Home | History | Annotate | Line # | Download | only in pci
      1 /*	$NetBSD: if_ste.c,v 1.66 2024/06/29 12:11:12 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Sundance Tech. ST-201 10/100
     34  * Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.66 2024/06/29 12:11:12 riastradh Exp $");
     39 
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/callout.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/kernel.h>
     46 #include <sys/socket.h>
     47 #include <sys/ioctl.h>
     48 #include <sys/errno.h>
     49 #include <sys/device.h>
     50 #include <sys/queue.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #include <net/bpf.h>
     58 
     59 #include <sys/bus.h>
     60 #include <sys/intr.h>
     61 
     62 #include <dev/mii/mii.h>
     63 #include <dev/mii/miivar.h>
     64 #include <dev/mii/mii_bitbang.h>
     65 
     66 #include <dev/pci/pcireg.h>
     67 #include <dev/pci/pcivar.h>
     68 #include <dev/pci/pcidevs.h>
     69 
     70 #include <dev/pci/if_stereg.h>
     71 
     72 /*
     73  * Transmit descriptor list size.
     74  */
     75 #define	STE_NTXDESC		256
     76 #define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
     77 #define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
     78 
     79 /*
     80  * Receive descriptor list size.
     81  */
     82 #define	STE_NRXDESC		128
     83 #define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
     84 #define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
     85 
     86 /*
     87  * Control structures are DMA'd to the ST-201 chip.  We allocate them in
     88  * a single clump that maps to a single DMA segment to make several things
     89  * easier.
     90  */
     91 struct ste_control_data {
     92 	/*
     93 	 * The transmit descriptors.
     94 	 */
     95 	struct ste_tfd scd_txdescs[STE_NTXDESC];
     96 
     97 	/*
     98 	 * The receive descriptors.
     99 	 */
    100 	struct ste_rfd scd_rxdescs[STE_NRXDESC];
    101 };
    102 
    103 #define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
    104 #define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
    105 #define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
    106 
    107 /*
    108  * Software state for transmit and receive jobs.
    109  */
    110 struct ste_descsoft {
    111 	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
    112 	bus_dmamap_t ds_dmamap;		/* our DMA map */
    113 };
    114 
    115 /*
    116  * Software state per device.
    117  */
    118 struct ste_softc {
    119 	device_t sc_dev;		/* generic device information */
    120 	bus_space_tag_t sc_st;		/* bus space tag */
    121 	bus_space_handle_t sc_sh;	/* bus space handle */
    122 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    123 	struct ethercom sc_ethercom;	/* ethernet common data */
    124 
    125 	void *sc_ih;			/* interrupt cookie */
    126 
    127 	struct mii_data sc_mii;		/* MII/media information */
    128 
    129 	callout_t sc_tick_ch;		/* tick callout */
    130 
    131 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    132 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    133 
    134 	/*
    135 	 * Software state for transmit and receive descriptors.
    136 	 */
    137 	struct ste_descsoft sc_txsoft[STE_NTXDESC];
    138 	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
    139 
    140 	/*
    141 	 * Control data structures.
    142 	 */
    143 	struct ste_control_data *sc_control_data;
    144 #define	sc_txdescs	sc_control_data->scd_txdescs
    145 #define	sc_rxdescs	sc_control_data->scd_rxdescs
    146 
    147 	int	sc_txpending;		/* number of Tx requests pending */
    148 	int	sc_txdirty;		/* first dirty Tx descriptor */
    149 	int	sc_txlast;		/* last used Tx descriptor */
    150 
    151 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
    152 
    153 	int	sc_txthresh;		/* Tx threshold */
    154 	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
    155 	uint16_t sc_IntEnable;		/* prototype IntEnable register */
    156 	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
    157 	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
    158 
    159 	bool	sc_enable_phy0;		/* access to phy #0 allowed */
    160 };
    161 
    162 #define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
    163 #define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
    164 
    165 #define	STE_CDTXSYNC(sc, x, ops)					\
    166 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    167 	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
    168 
    169 #define	STE_CDRXSYNC(sc, x, ops)					\
    170 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    171 	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
    172 
    173 #define	STE_INIT_RXDESC(sc, x)						\
    174 do {									\
    175 	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
    176 	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
    177 	struct mbuf *__m = __ds->ds_mbuf;				\
    178 									\
    179 	/*								\
    180 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    181 	 * so that the payload after the Ethernet header is aligned	\
    182 	 * to a 4-byte boundary.					\
    183 	 */								\
    184 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    185 	__rfd->rfd_frag.frag_addr =					\
    186 	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
    187 	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
    188 	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
    189 	__rfd->rfd_status = 0;						\
    190 	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    191 } while (/*CONSTCOND*/0)
    192 
    193 #define STE_TIMEOUT 1000
    194 
    195 static void	ste_start(struct ifnet *);
    196 static void	ste_watchdog(struct ifnet *);
    197 static int	ste_ioctl(struct ifnet *, u_long, void *);
    198 static int	ste_init(struct ifnet *);
    199 static void	ste_stop(struct ifnet *, int);
    200 
    201 static bool	ste_shutdown(device_t, int);
    202 
    203 static void	ste_reset(struct ste_softc *, uint32_t);
    204 static void	ste_setthresh(struct ste_softc *);
    205 static void	ste_txrestart(struct ste_softc *, uint8_t);
    206 static void	ste_rxdrain(struct ste_softc *);
    207 static int	ste_add_rxbuf(struct ste_softc *, int);
    208 static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
    209 static void	ste_tick(void *);
    210 
    211 static void	ste_stats_update(struct ste_softc *);
    212 
    213 static void	ste_set_filter(struct ste_softc *);
    214 
    215 static int	ste_intr(void *);
    216 static void	ste_txintr(struct ste_softc *);
    217 static void	ste_rxintr(struct ste_softc *);
    218 
    219 static int	ste_mii_readreg(device_t, int, int, uint16_t *);
    220 static int	ste_mii_writereg(device_t, int, int, uint16_t);
    221 static void	ste_mii_statchg(struct ifnet *);
    222 
    223 static int	ste_match(device_t, cfdata_t, void *);
    224 static void	ste_attach(device_t, device_t, void *);
    225 
    226 int	ste_copy_small = 0;
    227 
    228 CFATTACH_DECL_NEW(ste, sizeof(struct ste_softc),
    229     ste_match, ste_attach, NULL, NULL);
    230 
    231 static uint32_t ste_mii_bitbang_read(device_t);
    232 static void	ste_mii_bitbang_write(device_t, uint32_t);
    233 
    234 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
    235 	ste_mii_bitbang_read,
    236 	ste_mii_bitbang_write,
    237 	{
    238 		PC_MgmtData,		/* MII_BIT_MDO */
    239 		PC_MgmtData,		/* MII_BIT_MDI */
    240 		PC_MgmtClk,		/* MII_BIT_MDC */
    241 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
    242 		0,			/* MII_BIT_DIR_PHY_HOST */
    243 	}
    244 };
    245 
    246 /*
    247  * Devices supported by this driver.
    248  */
    249 struct ste_product {
    250 	pci_vendor_id_t		ste_vendor;
    251 	pci_product_id_t	ste_product;
    252 	const char		*ste_name;
    253 	const struct ste_product *ste_subs;
    254 };
    255 
    256 static const struct ste_product ste_dlink_products[] = {
    257 	{ PCI_VENDOR_DLINK,		0x1002,
    258 	  "D-Link DFE-550TX 10/100 Ethernet",
    259 	  NULL },
    260 
    261 	{ PCI_VENDOR_DLINK,		0x1003,
    262 	  "D-Link DFE-550FX Ethernet",
    263 	  NULL },
    264 
    265 	{ PCI_VENDOR_DLINK,		0x1012,
    266 	  "D-Link DFE-580TX 4-port 10/100 Ethernet",
    267 	  NULL },
    268 
    269 	{ PCI_VENDOR_DLINK,		0x1040,
    270 	  "D-Link DFE-530TXS 10/100 Ethernet",
    271 	  NULL },
    272 
    273 	{ 0,				0,
    274 	  NULL,
    275 	  NULL },
    276 };
    277 
    278 static const struct ste_product ste_products[] = {
    279 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_IP100A,
    280 	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter",
    281 	  NULL },
    282 
    283 	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
    284 	  "Sundance ST-201 10/100 Ethernet",
    285 	  NULL },
    286 
    287 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
    288 	  "D-Link DL-1002 10/100 Ethernet",
    289 	  ste_dlink_products },
    290 
    291 	{ 0,				0,
    292 	  NULL,
    293 	  NULL },
    294 };
    295 
    296 static const struct ste_product *
    297 ste_lookup_table(pcireg_t pci_id, const struct ste_product * const products)
    298 {
    299 	const struct ste_product *sp;
    300 
    301 	for (sp = products; sp->ste_name != NULL; sp++) {
    302 		if (PCI_VENDOR(pci_id) == sp->ste_vendor &&
    303 		    PCI_PRODUCT(pci_id) == sp->ste_product)
    304 			return (sp);
    305 	}
    306 	return (NULL);
    307 }
    308 
    309 static const struct ste_product *
    310 ste_lookup(const struct pci_attach_args *pa)
    311 {
    312 	const struct ste_product *sp;
    313 
    314 	sp = ste_lookup_table(pa->pa_id, ste_products);
    315 	if (sp && sp->ste_subs) {
    316 		const pcireg_t subsys =
    317 		    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    318 		const struct ste_product *ssp =
    319 		    ste_lookup_table(subsys, sp->ste_subs);
    320 		if (ssp)
    321 			sp = ssp;
    322 	}
    323 	return (sp);
    324 }
    325 
    326 static int
    327 ste_match(device_t parent, cfdata_t cf, void *aux)
    328 {
    329 	struct pci_attach_args *pa = aux;
    330 
    331 	if (ste_lookup(pa) != NULL)
    332 		return (1);
    333 
    334 	return (0);
    335 }
    336 
    337 static void
    338 ste_attach(device_t parent, device_t self, void *aux)
    339 {
    340 	struct ste_softc *sc = device_private(self);
    341 	struct pci_attach_args *pa = aux;
    342 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    343 	struct mii_data * const mii = &sc->sc_mii;
    344 	pci_chipset_tag_t pc = pa->pa_pc;
    345 	pci_intr_handle_t ih;
    346 	const char *intrstr = NULL;
    347 	bus_space_tag_t iot, memt;
    348 	bus_space_handle_t ioh, memh;
    349 	bus_dma_segment_t seg;
    350 	int ioh_valid, memh_valid;
    351 	int i, rseg, error;
    352 	const struct ste_product *sp;
    353 	uint8_t enaddr[ETHER_ADDR_LEN];
    354 	uint16_t myea[ETHER_ADDR_LEN / 2];
    355 	char intrbuf[PCI_INTRSTR_LEN];
    356 
    357 	sc->sc_dev = self;
    358 
    359 	callout_init(&sc->sc_tick_ch, 0);
    360 	callout_setfunc(&sc->sc_tick_ch, ste_tick, sc);
    361 
    362 	sp = ste_lookup(pa);
    363 	if (sp == NULL) {
    364 		printf("\n");
    365 		panic("ste_attach: impossible");
    366 	}
    367 
    368 	printf(": %s\n", sp->ste_name);
    369 
    370 	/*
    371 	 * Map the device.
    372 	 */
    373 	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
    374 	    PCI_MAPREG_TYPE_IO, 0,
    375 	    &iot, &ioh, NULL, NULL) == 0);
    376 	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
    377 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    378 	    &memt, &memh, NULL, NULL) == 0);
    379 
    380 	if (memh_valid) {
    381 		sc->sc_st = memt;
    382 		sc->sc_sh = memh;
    383 	} else if (ioh_valid) {
    384 		sc->sc_st = iot;
    385 		sc->sc_sh = ioh;
    386 	} else {
    387 		aprint_error_dev(self, "unable to map device registers\n");
    388 		return;
    389 	}
    390 
    391 	sc->sc_dmat = pa->pa_dmat;
    392 
    393 	/* Enable bus mastering. */
    394 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    395 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
    396 	    PCI_COMMAND_MASTER_ENABLE);
    397 
    398 	/* power up chip */
    399 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
    400 	    NULL)) && error != EOPNOTSUPP) {
    401 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
    402 		return;
    403 	}
    404 
    405 	/*
    406 	 * Map and establish our interrupt.
    407 	 */
    408 	if (pci_intr_map(pa, &ih)) {
    409 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
    410 		return;
    411 	}
    412 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    413 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ste_intr, sc,
    414 	    device_xname(self));
    415 	if (sc->sc_ih == NULL) {
    416 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
    417 		if (intrstr != NULL)
    418 			aprint_error(" at %s", intrstr);
    419 		aprint_error("\n");
    420 		return;
    421 	}
    422 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
    423 
    424 	/*
    425 	 * Allocate the control data structures, and create and load the
    426 	 * DMA map for it.
    427 	 */
    428 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    429 	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    430 	    0)) != 0) {
    431 		aprint_error_dev(sc->sc_dev,
    432 		    "unable to allocate control data, error = %d\n", error);
    433 		goto fail_0;
    434 	}
    435 
    436 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    437 	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
    438 	    BUS_DMA_COHERENT)) != 0) {
    439 		aprint_error_dev(sc->sc_dev,
    440 		    "unable to map control data, error = %d\n", error);
    441 		goto fail_1;
    442 	}
    443 
    444 	if ((error = bus_dmamap_create(sc->sc_dmat,
    445 	    sizeof(struct ste_control_data), 1,
    446 	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    447 		aprint_error_dev(sc->sc_dev,
    448 		    "unable to create control data DMA map, error = %d\n",
    449 		    error);
    450 		goto fail_2;
    451 	}
    452 
    453 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    454 	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
    455 	    0)) != 0) {
    456 		aprint_error_dev(sc->sc_dev,
    457 		    "unable to load control data DMA map, error = %d\n",
    458 		    error);
    459 		goto fail_3;
    460 	}
    461 
    462 	/*
    463 	 * Create the transmit buffer DMA maps.
    464 	 */
    465 	for (i = 0; i < STE_NTXDESC; i++) {
    466 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    467 		    STE_NTXFRAGS, MCLBYTES, 0, 0,
    468 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    469 			aprint_error_dev(sc->sc_dev,
    470 			    "unable to create tx DMA map %d, error = %d\n", i,
    471 			    error);
    472 			goto fail_4;
    473 		}
    474 	}
    475 
    476 	/*
    477 	 * Create the receive buffer DMA maps.
    478 	 */
    479 	for (i = 0; i < STE_NRXDESC; i++) {
    480 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    481 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    482 			aprint_error_dev(sc->sc_dev,
    483 			    "unable to create rx DMA map %d, error = %d\n", i,
    484 			    error);
    485 			goto fail_5;
    486 		}
    487 		sc->sc_rxsoft[i].ds_mbuf = NULL;
    488 	}
    489 
    490 	/*
    491 	 * Reset the chip to a known state.
    492 	 */
    493 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
    494 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
    495 
    496 	/*
    497 	 * Read the Ethernet address from the EEPROM.
    498 	 */
    499 	for (i = 0; i < 3; i++) {
    500 		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
    501 		myea[i] = le16toh(myea[i]);
    502 	}
    503 	memcpy(enaddr, myea, sizeof(enaddr));
    504 
    505 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
    506 	    ether_sprintf(enaddr));
    507 
    508 	/*
    509 	 * Initialize our media structures and probe the MII.
    510 	 */
    511 	mii->mii_ifp = ifp;
    512 	mii->mii_readreg = ste_mii_readreg;
    513 	mii->mii_writereg = ste_mii_writereg;
    514 	mii->mii_statchg = ste_mii_statchg;
    515 	sc->sc_ethercom.ec_mii = mii;
    516 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    517 	    ether_mediastatus);
    518 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    519 	    MII_OFFSET_ANY, 0);
    520 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    521 		/*
    522 		 * It seems that some variants of this chip "ghost" the
    523 		 * single PHY at #0 and #1.  We will try probing the MII
    524 		 * first while ignoring #0 access.  If we find the PHY,
    525 		 * great!  If not, un-ignore #0 and try probing *just*
    526 		 * #0 to see if we can find it.
    527 		 */
    528 		sc->sc_enable_phy0 = true;
    529 		mii_attach(sc->sc_dev, mii, 0xffffffff, 0,
    530 		    MII_OFFSET_ANY, 0);
    531 	}
    532 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    533 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    534 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    535 	} else
    536 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    537 
    538 	ifp = &sc->sc_ethercom.ec_if;
    539 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    540 	ifp->if_softc = sc;
    541 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    542 	ifp->if_ioctl = ste_ioctl;
    543 	ifp->if_start = ste_start;
    544 	ifp->if_watchdog = ste_watchdog;
    545 	ifp->if_init = ste_init;
    546 	ifp->if_stop = ste_stop;
    547 	IFQ_SET_READY(&ifp->if_snd);
    548 
    549 	/*
    550 	 * Default the transmit threshold to 128 bytes.
    551 	 */
    552 	sc->sc_txthresh = 128;
    553 
    554 	/*
    555 	 * Disable MWI if the PCI layer tells us to.
    556 	 */
    557 	sc->sc_DMACtrl = 0;
    558 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
    559 		sc->sc_DMACtrl |= DC_MWIDisable;
    560 
    561 	/*
    562 	 * We can support 802.1Q VLAN-sized frames.
    563 	 */
    564 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    565 
    566 	/*
    567 	 * Attach the interface.
    568 	 */
    569 	if_attach(ifp);
    570 	if_deferred_start_init(ifp, NULL);
    571 	ether_ifattach(ifp, enaddr);
    572 
    573 	/*
    574 	 * Make sure the interface is shutdown during reboot.
    575 	 */
    576 	if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
    577 		pmf_class_network_register(self, ifp);
    578 	else
    579 		aprint_error_dev(self, "couldn't establish power handler\n");
    580 
    581 	return;
    582 
    583 	/*
    584 	 * Free any resources we've allocated during the failed attach
    585 	 * attempt.  Do this in reverse order and fall through.
    586 	 */
    587  fail_5:
    588 	for (i = 0; i < STE_NRXDESC; i++) {
    589 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    590 			bus_dmamap_destroy(sc->sc_dmat,
    591 			    sc->sc_rxsoft[i].ds_dmamap);
    592 	}
    593  fail_4:
    594 	for (i = 0; i < STE_NTXDESC; i++) {
    595 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    596 			bus_dmamap_destroy(sc->sc_dmat,
    597 			    sc->sc_txsoft[i].ds_dmamap);
    598 	}
    599 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    600  fail_3:
    601 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    602  fail_2:
    603 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    604 	    sizeof(struct ste_control_data));
    605  fail_1:
    606 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    607  fail_0:
    608 	return;
    609 }
    610 
    611 /*
    612  * ste_shutdown:
    613  *
    614  *	Make sure the interface is stopped at reboot time.
    615  */
    616 static bool
    617 ste_shutdown(device_t self, int howto)
    618 {
    619 	struct ste_softc *sc;
    620 
    621 	sc = device_private(self);
    622 	ste_stop(&sc->sc_ethercom.ec_if, 1);
    623 
    624 	return true;
    625 }
    626 
    627 static void
    628 ste_dmahalt_wait(struct ste_softc *sc)
    629 {
    630 	int i;
    631 
    632 	for (i = 0; i < STE_TIMEOUT; i++) {
    633 		delay(2);
    634 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
    635 		     DC_DMAHaltBusy) == 0)
    636 			break;
    637 	}
    638 
    639 	if (i == STE_TIMEOUT)
    640 		printf("%s: DMA halt timed out\n", device_xname(sc->sc_dev));
    641 }
    642 
    643 /*
    644  * ste_start:		[ifnet interface function]
    645  *
    646  *	Start packet transmission on the interface.
    647  */
    648 static void
    649 ste_start(struct ifnet *ifp)
    650 {
    651 	struct ste_softc *sc = ifp->if_softc;
    652 	struct mbuf *m0, *m;
    653 	struct ste_descsoft *ds;
    654 	struct ste_tfd *tfd;
    655 	bus_dmamap_t dmamap;
    656 	int error, olasttx, nexttx, opending, seg, totlen;
    657 
    658 	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
    659 		return;
    660 
    661 	/*
    662 	 * Remember the previous number of pending transmissions
    663 	 * and the current last descriptor in the list.
    664 	 */
    665 	opending = sc->sc_txpending;
    666 	olasttx = sc->sc_txlast;
    667 
    668 	/*
    669 	 * Loop through the send queue, setting up transmit descriptors
    670 	 * until we drain the queue, or use up all available transmit
    671 	 * descriptors.
    672 	 */
    673 	while (sc->sc_txpending < STE_NTXDESC) {
    674 		/*
    675 		 * Grab a packet off the queue.
    676 		 */
    677 		IFQ_POLL(&ifp->if_snd, m0);
    678 		if (m0 == NULL)
    679 			break;
    680 		m = NULL;
    681 
    682 		/*
    683 		 * Get the last and next available transmit descriptor.
    684 		 */
    685 		nexttx = STE_NEXTTX(sc->sc_txlast);
    686 		tfd = &sc->sc_txdescs[nexttx];
    687 		ds = &sc->sc_txsoft[nexttx];
    688 
    689 		dmamap = ds->ds_dmamap;
    690 
    691 		/*
    692 		 * Load the DMA map.  If this fails, the packet either
    693 		 * didn't fit in the allotted number of segments, or we
    694 		 * were short on resources.  In this case, we'll copy
    695 		 * and try again.
    696 		 */
    697 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    698 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
    699 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    700 			if (m == NULL) {
    701 				printf("%s: unable to allocate Tx mbuf\n",
    702 				    device_xname(sc->sc_dev));
    703 				break;
    704 			}
    705 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
    706 			if (m0->m_pkthdr.len > MHLEN) {
    707 				MCLGET(m, M_DONTWAIT);
    708 				if ((m->m_flags & M_EXT) == 0) {
    709 					printf("%s: unable to allocate Tx "
    710 					    "cluster\n",
    711 					    device_xname(sc->sc_dev));
    712 					m_freem(m);
    713 					break;
    714 				}
    715 			}
    716 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    717 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    718 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    719 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    720 			if (error) {
    721 				printf("%s: unable to load Tx buffer, "
    722 				    "error = %d\n", device_xname(sc->sc_dev),
    723 				    error);
    724 				m_freem(m);
    725 				break;
    726 			}
    727 		}
    728 
    729 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    730 		if (m != NULL) {
    731 			m_freem(m0);
    732 			m0 = m;
    733 		}
    734 
    735 		/*
    736 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    737 		 */
    738 
    739 		/* Sync the DMA map. */
    740 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    741 		    BUS_DMASYNC_PREWRITE);
    742 
    743 		/* Initialize the fragment list. */
    744 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
    745 			tfd->tfd_frags[seg].frag_addr =
    746 			    htole32(dmamap->dm_segs[seg].ds_addr);
    747 			tfd->tfd_frags[seg].frag_len =
    748 			    htole32(dmamap->dm_segs[seg].ds_len);
    749 			totlen += dmamap->dm_segs[seg].ds_len;
    750 		}
    751 		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
    752 
    753 		/* Initialize the descriptor. */
    754 		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
    755 		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
    756 
    757 		/* Sync the descriptor. */
    758 		STE_CDTXSYNC(sc, nexttx,
    759 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    760 
    761 		/*
    762 		 * Store a pointer to the packet so we can free it later,
    763 		 * and remember what txdirty will be once the packet is
    764 		 * done.
    765 		 */
    766 		ds->ds_mbuf = m0;
    767 
    768 		/* Advance the tx pointer. */
    769 		sc->sc_txpending++;
    770 		sc->sc_txlast = nexttx;
    771 
    772 		/*
    773 		 * Pass the packet to any BPF listeners.
    774 		 */
    775 		bpf_mtap(ifp, m0, BPF_D_OUT);
    776 	}
    777 
    778 	if (sc->sc_txpending != opending) {
    779 		/*
    780 		 * We enqueued packets.  If the transmitter was idle,
    781 		 * reset the txdirty pointer.
    782 		 */
    783 		if (opending == 0)
    784 			sc->sc_txdirty = STE_NEXTTX(olasttx);
    785 
    786 		/*
    787 		 * Cause a descriptor interrupt to happen on the
    788 		 * last packet we enqueued, and also cause the
    789 		 * DMA engine to wait after is has finished processing
    790 		 * it.
    791 		 */
    792 		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
    793 		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
    794 		    htole32(TFD_TxDMAIndicate);
    795 		STE_CDTXSYNC(sc, sc->sc_txlast,
    796 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    797 
    798 		/*
    799 		 * Link up the new chain of descriptors to the
    800 		 * last.
    801 		 */
    802 		sc->sc_txdescs[olasttx].tfd_next =
    803 		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    804 		STE_CDTXSYNC(sc, olasttx,
    805 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    806 
    807 		/*
    808 		 * Kick the transmit DMA logic.  Note that since we're
    809 		 * using auto-polling, reading the Tx desc pointer will
    810 		 * give it the nudge it needs to get going.
    811 		 */
    812 		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
    813 		    STE_TxDMAListPtr) == 0) {
    814 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    815 			    STE_DMACtrl, DC_TxDMAHalt);
    816 			ste_dmahalt_wait(sc);
    817 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    818 			    STE_TxDMAListPtr,
    819 			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
    820 			bus_space_write_4(sc->sc_st, sc->sc_sh,
    821 			    STE_DMACtrl, DC_TxDMAResume);
    822 		}
    823 
    824 		/* Set a watchdog timer in case the chip flakes out. */
    825 		ifp->if_timer = 5;
    826 	}
    827 }
    828 
    829 /*
    830  * ste_watchdog:	[ifnet interface function]
    831  *
    832  *	Watchdog timer handler.
    833  */
    834 static void
    835 ste_watchdog(struct ifnet *ifp)
    836 {
    837 	struct ste_softc *sc = ifp->if_softc;
    838 
    839 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
    840 	if_statinc(ifp, if_oerrors);
    841 
    842 	ste_txintr(sc);
    843 	ste_rxintr(sc);
    844 	(void) ste_init(ifp);
    845 
    846 	/* Try to get more packets going. */
    847 	ste_start(ifp);
    848 }
    849 
    850 /*
    851  * ste_ioctl:		[ifnet interface function]
    852  *
    853  *	Handle control requests from the operator.
    854  */
    855 static int
    856 ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    857 {
    858 	struct ste_softc *sc = ifp->if_softc;
    859 	int s, error;
    860 
    861 	s = splnet();
    862 
    863 	error = ether_ioctl(ifp, cmd, data);
    864 	if (error == ENETRESET) {
    865 		/*
    866 		 * Multicast list has changed; set the hardware filter
    867 		 * accordingly.
    868 		 */
    869 		if (ifp->if_flags & IFF_RUNNING)
    870 			ste_set_filter(sc);
    871 		error = 0;
    872 	}
    873 
    874 	/* Try to get more packets going. */
    875 	ste_start(ifp);
    876 
    877 	splx(s);
    878 	return (error);
    879 }
    880 
    881 /*
    882  * ste_intr:
    883  *
    884  *	Interrupt service routine.
    885  */
    886 static int
    887 ste_intr(void *arg)
    888 {
    889 	struct ste_softc *sc = arg;
    890 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    891 	uint16_t isr;
    892 	uint8_t txstat;
    893 	int wantinit;
    894 
    895 	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
    896 	     IS_InterruptStatus) == 0)
    897 		return (0);
    898 
    899 	for (wantinit = 0; wantinit == 0;) {
    900 		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
    901 		if ((isr & sc->sc_IntEnable) == 0)
    902 			break;
    903 
    904 		/* Receive interrupts. */
    905 		if (isr & IE_RxDMAComplete)
    906 			ste_rxintr(sc);
    907 
    908 		/* Transmit interrupts. */
    909 		if (isr & (IE_TxDMAComplete | IE_TxComplete))
    910 			ste_txintr(sc);
    911 
    912 		/* Statistics overflow. */
    913 		if (isr & IE_UpdateStats)
    914 			ste_stats_update(sc);
    915 
    916 		/* Transmission errors. */
    917 		if (isr & IE_TxComplete) {
    918 			for (;;) {
    919 				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
    920 				    STE_TxStatus);
    921 				if ((txstat & TS_TxComplete) == 0)
    922 					break;
    923 				if (txstat & TS_TxUnderrun) {
    924 					sc->sc_txthresh += 32;
    925 					if (sc->sc_txthresh > 0x1ffc)
    926 						sc->sc_txthresh = 0x1ffc;
    927 					printf("%s: transmit underrun, new "
    928 					    "threshold: %d bytes\n",
    929 					    device_xname(sc->sc_dev),
    930 					    sc->sc_txthresh);
    931 					ste_reset(sc, AC_TxReset | AC_DMA |
    932 					    AC_FIFO | AC_Network);
    933 					ste_setthresh(sc);
    934 					bus_space_write_1(sc->sc_st, sc->sc_sh,
    935 					    STE_TxDMAPollPeriod, 127);
    936 					ste_txrestart(sc,
    937 					    bus_space_read_1(sc->sc_st,
    938 						sc->sc_sh, STE_TxFrameId));
    939 				}
    940 				if (txstat & TS_TxReleaseError) {
    941 					printf("%s: Tx FIFO release error\n",
    942 					    device_xname(sc->sc_dev));
    943 					wantinit = 1;
    944 				}
    945 				if (txstat & TS_MaxCollisions) {
    946 					printf("%s: excessive collisions\n",
    947 					    device_xname(sc->sc_dev));
    948 					wantinit = 1;
    949 				}
    950 				if (txstat & TS_TxStatusOverflow) {
    951 					printf("%s: status overflow\n",
    952 					    device_xname(sc->sc_dev));
    953 					wantinit = 1;
    954 				}
    955 				bus_space_write_2(sc->sc_st, sc->sc_sh,
    956 				    STE_TxStatus, 0);
    957 			}
    958 		}
    959 
    960 		/* Host interface errors. */
    961 		if (isr & IE_HostError) {
    962 			printf("%s: Host interface error\n",
    963 			    device_xname(sc->sc_dev));
    964 			wantinit = 1;
    965 		}
    966 	}
    967 
    968 	if (wantinit)
    969 		ste_init(ifp);
    970 
    971 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
    972 	    sc->sc_IntEnable);
    973 
    974 	/* Try to get more packets going. */
    975 	if_schedule_deferred_start(ifp);
    976 
    977 	return (1);
    978 }
    979 
    980 /*
    981  * ste_txintr:
    982  *
    983  *	Helper; handle transmit interrupts.
    984  */
    985 static void
    986 ste_txintr(struct ste_softc *sc)
    987 {
    988 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    989 	struct ste_descsoft *ds;
    990 	uint32_t control;
    991 	int i;
    992 
    993 	/*
    994 	 * Go through our Tx list and free mbufs for those
    995 	 * frames which have been transmitted.
    996 	 */
    997 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
    998 	     i = STE_NEXTTX(i), sc->sc_txpending--) {
    999 		ds = &sc->sc_txsoft[i];
   1000 
   1001 		STE_CDTXSYNC(sc, i,
   1002 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1003 
   1004 		control = le32toh(sc->sc_txdescs[i].tfd_control);
   1005 		if ((control & TFD_TxDMAComplete) == 0)
   1006 			break;
   1007 
   1008 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
   1009 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1010 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1011 		m_freem(ds->ds_mbuf);
   1012 		ds->ds_mbuf = NULL;
   1013 	}
   1014 
   1015 	/* Update the dirty transmit buffer pointer. */
   1016 	sc->sc_txdirty = i;
   1017 
   1018 	/*
   1019 	 * If there are no more pending transmissions, cancel the watchdog
   1020 	 * timer.
   1021 	 */
   1022 	if (sc->sc_txpending == 0)
   1023 		ifp->if_timer = 0;
   1024 }
   1025 
   1026 /*
   1027  * ste_rxintr:
   1028  *
   1029  *	Helper; handle receive interrupts.
   1030  */
   1031 static void
   1032 ste_rxintr(struct ste_softc *sc)
   1033 {
   1034 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1035 	struct ste_descsoft *ds;
   1036 	struct mbuf *m;
   1037 	uint32_t status;
   1038 	int i, len;
   1039 
   1040 	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
   1041 		ds = &sc->sc_rxsoft[i];
   1042 
   1043 		STE_CDRXSYNC(sc, i,
   1044 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1045 
   1046 		status = le32toh(sc->sc_rxdescs[i].rfd_status);
   1047 
   1048 		if ((status & RFD_RxDMAComplete) == 0)
   1049 			break;
   1050 
   1051 		/*
   1052 		 * If the packet had an error, simply recycle the
   1053 		 * buffer.  Note, we count the error later in the
   1054 		 * periodic stats update.
   1055 		 */
   1056 		if (status & RFD_RxFrameError) {
   1057 			STE_INIT_RXDESC(sc, i);
   1058 			continue;
   1059 		}
   1060 
   1061 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1062 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1063 
   1064 		/*
   1065 		 * No errors; receive the packet.  Note, we have
   1066 		 * configured the chip to not include the CRC at
   1067 		 * the end of the packet.
   1068 		 */
   1069 		len = RFD_RxDMAFrameLen(status);
   1070 
   1071 		/*
   1072 		 * If the packet is small enough to fit in a
   1073 		 * single header mbuf, allocate one and copy
   1074 		 * the data into it.  This greatly reduces
   1075 		 * memory consumption when we receive lots
   1076 		 * of small packets.
   1077 		 *
   1078 		 * Otherwise, we add a new buffer to the receive
   1079 		 * chain.  If this fails, we drop the packet and
   1080 		 * recycle the old buffer.
   1081 		 */
   1082 		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
   1083 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1084 			if (m == NULL)
   1085 				goto dropit;
   1086 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1087 			m->m_data += 2;
   1088 			memcpy(mtod(m, void *),
   1089 			    mtod(ds->ds_mbuf, void *), len);
   1090 			STE_INIT_RXDESC(sc, i);
   1091 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1092 			    ds->ds_dmamap->dm_mapsize,
   1093 			    BUS_DMASYNC_PREREAD);
   1094 		} else {
   1095 			m = ds->ds_mbuf;
   1096 			if (ste_add_rxbuf(sc, i) != 0) {
   1097  dropit:
   1098 				if_statinc(ifp, if_ierrors);
   1099 				STE_INIT_RXDESC(sc, i);
   1100 				bus_dmamap_sync(sc->sc_dmat,
   1101 				    ds->ds_dmamap, 0,
   1102 				    ds->ds_dmamap->dm_mapsize,
   1103 				    BUS_DMASYNC_PREREAD);
   1104 				continue;
   1105 			}
   1106 		}
   1107 
   1108 		m_set_rcvif(m, ifp);
   1109 		m->m_pkthdr.len = m->m_len = len;
   1110 
   1111 		/* Pass it on. */
   1112 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1113 	}
   1114 
   1115 	/* Update the receive pointer. */
   1116 	sc->sc_rxptr = i;
   1117 }
   1118 
   1119 /*
   1120  * ste_tick:
   1121  *
   1122  *	One second timer, used to tick the MII.
   1123  */
   1124 static void
   1125 ste_tick(void *arg)
   1126 {
   1127 	struct ste_softc *sc = arg;
   1128 	int s;
   1129 
   1130 	s = splnet();
   1131 	mii_tick(&sc->sc_mii);
   1132 	ste_stats_update(sc);
   1133 	splx(s);
   1134 
   1135 	callout_schedule(&sc->sc_tick_ch, hz);
   1136 }
   1137 
   1138 /*
   1139  * ste_stats_update:
   1140  *
   1141  *	Read the ST-201 statistics counters.
   1142  */
   1143 static void
   1144 ste_stats_update(struct ste_softc *sc)
   1145 {
   1146 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1147 	bus_space_tag_t st = sc->sc_st;
   1148 	bus_space_handle_t sh = sc->sc_sh;
   1149 
   1150 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
   1151 	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
   1152 
   1153 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
   1154 	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
   1155 
   1156 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1157 
   1158 	if_statadd_ref(ifp, nsr, if_opackets,
   1159 	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK));
   1160 
   1161 	(void) bus_space_read_2(st, sh, STE_FramesReceivedOK);
   1162 
   1163 	if_statadd_ref(ifp, nsr, if_collisions,
   1164 	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
   1165 	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
   1166 	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames));
   1167 
   1168 	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
   1169 
   1170 	if_statadd_ref(ifp, nsr, if_ierrors,
   1171 	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors));
   1172 
   1173 	if_statadd_ref(ifp, nsr, if_oerrors,
   1174 	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
   1175 	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
   1176 	    bus_space_read_1(st, sh, STE_CarrierSenseErrors));
   1177 
   1178 	IF_STAT_PUTREF(ifp);
   1179 
   1180 	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
   1181 	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
   1182 	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
   1183 	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
   1184 }
   1185 
   1186 /*
   1187  * ste_reset:
   1188  *
   1189  *	Perform a soft reset on the ST-201.
   1190  */
   1191 static void
   1192 ste_reset(struct ste_softc *sc, uint32_t rstbits)
   1193 {
   1194 	uint32_t ac;
   1195 	int i;
   1196 
   1197 	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
   1198 
   1199 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
   1200 
   1201 	delay(50000);
   1202 
   1203 	for (i = 0; i < STE_TIMEOUT; i++) {
   1204 		delay(1000);
   1205 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
   1206 		     AC_ResetBusy) == 0)
   1207 			break;
   1208 	}
   1209 
   1210 	if (i == STE_TIMEOUT)
   1211 		printf("%s: reset failed to complete\n",
   1212 		    device_xname(sc->sc_dev));
   1213 
   1214 	delay(1000);
   1215 }
   1216 
   1217 /*
   1218  * ste_setthresh:
   1219  *
   1220  * 	set the various transmit threshold registers
   1221  */
   1222 static void
   1223 ste_setthresh(struct ste_softc *sc)
   1224 {
   1225 	/* set the TX threhold */
   1226 	bus_space_write_2(sc->sc_st, sc->sc_sh,
   1227 	    STE_TxStartThresh, sc->sc_txthresh);
   1228 	/* Urgent threshold: set to sc_txthresh / 2 */
   1229 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
   1230 	    sc->sc_txthresh >> 6);
   1231 	/* Burst threshold: use default value (256 bytes) */
   1232 }
   1233 
   1234 /*
   1235  * restart TX at the given frame ID in the transmitter ring
   1236  */
   1237 static void
   1238 ste_txrestart(struct ste_softc *sc, uint8_t id)
   1239 {
   1240 	uint32_t control;
   1241 
   1242 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1243 	control = le32toh(sc->sc_txdescs[id].tfd_control);
   1244 	control &= ~TFD_TxDMAComplete;
   1245 	sc->sc_txdescs[id].tfd_control = htole32(control);
   1246 	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1247 
   1248 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
   1249 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
   1250 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
   1251 	ste_dmahalt_wait(sc);
   1252 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
   1253 	    STE_CDTXADDR(sc, id));
   1254 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
   1255 }
   1256 
   1257 /*
   1258  * ste_init:		[ ifnet interface function ]
   1259  *
   1260  *	Initialize the interface.  Must be called at splnet().
   1261  */
   1262 static int
   1263 ste_init(struct ifnet *ifp)
   1264 {
   1265 	struct ste_softc *sc = ifp->if_softc;
   1266 	bus_space_tag_t st = sc->sc_st;
   1267 	bus_space_handle_t sh = sc->sc_sh;
   1268 	struct ste_descsoft *ds;
   1269 	int i, error = 0;
   1270 
   1271 	/*
   1272 	 * Cancel any pending I/O.
   1273 	 */
   1274 	ste_stop(ifp, 0);
   1275 
   1276 	/*
   1277 	 * Reset the chip to a known state.
   1278 	 */
   1279 	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
   1280 	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
   1281 
   1282 	/*
   1283 	 * Initialize the transmit descriptor ring.
   1284 	 */
   1285 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1286 	sc->sc_txpending = 0;
   1287 	sc->sc_txdirty = 0;
   1288 	sc->sc_txlast = STE_NTXDESC - 1;
   1289 
   1290 	/*
   1291 	 * Initialize the receive descriptor and receive job
   1292 	 * descriptor rings.
   1293 	 */
   1294 	for (i = 0; i < STE_NRXDESC; i++) {
   1295 		ds = &sc->sc_rxsoft[i];
   1296 		if (ds->ds_mbuf == NULL) {
   1297 			if ((error = ste_add_rxbuf(sc, i)) != 0) {
   1298 				printf("%s: unable to allocate or map rx "
   1299 				    "buffer %d, error = %d\n",
   1300 				    device_xname(sc->sc_dev), i, error);
   1301 				/*
   1302 				 * XXX Should attempt to run with fewer receive
   1303 				 * XXX buffers instead of just failing.
   1304 				 */
   1305 				ste_rxdrain(sc);
   1306 				goto out;
   1307 			}
   1308 		} else
   1309 			STE_INIT_RXDESC(sc, i);
   1310 	}
   1311 	sc->sc_rxptr = 0;
   1312 
   1313 	/* Set the station address. */
   1314 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1315 		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
   1316 		    CLLADDR(ifp->if_sadl)[i]);
   1317 
   1318 	/* Set up the receive filter. */
   1319 	ste_set_filter(sc);
   1320 
   1321 	/*
   1322 	 * Give the receive ring to the chip.
   1323 	 */
   1324 	bus_space_write_4(st, sh, STE_RxDMAListPtr,
   1325 	    STE_CDRXADDR(sc, sc->sc_rxptr));
   1326 
   1327 	/*
   1328 	 * We defer giving the transmit ring to the chip until we
   1329 	 * transmit the first packet.
   1330 	 */
   1331 
   1332 	/*
   1333 	 * Initialize the Tx auto-poll period.  It's OK to make this number
   1334 	 * large (127 is the max) -- we explicitly kick the transmit engine
   1335 	 * when there's actually a packet.  We are using auto-polling only
   1336 	 * to make the interface to the transmit engine not suck.
   1337 	 */
   1338 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
   1339 
   1340 	/* ..and the Rx auto-poll period. */
   1341 	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
   1342 
   1343 	/* Initialize the Tx start threshold. */
   1344 	ste_setthresh(sc);
   1345 
   1346 	/* Set the FIFO release threshold to 512 bytes. */
   1347 	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
   1348 
   1349 	/* Set maximum packet size for VLAN. */
   1350 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1351 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
   1352 	else
   1353 		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
   1354 
   1355 	/*
   1356 	 * Initialize the interrupt mask.
   1357 	 */
   1358 	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
   1359 	    IE_TxDMAComplete | IE_RxDMAComplete;
   1360 
   1361 	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
   1362 	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
   1363 
   1364 	/*
   1365 	 * Start the receive DMA engine.
   1366 	 */
   1367 	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
   1368 
   1369 	/*
   1370 	 * Initialize MacCtrl0 -- do it before setting the media,
   1371 	 * as setting the media will actually program the register.
   1372 	 */
   1373 	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
   1374 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1375 		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
   1376 
   1377 	/*
   1378 	 * Set the current media.
   1379 	 */
   1380 	if ((error = ether_mediachange(ifp)) != 0)
   1381 		goto out;
   1382 
   1383 	/*
   1384 	 * Start the MAC.
   1385 	 */
   1386 	bus_space_write_2(st, sh, STE_MacCtrl1,
   1387 	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
   1388 
   1389 	/*
   1390 	 * Start the one second MII clock.
   1391 	 */
   1392 	callout_schedule(&sc->sc_tick_ch, hz);
   1393 
   1394 	/*
   1395 	 * ...all done!
   1396 	 */
   1397 	ifp->if_flags |= IFF_RUNNING;
   1398 
   1399  out:
   1400 	if (error)
   1401 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1402 	return (error);
   1403 }
   1404 
   1405 /*
   1406  * ste_drain:
   1407  *
   1408  *	Drain the receive queue.
   1409  */
   1410 static void
   1411 ste_rxdrain(struct ste_softc *sc)
   1412 {
   1413 	struct ste_descsoft *ds;
   1414 	int i;
   1415 
   1416 	for (i = 0; i < STE_NRXDESC; i++) {
   1417 		ds = &sc->sc_rxsoft[i];
   1418 		if (ds->ds_mbuf != NULL) {
   1419 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1420 			m_freem(ds->ds_mbuf);
   1421 			ds->ds_mbuf = NULL;
   1422 		}
   1423 	}
   1424 }
   1425 
   1426 /*
   1427  * ste_stop:		[ ifnet interface function ]
   1428  *
   1429  *	Stop transmission on the interface.
   1430  */
   1431 static void
   1432 ste_stop(struct ifnet *ifp, int disable)
   1433 {
   1434 	struct ste_softc *sc = ifp->if_softc;
   1435 	struct ste_descsoft *ds;
   1436 	int i;
   1437 
   1438 	/*
   1439 	 * Stop the one second clock.
   1440 	 */
   1441 	callout_stop(&sc->sc_tick_ch);
   1442 
   1443 	/* Down the MII. */
   1444 	mii_down(&sc->sc_mii);
   1445 
   1446 	/*
   1447 	 * Disable interrupts.
   1448 	 */
   1449 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
   1450 
   1451 	/*
   1452 	 * Stop receiver, transmitter, and stats update.
   1453 	 */
   1454 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
   1455 	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
   1456 
   1457 	/*
   1458 	 * Stop the transmit and receive DMA.
   1459 	 */
   1460 	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
   1461 	    DC_RxDMAHalt | DC_TxDMAHalt);
   1462 	ste_dmahalt_wait(sc);
   1463 
   1464 	/*
   1465 	 * Release any queued transmit buffers.
   1466 	 */
   1467 	for (i = 0; i < STE_NTXDESC; i++) {
   1468 		ds = &sc->sc_txsoft[i];
   1469 		if (ds->ds_mbuf != NULL) {
   1470 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1471 			m_freem(ds->ds_mbuf);
   1472 			ds->ds_mbuf = NULL;
   1473 		}
   1474 	}
   1475 
   1476 	/*
   1477 	 * Mark the interface down and cancel the watchdog timer.
   1478 	 */
   1479 	ifp->if_flags &= ~IFF_RUNNING;
   1480 	ifp->if_timer = 0;
   1481 
   1482 	if (disable)
   1483 		ste_rxdrain(sc);
   1484 }
   1485 
   1486 static int
   1487 ste_eeprom_wait(struct ste_softc *sc)
   1488 {
   1489 	int i;
   1490 
   1491 	for (i = 0; i < STE_TIMEOUT; i++) {
   1492 		delay(1000);
   1493 		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
   1494 		     EC_EepromBusy) == 0)
   1495 			return (0);
   1496 	}
   1497 	return (1);
   1498 }
   1499 
   1500 /*
   1501  * ste_read_eeprom:
   1502  *
   1503  *	Read data from the serial EEPROM.
   1504  */
   1505 static void
   1506 ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
   1507 {
   1508 
   1509 	if (ste_eeprom_wait(sc))
   1510 		printf("%s: EEPROM failed to come ready\n",
   1511 		    device_xname(sc->sc_dev));
   1512 
   1513 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
   1514 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
   1515 	if (ste_eeprom_wait(sc))
   1516 		printf("%s: EEPROM read timed out\n",
   1517 		    device_xname(sc->sc_dev));
   1518 	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
   1519 }
   1520 
   1521 /*
   1522  * ste_add_rxbuf:
   1523  *
   1524  *	Add a receive buffer to the indicated descriptor.
   1525  */
   1526 static int
   1527 ste_add_rxbuf(struct ste_softc *sc, int idx)
   1528 {
   1529 	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
   1530 	struct mbuf *m;
   1531 	int error;
   1532 
   1533 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1534 	if (m == NULL)
   1535 		return (ENOBUFS);
   1536 
   1537 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1538 	MCLGET(m, M_DONTWAIT);
   1539 	if ((m->m_flags & M_EXT) == 0) {
   1540 		m_freem(m);
   1541 		return (ENOBUFS);
   1542 	}
   1543 
   1544 	if (ds->ds_mbuf != NULL)
   1545 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1546 
   1547 	ds->ds_mbuf = m;
   1548 
   1549 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1550 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1551 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   1552 	if (error) {
   1553 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1554 		    device_xname(sc->sc_dev), idx, error);
   1555 		panic("ste_add_rxbuf");		/* XXX */
   1556 	}
   1557 
   1558 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1559 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1560 
   1561 	STE_INIT_RXDESC(sc, idx);
   1562 
   1563 	return (0);
   1564 }
   1565 
   1566 /*
   1567  * ste_set_filter:
   1568  *
   1569  *	Set up the receive filter.
   1570  */
   1571 static void
   1572 ste_set_filter(struct ste_softc *sc)
   1573 {
   1574 	struct ethercom *ec = &sc->sc_ethercom;
   1575 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1576 	struct ether_multi *enm;
   1577 	struct ether_multistep step;
   1578 	uint32_t crc;
   1579 	uint16_t mchash[4];
   1580 
   1581 	sc->sc_ReceiveMode = RM_ReceiveUnicast;
   1582 	if (ifp->if_flags & IFF_BROADCAST)
   1583 		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
   1584 
   1585 	if (ifp->if_flags & IFF_PROMISC) {
   1586 		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
   1587 		goto allmulti;
   1588 	}
   1589 
   1590 	/*
   1591 	 * Set up the multicast address filter by passing all multicast
   1592 	 * addresses through a CRC generator, and then using the low-order
   1593 	 * 6 bits as an index into the 64 bit multicast hash table.  The
   1594 	 * high order bits select the register, while the rest of the bits
   1595 	 * select the bit within the register.
   1596 	 */
   1597 
   1598 	memset(mchash, 0, sizeof(mchash));
   1599 
   1600 	ETHER_LOCK(ec);
   1601 	ETHER_FIRST_MULTI(step, ec, enm);
   1602 	if (enm == NULL) {
   1603 		ETHER_UNLOCK(ec);
   1604 		goto done;
   1605 	}
   1606 
   1607 	while (enm != NULL) {
   1608 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1609 			/*
   1610 			 * We must listen to a range of multicast addresses.
   1611 			 * For now, just accept all multicasts, rather than
   1612 			 * trying to set only those filter bits needed to match
   1613 			 * the range.  (At this time, the only use of address
   1614 			 * ranges is for IP multicast routing, for which the
   1615 			 * range is big enough to require all bits set.)
   1616 			 */
   1617 			ETHER_UNLOCK(ec);
   1618 			goto allmulti;
   1619 		}
   1620 
   1621 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1622 
   1623 		/* Just want the 6 least significant bits. */
   1624 		crc &= 0x3f;
   1625 
   1626 		/* Set the corresponding bit in the hash table. */
   1627 		mchash[crc >> 4] |= 1 << (crc & 0xf);
   1628 
   1629 		ETHER_NEXT_MULTI(step, enm);
   1630 	}
   1631 	ETHER_UNLOCK(ec);
   1632 
   1633 	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
   1634 
   1635 	ifp->if_flags &= ~IFF_ALLMULTI;
   1636 	goto done;
   1637 
   1638  allmulti:
   1639 	ifp->if_flags |= IFF_ALLMULTI;
   1640 	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
   1641 
   1642  done:
   1643 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1644 		/*
   1645 		 * Program the multicast hash table.
   1646 		 */
   1647 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
   1648 		    mchash[0]);
   1649 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
   1650 		    mchash[1]);
   1651 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
   1652 		    mchash[2]);
   1653 		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
   1654 		    mchash[3]);
   1655 	}
   1656 
   1657 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
   1658 	    sc->sc_ReceiveMode);
   1659 }
   1660 
   1661 /*
   1662  * ste_mii_readreg:	[mii interface function]
   1663  *
   1664  *	Read a PHY register on the MII of the ST-201.
   1665  */
   1666 static int
   1667 ste_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1668 {
   1669 	struct ste_softc *sc = device_private(self);
   1670 
   1671 	if (phy == 0 && !sc->sc_enable_phy0)
   1672 		return EIO;
   1673 
   1674 	return mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg, val);
   1675 }
   1676 
   1677 /*
   1678  * ste_mii_writereg:	[mii interface function]
   1679  *
   1680  *	Write a PHY register on the MII of the ST-201.
   1681  */
   1682 static int
   1683 ste_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1684 {
   1685 	struct ste_softc *sc = device_private(self);
   1686 
   1687 	if (phy == 0 && !sc->sc_enable_phy0)
   1688 		return EIO;
   1689 
   1690 	return mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
   1691 }
   1692 
   1693 /*
   1694  * ste_mii_statchg:	[mii interface function]
   1695  *
   1696  *	Callback from MII layer when media changes.
   1697  */
   1698 static void
   1699 ste_mii_statchg(struct ifnet *ifp)
   1700 {
   1701 	struct ste_softc *sc = ifp->if_softc;
   1702 
   1703 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   1704 		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
   1705 	else
   1706 		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
   1707 
   1708 	/* XXX 802.1x flow-control? */
   1709 
   1710 	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
   1711 }
   1712 
   1713 /*
   1714  * ste_mii_bitbang_read: [mii bit-bang interface function]
   1715  *
   1716  *	Read the MII serial port for the MII bit-bang module.
   1717  */
   1718 static uint32_t
   1719 ste_mii_bitbang_read(device_t self)
   1720 {
   1721 	struct ste_softc *sc = device_private(self);
   1722 
   1723 	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
   1724 }
   1725 
   1726 /*
   1727  * ste_mii_bitbang_write: [mii big-bang interface function]
   1728  *
   1729  *	Write the MII serial port for the MII bit-bang module.
   1730  */
   1731 static void
   1732 ste_mii_bitbang_write(device_t self, uint32_t val)
   1733 {
   1734 	struct ste_softc *sc = device_private(self);
   1735 
   1736 	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
   1737 }
   1738