK_GENESIS) {
   2781 		/* Configure MAC FIFOs */
   2782 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
   2783 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
   2784 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
   2785 
   2786 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
   2787 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
   2788 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
   2789 	}
   2790 
   2791 	/* Configure transmit arbiter(s) */
   2792 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
   2793 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
   2794 
   2795 	/* Configure RAMbuffers */
   2796 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
   2797 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
   2798 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
   2799 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
   2800 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
   2801 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
   2802 
   2803 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
   2804 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
   2805 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
   2806 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
   2807 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
   2808 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
   2809 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
   2810 
   2811 	/* Configure BMUs */
   2812 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
   2813 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
   2814 	    SK_RX_RING_ADDR(sc_if, 0));
   2815 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
   2816 
   2817 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
   2818 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
   2819 	    SK_TX_RING_ADDR(sc_if, 0));
   2820 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
   2821 
   2822 	/* Init descriptors */
   2823 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
   2824 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2825 		    "memory for rx buffers\n");
   2826 		sk_stop(ifp, 0);
   2827 		splx(s);
   2828 		return ENOBUFS;
   2829 	}
   2830 
   2831 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
   2832 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
   2833 		    "memory for tx buffers\n");
   2834 		sk_stop(ifp, 0);
   2835 		splx(s);
   2836 		return ENOBUFS;
   2837 	}
   2838 
   2839 	/* Set interrupt moderation if changed via sysctl. */
   2840 	switch (sc->sk_type) {
   2841 	case SK_GENESIS:
   2842 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
   2843 		break;
   2844 	case SK_YUKON_EC:
   2845 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
   2846 		break;
   2847 	default:
   2848 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
   2849 	}
   2850 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
   2851 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
   2852 		sk_win_write_4(sc, SK_IMTIMERINIT,
   2853 		    SK_IM_USECS(sc->sk_int_mod));
   2854 		aprint_verbose_dev(sc->sk_dev,
   2855 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
   2856 	}
   2857 
   2858 	/* Configure interrupt handling */
   2859 	CSR_READ_4(sc, SK_ISSR);
   2860 	if (sc_if->sk_port == SK_PORT_A)
   2861 		sc->sk_intrmask |= SK_INTRS1;
   2862 	else
   2863 		sc->sk_intrmask |= SK_INTRS2;
   2864 
   2865 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
   2866 
   2867 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2868 
   2869 	/* Start BMUs. */
   2870 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
   2871 
   2872 	if (sc->sk_type == SK_GENESIS) {
   2873 		/* Enable XMACs TX and RX state machines */
   2874 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
   2875 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
   2876 			       XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
   2877 	}
   2878 
   2879 	if (SK_YUKON_FAMILY(sc->sk_type)) {
   2880 		uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
   2881 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
   2882 #if 0
   2883 		/* XXX disable 100Mbps and full duplex mode? */
   2884 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
   2885 #endif
   2886 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
   2887 	}
   2888 
   2889 
   2890 	ifp->if_flags |= IFF_RUNNING;
   2891 	ifp->if_flags &= ~IFF_OACTIVE;
   2892 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
   2893 
   2894 out:
   2895 	splx(s);
   2896 	return rc;
   2897 }
   2898 
   2899 static void
   2900 sk_stop(struct ifnet *ifp, int disable)
   2901 {
   2902 	struct sk_if_softc	*sc_if = ifp->if_softc;
   2903 	struct sk_softc		*sc = sc_if->sk_softc;
   2904 	int			i;
   2905 
   2906 	DPRINTFN(1, ("sk_stop\n"));
   2907 
   2908 	callout_stop(&sc_if->sk_tick_ch);
   2909 
   2910 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
   2911 		uint32_t		val;
   2912 
   2913 		/* Put PHY back into reset. */
   2914 		val = sk_win_read_4(sc, SK_GPIO);
   2915 		if (sc_if->sk_port == SK_PORT_A) {
   2916 			val |= SK_GPIO_DIR0;
   2917 			val &= ~SK_GPIO_DAT0;
   2918 		} else {
   2919 			val |= SK_GPIO_DIR2;
   2920 			val &= ~SK_GPIO_DAT2;
   2921 		}
   2922 		sk_win_write_4(sc, SK_GPIO, val);
   2923 	}
   2924 
   2925 	/* Turn off various components of this interface. */
   2926 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
   2927 	switch (sc->sk_type) {
   2928 	case SK_GENESIS:
   2929 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
   2930 			      SK_TXMACCTL_XMAC_RESET);
   2931 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
   2932 		break;
   2933 	case SK_YUKON:
   2934 	case SK_YUKON_LITE:
   2935 	case SK_YUKON_LP:
   2936 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
   2937 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
   2938 		break;
   2939 	}
   2940 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
   2941 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
   2942 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
   2943 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
   2944 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
   2945 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2946 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
   2947 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
   2948 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
   2949 
   2950 	/* Disable interrupts */
   2951 	if (sc_if->sk_port == SK_PORT_A)
   2952 		sc->sk_intrmask &= ~SK_INTRS1;
   2953 	else
   2954 		sc->sk_intrmask &= ~SK_INTRS2;
   2955 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
   2956 
   2957 	SK_XM_READ_2(sc_if, XM_ISR);
   2958 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
   2959 
   2960 	/* Free RX and TX mbufs still in the queues. */
   2961 	for (i = 0; i < SK_RX_RING_CNT; i++) {
   2962 		m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
   2963 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
   2964 	}
   2965 
   2966 	for (i = 0; i < SK_TX_RING_CNT; i++) {
   2967 		m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
   2968 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
   2969 	}
   2970 
   2971 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2972 }
   2973 
   2974 /* Power Management Framework */
   2975 
   2976 static bool
   2977 skc_suspend(device_t dv, const pmf_qual_t *qual)
   2978 {
   2979 	struct sk_softc *sc = device_private(dv);
   2980 
   2981 	DPRINTFN(2, ("skc_suspend\n"));
   2982 
   2983 	/* Turn off the driver is loaded LED */
   2984 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
   2985 
   2986 	return true;
   2987 }
   2988 
   2989 static bool
   2990 skc_resume(device_t dv, const pmf_qual_t *qual)
   2991 {
   2992 	struct sk_softc *sc = device_private(dv);
   2993 
   2994 	DPRINTFN(2, ("skc_resume\n"));
   2995 
   2996 	sk_reset(sc);
   2997 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
   2998 
   2999 	return true;
   3000 }
   3001 
   3002 static bool
   3003 sk_resume(device_t dv, const pmf_qual_t *qual)
   3004 {
   3005 	struct sk_if_softc *sc_if = device_private(dv);
   3006 
   3007 	sk_init_yukon(sc_if);
   3008 	return true;
   3009 }
   3010 
   3011 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
   3012     skc_probe, skc_attach, NULL, NULL);
   3013 
   3014 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
   3015     sk_probe, sk_attach, NULL, NULL);
   3016 
   3017 #ifdef SK_DEBUG
   3018 static void
   3019 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
   3020 {
   3021 #define DESC_PRINT(X)					\
   3022 	if (X)						\
   3023 		printf("txdesc[%d]." #X "=%#x\n",	\
   3024 		       idx, X);
   3025 
   3026 	DESC_PRINT(le32toh(desc->sk_ctl));
   3027 	DESC_PRINT(le32toh(desc->sk_next));
   3028 	DESC_PRINT(le32toh(desc->sk_data_lo));
   3029 	DESC_PRINT(le32toh(desc->sk_data_hi));
   3030 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
   3031 	DESC_PRINT(le16toh(desc->sk_rsvd0));
   3032 	DESC_PRINT(le16toh(desc->sk_csum_startval));
   3033 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
   3034 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
   3035 	DESC_PRINT(le16toh(desc->sk_rsvd1));
   3036 #undef PRINT
   3037 }
   3038 
   3039 static void
   3040 sk_dump_bytes(const char *data, int len)
   3041 {
   3042 	int c, i, j;
   3043 
   3044 	for (i = 0; i < len; i += 16) {
   3045 		printf("%08x  ", i);
   3046 		c = len - i;
   3047 		if (c > 16) c = 16;
   3048 
   3049 		for (j = 0; j < c; j++) {
   3050 			printf("%02x ", data[i + j] & 0xff);
   3051 			if ((j & 0xf) == 7 && j > 0)
   3052 				printf(" ");
   3053 		}
   3054 
   3055 		for (; j < 16; j++)
   3056 			printf("   ");
   3057 		printf("  ");
   3058 
   3059 		for (j = 0; j < c; j++) {
   3060 			int ch = data[i + j] & 0xff;
   3061 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
   3062 		}
   3063 
   3064 		printf("\n");
   3065 
   3066 		if (c < 16)
   3067 			break;
   3068 	}
   3069 }
   3070 
   3071 static void
   3072 sk_dump_mbuf(struct mbuf *m)
   3073 {
   3074 	int count = m->m_pkthdr.len;
   3075 
   3076 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
   3077 
   3078 	while (count > 0 && m) {
   3079 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
   3080 		       m, m->m_data, m->m_len);
   3081 		sk_dump_bytes(mtod(m, char *), m->m_len);
   3082 
   3083 		count -= m->m_len;
   3084 		m = m->m_next;
   3085 	}
   3086 }
   3087 #endif
   3088 
   3089 static int
   3090 sk_sysctl_handler(SYSCTLFN_ARGS)
   3091 {
   3092 	int error, t;
   3093 	struct sysctlnode node;
   3094 	struct sk_softc *sc;
   3095 
   3096 	node = *rnode;
   3097 	sc = node.sysctl_data;
   3098 	t = sc->sk_int_mod;
   3099 	node.sysctl_data = &t;
   3100 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3101 	if (error || newp == NULL)
   3102 		return error;
   3103 
   3104 	if (t < SK_IM_MIN || t > SK_IM_MAX)
   3105 		return EINVAL;
   3106 
   3107 	/* update the softc with sysctl-changed value, and mark
   3108 	   for hardware update */
   3109 	sc->sk_int_mod = t;
   3110 	sc->sk_int_mod_pending = 1;
   3111 	return 0;
   3112 }
   3113 
   3114 /*
   3115  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
   3116  * set up in skc_attach()
   3117  */
   3118 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
   3119 {
   3120 	int rc;
   3121 	const struct sysctlnode *node;
   3122 
   3123 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3124 	    0, CTLTYPE_NODE, "sk",
   3125 	    SYSCTL_DESCR("sk interface controls"),
   3126 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3127 		goto err;
   3128 	}
   3129 
   3130 	sk_root_num = node->sysctl_num;
   3131 	return;
   3132 
   3133 err:
   3134 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   3135 }
   3136