Home | History | Annotate | Line # | Download | only in pci
      1 /* $NetBSD: if_ti.c,v 1.125 2024/11/05 22:00:30 andvar Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1997, 1998, 1999
      5  *	Bill Paul <wpaul (at) ctr.columbia.edu>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
     35  */
     36 
     37 /*
     38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
     39  * Manuals, sample driver and firmware source kits are available
     40  * from http://www.alteon.com/support/openkits.
     41  *
     42  * Written by Bill Paul <wpaul (at) ctr.columbia.edu>
     43  * Electrical Engineering Department
     44  * Columbia University, New York City
     45  */
     46 
     47 /*
     48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
     49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
     50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
     51  * Tigon supports hardware IP, TCP and UDP checksumming, multicast
     52  * filtering and jumbo (9014 byte) frames. The hardware is largely
     53  * controlled by firmware, which must be loaded into the NIC during
     54  * initialization.
     55  *
     56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
     57  * revision, which supports new features such as extended commands,
     58  * extended jumbo receive ring descriptors and a mini receive ring.
     59  *
     60  * Alteon Networks is to be commended for releasing such a vast amount
     61  * of development material for the Tigon NIC without requiring an NDA
     62  * (although they really should have done it a long time ago). With
     63  * any luck, the other vendors will finally wise up and follow Alteon's
     64  * stellar example.
     65  *
     66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
     67  * this driver by #including it as a C header file. This bloats the
     68  * driver somewhat, but it's the easiest method considering that the
     69  * driver code and firmware code need to be kept in sync. The source
     70  * for the firmware is not provided with the FreeBSD distribution since
     71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
     72  *
     73  * The following people deserve special thanks:
     74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
     75  *   for testing
     76  * - Raymond Lee of Netgear, for providing a pair of Netgear
     77  *   GA620 Tigon 2 boards for testing
     78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
     79  *   convincing me to write this driver.
     80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
     81  */
     82 
     83 #include <sys/cdefs.h>
     84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.125 2024/11/05 22:00:30 andvar Exp $");
     85 
     86 #include "opt_inet.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/sockio.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/queue.h>
     96 #include <sys/device.h>
     97 #include <sys/reboot.h>
     98 
     99 #include <net/if.h>
    100 #include <net/if_arp.h>
    101 #include <net/if_ether.h>
    102 #include <net/if_dl.h>
    103 #include <net/if_media.h>
    104 
    105 #include <net/bpf.h>
    106 
    107 #ifdef INET
    108 #include <netinet/in.h>
    109 #include <netinet/if_inarp.h>
    110 #include <netinet/in_systm.h>
    111 #include <netinet/ip.h>
    112 #endif
    113 
    114 
    115 #include <sys/bus.h>
    116 
    117 #include <dev/pci/pcireg.h>
    118 #include <dev/pci/pcivar.h>
    119 #include <dev/pci/pcidevs.h>
    120 
    121 #include <dev/pci/if_tireg.h>
    122 
    123 #include <dev/microcode/tigon/ti_fw.h>
    124 #include <dev/microcode/tigon/ti_fw2.h>
    125 
    126 /*
    127  * Various supported device vendors/types and their names.
    128  */
    129 
    130 static const struct ti_type ti_devs[] = {
    131 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
    132 		"Alteon AceNIC 1000BASE-SX Ethernet" },
    133 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
    134 		"Alteon AceNIC 1000BASE-T Ethernet" },
    135 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
    136 		"3Com 3c985-SX Gigabit Ethernet" },
    137 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
    138 		"Netgear GA620 1000BASE-SX Ethernet" },
    139 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
    140 		"Netgear GA620 1000BASE-T Ethernet" },
    141 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
    142 		"Silicon Graphics Gigabit Ethernet" },
    143 	{ PCI_VENDOR_DEC, PCI_PRODUCT_DEC_PN9000SX,
    144 		"Farallon PN9000SX Gigabit Ethernet" },
    145 	{ 0, 0, NULL }
    146 };
    147 
    148 static const struct ti_type *ti_type_match(struct pci_attach_args *);
    149 static int ti_probe(device_t, cfdata_t, void *);
    150 static void ti_attach(device_t, device_t, void *);
    151 static bool ti_shutdown(device_t, int);
    152 static void ti_txeof_tigon1(struct ti_softc *);
    153 static void ti_txeof_tigon2(struct ti_softc *);
    154 static void ti_rxeof(struct ti_softc *);
    155 
    156 static void ti_stats_update(struct ti_softc *);
    157 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, uint32_t *);
    158 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, uint32_t *);
    159 
    160 static int ti_intr(void *);
    161 static void ti_start(struct ifnet *);
    162 static int ti_ioctl(struct ifnet *, u_long, void *);
    163 static void ti_init(void *);
    164 static void ti_init2(struct ti_softc *);
    165 static void ti_stop(struct ti_softc *);
    166 static void ti_watchdog(struct ifnet *);
    167 static int ti_ifmedia_upd(struct ifnet *);
    168 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    169 
    170 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
    171 static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
    172 static int ti_read_eeprom(struct ti_softc *, void *, int, int);
    173 
    174 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
    175 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
    176 static void ti_setmulti(struct ti_softc *);
    177 
    178 static void ti_mem(struct ti_softc *, uint32_t, uint32_t, const void *);
    179 static void ti_loadfw(struct ti_softc *);
    180 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
    181 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, void *, int);
    182 static void ti_handle_events(struct ti_softc *);
    183 static int ti_alloc_jumbo_mem(struct ti_softc *);
    184 static void *ti_jalloc(struct ti_softc *);
    185 static void ti_jfree(struct mbuf *, void *, size_t, void *);
    186 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
    187 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
    188 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
    189 static int ti_init_rx_ring_std(struct ti_softc *);
    190 static void ti_free_rx_ring_std(struct ti_softc *);
    191 static int ti_init_rx_ring_jumbo(struct ti_softc *);
    192 static void ti_free_rx_ring_jumbo(struct ti_softc *);
    193 static int ti_init_rx_ring_mini(struct ti_softc *);
    194 static void ti_free_rx_ring_mini(struct ti_softc *);
    195 static void ti_free_tx_ring(struct ti_softc *);
    196 static int ti_init_tx_ring(struct ti_softc *);
    197 
    198 static int ti_64bitslot_war(struct ti_softc *);
    199 static int ti_chipinit(struct ti_softc *);
    200 static int ti_gibinit(struct ti_softc *);
    201 
    202 static int ti_ether_ioctl(struct ifnet *, u_long, void *);
    203 
    204 CFATTACH_DECL_NEW(ti, sizeof(struct ti_softc),
    205     ti_probe, ti_attach, NULL, NULL);
    206 
    207 /*
    208  * Send an instruction or address to the EEPROM, check for ACK.
    209  */
    210 static uint32_t
    211 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
    212 {
    213 	int i, ack = 0;
    214 
    215 	/*
    216 	 * Make sure we're in TX mode.
    217 	 */
    218 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
    219 
    220 	/*
    221 	 * Feed in each bit and strobe the clock.
    222 	 */
    223 	for (i = 0x80; i; i >>= 1) {
    224 		if (byte & i) {
    225 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
    226 		} else {
    227 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
    228 		}
    229 		DELAY(1);
    230 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    231 		DELAY(1);
    232 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    233 	}
    234 
    235 	/*
    236 	 * Turn off TX mode.
    237 	 */
    238 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
    239 
    240 	/*
    241 	 * Check for ack.
    242 	 */
    243 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    244 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
    245 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    246 
    247 	return (ack);
    248 }
    249 
    250 /*
    251  * Read a byte of data stored in the EEPROM at address 'addr.'
    252  * We have to send two address bytes since the EEPROM can hold
    253  * more than 256 bytes of data.
    254  */
    255 static uint8_t
    256 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
    257 {
    258 	int		i;
    259 	uint8_t		byte = 0;
    260 
    261 	EEPROM_START();
    262 
    263 	/*
    264 	 * Send write control code to EEPROM.
    265 	 */
    266 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
    267 		printf("%s: failed to send write command, status: %x\n",
    268 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    269 		return (1);
    270 	}
    271 
    272 	/*
    273 	 * Send first byte of address of byte we want to read.
    274 	 */
    275 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
    276 		printf("%s: failed to send address, status: %x\n",
    277 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    278 		return (1);
    279 	}
    280 	/*
    281 	 * Send second byte address of byte we want to read.
    282 	 */
    283 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
    284 		printf("%s: failed to send address, status: %x\n",
    285 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    286 		return (1);
    287 	}
    288 
    289 	EEPROM_STOP();
    290 	EEPROM_START();
    291 	/*
    292 	 * Send read control code to EEPROM.
    293 	 */
    294 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
    295 		printf("%s: failed to send read command, status: %x\n",
    296 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
    297 		return (1);
    298 	}
    299 
    300 	/*
    301 	 * Start reading bits from EEPROM.
    302 	 */
    303 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
    304 	for (i = 0x80; i; i >>= 1) {
    305 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    306 		DELAY(1);
    307 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
    308 			byte |= i;
    309 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
    310 		DELAY(1);
    311 	}
    312 
    313 	EEPROM_STOP();
    314 
    315 	/*
    316 	 * No ACK generated for read, so just return byte.
    317 	 */
    318 
    319 	*dest = byte;
    320 
    321 	return (0);
    322 }
    323 
    324 /*
    325  * Read a sequence of bytes from the EEPROM.
    326  */
    327 static int
    328 ti_read_eeprom(struct ti_softc *sc, void *destv, int off, int cnt)
    329 {
    330 	char *dest = destv;
    331 	int err = 0, i;
    332 	uint8_t byte = 0;
    333 
    334 	for (i = 0; i < cnt; i++) {
    335 		err = ti_eeprom_getbyte(sc, off + i, &byte);
    336 		if (err)
    337 			break;
    338 		*(dest + i) = byte;
    339 	}
    340 
    341 	return (err ? 1 : 0);
    342 }
    343 
    344 /*
    345  * NIC memory access function. Can be used to either clear a section
    346  * of NIC local memory or (if tbuf is non-NULL) copy data into it.
    347  */
    348 static void
    349 ti_mem(struct ti_softc *sc, uint32_t addr, uint32_t len, const void *xbuf)
    350 {
    351 	int			segptr, segsize, cnt;
    352 	const void		*ptr;
    353 
    354 	segptr = addr;
    355 	cnt = len;
    356 	ptr = xbuf;
    357 
    358 	while (cnt) {
    359 		if (cnt < TI_WINLEN)
    360 			segsize = cnt;
    361 		else
    362 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
    363 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
    364 		if (xbuf == NULL) {
    365 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
    366 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
    367 			    segsize / 4);
    368 		} else {
    369 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
    370 			bus_space_write_region_stream_4(sc->ti_btag,
    371 			    sc->ti_bhandle,
    372 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
    373 			    (const uint32_t *)ptr, segsize / 4);
    374 #else
    375 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
    376 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
    377 			    (const uint32_t *)ptr, segsize / 4);
    378 #endif
    379 			ptr = (const char *)ptr + segsize;
    380 		}
    381 		segptr += segsize;
    382 		cnt -= segsize;
    383 	}
    384 
    385 	return;
    386 }
    387 
    388 /*
    389  * Load firmware image into the NIC. Check that the firmware revision
    390  * is acceptable and see if we want the firmware for the Tigon 1 or
    391  * Tigon 2.
    392  */
    393 static void
    394 ti_loadfw(struct ti_softc *sc)
    395 {
    396 	switch (sc->ti_hwrev) {
    397 	case TI_HWREV_TIGON:
    398 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
    399 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
    400 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
    401 			printf("%s: firmware revision mismatch; want "
    402 			    "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
    403 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
    404 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
    405 			    tigonFwReleaseMinor, tigonFwReleaseFix);
    406 			return;
    407 		}
    408 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
    409 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
    410 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
    411 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
    412 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
    413 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
    414 		break;
    415 	case TI_HWREV_TIGON_II:
    416 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
    417 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
    418 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
    419 			printf("%s: firmware revision mismatch; want "
    420 			    "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
    421 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
    422 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
    423 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
    424 			return;
    425 		}
    426 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
    427 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
    428 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
    429 		    tigon2FwRodata);
    430 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
    431 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
    432 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
    433 		break;
    434 	default:
    435 		printf("%s: can't load firmware: unknown hardware rev\n",
    436 		    device_xname(sc->sc_dev));
    437 		break;
    438 	}
    439 
    440 	return;
    441 }
    442 
    443 /*
    444  * Send the NIC a command via the command ring.
    445  */
    446 static void
    447 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
    448 {
    449 	uint32_t		index;
    450 
    451 	index = sc->ti_cmd_saved_prodidx;
    452 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
    453 	TI_INC(index, TI_CMD_RING_CNT);
    454 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
    455 	sc->ti_cmd_saved_prodidx = index;
    456 }
    457 
    458 /*
    459  * Send the NIC an extended command. The 'len' parameter specifies the
    460  * number of command slots to include after the initial command.
    461  */
    462 static void
    463 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, void *argv, int len)
    464 {
    465 	char		*arg = argv;
    466 	uint32_t	index;
    467 	int		i;
    468 
    469 	index = sc->ti_cmd_saved_prodidx;
    470 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
    471 	TI_INC(index, TI_CMD_RING_CNT);
    472 	for (i = 0; i < len; i++) {
    473 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
    474 		    *(uint32_t *)(&arg[i * 4]));
    475 		TI_INC(index, TI_CMD_RING_CNT);
    476 	}
    477 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
    478 	sc->ti_cmd_saved_prodidx = index;
    479 }
    480 
    481 /*
    482  * Handle events that have triggered interrupts.
    483  */
    484 static void
    485 ti_handle_events(struct ti_softc *sc)
    486 {
    487 	struct ti_event_desc	*e;
    488 
    489 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
    490 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
    491 		switch (TI_EVENT_EVENT(e)) {
    492 		case TI_EV_LINKSTAT_CHANGED:
    493 			sc->ti_linkstat = TI_EVENT_CODE(e);
    494 			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
    495 				printf("%s: 10/100 link up\n",
    496 				       device_xname(sc->sc_dev));
    497 			else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
    498 				printf("%s: gigabit link up\n",
    499 				       device_xname(sc->sc_dev));
    500 			else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
    501 				printf("%s: link down\n",
    502 				       device_xname(sc->sc_dev));
    503 			break;
    504 		case TI_EV_ERROR:
    505 			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
    506 				printf("%s: invalid command\n",
    507 				       device_xname(sc->sc_dev));
    508 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
    509 				printf("%s: unknown command\n",
    510 				       device_xname(sc->sc_dev));
    511 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
    512 				printf("%s: bad config data\n",
    513 				       device_xname(sc->sc_dev));
    514 			break;
    515 		case TI_EV_FIRMWARE_UP:
    516 			ti_init2(sc);
    517 			break;
    518 		case TI_EV_STATS_UPDATED:
    519 			ti_stats_update(sc);
    520 			break;
    521 		case TI_EV_RESET_JUMBO_RING:
    522 		case TI_EV_MCAST_UPDATED:
    523 			/* Who cares. */
    524 			break;
    525 		default:
    526 			printf("%s: unknown event: %d\n",
    527 			    device_xname(sc->sc_dev), TI_EVENT_EVENT(e));
    528 			break;
    529 		}
    530 		/* Advance the consumer index. */
    531 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
    532 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
    533 	}
    534 
    535 	return;
    536 }
    537 
    538 /*
    539  * Memory management for the jumbo receive ring is a pain in the
    540  * butt. We need to allocate at least 9018 bytes of space per frame,
    541  * _and_ it has to be contiguous (unless you use the extended
    542  * jumbo descriptor format). Using malloc() all the time won't
    543  * work: malloc() allocates memory in powers of two, which means we
    544  * would end up wasting a considerable amount of space by allocating
    545  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
    546  * to do our own memory management.
    547  *
    548  * The driver needs to allocate a contiguous chunk of memory at boot
    549  * time. We then chop this up ourselves into 9K pieces and use them
    550  * as external mbuf storage.
    551  *
    552  * One issue here is how much memory to allocate. The jumbo ring has
    553  * 256 slots in it, but at 9K per slot than can consume over 2MB of
    554  * RAM. This is a bit much, especially considering we also need
    555  * RAM for the standard ring and mini ring (on the Tigon 2). To
    556  * save space, we only actually allocate enough memory for 64 slots
    557  * by default, which works out to between 500 and 600K. This can
    558  * be tuned by changing a #define in if_tireg.h.
    559  */
    560 
    561 static int
    562 ti_alloc_jumbo_mem(struct ti_softc *sc)
    563 {
    564 	char *ptr;
    565 	int i;
    566 	struct ti_jpool_entry	*entry;
    567 	bus_dma_segment_t dmaseg;
    568 	int error, dmanseg;
    569 
    570 	/* Grab a big chunk o' storage. */
    571 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    572 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
    573 	    BUS_DMA_NOWAIT)) != 0) {
    574 		aprint_error_dev(sc->sc_dev,
    575 		    "can't allocate jumbo buffer, error = %d\n", error);
    576 		return (error);
    577 	}
    578 
    579 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
    580 	    TI_JMEM, (void **)&sc->ti_cdata.ti_jumbo_buf,
    581 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    582 		aprint_error_dev(sc->sc_dev,
    583 		    "can't map jumbo buffer, error = %d\n", error);
    584 		return (error);
    585 	}
    586 
    587 	if ((error = bus_dmamap_create(sc->sc_dmat,
    588 	    TI_JMEM, 1,
    589 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
    590 	    &sc->jumbo_dmamap)) != 0) {
    591 		aprint_error_dev(sc->sc_dev,
    592 		    "can't create jumbo buffer DMA map, error = %d\n", error);
    593 		return (error);
    594 	}
    595 
    596 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
    597 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
    598 	    BUS_DMA_NOWAIT)) != 0) {
    599 		aprint_error_dev(sc->sc_dev,
    600 		    "can't load jumbo buffer DMA map, error = %d\n", error);
    601 		return (error);
    602 	}
    603 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
    604 
    605 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
    606 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
    607 
    608 	/*
    609 	 * Now divide it up into 9K pieces and save the addresses
    610 	 * in an array.
    611 	 */
    612 	ptr = sc->ti_cdata.ti_jumbo_buf;
    613 	for (i = 0; i < TI_JSLOTS; i++) {
    614 		sc->ti_cdata.ti_jslots[i] = ptr;
    615 		ptr += TI_JLEN;
    616 		entry = malloc(sizeof(struct ti_jpool_entry),
    617 			       M_DEVBUF, M_WAITOK);
    618 		entry->slot = i;
    619 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
    620 				    jpool_entries);
    621 	}
    622 
    623 	return (0);
    624 }
    625 
    626 /*
    627  * Allocate a jumbo buffer.
    628  */
    629 static void *
    630 ti_jalloc(struct ti_softc *sc)
    631 {
    632 	struct ti_jpool_entry	*entry;
    633 
    634 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
    635 
    636 	if (entry == NULL) {
    637 		printf("%s: no free jumbo buffers\n", device_xname(sc->sc_dev));
    638 		return (NULL);
    639 	}
    640 
    641 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
    642 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
    643 
    644 	return (sc->ti_cdata.ti_jslots[entry->slot]);
    645 }
    646 
    647 /*
    648  * Release a jumbo buffer.
    649  */
    650 static void
    651 ti_jfree(struct mbuf *m, void *tbuf, size_t size, void *arg)
    652 {
    653 	struct ti_softc		*sc;
    654 	int			i, s;
    655 	struct ti_jpool_entry	*entry;
    656 
    657 	/* Extract the softc struct pointer. */
    658 	sc = (struct ti_softc *)arg;
    659 
    660 	if (sc == NULL)
    661 		panic("ti_jfree: didn't get softc pointer!");
    662 
    663 	/* calculate the slot this buffer belongs to */
    664 
    665 	i = ((char *)tbuf
    666 	     - (char *)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
    667 
    668 	if ((i < 0) || (i >= TI_JSLOTS))
    669 		panic("ti_jfree: asked to free buffer that we don't manage!");
    670 
    671 	s = splvm();
    672 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
    673 	if (entry == NULL)
    674 		panic("ti_jfree: buffer not in use!");
    675 	entry->slot = i;
    676 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
    677 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
    678 
    679 	if (__predict_true(m != NULL))
    680 		pool_cache_put(mb_cache, m);
    681 	splx(s);
    682 }
    683 
    684 
    685 /*
    686  * Initialize a standard receive ring descriptor.
    687  */
    688 static int
    689 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
    690 {
    691 	struct mbuf		*m_new = NULL;
    692 	struct ti_rx_desc	*r;
    693 	int error;
    694 
    695 	if (dmamap == NULL) {
    696 		/* if (m) panic() */
    697 
    698 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    699 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
    700 					       &dmamap)) != 0) {
    701 			aprint_error_dev(sc->sc_dev,
    702 			    "can't create recv map, error = %d\n", error);
    703 			return (ENOMEM);
    704 		}
    705 	}
    706 	sc->std_dmamap[i] = dmamap;
    707 
    708 	if (m == NULL) {
    709 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    710 		if (m_new == NULL) {
    711 			aprint_error_dev(sc->sc_dev,
    712 			    "mbuf allocation failed -- packet dropped!\n");
    713 			return (ENOBUFS);
    714 		}
    715 
    716 		MCLGET(m_new, M_DONTWAIT);
    717 		if (!(m_new->m_flags & M_EXT)) {
    718 			aprint_error_dev(sc->sc_dev,
    719 			    "cluster allocation failed -- packet dropped!\n");
    720 			m_freem(m_new);
    721 			return (ENOBUFS);
    722 		}
    723 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    724 		m_adj(m_new, ETHER_ALIGN);
    725 
    726 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
    727 				mtod(m_new, void *), m_new->m_len, NULL,
    728 				BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
    729 			aprint_error_dev(sc->sc_dev,
    730 			    "can't load recv map, error = %d\n", error);
    731 			m_freem(m_new);
    732 			return (ENOMEM);
    733 		}
    734 	} else {
    735 		m_new = m;
    736 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    737 		m_new->m_data = m_new->m_ext.ext_buf;
    738 		m_adj(m_new, ETHER_ALIGN);
    739 
    740 		/* reuse the dmamap */
    741 	}
    742 
    743 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
    744 	r = &sc->ti_rdata->ti_rx_std_ring[i];
    745 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
    746 	r->ti_type = TI_BDTYPE_RECV_BD;
    747 	r->ti_flags = 0;
    748 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
    749 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
    750 	if (sc->ethercom.ec_if.if_capenable &
    751 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
    752 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
    753 	r->ti_len = m_new->m_len; /* == ds_len */
    754 	r->ti_idx = i;
    755 
    756 	return (0);
    757 }
    758 
    759 /*
    760  * Initialize a mini receive ring descriptor. This only applies to
    761  * the Tigon 2.
    762  */
    763 static int
    764 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
    765 {
    766 	struct mbuf		*m_new = NULL;
    767 	struct ti_rx_desc	*r;
    768 	int error;
    769 
    770 	if (dmamap == NULL) {
    771 		/* if (m) panic() */
    772 
    773 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
    774 					       MHLEN, 0, BUS_DMA_NOWAIT,
    775 					       &dmamap)) != 0) {
    776 			aprint_error_dev(sc->sc_dev,
    777 			    "can't create recv map, error = %d\n", error);
    778 			return (ENOMEM);
    779 		}
    780 	}
    781 	sc->mini_dmamap[i] = dmamap;
    782 
    783 	if (m == NULL) {
    784 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    785 		if (m_new == NULL) {
    786 			aprint_error_dev(sc->sc_dev,
    787 			    "mbuf allocation failed -- packet dropped!\n");
    788 			return (ENOBUFS);
    789 		}
    790 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
    791 		m_adj(m_new, ETHER_ALIGN);
    792 
    793 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
    794 				mtod(m_new, void *), m_new->m_len, NULL,
    795 				BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) {
    796 			aprint_error_dev(sc->sc_dev,
    797 			    "can't load recv map, error = %d\n", error);
    798 			m_freem(m_new);
    799 			return (ENOMEM);
    800 		}
    801 	} else {
    802 		m_new = m;
    803 		m_new->m_data = m_new->m_pktdat;
    804 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
    805 		m_adj(m_new, ETHER_ALIGN);
    806 
    807 		/* reuse the dmamap */
    808 	}
    809 
    810 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
    811 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
    812 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
    813 	r->ti_type = TI_BDTYPE_RECV_BD;
    814 	r->ti_flags = TI_BDFLAG_MINI_RING;
    815 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
    816 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
    817 	if (sc->ethercom.ec_if.if_capenable &
    818 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
    819 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
    820 	r->ti_len = m_new->m_len; /* == ds_len */
    821 	r->ti_idx = i;
    822 
    823 	return (0);
    824 }
    825 
    826 /*
    827  * Initialize a jumbo receive ring descriptor. This allocates
    828  * a jumbo buffer from the pool managed internally by the driver.
    829  */
    830 static int
    831 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
    832 {
    833 	struct mbuf		*m_new = NULL;
    834 	struct ti_rx_desc	*r;
    835 
    836 	if (m == NULL) {
    837 		void *		tbuf = NULL;
    838 
    839 		/* Allocate the mbuf. */
    840 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    841 		if (m_new == NULL) {
    842 			aprint_error_dev(sc->sc_dev,
    843 			    "mbuf allocation failed -- packet dropped!\n");
    844 			return (ENOBUFS);
    845 		}
    846 
    847 		/* Allocate the jumbo buffer */
    848 		tbuf = ti_jalloc(sc);
    849 		if (tbuf == NULL) {
    850 			m_freem(m_new);
    851 			aprint_error_dev(sc->sc_dev,
    852 			    "jumbo allocation failed -- packet dropped!\n");
    853 			return (ENOBUFS);
    854 		}
    855 
    856 		/* Attach the buffer to the mbuf. */
    857 		MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
    858 		    M_DEVBUF, ti_jfree, sc);
    859 		m_new->m_flags |= M_EXT_RW;
    860 		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
    861 	} else {
    862 		m_new = m;
    863 		m_new->m_data = m_new->m_ext.ext_buf;
    864 		m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
    865 	}
    866 
    867 	m_adj(m_new, ETHER_ALIGN);
    868 	/* Set up the descriptor. */
    869 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
    870 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
    871 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
    872 		(mtod(m_new, char *) - (char *)sc->ti_cdata.ti_jumbo_buf);
    873 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
    874 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
    875 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
    876 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
    877 	if (sc->ethercom.ec_if.if_capenable &
    878 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
    879 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
    880 	r->ti_len = m_new->m_len;
    881 	r->ti_idx = i;
    882 
    883 	return (0);
    884 }
    885 
    886 /*
    887  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    888  * that's 1MB or memory, which is a lot. For now, we fill only the first
    889  * 256 ring entries and hope that our CPU is fast enough to keep up with
    890  * the NIC.
    891  */
    892 static int
    893 ti_init_rx_ring_std(struct ti_softc *sc)
    894 {
    895 	int		i;
    896 	struct ti_cmd_desc	cmd;
    897 
    898 	for (i = 0; i < TI_SSLOTS; i++) {
    899 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    900 			return (ENOBUFS);
    901 	}
    902 
    903 	TI_UPDATE_STDPROD(sc, i - 1);
    904 	sc->ti_std = i - 1;
    905 
    906 	return (0);
    907 }
    908 
    909 static void
    910 ti_free_rx_ring_std(struct ti_softc *sc)
    911 {
    912 	int		i;
    913 
    914 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
    915 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
    916 			/* if (sc->std_dmamap[i] == 0) panic() */
    917 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
    918 			sc->std_dmamap[i] = 0;
    919 
    920 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
    921 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
    922 		}
    923 		memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
    924 		    sizeof(struct ti_rx_desc));
    925 	}
    926 
    927 	return;
    928 }
    929 
    930 static int
    931 ti_init_rx_ring_jumbo(struct ti_softc *sc)
    932 {
    933 	int		i;
    934 	struct ti_cmd_desc	cmd;
    935 
    936 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
    937 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
    938 			return (ENOBUFS);
    939 	}
    940 
    941 	TI_UPDATE_JUMBOPROD(sc, i - 1);
    942 	sc->ti_jumbo = i - 1;
    943 
    944 	return (0);
    945 }
    946 
    947 static void
    948 ti_free_rx_ring_jumbo(struct ti_softc *sc)
    949 {
    950 	int		i;
    951 
    952 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
    953 		m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
    954 		sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
    955 		memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
    956 		    sizeof(struct ti_rx_desc));
    957 	}
    958 
    959 	return;
    960 }
    961 
    962 static int
    963 ti_init_rx_ring_mini(struct ti_softc *sc)
    964 {
    965 	int		i;
    966 
    967 	for (i = 0; i < TI_MSLOTS; i++) {
    968 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
    969 			return (ENOBUFS);
    970 	}
    971 
    972 	TI_UPDATE_MINIPROD(sc, i - 1);
    973 	sc->ti_mini = i - 1;
    974 
    975 	return (0);
    976 }
    977 
    978 static void
    979 ti_free_rx_ring_mini(struct ti_softc *sc)
    980 {
    981 	int		i;
    982 
    983 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
    984 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
    985 			/* if (sc->mini_dmamap[i] == 0) panic() */
    986 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
    987 			sc->mini_dmamap[i] = 0;
    988 
    989 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
    990 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
    991 		}
    992 		memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
    993 		    sizeof(struct ti_rx_desc));
    994 	}
    995 
    996 	return;
    997 }
    998 
    999 static void
   1000 ti_free_tx_ring(struct ti_softc *sc)
   1001 {
   1002 	int		i;
   1003 	struct txdmamap_pool_entry *dma;
   1004 
   1005 	for (i = 0; i < TI_TX_RING_CNT; i++) {
   1006 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
   1007 			dma = sc->txdma[i];
   1008 			KDASSERT(dma != NULL);
   1009 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
   1010 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1011 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
   1012 
   1013 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1014 					    link);
   1015 			sc->txdma[i] = NULL;
   1016 
   1017 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
   1018 			sc->ti_cdata.ti_tx_chain[i] = NULL;
   1019 		}
   1020 		memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
   1021 		    sizeof(struct ti_tx_desc));
   1022 	}
   1023 
   1024 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
   1025 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
   1026 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
   1027 		free(dma, M_DEVBUF);
   1028 	}
   1029 
   1030 	return;
   1031 }
   1032 
   1033 static int
   1034 ti_init_tx_ring(struct ti_softc *sc)
   1035 {
   1036 	int i, error;
   1037 	bus_dmamap_t dmamap;
   1038 	struct txdmamap_pool_entry *dma;
   1039 
   1040 	sc->ti_txcnt = 0;
   1041 	sc->ti_tx_saved_considx = 0;
   1042 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
   1043 
   1044 	SIMPLEQ_INIT(&sc->txdma_list);
   1045 	for (i = 0; i < TI_RSLOTS; i++) {
   1046 		/* I've seen mbufs with 30 fragments. */
   1047 		if ((error = bus_dmamap_create(sc->sc_dmat,
   1048 			    ETHER_MAX_LEN_JUMBO, 40, ETHER_MAX_LEN_JUMBO, 0,
   1049 			    BUS_DMA_NOWAIT, &dmamap)) != 0) {
   1050 			aprint_error_dev(sc->sc_dev,
   1051 			    "can't create tx map, error = %d\n", error);
   1052 			return (ENOMEM);
   1053 		}
   1054 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1055 		if (!dma) {
   1056 			aprint_error_dev(sc->sc_dev,
   1057 			    "can't alloc txdmamap_pool_entry\n");
   1058 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
   1059 			return (ENOMEM);
   1060 		}
   1061 		dma->dmamap = dmamap;
   1062 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
   1063 	}
   1064 
   1065 	return (0);
   1066 }
   1067 
   1068 /*
   1069  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
   1070  * but we have to support the old way too so that Tigon 1 cards will
   1071  * work.
   1072  */
   1073 static void
   1074 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
   1075 {
   1076 	struct ti_cmd_desc	cmd;
   1077 	uint16_t		*m;
   1078 	uint32_t		ext[2] = {0, 0};
   1079 
   1080 	m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */
   1081 
   1082 	switch (sc->ti_hwrev) {
   1083 	case TI_HWREV_TIGON:
   1084 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
   1085 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
   1086 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
   1087 		break;
   1088 	case TI_HWREV_TIGON_II:
   1089 		ext[0] = htons(m[0]);
   1090 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
   1091 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (void *)&ext, 2);
   1092 		break;
   1093 	default:
   1094 		printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
   1095 		break;
   1096 	}
   1097 
   1098 	return;
   1099 }
   1100 
   1101 static void
   1102 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
   1103 {
   1104 	struct ti_cmd_desc	cmd;
   1105 	uint16_t		*m;
   1106 	uint32_t		ext[2] = {0, 0};
   1107 
   1108 	m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */
   1109 
   1110 	switch (sc->ti_hwrev) {
   1111 	case TI_HWREV_TIGON:
   1112 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
   1113 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
   1114 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
   1115 		break;
   1116 	case TI_HWREV_TIGON_II:
   1117 		ext[0] = htons(m[0]);
   1118 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
   1119 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (void *)&ext, 2);
   1120 		break;
   1121 	default:
   1122 		printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
   1123 		break;
   1124 	}
   1125 
   1126 	return;
   1127 }
   1128 
   1129 /*
   1130  * Configure the Tigon's multicast address filter.
   1131  *
   1132  * The actual multicast table management is a bit of a pain, thanks to
   1133  * slight brain damage on the part of both Alteon and us. With our
   1134  * multicast code, we are only alerted when the multicast address table
   1135  * changes and at that point we only have the current list of addresses:
   1136  * we only know the current state, not the previous state, so we don't
   1137  * actually know what addresses were removed or added. The firmware has
   1138  * state, but we can't get our grubby mits on it, and there is no 'delete
   1139  * all multicast addresses' command. Hence, we have to maintain our own
   1140  * state so we know what addresses have been programmed into the NIC at
   1141  * any given time.
   1142  */
   1143 static void
   1144 ti_setmulti(struct ti_softc *sc)
   1145 {
   1146 	struct ethercom		*ec = &sc->ethercom;
   1147 	struct ifnet		*ifp = &ec->ec_if;
   1148 	struct ti_cmd_desc	cmd;
   1149 	struct ti_mc_entry	*mc;
   1150 	uint32_t		intrs;
   1151 	struct ether_multi	*enm;
   1152 	struct ether_multistep	step;
   1153 
   1154 	/* Disable interrupts. */
   1155 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
   1156 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   1157 
   1158 	/* First, zot all the existing filters. */
   1159 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
   1160 		ti_del_mcast(sc, &mc->mc_addr);
   1161 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
   1162 		free(mc, M_DEVBUF);
   1163 	}
   1164 
   1165 	/*
   1166 	 * Remember all multicast addresses so that we can delete them
   1167 	 * later.  Punt if there is a range of addresses or memory shortage.
   1168 	 */
   1169 	ETHER_LOCK(ec);
   1170 	ETHER_FIRST_MULTI(step, ec, enm);
   1171 	while (enm != NULL) {
   1172 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1173 		    ETHER_ADDR_LEN) != 0) {
   1174 			ETHER_UNLOCK(ec);
   1175 			goto allmulti;
   1176 		}
   1177 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
   1178 		    M_NOWAIT)) == NULL) {
   1179 			ETHER_UNLOCK(ec);
   1180 			goto allmulti;
   1181 		}
   1182 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
   1183 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
   1184 		ETHER_NEXT_MULTI(step, enm);
   1185 	}
   1186 	ETHER_UNLOCK(ec);
   1187 
   1188 	/* Accept only programmed multicast addresses */
   1189 	ifp->if_flags &= ~IFF_ALLMULTI;
   1190 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
   1191 
   1192 	/* Now program new ones. */
   1193 	SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
   1194 		ti_add_mcast(sc, &mc->mc_addr);
   1195 
   1196 	/* Re-enable interrupts. */
   1197 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
   1198 
   1199 	return;
   1200 
   1201 allmulti:
   1202 	/* No need to keep individual multicast addresses */
   1203 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
   1204 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
   1205 		free(mc, M_DEVBUF);
   1206 	}
   1207 
   1208 	/* Accept all multicast addresses */
   1209 	ifp->if_flags |= IFF_ALLMULTI;
   1210 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
   1211 
   1212 	/* Re-enable interrupts. */
   1213 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
   1214 }
   1215 
   1216 /*
   1217  * Check to see if the BIOS has configured us for a 64 bit slot when
   1218  * we aren't actually in one. If we detect this condition, we can work
   1219  * around it on the Tigon 2 by setting a bit in the PCI state register,
   1220  * but for the Tigon 1 we must give up and abort the interface attach.
   1221  */
   1222 static int
   1223 ti_64bitslot_war(struct ti_softc *sc)
   1224 {
   1225 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
   1226 		CSR_WRITE_4(sc, 0x600, 0);
   1227 		CSR_WRITE_4(sc, 0x604, 0);
   1228 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
   1229 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
   1230 			if (sc->ti_hwrev == TI_HWREV_TIGON)
   1231 				return (EINVAL);
   1232 			else {
   1233 				TI_SETBIT(sc, TI_PCI_STATE,
   1234 				    TI_PCISTATE_32BIT_BUS);
   1235 				return (0);
   1236 			}
   1237 		}
   1238 	}
   1239 
   1240 	return (0);
   1241 }
   1242 
   1243 /*
   1244  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1245  * self-test results.
   1246  */
   1247 static int
   1248 ti_chipinit(struct ti_softc *sc)
   1249 {
   1250 	uint32_t	cacheline;
   1251 	uint32_t	pci_writemax = 0;
   1252 	uint32_t	rev;
   1253 
   1254 	/* Initialize link to down state. */
   1255 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
   1256 
   1257 	/* Set endianness before we access any non-PCI registers. */
   1258 #if BYTE_ORDER == BIG_ENDIAN
   1259 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
   1260 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
   1261 #else
   1262 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
   1263 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
   1264 #endif
   1265 
   1266 	/* Check the ROM failed bit to see if self-tests passed. */
   1267 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
   1268 		printf("%s: board self-diagnostics failed!\n",
   1269 		       device_xname(sc->sc_dev));
   1270 		return (ENODEV);
   1271 	}
   1272 
   1273 	/* Halt the CPU. */
   1274 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
   1275 
   1276 	/* Figure out the hardware revision. */
   1277 	rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
   1278 	switch (rev) {
   1279 	case TI_REV_TIGON_I:
   1280 		sc->ti_hwrev = TI_HWREV_TIGON;
   1281 		break;
   1282 	case TI_REV_TIGON_II:
   1283 		sc->ti_hwrev = TI_HWREV_TIGON_II;
   1284 		break;
   1285 	default:
   1286 		printf("%s: unsupported chip revision 0x%x\n",
   1287 		    device_xname(sc->sc_dev), rev);
   1288 		return (ENODEV);
   1289 	}
   1290 
   1291 	/* Do special setup for Tigon 2. */
   1292 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
   1293 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
   1294 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
   1295 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
   1296 	}
   1297 
   1298 	/* Set up the PCI state register. */
   1299 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD | TI_PCI_WRITE_CMD);
   1300 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
   1301 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
   1302 	}
   1303 
   1304 	/* Clear the read/write max DMA parameters. */
   1305 	TI_CLRBIT(sc, TI_PCI_STATE,
   1306 	    (TI_PCISTATE_WRITE_MAXDMA | TI_PCISTATE_READ_MAXDMA));
   1307 
   1308 	/* Get cache line size. */
   1309 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
   1310 
   1311 	/*
   1312 	 * If the system has set enabled the PCI memory write
   1313 	 * and invalidate command in the command register, set
   1314 	 * the write max parameter accordingly. This is necessary
   1315 	 * to use MWI with the Tigon 2.
   1316 	 */
   1317 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
   1318 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
   1319 		switch (cacheline) {
   1320 		case 1:
   1321 		case 4:
   1322 		case 8:
   1323 		case 16:
   1324 		case 32:
   1325 		case 64:
   1326 			break;
   1327 		default:
   1328 		/* Disable PCI memory write and invalidate. */
   1329 			if (bootverbose)
   1330 				printf("%s: cache line size %d not "
   1331 				    "supported; disabling PCI MWI\n",
   1332 				    device_xname(sc->sc_dev), cacheline);
   1333 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
   1334 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
   1335 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
   1336 			break;
   1337 		}
   1338 	}
   1339 
   1340 #ifdef __brokenalpha__
   1341 	/*
   1342 	 * From the Alteon sample driver:
   1343 	 * Must insure that we do not cross an 8K (bytes) boundary
   1344 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1345 	 * restriction on some ALPHA platforms with early revision
   1346 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1347 	 */
   1348 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax | TI_PCI_READMAX_1024);
   1349 #else
   1350 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
   1351 #endif
   1352 
   1353 	/* This sets the min dma param all the way up (0xff). */
   1354 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
   1355 
   1356 	/* Configure DMA variables. */
   1357 #if BYTE_ORDER == BIG_ENDIAN
   1358 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
   1359 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
   1360 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
   1361 	    TI_OPMODE_DONT_FRAG_JUMBO);
   1362 #else
   1363 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA |
   1364 	    TI_OPMODE_WORDSWAP_BD | TI_OPMODE_DONT_FRAG_JUMBO |
   1365 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB);
   1366 #endif
   1367 
   1368 	/*
   1369 	 * Only allow 1 DMA channel to be active at a time.
   1370 	 * I don't think this is a good idea, but without it
   1371 	 * the firmware racks up lots of nicDmaReadRingFull
   1372 	 * errors.
   1373 	 * Incompatible with hardware assisted checksums.
   1374 	 */
   1375 	if ((sc->ethercom.ec_if.if_capenable &
   1376 	    (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1377 	     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
   1378 	     IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
   1379 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
   1380 
   1381 	/* Recommended settings from Tigon manual. */
   1382 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
   1383 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
   1384 
   1385 	if (ti_64bitslot_war(sc)) {
   1386 		printf("%s: bios thinks we're in a 64 bit slot, "
   1387 		    "but we aren't", device_xname(sc->sc_dev));
   1388 		return (EINVAL);
   1389 	}
   1390 
   1391 	return (0);
   1392 }
   1393 
   1394 /*
   1395  * Initialize the general information block and firmware, and
   1396  * start the CPU(s) running.
   1397  */
   1398 static int
   1399 ti_gibinit(struct ti_softc *sc)
   1400 {
   1401 	struct ti_rcb		*rcb;
   1402 	int			i;
   1403 	struct ifnet		*ifp;
   1404 
   1405 	ifp = &sc->ethercom.ec_if;
   1406 
   1407 	/* Disable interrupts for now. */
   1408 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   1409 
   1410 	/* Tell the chip where to find the general information block. */
   1411 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
   1412 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
   1413 
   1414 	/* Load the firmware into SRAM. */
   1415 	ti_loadfw(sc);
   1416 
   1417 	/* Set up the contents of the general info and ring control blocks. */
   1418 
   1419 	/* Set up the event ring and producer pointer. */
   1420 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
   1421 
   1422 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
   1423 	rcb->ti_flags = 0;
   1424 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
   1425 	    TI_CDEVPRODADDR(sc);
   1426 
   1427 	sc->ti_ev_prodidx.ti_idx = 0;
   1428 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
   1429 	sc->ti_ev_saved_considx = 0;
   1430 
   1431 	/* Set up the command ring and producer mailbox. */
   1432 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
   1433 
   1434 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
   1435 	rcb->ti_flags = 0;
   1436 	rcb->ti_max_len = 0;
   1437 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
   1438 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
   1439 	}
   1440 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
   1441 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
   1442 	sc->ti_cmd_saved_prodidx = 0;
   1443 
   1444 	/*
   1445 	 * Assign the address of the stats refresh buffer.
   1446 	 * We re-use the current stats buffer for this to
   1447 	 * conserve memory.
   1448 	 */
   1449 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
   1450 	    TI_CDSTATSADDR(sc);
   1451 
   1452 	/* Set up the standard receive ring. */
   1453 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
   1454 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
   1455 	rcb->ti_max_len = ETHER_MAX_LEN;
   1456 	rcb->ti_flags = 0;
   1457 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1458 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1459 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   1460 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
   1461 	if (VLAN_ATTACHED(&sc->ethercom))
   1462 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1463 
   1464 	/* Set up the jumbo receive ring. */
   1465 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
   1466 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
   1467 	rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
   1468 	rcb->ti_flags = 0;
   1469 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1470 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1471 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   1472 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
   1473 	if (VLAN_ATTACHED(&sc->ethercom))
   1474 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1475 
   1476 	/*
   1477 	 * Set up the mini ring. Only activated on the
   1478 	 * Tigon 2 but the slot in the config block is
   1479 	 * still there on the Tigon 1.
   1480 	 */
   1481 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
   1482 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
   1483 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
   1484 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1485 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
   1486 	else
   1487 		rcb->ti_flags = 0;
   1488 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1489 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1490 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   1491 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
   1492 	if (VLAN_ATTACHED(&sc->ethercom))
   1493 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1494 
   1495 	/*
   1496 	 * Set up the receive return ring.
   1497 	 */
   1498 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
   1499 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
   1500 	rcb->ti_flags = 0;
   1501 	rcb->ti_max_len = TI_RETURN_RING_CNT;
   1502 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
   1503 	    TI_CDRTNPRODADDR(sc);
   1504 
   1505 	/*
   1506 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
   1507 	 * of putting the transmit ring in the host's address space and
   1508 	 * letting the chip DMA it instead of leaving the ring in the NIC's
   1509 	 * memory and accessing it through the shared memory region. We
   1510 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
   1511 	 * so we have to revert to the shared memory scheme if we detect
   1512 	 * a Tigon 1 chip.
   1513 	 */
   1514 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
   1515 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
   1516 		sc->ti_tx_ring_nic =
   1517 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
   1518 	}
   1519 	memset((char *)sc->ti_rdata->ti_tx_ring, 0,
   1520 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
   1521 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
   1522 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1523 		rcb->ti_flags = 0;
   1524 	else
   1525 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
   1526 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
   1527 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
   1528 	/*
   1529 	 * When we get the packet, there is a pseudo-header seed already
   1530 	 * in the th_sum or uh_sum field.  Make sure the firmware doesn't
   1531 	 * compute the pseudo-header checksum again!
   1532 	 */
   1533 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
   1534 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
   1535 		    TI_RCB_FLAG_NO_PHDR_CKSUM;
   1536 	if (VLAN_ATTACHED(&sc->ethercom))
   1537 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
   1538 	rcb->ti_max_len = TI_TX_RING_CNT;
   1539 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   1540 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
   1541 	else
   1542 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
   1543 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
   1544 	    TI_CDTXCONSADDR(sc);
   1545 
   1546 	/*
   1547 	 * We're done frobbing the General Information Block.  Sync
   1548 	 * it.  Note we take care of the first stats sync here, as
   1549 	 * well.
   1550 	 */
   1551 	TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1552 
   1553 	/* Set up tuneables */
   1554 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
   1555 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
   1556 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
   1557 		    (sc->ti_rx_coal_ticks / 10));
   1558 	else
   1559 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
   1560 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
   1561 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
   1562 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
   1563 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
   1564 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
   1565 
   1566 	/* Turn interrupts on. */
   1567 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
   1568 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
   1569 
   1570 	/* Start CPU. */
   1571 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT | TI_CPUSTATE_STEP));
   1572 
   1573 	return (0);
   1574 }
   1575 
   1576 /*
   1577  * look for id in the device list, returning the first match
   1578  */
   1579 static const struct ti_type *
   1580 ti_type_match(struct pci_attach_args *pa)
   1581 {
   1582 	const struct ti_type	      *t;
   1583 
   1584 	t = ti_devs;
   1585 	while (t->ti_name != NULL) {
   1586 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
   1587 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
   1588 			return (t);
   1589 		}
   1590 		t++;
   1591 	}
   1592 
   1593 	return (NULL);
   1594 }
   1595 
   1596 /*
   1597  * Probe for a Tigon chip. Check the PCI vendor and device IDs
   1598  * against our list and return its name if we find a match.
   1599  */
   1600 static int
   1601 ti_probe(device_t parent, cfdata_t match, void *aux)
   1602 {
   1603 	struct pci_attach_args	*pa = aux;
   1604 	const struct ti_type	*t;
   1605 
   1606 	t = ti_type_match(pa);
   1607 
   1608 	return ((t == NULL) ? 0 : 1);
   1609 }
   1610 
   1611 static void
   1612 ti_attach(device_t parent, device_t self, void *aux)
   1613 {
   1614 	uint32_t		command;
   1615 	struct ifnet		*ifp;
   1616 	struct ti_softc		*sc;
   1617 	uint8_t eaddr[ETHER_ADDR_LEN];
   1618 	struct pci_attach_args *pa = aux;
   1619 	pci_chipset_tag_t pc = pa->pa_pc;
   1620 	pci_intr_handle_t ih;
   1621 	const char *intrstr = NULL;
   1622 	bus_dma_segment_t dmaseg;
   1623 	int error, dmanseg, nolinear;
   1624 	const struct ti_type		*t;
   1625 	char intrbuf[PCI_INTRSTR_LEN];
   1626 
   1627 	t = ti_type_match(pa);
   1628 	if (t == NULL) {
   1629 		aprint_error("ti_attach: were did the card go ?\n");
   1630 		return;
   1631 	}
   1632 
   1633 	aprint_normal(": %s (rev. 0x%02x)\n", t->ti_name,
   1634 	    PCI_REVISION(pa->pa_class));
   1635 
   1636 	sc = device_private(self);
   1637 	sc->sc_dev = self;
   1638 
   1639 	/*
   1640 	 * Map control/status registers.
   1641 	 */
   1642 	nolinear = 0;
   1643 	if (pci_mapreg_map(pa, 0x10,
   1644 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
   1645 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
   1646 	    NULL, NULL)) {
   1647 		nolinear = 1;
   1648 		if (pci_mapreg_map(pa, 0x10,
   1649 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
   1650 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
   1651 			aprint_error_dev(self, "can't map memory space\n");
   1652 			return;
   1653 		}
   1654 	}
   1655 	if (nolinear == 0)
   1656 		sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
   1657 	else
   1658 		sc->ti_vhandle = NULL;
   1659 
   1660 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1661 	command |= PCI_COMMAND_MASTER_ENABLE;
   1662 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1663 
   1664 	/* Allocate interrupt */
   1665 	if (pci_intr_map(pa, &ih)) {
   1666 		aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
   1667 		return;
   1668 	}
   1669 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
   1670 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ti_intr, sc,
   1671 	    device_xname(self));
   1672 	if (sc->sc_ih == NULL) {
   1673 		aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
   1674 		if (intrstr != NULL)
   1675 			aprint_error(" at %s", intrstr);
   1676 		aprint_error("\n");
   1677 		return;
   1678 	}
   1679 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
   1680 
   1681 	if (ti_chipinit(sc)) {
   1682 		aprint_error_dev(self, "chip initialization failed\n");
   1683 		goto fail2;
   1684 	}
   1685 
   1686 	/*
   1687 	 * Deal with some chip diffrences.
   1688 	 */
   1689 	switch (sc->ti_hwrev) {
   1690 	case TI_HWREV_TIGON:
   1691 		sc->sc_tx_encap = ti_encap_tigon1;
   1692 		sc->sc_tx_eof = ti_txeof_tigon1;
   1693 		if (nolinear == 1)
   1694 			aprint_error_dev(self,
   1695 			    "memory space not mapped linear\n");
   1696 		break;
   1697 
   1698 	case TI_HWREV_TIGON_II:
   1699 		sc->sc_tx_encap = ti_encap_tigon2;
   1700 		sc->sc_tx_eof = ti_txeof_tigon2;
   1701 		break;
   1702 
   1703 	default:
   1704 		aprint_error_dev(self, "Unknown chip version: %d\n",
   1705 		    sc->ti_hwrev);
   1706 		goto fail2;
   1707 	}
   1708 
   1709 	/* Zero out the NIC's on-board SRAM. */
   1710 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
   1711 
   1712 	/* Init again -- zeroing memory may have clobbered some registers. */
   1713 	if (ti_chipinit(sc)) {
   1714 		aprint_error_dev(self, "chip initialization failed\n");
   1715 		goto fail2;
   1716 	}
   1717 
   1718 	/*
   1719 	 * Get station address from the EEPROM. Note: the manual states
   1720 	 * that the MAC address is at offset 0x8c, however the data is
   1721 	 * stored as two longwords (since that's how it's loaded into
   1722 	 * the NIC). This means the MAC address is actually preceded
   1723 	 * by two zero bytes. We need to skip over those.
   1724 	 */
   1725 	if (ti_read_eeprom(sc, (void *)&eaddr,
   1726 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   1727 		aprint_error_dev(self, "failed to read station address\n");
   1728 		goto fail2;
   1729 	}
   1730 
   1731 	/*
   1732 	 * A Tigon chip was detected. Inform the world.
   1733 	 */
   1734 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
   1735 
   1736 	sc->sc_dmat = pa->pa_dmat;
   1737 
   1738 	/* Allocate the general information block and ring buffers. */
   1739 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
   1740 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
   1741 	    BUS_DMA_NOWAIT)) != 0) {
   1742 		aprint_error_dev(self,
   1743 		    "can't allocate ring buffer, error = %d\n", error);
   1744 		goto fail2;
   1745 	}
   1746 
   1747 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
   1748 	    sizeof(struct ti_ring_data), (void **)&sc->ti_rdata,
   1749 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
   1750 		aprint_error_dev(self,
   1751 		    "can't map ring buffer, error = %d\n", error);
   1752 		goto fail2;
   1753 	}
   1754 
   1755 	if ((error = bus_dmamap_create(sc->sc_dmat,
   1756 	    sizeof(struct ti_ring_data), 1,
   1757 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
   1758 	    &sc->info_dmamap)) != 0) {
   1759 		aprint_error_dev(self,
   1760 		    "can't create ring buffer DMA map, error = %d\n", error);
   1761 		goto fail2;
   1762 	}
   1763 
   1764 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
   1765 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
   1766 	    BUS_DMA_NOWAIT)) != 0) {
   1767 		aprint_error_dev(self,
   1768 		    "can't load ring buffer DMA map, error = %d\n", error);
   1769 		goto fail2;
   1770 	}
   1771 
   1772 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
   1773 
   1774 	memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
   1775 
   1776 	/* Try to allocate memory for jumbo buffers. */
   1777 	if (ti_alloc_jumbo_mem(sc)) {
   1778 		aprint_error_dev(self, "jumbo buffer allocation failed\n");
   1779 		goto fail2;
   1780 	}
   1781 
   1782 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
   1783 
   1784 	/*
   1785 	 * We really need a better way to tell a 1000baseT card
   1786 	 * from a 1000baseSX one, since in theory there could be
   1787 	 * OEMed 1000baseT cards from lame vendors who aren't
   1788 	 * clever enough to change the PCI ID. For the moment
   1789 	 * though, the AceNIC is the only copper card available.
   1790 	 */
   1791 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
   1792 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
   1793 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
   1794 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
   1795 		sc->ti_copper = 1;
   1796 	else
   1797 		sc->ti_copper = 0;
   1798 
   1799 	/* Set default tuneable values. */
   1800 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
   1801 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
   1802 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
   1803 	sc->ti_rx_max_coal_bds = 64;
   1804 	sc->ti_tx_max_coal_bds = 128;
   1805 	sc->ti_tx_buf_ratio = 21;
   1806 
   1807 	/* Set up ifnet structure */
   1808 	ifp = &sc->ethercom.ec_if;
   1809 	ifp->if_softc = sc;
   1810 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
   1811 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1812 	ifp->if_ioctl = ti_ioctl;
   1813 	ifp->if_start = ti_start;
   1814 	ifp->if_watchdog = ti_watchdog;
   1815 	IFQ_SET_READY(&ifp->if_snd);
   1816 
   1817 #if 0
   1818 	/*
   1819 	 * XXX This is not really correct -- we don't necessarily
   1820 	 * XXX want to queue up as many as we can transmit at the
   1821 	 * XXX upper layer like that.  Someone with a board should
   1822 	 * XXX check to see how this affects performance.
   1823 	 */
   1824 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
   1825 #endif
   1826 
   1827 	/*
   1828 	 * We can support 802.1Q VLAN-sized frames.
   1829 	 */
   1830 	sc->ethercom.ec_capabilities |=
   1831 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
   1832 	sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
   1833 
   1834 	/*
   1835 	 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
   1836 	 */
   1837 	ifp->if_capabilities |=
   1838 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   1839 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1840 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   1841 
   1842 	/* Set up ifmedia support. */
   1843 	sc->ethercom.ec_ifmedia = &sc->ifmedia;
   1844 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
   1845 	if (sc->ti_copper) {
   1846 		/*
   1847 		 * Copper cards allow manual 10/100 mode selection,
   1848 		 * but not manual 1000baseT mode selection. Why?
   1849 		 * Because currently there's no way to specify the
   1850 		 * master/slave setting through the firmware interface,
   1851 		 * so Alteon decided to just bag it and handle it
   1852 		 * via autonegotiation.
   1853 		 */
   1854 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
   1855 		ifmedia_add(&sc->ifmedia,
   1856 		    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
   1857 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
   1858 		ifmedia_add(&sc->ifmedia,
   1859 		    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
   1860 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
   1861 		ifmedia_add(&sc->ifmedia,
   1862 		    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
   1863 	} else {
   1864 		/* Fiber cards don't support 10/100 modes. */
   1865 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
   1866 		ifmedia_add(&sc->ifmedia,
   1867 		    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
   1868 	}
   1869 	ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   1870 	ifmedia_set(&sc->ifmedia, IFM_ETHER | IFM_AUTO);
   1871 
   1872 	/*
   1873 	 * Call MI attach routines.
   1874 	 */
   1875 	if_attach(ifp);
   1876 	if_deferred_start_init(ifp, NULL);
   1877 	ether_ifattach(ifp, eaddr);
   1878 
   1879 	/*
   1880 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
   1881 	 * doing do could allow DMA to corrupt kernel memory during the
   1882 	 * reboot before the driver initializes.
   1883 	 */
   1884 	if (pmf_device_register1(self, NULL, NULL, ti_shutdown))
   1885 		pmf_class_network_register(self, ifp);
   1886 	else
   1887 		aprint_error_dev(self, "couldn't establish power handler\n");
   1888 
   1889 	return;
   1890 fail2:
   1891 	pci_intr_disestablish(pc, sc->sc_ih);
   1892 	return;
   1893 }
   1894 
   1895 /*
   1896  * Frame reception handling. This is called if there's a frame
   1897  * on the receive return list.
   1898  *
   1899  * Note: we have to be able to handle three possibilities here:
   1900  * 1) the frame is from the mini receive ring (can only happen)
   1901  *    on Tigon 2 boards)
   1902  * 2) the frame is from the jumbo receive ring
   1903  * 3) the frame is from the standard receive ring
   1904  */
   1905 
   1906 static void
   1907 ti_rxeof(struct ti_softc *sc)
   1908 {
   1909 	struct ifnet		*ifp;
   1910 	struct ti_cmd_desc	cmd;
   1911 
   1912 	ifp = &sc->ethercom.ec_if;
   1913 
   1914 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
   1915 		struct ti_rx_desc	*cur_rx;
   1916 		uint32_t		rxidx;
   1917 		struct mbuf		*m = NULL;
   1918 		struct ether_header	*eh;
   1919 		bus_dmamap_t dmamap;
   1920 
   1921 		cur_rx =
   1922 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
   1923 		rxidx = cur_rx->ti_idx;
   1924 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
   1925 
   1926 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
   1927 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
   1928 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
   1929 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
   1930 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
   1931 				if_statinc(ifp, if_ierrors);
   1932 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
   1933 				continue;
   1934 			}
   1935 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
   1936 			    == ENOBUFS) {
   1937 				if_statinc(ifp, if_ierrors);
   1938 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
   1939 				continue;
   1940 			}
   1941 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
   1942 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
   1943 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
   1944 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
   1945 			dmamap = sc->mini_dmamap[rxidx];
   1946 			sc->mini_dmamap[rxidx] = 0;
   1947 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
   1948 				if_statinc(ifp, if_ierrors);
   1949 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
   1950 				continue;
   1951 			}
   1952 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
   1953 			    == ENOBUFS) {
   1954 				if_statinc(ifp, if_ierrors);
   1955 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
   1956 				continue;
   1957 			}
   1958 		} else {
   1959 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
   1960 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
   1961 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
   1962 			dmamap = sc->std_dmamap[rxidx];
   1963 			sc->std_dmamap[rxidx] = 0;
   1964 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
   1965 				if_statinc(ifp, if_ierrors);
   1966 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
   1967 				continue;
   1968 			}
   1969 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
   1970 			    == ENOBUFS) {
   1971 				if_statinc(ifp, if_ierrors);
   1972 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
   1973 				continue;
   1974 			}
   1975 		}
   1976 
   1977 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
   1978 		m_set_rcvif(m, ifp);
   1979 
   1980 		eh = mtod(m, struct ether_header *);
   1981 		switch (ntohs(eh->ether_type)) {
   1982 #ifdef INET
   1983 		case ETHERTYPE_IP:
   1984 		    {
   1985 			struct ip *ip = (struct ip *) (eh + 1);
   1986 
   1987 			/*
   1988 			 * Note the Tigon firmware does not invert
   1989 			 * the checksum for us, hence the XOR.
   1990 			 */
   1991 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1992 			if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
   1993 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1994 			/*
   1995 			 * ntohs() the constant so the compiler can
   1996 			 * optimize...
   1997 			 *
   1998 			 * XXX Figure out a sane way to deal with
   1999 			 * fragmented packets.
   2000 			 */
   2001 			if ((ip->ip_off & htons(IP_MF | IP_OFFMASK)) == 0) {
   2002 				switch (ip->ip_p) {
   2003 				case IPPROTO_TCP:
   2004 					m->m_pkthdr.csum_data =
   2005 					    cur_rx->ti_tcp_udp_cksum;
   2006 					m->m_pkthdr.csum_flags |=
   2007 					    M_CSUM_TCPv4 | M_CSUM_DATA;
   2008 					break;
   2009 				case IPPROTO_UDP:
   2010 					m->m_pkthdr.csum_data =
   2011 					    cur_rx->ti_tcp_udp_cksum;
   2012 					m->m_pkthdr.csum_flags |=
   2013 					    M_CSUM_UDPv4 | M_CSUM_DATA;
   2014 					break;
   2015 				default:
   2016 					/* Nothing */;
   2017 				}
   2018 			}
   2019 			break;
   2020 		    }
   2021 #endif
   2022 		default:
   2023 			/* Nothing. */
   2024 			break;
   2025 		}
   2026 
   2027 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG)
   2028 			vlan_set_tag(m, cur_rx->ti_vlan_tag);
   2029 
   2030 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2031 	}
   2032 
   2033 	/* Only necessary on the Tigon 1. */
   2034 	if (sc->ti_hwrev == TI_HWREV_TIGON)
   2035 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
   2036 		    sc->ti_rx_saved_considx);
   2037 
   2038 	TI_UPDATE_STDPROD(sc, sc->ti_std);
   2039 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
   2040 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
   2041 }
   2042 
   2043 static void
   2044 ti_txeof_tigon1(struct ti_softc *sc)
   2045 {
   2046 	struct ti_tx_desc	*cur_tx = NULL;
   2047 	struct ifnet		*ifp;
   2048 	struct txdmamap_pool_entry *dma;
   2049 
   2050 	ifp = &sc->ethercom.ec_if;
   2051 
   2052 	/*
   2053 	 * Go through our tx ring and free mbufs for those
   2054 	 * frames that have been sent.
   2055 	 */
   2056 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
   2057 		uint32_t	idx = 0;
   2058 
   2059 		idx = sc->ti_tx_saved_considx;
   2060 		if (idx > 383)
   2061 			CSR_WRITE_4(sc, TI_WINBASE,
   2062 			    TI_TX_RING_BASE + 6144);
   2063 		else if (idx > 255)
   2064 			CSR_WRITE_4(sc, TI_WINBASE,
   2065 			    TI_TX_RING_BASE + 4096);
   2066 		else if (idx > 127)
   2067 			CSR_WRITE_4(sc, TI_WINBASE,
   2068 			    TI_TX_RING_BASE + 2048);
   2069 		else
   2070 			CSR_WRITE_4(sc, TI_WINBASE,
   2071 			    TI_TX_RING_BASE);
   2072 		cur_tx = &sc->ti_tx_ring_nic[idx % 128];
   2073 		if (cur_tx->ti_flags & TI_BDFLAG_END)
   2074 			if_statinc(ifp, if_opackets);
   2075 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
   2076 			dma = sc->txdma[idx];
   2077 			KDASSERT(dma != NULL);
   2078 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
   2079 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2080 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
   2081 
   2082 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
   2083 			sc->txdma[idx] = NULL;
   2084 
   2085 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
   2086 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
   2087 		}
   2088 		sc->ti_txcnt--;
   2089 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
   2090 		ifp->if_timer = 0;
   2091 	}
   2092 
   2093 	if (cur_tx != NULL)
   2094 		ifp->if_flags &= ~IFF_OACTIVE;
   2095 }
   2096 
   2097 static void
   2098 ti_txeof_tigon2(struct ti_softc *sc)
   2099 {
   2100 	struct ti_tx_desc	*cur_tx = NULL;
   2101 	struct ifnet		*ifp;
   2102 	struct txdmamap_pool_entry *dma;
   2103 	int firstidx, cnt;
   2104 
   2105 	ifp = &sc->ethercom.ec_if;
   2106 
   2107 	/*
   2108 	 * Go through our tx ring and free mbufs for those
   2109 	 * frames that have been sent.
   2110 	 */
   2111 	firstidx = sc->ti_tx_saved_considx;
   2112 	cnt = 0;
   2113 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
   2114 		uint32_t	idx = 0;
   2115 
   2116 		idx = sc->ti_tx_saved_considx;
   2117 		cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
   2118 		if (cur_tx->ti_flags & TI_BDFLAG_END)
   2119 			if_statinc(ifp, if_opackets);
   2120 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
   2121 			dma = sc->txdma[idx];
   2122 			KDASSERT(dma != NULL);
   2123 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
   2124 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2125 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
   2126 
   2127 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
   2128 			sc->txdma[idx] = NULL;
   2129 
   2130 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
   2131 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
   2132 		}
   2133 		cnt++;
   2134 		sc->ti_txcnt--;
   2135 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
   2136 		ifp->if_timer = 0;
   2137 	}
   2138 
   2139 	if (cnt != 0)
   2140 		TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
   2141 
   2142 	if (cur_tx != NULL)
   2143 		ifp->if_flags &= ~IFF_OACTIVE;
   2144 }
   2145 
   2146 static int
   2147 ti_intr(void *xsc)
   2148 {
   2149 	struct ti_softc	*sc;
   2150 	struct ifnet	*ifp;
   2151 
   2152 	sc = xsc;
   2153 	ifp = &sc->ethercom.ec_if;
   2154 
   2155 #ifdef notdef
   2156 	/* Avoid this for now -- checking this register is expensive. */
   2157 	/* Make sure this is really our interrupt. */
   2158 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
   2159 		return (0);
   2160 #endif
   2161 
   2162 	/* Ack interrupt and stop others from occurring. */
   2163 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   2164 
   2165 	if (ifp->if_flags & IFF_RUNNING) {
   2166 		/* Check RX return ring producer/consumer */
   2167 		ti_rxeof(sc);
   2168 
   2169 		/* Check TX ring producer/consumer */
   2170 		(*sc->sc_tx_eof)(sc);
   2171 	}
   2172 
   2173 	ti_handle_events(sc);
   2174 
   2175 	/* Re-enable interrupts. */
   2176 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
   2177 
   2178 	if ((ifp->if_flags & IFF_RUNNING) != 0)
   2179 		if_schedule_deferred_start(ifp);
   2180 
   2181 	return (1);
   2182 }
   2183 
   2184 static void
   2185 ti_stats_update(struct ti_softc *sc)
   2186 {
   2187 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2188 
   2189 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   2190 
   2191 	uint64_t collisions =
   2192 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
   2193 	    sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
   2194 	    sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
   2195 	    sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions);
   2196 	if_statadd(ifp, if_collisions, collisions - sc->ti_if_collisions);
   2197 	sc->ti_if_collisions = collisions;
   2198 
   2199 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   2200 }
   2201 
   2202 /*
   2203  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   2204  * pointers to descriptors.
   2205  */
   2206 static int
   2207 ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   2208 {
   2209 	struct ti_tx_desc	*f = NULL;
   2210 	uint32_t		frag, cur, cnt = 0;
   2211 	struct txdmamap_pool_entry *dma;
   2212 	bus_dmamap_t dmamap;
   2213 	int error, i;
   2214 	uint16_t csum_flags = 0;
   2215 
   2216 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
   2217 	if (dma == NULL) {
   2218 		return ENOMEM;
   2219 	}
   2220 	dmamap = dma->dmamap;
   2221 
   2222 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
   2223 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2224 	if (error) {
   2225 		struct mbuf *m;
   2226 		int j = 0;
   2227 		for (m = m_head; m; m = m->m_next)
   2228 			j++;
   2229 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
   2230 		       "error %d\n", m_head->m_pkthdr.len, j, error);
   2231 		return (ENOMEM);
   2232 	}
   2233 
   2234 	cur = frag = *txidx;
   2235 
   2236 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   2237 		/* IP header checksum field must be 0! */
   2238 		csum_flags |= TI_BDFLAG_IP_CKSUM;
   2239 	}
   2240 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   2241 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
   2242 
   2243 	/* XXX fragmented packet checksum capability? */
   2244 
   2245 	/*
   2246 	 * Start packing the mbufs in this chain into
   2247 	 * the fragment pointers. Stop when we run out
   2248 	 * of fragments or hit the end of the mbuf chain.
   2249 	 */
   2250 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2251 		if (frag > 383)
   2252 			CSR_WRITE_4(sc, TI_WINBASE,
   2253 			    TI_TX_RING_BASE + 6144);
   2254 		else if (frag > 255)
   2255 			CSR_WRITE_4(sc, TI_WINBASE,
   2256 			    TI_TX_RING_BASE + 4096);
   2257 		else if (frag > 127)
   2258 			CSR_WRITE_4(sc, TI_WINBASE,
   2259 			    TI_TX_RING_BASE + 2048);
   2260 		else
   2261 			CSR_WRITE_4(sc, TI_WINBASE,
   2262 			    TI_TX_RING_BASE);
   2263 		f = &sc->ti_tx_ring_nic[frag % 128];
   2264 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
   2265 			break;
   2266 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
   2267 		f->ti_len = dmamap->dm_segs[i].ds_len;
   2268 		f->ti_flags = csum_flags;
   2269 		if (vlan_has_tag(m_head)) {
   2270 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
   2271 			f->ti_vlan_tag = vlan_get_tag(m_head);
   2272 		} else {
   2273 			f->ti_vlan_tag = 0;
   2274 		}
   2275 		/*
   2276 		 * Sanity check: avoid coming within 16 descriptors
   2277 		 * of the end of the ring.
   2278 		 */
   2279 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
   2280 			return (ENOBUFS);
   2281 		cur = frag;
   2282 		TI_INC(frag, TI_TX_RING_CNT);
   2283 		cnt++;
   2284 	}
   2285 
   2286 	if (i < dmamap->dm_nsegs)
   2287 		return (ENOBUFS);
   2288 
   2289 	if (frag == sc->ti_tx_saved_considx)
   2290 		return (ENOBUFS);
   2291 
   2292 	sc->ti_tx_ring_nic[cur % 128].ti_flags |=
   2293 	    TI_BDFLAG_END;
   2294 
   2295 	/* Sync the packet's DMA map. */
   2296 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   2297 	    BUS_DMASYNC_PREWRITE);
   2298 
   2299 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
   2300 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
   2301 	sc->txdma[cur] = dma;
   2302 	sc->ti_txcnt += cnt;
   2303 
   2304 	*txidx = frag;
   2305 
   2306 	return (0);
   2307 }
   2308 
   2309 static int
   2310 ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   2311 {
   2312 	struct ti_tx_desc	*f = NULL;
   2313 	uint32_t		frag, firstfrag, cur, cnt = 0;
   2314 	struct txdmamap_pool_entry *dma;
   2315 	bus_dmamap_t dmamap;
   2316 	int error, i;
   2317 	uint16_t csum_flags = 0;
   2318 
   2319 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
   2320 	if (dma == NULL) {
   2321 		return ENOMEM;
   2322 	}
   2323 	dmamap = dma->dmamap;
   2324 
   2325 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
   2326 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2327 	if (error) {
   2328 		struct mbuf *m;
   2329 		int j = 0;
   2330 		for (m = m_head; m; m = m->m_next)
   2331 			j++;
   2332 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
   2333 		       "error %d\n", m_head->m_pkthdr.len, j, error);
   2334 		return (ENOMEM);
   2335 	}
   2336 
   2337 	cur = firstfrag = frag = *txidx;
   2338 
   2339 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   2340 		/* IP header checksum field must be 0! */
   2341 		csum_flags |= TI_BDFLAG_IP_CKSUM;
   2342 	}
   2343 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   2344 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
   2345 
   2346 	/* XXX fragmented packet checksum capability? */
   2347 
   2348 	/*
   2349 	 * Start packing the mbufs in this chain into
   2350 	 * the fragment pointers. Stop when we run out
   2351 	 * of fragments or hit the end of the mbuf chain.
   2352 	 */
   2353 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2354 		f = &sc->ti_rdata->ti_tx_ring[frag];
   2355 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
   2356 			break;
   2357 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
   2358 		f->ti_len = dmamap->dm_segs[i].ds_len;
   2359 		f->ti_flags = csum_flags;
   2360 		if (vlan_has_tag(m_head)) {
   2361 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
   2362 			f->ti_vlan_tag = vlan_get_tag(m_head);
   2363 		} else {
   2364 			f->ti_vlan_tag = 0;
   2365 		}
   2366 		/*
   2367 		 * Sanity check: avoid coming within 16 descriptors
   2368 		 * of the end of the ring.
   2369 		 */
   2370 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
   2371 			return (ENOBUFS);
   2372 		cur = frag;
   2373 		TI_INC(frag, TI_TX_RING_CNT);
   2374 		cnt++;
   2375 	}
   2376 
   2377 	if (i < dmamap->dm_nsegs)
   2378 		return (ENOBUFS);
   2379 
   2380 	if (frag == sc->ti_tx_saved_considx)
   2381 		return (ENOBUFS);
   2382 
   2383 	sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
   2384 
   2385 	/* Sync the packet's DMA map. */
   2386 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   2387 	    BUS_DMASYNC_PREWRITE);
   2388 
   2389 	/* Sync the descriptors we are using. */
   2390 	TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
   2391 
   2392 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
   2393 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
   2394 	sc->txdma[cur] = dma;
   2395 	sc->ti_txcnt += cnt;
   2396 
   2397 	*txidx = frag;
   2398 
   2399 	return (0);
   2400 }
   2401 
   2402 /*
   2403  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   2404  * to the mbuf data regions directly in the transmit descriptors.
   2405  */
   2406 static void
   2407 ti_start(struct ifnet *ifp)
   2408 {
   2409 	struct ti_softc	*sc;
   2410 	struct mbuf	*m_head = NULL;
   2411 	uint32_t	prodidx = 0;
   2412 
   2413 	sc = ifp->if_softc;
   2414 
   2415 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
   2416 
   2417 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
   2418 		IFQ_POLL(&ifp->if_snd, m_head);
   2419 		if (m_head == NULL)
   2420 			break;
   2421 
   2422 		/*
   2423 		 * Pack the data into the transmit ring. If we
   2424 		 * don't have room, set the OACTIVE flag and wait
   2425 		 * for the NIC to drain the ring.
   2426 		 */
   2427 		if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
   2428 			ifp->if_flags |= IFF_OACTIVE;
   2429 			break;
   2430 		}
   2431 
   2432 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   2433 
   2434 		/*
   2435 		 * If there's a BPF listener, bounce a copy of this frame
   2436 		 * to him.
   2437 		 */
   2438 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   2439 	}
   2440 
   2441 	/* Transmit */
   2442 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
   2443 
   2444 	/* Set a timeout in case the chip goes out to lunch. */
   2445 	ifp->if_timer = 5;
   2446 }
   2447 
   2448 static void
   2449 ti_init(void *xsc)
   2450 {
   2451 	struct ti_softc		*sc = xsc;
   2452 	int			s;
   2453 
   2454 	s = splnet();
   2455 
   2456 	/* Cancel pending I/O and flush buffers. */
   2457 	ti_stop(sc);
   2458 
   2459 	/* Init the gen info block, ring control blocks and firmware. */
   2460 	if (ti_gibinit(sc)) {
   2461 		aprint_error_dev(sc->sc_dev, "initialization failure\n");
   2462 		splx(s);
   2463 		return;
   2464 	}
   2465 
   2466 	splx(s);
   2467 }
   2468 
   2469 static void
   2470 ti_init2(struct ti_softc *sc)
   2471 {
   2472 	struct ti_cmd_desc	cmd;
   2473 	struct ifnet		*ifp;
   2474 	const uint8_t		*m;
   2475 	struct ifmedia		*ifm;
   2476 	int			tmp;
   2477 
   2478 	ifp = &sc->ethercom.ec_if;
   2479 
   2480 	/* Specify MTU and interface index. */
   2481 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(sc->sc_dev)); /* ??? */
   2482 
   2483 	tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
   2484 	if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   2485 		tmp += ETHER_VLAN_ENCAP_LEN;
   2486 	CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
   2487 
   2488 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
   2489 
   2490 	/* Load our MAC address. */
   2491 	m = (const uint8_t *)CLLADDR(ifp->if_sadl);
   2492 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
   2493 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
   2494 		    | (m[4] << 8) | m[5]);
   2495 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
   2496 
   2497 	/* Enable or disable promiscuous mode as needed. */
   2498 	if (ifp->if_flags & IFF_PROMISC) {
   2499 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
   2500 	} else {
   2501 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
   2502 	}
   2503 
   2504 	/* Program multicast filter. */
   2505 	ti_setmulti(sc);
   2506 
   2507 	/*
   2508 	 * If this is a Tigon 1, we should tell the
   2509 	 * firmware to use software packet filtering.
   2510 	 */
   2511 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
   2512 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
   2513 	}
   2514 
   2515 	/* Init RX ring. */
   2516 	ti_init_rx_ring_std(sc);
   2517 
   2518 	/* Init jumbo RX ring. */
   2519 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
   2520 		ti_init_rx_ring_jumbo(sc);
   2521 
   2522 	/*
   2523 	 * If this is a Tigon 2, we can also configure the
   2524 	 * mini ring.
   2525 	 */
   2526 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
   2527 		ti_init_rx_ring_mini(sc);
   2528 
   2529 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
   2530 	sc->ti_rx_saved_considx = 0;
   2531 
   2532 	/* Init TX ring. */
   2533 	ti_init_tx_ring(sc);
   2534 
   2535 	/* Tell firmware we're alive. */
   2536 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
   2537 
   2538 	/* Enable host interrupts. */
   2539 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
   2540 
   2541 	ifp->if_flags |= IFF_RUNNING;
   2542 	ifp->if_flags &= ~IFF_OACTIVE;
   2543 
   2544 	/*
   2545 	 * Make sure to set media properly. We have to do this
   2546 	 * here since we have to issue commands in order to set
   2547 	 * the link negotiation and we can't issue commands until
   2548 	 * the firmware is running.
   2549 	 */
   2550 	ifm = &sc->ifmedia;
   2551 	tmp = ifm->ifm_media;
   2552 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
   2553 	ti_ifmedia_upd(ifp);
   2554 	ifm->ifm_media = tmp;
   2555 }
   2556 
   2557 /*
   2558  * Set media options.
   2559  */
   2560 static int
   2561 ti_ifmedia_upd(struct ifnet *ifp)
   2562 {
   2563 	struct ti_softc		*sc;
   2564 	struct ifmedia		*ifm;
   2565 	struct ti_cmd_desc	cmd;
   2566 
   2567 	sc = ifp->if_softc;
   2568 	ifm = &sc->ifmedia;
   2569 
   2570 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   2571 		return (EINVAL);
   2572 
   2573 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
   2574 	case IFM_AUTO:
   2575 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB |
   2576 		    TI_GLNK_FULL_DUPLEX | TI_GLNK_RX_FLOWCTL_Y |
   2577 		    TI_GLNK_AUTONEGENB | TI_GLNK_ENB);
   2578 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB | TI_LNK_10MB |
   2579 		    TI_LNK_FULL_DUPLEX | TI_LNK_HALF_DUPLEX |
   2580 		    TI_LNK_AUTONEGENB | TI_LNK_ENB);
   2581 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
   2582 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
   2583 		break;
   2584 	case IFM_1000_SX:
   2585 	case IFM_1000_T:
   2586 		if ((ifm->ifm_media & IFM_FDX) != 0) {
   2587 			CSR_WRITE_4(sc, TI_GCR_GLINK,
   2588 			    TI_GLNK_PREF | TI_GLNK_1000MB | TI_GLNK_FULL_DUPLEX
   2589 			    | TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
   2590 		} else {
   2591 			CSR_WRITE_4(sc, TI_GCR_GLINK,
   2592 			    TI_GLNK_PREF | TI_GLNK_1000MB |
   2593 			    TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
   2594 		}
   2595 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
   2596 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
   2597 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
   2598 		break;
   2599 	case IFM_100_FX:
   2600 	case IFM_10_FL:
   2601 	case IFM_100_TX:
   2602 	case IFM_10_T:
   2603 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
   2604 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB | TI_LNK_PREF);
   2605 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
   2606 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
   2607 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
   2608 		} else {
   2609 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
   2610 		}
   2611 		if ((ifm->ifm_media & IFM_FDX) != 0) {
   2612 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
   2613 		} else {
   2614 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
   2615 		}
   2616 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
   2617 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
   2618 		break;
   2619 	}
   2620 
   2621 	sc->ethercom.ec_if.if_baudrate =
   2622 	    ifmedia_baudrate(ifm->ifm_media);
   2623 
   2624 	return (0);
   2625 }
   2626 
   2627 /*
   2628  * Report current media status.
   2629  */
   2630 static void
   2631 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   2632 {
   2633 	struct ti_softc		*sc;
   2634 	uint32_t		media = 0;
   2635 
   2636 	sc = ifp->if_softc;
   2637 
   2638 	ifmr->ifm_status = IFM_AVALID;
   2639 	ifmr->ifm_active = IFM_ETHER;
   2640 
   2641 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
   2642 		return;
   2643 
   2644 	ifmr->ifm_status |= IFM_ACTIVE;
   2645 
   2646 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
   2647 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
   2648 		if (sc->ti_copper)
   2649 			ifmr->ifm_active |= IFM_1000_T;
   2650 		else
   2651 			ifmr->ifm_active |= IFM_1000_SX;
   2652 		if (media & TI_GLNK_FULL_DUPLEX)
   2653 			ifmr->ifm_active |= IFM_FDX;
   2654 		else
   2655 			ifmr->ifm_active |= IFM_HDX;
   2656 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
   2657 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
   2658 		if (sc->ti_copper) {
   2659 			if (media & TI_LNK_100MB)
   2660 				ifmr->ifm_active |= IFM_100_TX;
   2661 			if (media & TI_LNK_10MB)
   2662 				ifmr->ifm_active |= IFM_10_T;
   2663 		} else {
   2664 			if (media & TI_LNK_100MB)
   2665 				ifmr->ifm_active |= IFM_100_FX;
   2666 			if (media & TI_LNK_10MB)
   2667 				ifmr->ifm_active |= IFM_10_FL;
   2668 		}
   2669 		if (media & TI_LNK_FULL_DUPLEX)
   2670 			ifmr->ifm_active |= IFM_FDX;
   2671 		if (media & TI_LNK_HALF_DUPLEX)
   2672 			ifmr->ifm_active |= IFM_HDX;
   2673 	}
   2674 
   2675 	sc->ethercom.ec_if.if_baudrate =
   2676 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
   2677 }
   2678 
   2679 static int
   2680 ti_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2681 {
   2682 	struct ifaddr *ifa = (struct ifaddr *)data;
   2683 	struct ti_softc *sc = ifp->if_softc;
   2684 
   2685 	if ((ifp->if_flags & IFF_UP) == 0) {
   2686 		ifp->if_flags |= IFF_UP;
   2687 		ti_init(sc);
   2688 	}
   2689 
   2690 	switch (cmd) {
   2691 	case SIOCINITIFADDR:
   2692 
   2693 		switch (ifa->ifa_addr->sa_family) {
   2694 #ifdef INET
   2695 		case AF_INET:
   2696 			arp_ifinit(ifp, ifa);
   2697 			break;
   2698 #endif
   2699 		default:
   2700 			break;
   2701 		}
   2702 		break;
   2703 
   2704 	default:
   2705 		return (EINVAL);
   2706 	}
   2707 
   2708 	return (0);
   2709 }
   2710 
   2711 static int
   2712 ti_ioctl(struct ifnet *ifp, u_long command, void *data)
   2713 {
   2714 	struct ti_softc		*sc = ifp->if_softc;
   2715 	struct ifreq		*ifr = (struct ifreq *)data;
   2716 	int			s, error = 0;
   2717 	struct ti_cmd_desc	cmd;
   2718 
   2719 	s = splnet();
   2720 
   2721 	switch (command) {
   2722 	case SIOCINITIFADDR:
   2723 		error = ti_ether_ioctl(ifp, command, data);
   2724 		break;
   2725 	case SIOCSIFMTU:
   2726 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
   2727 			error = EINVAL;
   2728 		else if ((error = ifioctl_common(ifp, command, data))
   2729 		    == ENETRESET) {
   2730 			ti_init(sc);
   2731 			error = 0;
   2732 		}
   2733 		break;
   2734 	case SIOCSIFFLAGS:
   2735 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   2736 			break;
   2737 		if (ifp->if_flags & IFF_UP) {
   2738 			/*
   2739 			 * If only the state of the PROMISC flag changed,
   2740 			 * then just use the 'set promisc mode' command
   2741 			 * instead of reinitializing the entire NIC. Doing
   2742 			 * a full re-init means reloading the firmware and
   2743 			 * waiting for it to start up, which may take a
   2744 			 * second or two.
   2745 			 */
   2746 			if (ifp->if_flags & IFF_RUNNING &&
   2747 			    ifp->if_flags & IFF_PROMISC &&
   2748 			    !(sc->ti_if_flags & IFF_PROMISC)) {
   2749 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
   2750 				    TI_CMD_CODE_PROMISC_ENB, 0);
   2751 			} else if (ifp->if_flags & IFF_RUNNING &&
   2752 			    !(ifp->if_flags & IFF_PROMISC) &&
   2753 			    sc->ti_if_flags & IFF_PROMISC) {
   2754 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
   2755 				    TI_CMD_CODE_PROMISC_DIS, 0);
   2756 			} else
   2757 				ti_init(sc);
   2758 		} else {
   2759 			if (ifp->if_flags & IFF_RUNNING) {
   2760 				ti_stop(sc);
   2761 			}
   2762 		}
   2763 		sc->ti_if_flags = ifp->if_flags;
   2764 		error = 0;
   2765 		break;
   2766 	default:
   2767 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   2768 			break;
   2769 
   2770 		error = 0;
   2771 
   2772 		if (command == SIOCSIFCAP)
   2773 			ti_init(sc);
   2774 		else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   2775 			;
   2776 		else if (ifp->if_flags & IFF_RUNNING)
   2777 			ti_setmulti(sc);
   2778 		break;
   2779 	}
   2780 
   2781 	(void)splx(s);
   2782 
   2783 	return (error);
   2784 }
   2785 
   2786 static void
   2787 ti_watchdog(struct ifnet *ifp)
   2788 {
   2789 	struct ti_softc		*sc;
   2790 
   2791 	sc = ifp->if_softc;
   2792 
   2793 	aprint_error_dev(sc->sc_dev, "watchdog timeout -- resetting\n");
   2794 	ti_stop(sc);
   2795 	ti_init(sc);
   2796 
   2797 	if_statinc(ifp, if_oerrors);
   2798 }
   2799 
   2800 /*
   2801  * Stop the adapter and free any mbufs allocated to the
   2802  * RX and TX lists.
   2803  */
   2804 static void
   2805 ti_stop(struct ti_softc *sc)
   2806 {
   2807 	struct ifnet		*ifp;
   2808 	struct ti_cmd_desc	cmd;
   2809 
   2810 	ifp = &sc->ethercom.ec_if;
   2811 
   2812 	/* Disable host interrupts. */
   2813 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
   2814 	/*
   2815 	 * Tell firmware we're shutting down.
   2816 	 */
   2817 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
   2818 
   2819 	/* Halt and reinitialize. */
   2820 	ti_chipinit(sc);
   2821 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
   2822 	ti_chipinit(sc);
   2823 
   2824 	/* Free the RX lists. */
   2825 	ti_free_rx_ring_std(sc);
   2826 
   2827 	/* Free jumbo RX list. */
   2828 	ti_free_rx_ring_jumbo(sc);
   2829 
   2830 	/* Free mini RX list. */
   2831 	ti_free_rx_ring_mini(sc);
   2832 
   2833 	/* Free TX buffers. */
   2834 	ti_free_tx_ring(sc);
   2835 
   2836 	sc->ti_ev_prodidx.ti_idx = 0;
   2837 	sc->ti_return_prodidx.ti_idx = 0;
   2838 	sc->ti_tx_considx.ti_idx = 0;
   2839 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
   2840 
   2841 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2842 }
   2843 
   2844 /*
   2845  * Stop all chip I/O so that the kernel's probe routines don't
   2846  * get confused by errant DMAs when rebooting.
   2847  */
   2848 static bool
   2849 ti_shutdown(device_t self, int howto)
   2850 {
   2851 	struct ti_softc *sc;
   2852 
   2853 	sc = device_private(self);
   2854 	ti_chipinit(sc);
   2855 
   2856 	return true;
   2857 }
   2858