Home | History | Annotate | Line # | Download | only in pci
      1 /*	$NetBSD: twe.c,v 1.111 2024/02/02 22:26:58 andvar Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 2000 Michael Smith
     34  * Copyright (c) 2000 BSDi
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  *
     46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     56  * SUCH DAMAGE.
     57  *
     58  * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
     59  */
     60 
     61 /*
     62  * Driver for the 3ware Escalade family of RAID controllers.
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.111 2024/02/02 22:26:58 andvar Exp $");
     67 
     68 #include <sys/param.h>
     69 #include <sys/systm.h>
     70 #include <sys/kernel.h>
     71 #include <sys/device.h>
     72 #include <sys/queue.h>
     73 #include <sys/proc.h>
     74 #include <sys/buf.h>
     75 #include <sys/endian.h>
     76 #include <sys/malloc.h>
     77 #include <sys/conf.h>
     78 #include <sys/disk.h>
     79 #include <sys/sysctl.h>
     80 #include <sys/syslog.h>
     81 #include <sys/kauth.h>
     82 #include <sys/module.h>
     83 #include <sys/bswap.h>
     84 #include <sys/bus.h>
     85 
     86 #include <dev/pci/pcireg.h>
     87 #include <dev/pci/pcivar.h>
     88 #include <dev/pci/pcidevs.h>
     89 #include <dev/pci/twereg.h>
     90 #include <dev/pci/twevar.h>
     91 #include <dev/pci/tweio.h>
     92 
     93 #include "locators.h"
     94 #include "ioconf.h"
     95 
     96 #define	PCI_CBIO	0x10
     97 
     98 static int	twe_aen_get(struct twe_softc *, uint16_t *);
     99 static void	twe_aen_handler(struct twe_ccb *, int);
    100 static void	twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
    101 static uint16_t	twe_aen_dequeue(struct twe_softc *);
    102 
    103 static void	twe_attach(device_t, device_t, void *);
    104 static int	twe_rescan(device_t, const char *, const int *);
    105 static int	twe_init_connection(struct twe_softc *);
    106 static int	twe_intr(void *);
    107 static int	twe_match(device_t, cfdata_t, void *);
    108 static int	twe_param_set(struct twe_softc *, int, int, size_t, void *);
    109 static void	twe_poll(struct twe_softc *);
    110 static int	twe_print(void *, const char *);
    111 static int	twe_reset(struct twe_softc *);
    112 static int	twe_status_check(struct twe_softc *, u_int);
    113 static int	twe_status_wait(struct twe_softc *, u_int, int);
    114 static void	twe_describe_controller(struct twe_softc *);
    115 static void	twe_clear_pci_abort(struct twe_softc *sc);
    116 static void	twe_clear_pci_parity_error(struct twe_softc *sc);
    117 
    118 static int	twe_add_unit(struct twe_softc *, int);
    119 static int	twe_del_unit(struct twe_softc *, int);
    120 static int	twe_init_connection(struct twe_softc *);
    121 
    122 static inline u_int32_t	twe_inl(struct twe_softc *, int);
    123 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
    124 
    125 extern struct	cfdriver twe_cd;
    126 
    127 CFATTACH_DECL3_NEW(twe, sizeof(struct twe_softc),
    128     twe_match, twe_attach, NULL, NULL, twe_rescan, NULL, 0);
    129 
    130 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
    131 const char twever[] = "1.50.01.002";
    132 
    133 /*
    134  * Tables to convert numeric codes to strings.
    135  */
    136 const struct twe_code_table twe_table_status[] = {
    137 	{ 0x00,	"successful completion" },
    138 
    139 	/* info */
    140 	{ 0x42,	"command in progress" },
    141 	{ 0x6c,	"retrying interface CRC error from UDMA command" },
    142 
    143 	/* warning */
    144 	{ 0x81,	"redundant/inconsequential request ignored" },
    145 	{ 0x8e,	"failed to write zeroes to LBA 0" },
    146 	{ 0x8f,	"failed to profile TwinStor zones" },
    147 
    148 	/* fatal */
    149 	{ 0xc1,	"aborted due to system command or reconfiguration" },
    150 	{ 0xc4,	"aborted" },
    151 	{ 0xc5,	"access error" },
    152 	{ 0xc6,	"access violation" },
    153 	{ 0xc7,	"device failure" },	/* high byte may be port # */
    154 	{ 0xc8,	"controller error" },
    155 	{ 0xc9,	"timed out" },
    156 	{ 0xcb,	"invalid unit number" },
    157 	{ 0xcf,	"unit not available" },
    158 	{ 0xd2,	"undefined opcode" },
    159 	{ 0xdb,	"request incompatible with unit" },
    160 	{ 0xdc,	"invalid request" },
    161 	{ 0xff,	"firmware error, reset requested" },
    162 
    163 	{ 0,	NULL }
    164 };
    165 
    166 const struct twe_code_table twe_table_unitstate[] = {
    167 	{ TWE_PARAM_UNITSTATUS_Normal,		"Normal" },
    168 	{ TWE_PARAM_UNITSTATUS_Initialising,	"Initializing" },
    169 	{ TWE_PARAM_UNITSTATUS_Degraded,	"Degraded" },
    170 	{ TWE_PARAM_UNITSTATUS_Rebuilding,	"Rebuilding" },
    171 	{ TWE_PARAM_UNITSTATUS_Verifying,	"Verifying" },
    172 	{ TWE_PARAM_UNITSTATUS_Corrupt,		"Corrupt" },
    173 	{ TWE_PARAM_UNITSTATUS_Missing,		"Missing" },
    174 
    175 	{ 0,					NULL }
    176 };
    177 
    178 const struct twe_code_table twe_table_unittype[] = {
    179 	/* array descriptor configuration */
    180 	{ TWE_AD_CONFIG_RAID0,			"RAID0" },
    181 	{ TWE_AD_CONFIG_RAID1,			"RAID1" },
    182 	{ TWE_AD_CONFIG_TwinStor,		"TwinStor" },
    183 	{ TWE_AD_CONFIG_RAID5,			"RAID5" },
    184 	{ TWE_AD_CONFIG_RAID10,			"RAID10" },
    185 	{ TWE_UD_CONFIG_JBOD,			"JBOD" },
    186 
    187 	{ 0,					NULL }
    188 };
    189 
    190 const struct twe_code_table twe_table_stripedepth[] = {
    191 	{ TWE_AD_STRIPE_4k,			"4K" },
    192 	{ TWE_AD_STRIPE_8k,			"8K" },
    193 	{ TWE_AD_STRIPE_16k,			"16K" },
    194 	{ TWE_AD_STRIPE_32k,			"32K" },
    195 	{ TWE_AD_STRIPE_64k,			"64K" },
    196 	{ TWE_AD_STRIPE_128k,			"128K" },
    197 	{ TWE_AD_STRIPE_256k,			"256K" },
    198 	{ TWE_AD_STRIPE_512k,			"512K" },
    199 	{ TWE_AD_STRIPE_1024k,			"1024K" },
    200 
    201 	{ 0,					NULL }
    202 };
    203 
    204 /*
    205  * Asynchronous event notification messages are qualified:
    206  *	a - not unit/port specific
    207  *	u - unit specific
    208  *	p - port specific
    209  *
    210  * They are further qualified with a severity:
    211  *	E - LOG_EMERG
    212  *	a - LOG_ALERT
    213  *	c - LOG_CRIT
    214  *	e - LOG_ERR
    215  *	w - LOG_WARNING
    216  *	n - LOG_NOTICE
    217  *	i - LOG_INFO
    218  *	d - LOG_DEBUG
    219  *	blank - just use printf
    220  */
    221 const struct twe_code_table twe_table_aen[] = {
    222 	{ 0x00,	"a  queue empty" },
    223 	{ 0x01,	"a  soft reset" },
    224 	{ 0x02,	"uc degraded mode" },
    225 	{ 0x03,	"aa controller error" },
    226 	{ 0x04,	"uE rebuild fail" },
    227 	{ 0x05,	"un rebuild done" },
    228 	{ 0x06,	"ue incomplete unit" },
    229 	{ 0x07,	"un initialization done" },
    230 	{ 0x08,	"uw unclean shutdown detected" },
    231 	{ 0x09,	"pe drive timeout" },
    232 	{ 0x0a,	"pc drive error" },
    233 	{ 0x0b,	"un rebuild started" },
    234 	{ 0x0c,	"un initialization started" },
    235 	{ 0x0d,	"ui logical unit deleted" },
    236 	{ 0x0f,	"pc SMART threshold exceeded" },
    237 	{ 0x15,	"a  table undefined" },	/* XXX: Not in FreeBSD's table */
    238 	{ 0x21,	"pe ATA UDMA downgrade" },
    239 	{ 0x22,	"pi ATA UDMA upgrade" },
    240 	{ 0x23,	"pw sector repair occurred" },
    241 	{ 0x24,	"aa SBUF integrity check failure" },
    242 	{ 0x25,	"pa lost cached write" },
    243 	{ 0x26,	"pa drive ECC error detected" },
    244 	{ 0x27,	"pe DCB checksum error" },
    245 	{ 0x28,	"pn DCB unsupported version" },
    246 	{ 0x29,	"ui verify started" },
    247 	{ 0x2a,	"ua verify failed" },
    248 	{ 0x2b,	"ui verify complete" },
    249 	{ 0x2c,	"pw overwrote bad sector during rebuild" },
    250 	{ 0x2d,	"pa encountered bad sector during rebuild" },
    251 	{ 0x2e,	"pe replacement drive too small" },
    252 	{ 0x2f,	"ue array not previously initialized" },
    253 	{ 0x30,	"p  drive not supported" },
    254 	{ 0xff,	"a  aen queue full" },
    255 
    256 	{ 0,	NULL },
    257 };
    258 
    259 const char *
    260 twe_describe_code(const struct twe_code_table *table, uint32_t code)
    261 {
    262 
    263 	for (; table->string != NULL; table++) {
    264 		if (table->code == code)
    265 			return (table->string);
    266 	}
    267 	return (NULL);
    268 }
    269 
    270 static inline u_int32_t
    271 twe_inl(struct twe_softc *sc, int off)
    272 {
    273 
    274 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
    275 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
    276 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
    277 }
    278 
    279 static inline void
    280 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
    281 {
    282 
    283 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
    284 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
    285 	    BUS_SPACE_BARRIER_WRITE);
    286 }
    287 
    288 /*
    289  * Match a supported board.
    290  */
    291 static int
    292 twe_match(device_t parent, cfdata_t cfdata, void *aux)
    293 {
    294 	struct pci_attach_args *pa;
    295 
    296 	pa = aux;
    297 
    298 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
    299 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
    300 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
    301 }
    302 
    303 /*
    304  * Attach a supported board.
    305  *
    306  * XXX This doesn't fail gracefully.
    307  */
    308 static void
    309 twe_attach(device_t parent, device_t self, void *aux)
    310 {
    311 	struct pci_attach_args *pa;
    312 	struct twe_softc *sc;
    313 	pci_chipset_tag_t pc;
    314 	pci_intr_handle_t ih;
    315 	pcireg_t csr;
    316 	const char *intrstr;
    317 	int s, size, i, rv, rseg;
    318 	size_t max_segs, max_xfer;
    319 	bus_dma_segment_t seg;
    320 	const struct sysctlnode *node;
    321 	struct twe_cmd *tc;
    322 	struct twe_ccb *ccb;
    323 	char intrbuf[PCI_INTRSTR_LEN];
    324 
    325 	sc = device_private(self);
    326 	sc->sc_dev = self;
    327 	pa = aux;
    328 	pc = pa->pa_pc;
    329 	sc->sc_dmat = pa->pa_dmat;
    330 	SIMPLEQ_INIT(&sc->sc_ccb_queue);
    331 	SLIST_INIT(&sc->sc_ccb_freelist);
    332 
    333 	aprint_naive(": RAID controller\n");
    334 	aprint_normal(": 3ware Escalade\n");
    335 
    336 
    337 	if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
    338 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
    339 		aprint_error_dev(self, "can't map i/o space\n");
    340 		return;
    341 	}
    342 
    343 	/* Enable the device. */
    344 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    345 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    346 	    csr | PCI_COMMAND_MASTER_ENABLE);
    347 
    348 	/* Map and establish the interrupt. */
    349 	if (pci_intr_map(pa, &ih)) {
    350 		aprint_error_dev(self, "can't map interrupt\n");
    351 		return;
    352 	}
    353 
    354 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    355 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_BIO, twe_intr, sc,
    356 	    device_xname(self));
    357 	if (sc->sc_ih == NULL) {
    358 		aprint_error_dev(self, "can't establish interrupt%s%s\n",
    359 			(intrstr) ? " at " : "",
    360 			(intrstr) ? intrstr : "");
    361 		return;
    362 	}
    363 
    364 	if (intrstr != NULL)
    365 		aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    366 
    367 	/*
    368 	 * Allocate and initialise the command blocks and CCBs.
    369 	 */
    370 	size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
    371 
    372 	if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
    373 	    &rseg, BUS_DMA_NOWAIT)) != 0) {
    374 		aprint_error_dev(self,
    375 		    "unable to allocate commands, rv = %d\n", rv);
    376 		return;
    377 	}
    378 
    379 	if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
    380 	    (void **)&sc->sc_cmds,
    381 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    382 		aprint_error_dev(self,
    383 		    "unable to map commands, rv = %d\n", rv);
    384 		return;
    385 	}
    386 
    387 	if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
    388 	    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    389 		aprint_error_dev(self,
    390 		    "unable to create command DMA map, rv = %d\n", rv);
    391 		return;
    392 	}
    393 
    394 	if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
    395 	    size, NULL, BUS_DMA_NOWAIT)) != 0) {
    396 		aprint_error_dev(self,
    397 		    "unable to load command DMA map, rv = %d\n", rv);
    398 		return;
    399 	}
    400 
    401 	sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
    402 	memset(sc->sc_cmds, 0, size);
    403 
    404 	tc = (struct twe_cmd *)sc->sc_cmds;
    405 	max_segs = twe_get_maxsegs();
    406 	max_xfer = twe_get_maxxfer(max_segs);
    407 
    408 	ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_WAITOK);
    409 	sc->sc_ccbs = ccb;
    410 
    411 	for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
    412 		ccb->ccb_cmd = tc;
    413 		ccb->ccb_cmdid = i;
    414 		ccb->ccb_flags = 0;
    415 		rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
    416 		    max_segs, PAGE_SIZE, 0,
    417 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    418 		    &ccb->ccb_dmamap_xfer);
    419 		if (rv != 0) {
    420 			aprint_error_dev(self,
    421 			    "can't create dmamap, rv = %d\n", rv);
    422 			return;
    423 		}
    424 
    425 		/* Save the first CCB for AEN retrieval. */
    426 		if (i != 0)
    427 			SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
    428 			    ccb_chain.slist);
    429 	}
    430 
    431 	/* Wait for the controller to become ready. */
    432 	if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
    433 		aprint_error_dev(self, "microcontroller not ready\n");
    434 		return;
    435 	}
    436 
    437 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
    438 
    439 	/* Reset the controller. */
    440 	s = splbio();
    441 	rv = twe_reset(sc);
    442 	splx(s);
    443 	if (rv) {
    444 		aprint_error_dev(self, "reset failed\n");
    445 		return;
    446 	}
    447 
    448 	/* Initialise connection with controller. */
    449 	twe_init_connection(sc);
    450 
    451 	twe_describe_controller(sc);
    452 
    453 	/* Find and attach RAID array units. */
    454 	twe_rescan(self, NULL, NULL);
    455 
    456 	/* ...and finally, enable interrupts. */
    457 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
    458 	    TWE_CTL_UNMASK_RESP_INTR |
    459 	    TWE_CTL_ENABLE_INTRS);
    460 
    461 	/* sysctl set-up for 3ware cli */
    462 	if (sysctl_createv(NULL, 0, NULL, &node,
    463 				0, CTLTYPE_NODE, device_xname(self),
    464 				SYSCTL_DESCR("twe driver information"),
    465 				NULL, 0, NULL, 0,
    466 				CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
    467 		aprint_error_dev(self, "could not create %s.%s sysctl node\n",
    468 		    "hw", device_xname(self));
    469 		return;
    470 	}
    471 	if ((i = sysctl_createv(NULL, 0, NULL, NULL,
    472 				0, CTLTYPE_STRING, "driver_version",
    473 				SYSCTL_DESCR("twe0 driver version"),
    474 				NULL, 0, __UNCONST(&twever), 0,
    475 				CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
    476 				!= 0) {
    477 		aprint_error_dev(self,
    478 		    "could not create %s.%s.driver_version sysctl\n",
    479 		    "hw", device_xname(self));
    480 		return;
    481 	}
    482 }
    483 
    484 static int
    485 twe_rescan(device_t self, const char *ifattr, const int *locs)
    486 {
    487 	struct twe_softc *sc;
    488 	int i;
    489 
    490 	sc = device_private(self);
    491 	sc->sc_nunits = 0;
    492 	for (i = 0; i < TWE_MAX_UNITS; i++)
    493 		(void) twe_add_unit(sc, i);
    494 	return 0;
    495 }
    496 
    497 
    498 void
    499 twe_register_callbacks(struct twe_softc *sc, int unit,
    500     const struct twe_callbacks *tcb)
    501 {
    502 
    503 	sc->sc_units[unit].td_callbacks = tcb;
    504 }
    505 
    506 static void
    507 twe_recompute_openings(struct twe_softc *sc)
    508 {
    509 	struct twe_drive *td;
    510 	int unit, openings;
    511 
    512 	if (sc->sc_nunits != 0)
    513 		openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
    514 	else
    515 		openings = 0;
    516 	if (openings == sc->sc_openings)
    517 		return;
    518 	sc->sc_openings = openings;
    519 
    520 #ifdef TWE_DEBUG
    521 	printf("%s: %d array%s, %d openings per array\n",
    522 	    device_xname(sc->sc_dev), sc->sc_nunits,
    523 	    sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
    524 #endif
    525 
    526 	for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
    527 		td = &sc->sc_units[unit];
    528 		if (td->td_dev != NULL)
    529 			(*td->td_callbacks->tcb_openings)(td->td_dev,
    530 			    sc->sc_openings);
    531 	}
    532 }
    533 
    534 static int
    535 twe_add_unit(struct twe_softc *sc, int unit)
    536 {
    537 	struct twe_param *dtp, *atp;
    538 	struct twe_array_descriptor *ad;
    539 	struct twe_drive *td;
    540 	struct twe_attach_args twea;
    541 	uint32_t newsize;
    542 	int rv;
    543 	uint16_t dsize;
    544 	uint8_t newtype, newstripe;
    545 	int locs[TWECF_NLOCS];
    546 
    547 	if (unit < 0 || unit >= TWE_MAX_UNITS)
    548 		return (EINVAL);
    549 
    550 	/* Find attached units. */
    551 	rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
    552 	    TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
    553 	if (rv != 0) {
    554 		aprint_error_dev(sc->sc_dev,
    555 		    "error %d fetching unit summary\n", rv);
    556 		return (rv);
    557 	}
    558 
    559 	/* For each detected unit, collect size and store in an array. */
    560 	td = &sc->sc_units[unit];
    561 
    562 	/* Unit present? */
    563 	if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
    564 		/*
    565 		 * XXX Should we check to see if a device has been
    566 		 * XXX attached at this index and detach it if it
    567 		 * XXX has?  ("rescan" semantics)
    568 		 */
    569 		rv = 0;
    570 		goto out;
    571    	}
    572 
    573 	rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
    574 	    TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
    575 	if (rv != 0) {
    576 		aprint_error_dev(sc->sc_dev,
    577 		    "error %d fetching descriptor size for unit %d\n",
    578 		    rv, unit);
    579 		goto out;
    580 	}
    581 
    582 	rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
    583 	    TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
    584 	if (rv != 0) {
    585 		aprint_error_dev(sc->sc_dev,
    586 		    "error %d fetching array descriptor for unit %d\n",
    587 		    rv, unit);
    588 		goto out;
    589 	}
    590 
    591 	ad = (struct twe_array_descriptor *)atp->tp_data;
    592 	newtype = ad->configuration;
    593 	newstripe = ad->stripe_size;
    594 	free(atp, M_DEVBUF);
    595 
    596 	rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
    597 	    TWE_PARAM_UNITINFO_Capacity, &newsize);
    598 	if (rv != 0) {
    599 		aprint_error_dev(sc->sc_dev,
    600 		    "error %d fetching capacity for unit %d\n",
    601 		    rv, unit);
    602 		goto out;
    603 	}
    604 
    605 	/*
    606 	 * Have a device, so we need to attach it.  If there is currently
    607 	 * something sitting at the slot, and the parameters are different,
    608 	 * then we detach the old device before attaching the new one.
    609 	 */
    610 	if (td->td_dev != NULL &&
    611 	    td->td_size == newsize &&
    612 	    td->td_type == newtype &&
    613 	    td->td_stripe == newstripe) {
    614 		/* Same as the old device; just keep using it. */
    615 		rv = 0;
    616 		goto out;
    617 	} else if (td->td_dev != NULL) {
    618 		/* Detach the old device first. */
    619 		(void) config_detach(td->td_dev, DETACH_FORCE);
    620 		td->td_dev = NULL;
    621 	} else if (td->td_size == 0)
    622 		sc->sc_nunits++;
    623 
    624 	/*
    625 	 * Committed to the new array unit; assign its parameters and
    626 	 * recompute the number of available command openings.
    627 	 */
    628 	td->td_size = newsize;
    629 	td->td_type = newtype;
    630 	td->td_stripe = newstripe;
    631 	twe_recompute_openings(sc);
    632 
    633 	twea.twea_unit = unit;
    634 
    635 	locs[TWECF_UNIT] = unit;
    636 
    637 	td->td_dev = config_found(sc->sc_dev, &twea, twe_print,
    638 	    CFARGS(.submatch = config_stdsubmatch,
    639 		   .locators = locs));
    640 
    641 	rv = 0;
    642  out:
    643 	free(dtp, M_DEVBUF);
    644 	return (rv);
    645 }
    646 
    647 static int
    648 twe_del_unit(struct twe_softc *sc, int unit)
    649 {
    650 	struct twe_drive *td;
    651 
    652 	if (unit < 0 || unit >= TWE_MAX_UNITS)
    653 		return (EINVAL);
    654 
    655 	td = &sc->sc_units[unit];
    656 	if (td->td_size != 0)
    657 		sc->sc_nunits--;
    658 	td->td_size = 0;
    659 	td->td_type = 0;
    660 	td->td_stripe = 0;
    661 	if (td->td_dev != NULL) {
    662 		(void) config_detach(td->td_dev, DETACH_FORCE);
    663 		td->td_dev = NULL;
    664 	}
    665 	twe_recompute_openings(sc);
    666 	return (0);
    667 }
    668 
    669 /*
    670  * Reset the controller.
    671  * MUST BE CALLED AT splbio()!
    672  */
    673 static int
    674 twe_reset(struct twe_softc *sc)
    675 {
    676 	uint16_t aen;
    677 	u_int status;
    678 	int got, rv;
    679 
    680 	/* Issue a soft reset. */
    681 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
    682 	    TWE_CTL_CLEAR_HOST_INTR |
    683 	    TWE_CTL_CLEAR_ATTN_INTR |
    684 	    TWE_CTL_MASK_CMD_INTR |
    685 	    TWE_CTL_MASK_RESP_INTR |
    686 	    TWE_CTL_CLEAR_ERROR_STS |
    687 	    TWE_CTL_DISABLE_INTRS);
    688 
    689 	/* Wait for attention... */
    690 	if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
    691 		aprint_error_dev(sc->sc_dev,
    692 		    "timeout waiting for attention interrupt\n");
    693 		return (-1);
    694 	}
    695 
    696 	/* ...and ACK it. */
    697 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
    698 
    699 	/*
    700 	 * Pull AENs out of the controller; look for a soft reset AEN.
    701 	 * Open code this, since we want to detect reset even if the
    702 	 * queue for management tools is full.
    703 	 *
    704 	 * Note that since:
    705 	 *	- interrupts are blocked
    706 	 *	- we have reset the controller
    707 	 *	- acknowledged the pending ATTENTION
    708 	 * that there is no way a pending asynchronous AEN fetch would
    709 	 * finish, so clear the flag.
    710 	 */
    711 	sc->sc_flags &= ~TWEF_AEN;
    712 	for (got = 0;;) {
    713 		rv = twe_aen_get(sc, &aen);
    714 		if (rv != 0)
    715 			printf("%s: error %d while draining event queue\n",
    716 			    device_xname(sc->sc_dev), rv);
    717 		if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
    718 			break;
    719 		if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
    720 			got = 1;
    721 		twe_aen_enqueue(sc, aen, 1);
    722 	}
    723 
    724 	if (!got) {
    725 		printf("%s: reset not reported\n", device_xname(sc->sc_dev));
    726 		return (-1);
    727 	}
    728 
    729 	/* Check controller status. */
    730 	status = twe_inl(sc, TWE_REG_STS);
    731 	if (twe_status_check(sc, status)) {
    732 		printf("%s: controller errors detected\n",
    733 		    device_xname(sc->sc_dev));
    734 		return (-1);
    735 	}
    736 
    737 	/* Drain the response queue. */
    738 	for (;;) {
    739 		status = twe_inl(sc, TWE_REG_STS);
    740 		if (twe_status_check(sc, status) != 0) {
    741 			aprint_error_dev(sc->sc_dev,
    742 			    "can't drain response queue\n");
    743 			return (-1);
    744 		}
    745 		if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
    746 			break;
    747 		(void)twe_inl(sc, TWE_REG_RESP_QUEUE);
    748 	}
    749 
    750 	return (0);
    751 }
    752 
    753 /*
    754  * Print autoconfiguration message for a sub-device.
    755  */
    756 static int
    757 twe_print(void *aux, const char *pnp)
    758 {
    759 	struct twe_attach_args *twea;
    760 
    761 	twea = aux;
    762 
    763 	if (pnp != NULL)
    764 		aprint_normal("block device at %s", pnp);
    765 	aprint_normal(" unit %d", twea->twea_unit);
    766 	return (UNCONF);
    767 }
    768 
    769 /*
    770  * Interrupt service routine.
    771  */
    772 static int
    773 twe_intr(void *arg)
    774 {
    775 	struct twe_softc *sc;
    776 	u_int status;
    777 	int caught, rv;
    778 
    779 	sc = arg;
    780 	caught = 0;
    781 	status = twe_inl(sc, TWE_REG_STS);
    782 	twe_status_check(sc, status);
    783 
    784 	/* Host interrupts - purpose unknown. */
    785 	if ((status & TWE_STS_HOST_INTR) != 0) {
    786 #ifdef DEBUG
    787 		printf("%s: host interrupt\n", device_xname(sc->sc_dev));
    788 #endif
    789 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
    790 		caught = 1;
    791 	}
    792 
    793 	/*
    794 	 * Attention interrupts, signalled when a controller or child device
    795 	 * state change has occurred.
    796 	 */
    797 	if ((status & TWE_STS_ATTN_INTR) != 0) {
    798 		rv = twe_aen_get(sc, NULL);
    799 		if (rv != 0)
    800 			aprint_error_dev(sc->sc_dev,
    801 			    "unable to retrieve AEN (%d)\n", rv);
    802 		else
    803 			twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
    804 		caught = 1;
    805 	}
    806 
    807 	/*
    808 	 * Command interrupts, signalled when the controller can accept more
    809 	 * commands.  We don't use this; instead, we try to submit commands
    810 	 * when we receive them, and when other commands have completed.
    811 	 * Mask it so we don't get another one.
    812 	 */
    813 	if ((status & TWE_STS_CMD_INTR) != 0) {
    814 #ifdef DEBUG
    815 		printf("%s: command interrupt\n", device_xname(sc->sc_dev));
    816 #endif
    817 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
    818 		caught = 1;
    819 	}
    820 
    821 	if ((status & TWE_STS_RESP_INTR) != 0) {
    822 		twe_poll(sc);
    823 		caught = 1;
    824 	}
    825 
    826 	return (caught);
    827 }
    828 
    829 /*
    830  * Fetch an AEN.  Even though this is really like parameter
    831  * retrieval, we handle this specially, because we issue this
    832  * AEN retrieval command from interrupt context, and thus
    833  * reserve a CCB for it to avoid resource shortage.
    834  *
    835  * XXX There are still potential resource shortages we could
    836  * XXX encounter.  Consider pre-allocating all AEN-related
    837  * XXX resources.
    838  *
    839  * MUST BE CALLED AT splbio()!
    840  */
    841 static int
    842 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
    843 {
    844 	struct twe_ccb *ccb;
    845 	struct twe_cmd *tc;
    846 	struct twe_param *tp;
    847 	int rv;
    848 
    849 	/*
    850 	 * If we're already retrieving an AEN, just wait; another
    851 	 * retrieval will be chained after the current one completes.
    852 	 */
    853 	if (sc->sc_flags & TWEF_AEN) {
    854 		/*
    855 		 * It is a fatal software programming error to attempt
    856 		 * to fetch an AEN synchronously when an AEN fetch is
    857 		 * already pending.
    858 		 */
    859 		KASSERT(aenp == NULL);
    860 		return (0);
    861 	}
    862 
    863 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
    864 	if (tp == NULL)
    865 		return (ENOMEM);
    866 
    867 	ccb = twe_ccb_alloc(sc,
    868 	    TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
    869 	KASSERT(ccb != NULL);
    870 
    871 	ccb->ccb_data = tp;
    872 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
    873 	ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
    874 	ccb->ccb_tx.tx_context = tp;
    875 	ccb->ccb_tx.tx_dv = sc->sc_dev;
    876 
    877 	tc = ccb->ccb_cmd;
    878 	tc->tc_size = 2;
    879 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
    880 	tc->tc_unit = 0;
    881 	tc->tc_count = htole16(1);
    882 
    883 	/* Fill in the outbound parameter data. */
    884 	tp->tp_table_id = htole16(TWE_PARAM_AEN);
    885 	tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
    886 	tp->tp_param_size = 2;
    887 
    888 	/* Map the transfer. */
    889 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
    890 		twe_ccb_free(sc, ccb);
    891 		goto done;
    892 	}
    893 
    894 	/* Enqueue the command and wait. */
    895 	if (aenp != NULL) {
    896 		rv = twe_ccb_poll(sc, ccb, 5);
    897 		twe_ccb_unmap(sc, ccb);
    898 		twe_ccb_free(sc, ccb);
    899 		if (rv == 0)
    900 			*aenp = le16toh(*(uint16_t *)tp->tp_data);
    901 		free(tp, M_DEVBUF);
    902 	} else {
    903 		sc->sc_flags |= TWEF_AEN;
    904 		twe_ccb_enqueue(sc, ccb);
    905 		rv = 0;
    906 	}
    907 
    908  done:
    909 	return (rv);
    910 }
    911 
    912 /*
    913  * Handle an AEN returned by the controller.
    914  * MUST BE CALLED AT splbio()!
    915  */
    916 static void
    917 twe_aen_handler(struct twe_ccb *ccb, int error)
    918 {
    919 	struct twe_softc *sc;
    920 	struct twe_param *tp;
    921 	uint16_t aen;
    922 	int rv;
    923 
    924 	sc = device_private(ccb->ccb_tx.tx_dv);
    925 	tp = ccb->ccb_tx.tx_context;
    926 	twe_ccb_unmap(sc, ccb);
    927 
    928 	sc->sc_flags &= ~TWEF_AEN;
    929 
    930 	if (error) {
    931 		aprint_error_dev(sc->sc_dev, "error retrieving AEN\n");
    932 		aen = TWE_AEN_QUEUE_EMPTY;
    933 	} else
    934 		aen = le16toh(*(u_int16_t *)tp->tp_data);
    935 	free(tp, M_DEVBUF);
    936 	twe_ccb_free(sc, ccb);
    937 
    938 	if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
    939 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
    940 		return;
    941 	}
    942 
    943 	twe_aen_enqueue(sc, aen, 0);
    944 
    945 	/*
    946 	 * Chain another retrieval in case interrupts have been
    947 	 * coalesced.
    948 	 */
    949 	rv = twe_aen_get(sc, NULL);
    950 	if (rv != 0)
    951 		aprint_error_dev(sc->sc_dev,
    952 		    "unable to retrieve AEN (%d)\n", rv);
    953 }
    954 
    955 static void
    956 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
    957 {
    958 	const char *str, *msg;
    959 	int s, next, nextnext, level;
    960 
    961 	/*
    962 	 * First report the AEN on the console.  Maybe.
    963 	 */
    964 	if (! quiet) {
    965 		str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
    966 		if (str == NULL) {
    967 			aprint_error_dev(sc->sc_dev,
    968 			    "unknown AEN 0x%04x\n", aen);
    969 		} else {
    970 			msg = str + 3;
    971 			switch (str[1]) {
    972 			case 'E':	level = LOG_EMERG; break;
    973 			case 'a':	level = LOG_ALERT; break;
    974 			case 'c':	level = LOG_CRIT; break;
    975 			case 'e':	level = LOG_ERR; break;
    976 			case 'w':	level = LOG_WARNING; break;
    977 			case 'n':	level = LOG_NOTICE; break;
    978 			case 'i':	level = LOG_INFO; break;
    979 			case 'd':	level = LOG_DEBUG; break;
    980 			default:
    981 				/* Don't use syslog. */
    982 				level = -1;
    983 			}
    984 
    985 			if (level < 0) {
    986 				switch (str[0]) {
    987 				case 'u':
    988 				case 'p':
    989 					printf("%s: %s %d: %s\n",
    990 					    device_xname(sc->sc_dev),
    991 					    str[0] == 'u' ? "unit" : "port",
    992 					    TWE_AEN_UNIT(aen), msg);
    993 					break;
    994 
    995 				default:
    996 					printf("%s: %s\n",
    997 					    device_xname(sc->sc_dev), msg);
    998 				}
    999 			} else {
   1000 				switch (str[0]) {
   1001 				case 'u':
   1002 				case 'p':
   1003 					log(level, "%s: %s %d: %s\n",
   1004 					    device_xname(sc->sc_dev),
   1005 					    str[0] == 'u' ? "unit" : "port",
   1006 					    TWE_AEN_UNIT(aen), msg);
   1007 					break;
   1008 
   1009 				default:
   1010 					log(level, "%s: %s\n",
   1011 					    device_xname(sc->sc_dev), msg);
   1012 				}
   1013 			}
   1014 		}
   1015 	}
   1016 
   1017 	/* Now enqueue the AEN for management tools. */
   1018 	s = splbio();
   1019 
   1020 	next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
   1021 	nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
   1022 
   1023 	/*
   1024 	 * If this is the last free slot, then queue up a "queue
   1025 	 * full" message.
   1026 	 */
   1027 	if (nextnext == sc->sc_aen_tail)
   1028 		aen = TWE_AEN_QUEUE_FULL;
   1029 
   1030 	if (next != sc->sc_aen_tail) {
   1031 		sc->sc_aen_queue[sc->sc_aen_head] = aen;
   1032 		sc->sc_aen_head = next;
   1033 	}
   1034 
   1035 	if (sc->sc_flags & TWEF_AENQ_WAIT) {
   1036 		sc->sc_flags &= ~TWEF_AENQ_WAIT;
   1037 		wakeup(&sc->sc_aen_queue);
   1038 	}
   1039 
   1040 	splx(s);
   1041 }
   1042 
   1043 /* NOTE: Must be called at splbio(). */
   1044 static uint16_t
   1045 twe_aen_dequeue(struct twe_softc *sc)
   1046 {
   1047 	uint16_t aen;
   1048 
   1049 	if (sc->sc_aen_tail == sc->sc_aen_head)
   1050 		aen = TWE_AEN_QUEUE_EMPTY;
   1051 	else {
   1052 		aen = sc->sc_aen_queue[sc->sc_aen_tail];
   1053 		sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
   1054 	}
   1055 
   1056 	return (aen);
   1057 }
   1058 
   1059 /*
   1060  * These are short-hand functions that execute TWE_OP_GET_PARAM to
   1061  * fetch 1, 2, and 4 byte parameter values, respectively.
   1062  */
   1063 int
   1064 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
   1065     uint8_t *valp)
   1066 {
   1067 	struct twe_param *tp;
   1068 	int rv;
   1069 
   1070 	rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
   1071 	if (rv != 0)
   1072 		return (rv);
   1073 	*valp = *(uint8_t *)tp->tp_data;
   1074 	free(tp, M_DEVBUF);
   1075 	return (0);
   1076 }
   1077 
   1078 int
   1079 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
   1080     uint16_t *valp)
   1081 {
   1082 	struct twe_param *tp;
   1083 	int rv;
   1084 
   1085 	rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
   1086 	if (rv != 0)
   1087 		return (rv);
   1088 	*valp = le16toh(*(uint16_t *)tp->tp_data);
   1089 	free(tp, M_DEVBUF);
   1090 	return (0);
   1091 }
   1092 
   1093 int
   1094 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
   1095     uint32_t *valp)
   1096 {
   1097 	struct twe_param *tp;
   1098 	int rv;
   1099 
   1100 	rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
   1101 	if (rv != 0)
   1102 		return (rv);
   1103 	*valp = le32toh(*(uint32_t *)tp->tp_data);
   1104 	free(tp, M_DEVBUF);
   1105 	return (0);
   1106 }
   1107 
   1108 /*
   1109  * Execute a TWE_OP_GET_PARAM command.  If a callback function is provided,
   1110  * it will be called with generated context when the command has completed.
   1111  * If no callback is provided, the command will be executed synchronously
   1112  * and a pointer to a buffer containing the data returned.
   1113  *
   1114  * The caller or callback is responsible for freeing the buffer.
   1115  *
   1116  * NOTE: We assume we can sleep here to wait for a CCB to become available.
   1117  */
   1118 int
   1119 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
   1120 	      void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
   1121 {
   1122 	struct twe_ccb *ccb;
   1123 	struct twe_cmd *tc;
   1124 	struct twe_param *tp;
   1125 	int rv, s;
   1126 
   1127 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
   1128 	if (tp == NULL)
   1129 		return ENOMEM;
   1130 
   1131 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
   1132 	KASSERT(ccb != NULL);
   1133 
   1134 	ccb->ccb_data = tp;
   1135 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
   1136 	ccb->ccb_tx.tx_handler = func;
   1137 	ccb->ccb_tx.tx_context = tp;
   1138 	ccb->ccb_tx.tx_dv = sc->sc_dev;
   1139 
   1140 	tc = ccb->ccb_cmd;
   1141 	tc->tc_size = 2;
   1142 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
   1143 	tc->tc_unit = 0;
   1144 	tc->tc_count = htole16(1);
   1145 
   1146 	/* Fill in the outbound parameter data. */
   1147 	tp->tp_table_id = htole16(table_id);
   1148 	tp->tp_param_id = param_id;
   1149 	tp->tp_param_size = size;
   1150 
   1151 	/* Map the transfer. */
   1152 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
   1153 		twe_ccb_free(sc, ccb);
   1154 		goto done;
   1155 	}
   1156 
   1157 	/* Submit the command and either wait or let the callback handle it. */
   1158 	if (func == NULL) {
   1159 		s = splbio();
   1160 		rv = twe_ccb_poll(sc, ccb, 5);
   1161 		twe_ccb_unmap(sc, ccb);
   1162 		twe_ccb_free(sc, ccb);
   1163 		splx(s);
   1164 	} else {
   1165 #ifdef DEBUG
   1166 		if (pbuf != NULL)
   1167 			panic("both func and pbuf defined");
   1168 #endif
   1169 		twe_ccb_enqueue(sc, ccb);
   1170 		return 0;
   1171 	}
   1172 
   1173 done:
   1174 	if (pbuf == NULL || rv != 0)
   1175 		free(tp, M_DEVBUF);
   1176 	else if (pbuf != NULL && rv == 0)
   1177 		*pbuf = tp;
   1178 	return rv;
   1179 }
   1180 
   1181 /*
   1182  * Execute a TWE_OP_SET_PARAM command.
   1183  *
   1184  * NOTE: We assume we can sleep here to wait for a CCB to become available.
   1185  */
   1186 static int
   1187 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
   1188 	      void *sbuf)
   1189 {
   1190 	struct twe_ccb *ccb;
   1191 	struct twe_cmd *tc;
   1192 	struct twe_param *tp;
   1193 	int rv, s;
   1194 
   1195 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
   1196 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
   1197 	ccb->ccb_data = tp;
   1198 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
   1199 	ccb->ccb_tx.tx_handler = 0;
   1200 	ccb->ccb_tx.tx_context = tp;
   1201 	ccb->ccb_tx.tx_dv = sc->sc_dev;
   1202 
   1203 	tc = ccb->ccb_cmd;
   1204 	tc->tc_size = 2;
   1205 	tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
   1206 	tc->tc_unit = 0;
   1207 	tc->tc_count = htole16(1);
   1208 
   1209 	/* Fill in the outbound parameter data. */
   1210 	tp->tp_table_id = htole16(table_id);
   1211 	tp->tp_param_id = param_id;
   1212 	tp->tp_param_size = size;
   1213 	memcpy(tp->tp_data, sbuf, size);
   1214 
   1215 	/* Map the transfer. */
   1216 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
   1217 		twe_ccb_free(sc, ccb);
   1218 		goto done;
   1219 	}
   1220 
   1221 	/* Submit the command and wait. */
   1222 	s = splbio();
   1223 	rv = twe_ccb_poll(sc, ccb, 5);
   1224 	twe_ccb_unmap(sc, ccb);
   1225 	twe_ccb_free(sc, ccb);
   1226 	splx(s);
   1227 done:
   1228 	free(tp, M_DEVBUF);
   1229 	return (rv);
   1230 }
   1231 
   1232 /*
   1233  * Execute a TWE_OP_INIT_CONNECTION command.  Return non-zero on error.
   1234  * Must be called with interrupts blocked.
   1235  */
   1236 static int
   1237 twe_init_connection(struct twe_softc *sc)
   1238 {
   1239 	struct twe_ccb *ccb;
   1240 	struct twe_cmd *tc;
   1241 	int rv;
   1242 
   1243 	if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
   1244 		return (EAGAIN);
   1245 
   1246 	/* Build the command. */
   1247 	tc = ccb->ccb_cmd;
   1248 	tc->tc_size = 3;
   1249 	tc->tc_opcode = TWE_OP_INIT_CONNECTION;
   1250 	tc->tc_unit = 0;
   1251 	tc->tc_count = htole16(TWE_MAX_CMDS);
   1252 	tc->tc_args.init_connection.response_queue_pointer = 0;
   1253 
   1254 	/* Submit the command for immediate execution. */
   1255 	rv = twe_ccb_poll(sc, ccb, 5);
   1256 	twe_ccb_free(sc, ccb);
   1257 	return (rv);
   1258 }
   1259 
   1260 /*
   1261  * Poll the controller for completed commands.  Must be called with
   1262  * interrupts blocked.
   1263  */
   1264 static void
   1265 twe_poll(struct twe_softc *sc)
   1266 {
   1267 	struct twe_ccb *ccb;
   1268 	int found;
   1269 	u_int status, cmdid;
   1270 
   1271 	found = 0;
   1272 
   1273 	for (;;) {
   1274 		status = twe_inl(sc, TWE_REG_STS);
   1275 		twe_status_check(sc, status);
   1276 
   1277 		if ((status & TWE_STS_RESP_QUEUE_EMPTY))
   1278 			break;
   1279 
   1280 		found = 1;
   1281 		cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
   1282 		cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
   1283 		if (cmdid >= TWE_MAX_QUEUECNT) {
   1284 			aprint_error_dev(sc->sc_dev, "bad cmdid %d\n", cmdid);
   1285 			continue;
   1286 		}
   1287 
   1288 		ccb = sc->sc_ccbs + cmdid;
   1289 		if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
   1290 			printf("%s: CCB for cmdid %d not active\n",
   1291 			    device_xname(sc->sc_dev), cmdid);
   1292 			continue;
   1293 		}
   1294 		ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
   1295 
   1296 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
   1297 		    (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
   1298 		    sizeof(struct twe_cmd),
   1299 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1300 
   1301 		/* Pass notification to upper layers. */
   1302 		if (ccb->ccb_tx.tx_handler != NULL)
   1303 			(*ccb->ccb_tx.tx_handler)(ccb,
   1304 			    ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
   1305 	}
   1306 
   1307 	/* If any commands have completed, run the software queue. */
   1308 	if (found)
   1309 		twe_ccb_enqueue(sc, NULL);
   1310 }
   1311 
   1312 /*
   1313  * Wait for `status' to be set in the controller status register.  Return
   1314  * zero if found, non-zero if the operation timed out.
   1315  */
   1316 static int
   1317 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
   1318 {
   1319 
   1320 	for (timo *= 10; timo != 0; timo--) {
   1321 		if ((twe_inl(sc, TWE_REG_STS) & status) == status)
   1322 			break;
   1323 		delay(100000);
   1324 	}
   1325 
   1326 	return (timo == 0);
   1327 }
   1328 
   1329 /*
   1330  * Clear a PCI parity error.
   1331  */
   1332 static void
   1333 twe_clear_pci_parity_error(struct twe_softc *sc)
   1334 {
   1335 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0,
   1336 	    TWE_CTL_CLEAR_PARITY_ERROR);
   1337 
   1338 	//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
   1339 }
   1340 
   1341 
   1342 /*
   1343  * Clear a PCI abort.
   1344  */
   1345 static void
   1346 twe_clear_pci_abort(struct twe_softc *sc)
   1347 {
   1348 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
   1349 
   1350 	//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
   1351 }
   1352 
   1353 /*
   1354  * Complain if the status bits aren't what we expect.
   1355  */
   1356 static int
   1357 twe_status_check(struct twe_softc *sc, u_int status)
   1358 {
   1359 	int rv;
   1360 
   1361 	rv = 0;
   1362 
   1363 	if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
   1364 		aprint_error_dev(sc->sc_dev, "missing status bits: 0x%08x\n",
   1365 		    status & ~TWE_STS_EXPECTED_BITS);
   1366 		rv = -1;
   1367 	}
   1368 
   1369 	if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
   1370 		aprint_error_dev(sc->sc_dev, "unexpected status bits: 0x%08x\n",
   1371 		    status & TWE_STS_UNEXPECTED_BITS);
   1372 		rv = -1;
   1373 		if (status & TWE_STS_PCI_PARITY_ERROR) {
   1374 			aprint_error_dev(sc->sc_dev, "PCI parity error: Reseat"
   1375 			    " card, move card or buggy device present.\n");
   1376 			twe_clear_pci_parity_error(sc);
   1377 		}
   1378 		if (status & TWE_STS_PCI_ABORT) {
   1379 			aprint_error_dev(sc->sc_dev, "PCI abort, clearing.\n");
   1380 			twe_clear_pci_abort(sc);
   1381 		}
   1382 	}
   1383 
   1384 	return (rv);
   1385 }
   1386 
   1387 /*
   1388  * Allocate and initialise a CCB.
   1389  */
   1390 static inline void
   1391 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
   1392 {
   1393 	struct twe_cmd *tc;
   1394 
   1395 	ccb->ccb_tx.tx_handler = NULL;
   1396 	ccb->ccb_flags = flags;
   1397 	tc = ccb->ccb_cmd;
   1398 	tc->tc_status = 0;
   1399 	tc->tc_flags = 0;
   1400 	tc->tc_cmdid = ccb->ccb_cmdid;
   1401 }
   1402 
   1403 struct twe_ccb *
   1404 twe_ccb_alloc(struct twe_softc *sc, int flags)
   1405 {
   1406 	struct twe_ccb *ccb;
   1407 	int s;
   1408 
   1409 	s = splbio();
   1410 	if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
   1411 		/* Use the reserved CCB. */
   1412 		ccb = sc->sc_ccbs;
   1413 	} else {
   1414 		/* Allocate a CCB and command block. */
   1415 		if (__predict_false((ccb =
   1416 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
   1417 			splx(s);
   1418 			return (NULL);
   1419 		}
   1420 		SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
   1421 	}
   1422 #ifdef DIAGNOSTIC
   1423 	if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
   1424 		panic("twe_ccb_alloc: got reserved CCB for non-AEN");
   1425 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
   1426 		panic("twe_ccb_alloc: CCB %ld already allocated",
   1427 		    (long)(ccb - sc->sc_ccbs));
   1428 	flags |= TWE_CCB_ALLOCED;
   1429 #endif
   1430 	splx(s);
   1431 
   1432 	twe_ccb_init(sc, ccb, flags);
   1433 	return (ccb);
   1434 }
   1435 
   1436 struct twe_ccb *
   1437 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
   1438 {
   1439 	struct twe_ccb *ccb;
   1440 	int s;
   1441 
   1442 	KASSERT((flags & TWE_CCB_AEN) == 0);
   1443 
   1444 	s = splbio();
   1445 	while (__predict_false((ccb =
   1446 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
   1447 		sc->sc_flags |= TWEF_WAIT_CCB;
   1448 		(void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
   1449 	}
   1450 	SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
   1451 #ifdef DIAGNOSTIC
   1452 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
   1453 		panic("twe_ccb_alloc_wait: CCB %ld already allocated",
   1454 		    (long)(ccb - sc->sc_ccbs));
   1455 	flags |= TWE_CCB_ALLOCED;
   1456 #endif
   1457 	splx(s);
   1458 
   1459 	twe_ccb_init(sc, ccb, flags);
   1460 	return (ccb);
   1461 }
   1462 
   1463 /*
   1464  * Free a CCB.
   1465  */
   1466 void
   1467 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
   1468 {
   1469 	int s;
   1470 
   1471 	s = splbio();
   1472 	if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
   1473 		SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
   1474 		if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
   1475 			sc->sc_flags &= ~TWEF_WAIT_CCB;
   1476 			wakeup(&sc->sc_ccb_freelist);
   1477 		}
   1478 	}
   1479 	ccb->ccb_flags = 0;
   1480 	splx(s);
   1481 }
   1482 
   1483 /*
   1484  * Map the specified CCB's command block and data buffer (if any) into
   1485  * controller visible space.  Perform DMA synchronisation.
   1486  */
   1487 int
   1488 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
   1489 {
   1490 	struct twe_cmd *tc;
   1491 	int flags, nsegs, i, s, rv;
   1492 	void *data;
   1493 
   1494 	/*
   1495 	 * The data as a whole must be 512-byte aligned.
   1496 	 */
   1497 	if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
   1498 		s = splvm();
   1499 		/* XXX */
   1500 		rv = uvm_km_kmem_alloc(kmem_va_arena,
   1501 		    ccb->ccb_datasize, (VM_NOSLEEP | VM_INSTANTFIT),
   1502 		    (vmem_addr_t *)&ccb->ccb_abuf);
   1503 		splx(s);
   1504 		data = (void *)ccb->ccb_abuf;
   1505 		if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
   1506 			memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
   1507 	} else {
   1508 		ccb->ccb_abuf = (vaddr_t)0;
   1509 		data = ccb->ccb_data;
   1510 	}
   1511 
   1512 	/*
   1513 	 * Map the data buffer into bus space and build the S/G list.
   1514 	 */
   1515 	rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
   1516 	    ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
   1517 	    ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
   1518 	    BUS_DMA_READ : BUS_DMA_WRITE));
   1519 	if (rv != 0) {
   1520 		if (ccb->ccb_abuf != (vaddr_t)0) {
   1521 			s = splvm();
   1522 			/* XXX */
   1523 			uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
   1524 			    ccb->ccb_datasize);
   1525 			splx(s);
   1526 		}
   1527 		return (rv);
   1528 	}
   1529 
   1530 	nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
   1531 	tc = ccb->ccb_cmd;
   1532 	tc->tc_size += 2 * nsegs;
   1533 
   1534 	/* The location of the S/G list is dependent upon command type. */
   1535 	switch (tc->tc_opcode >> 5) {
   1536 	case 2:
   1537 		for (i = 0; i < nsegs; i++) {
   1538 			tc->tc_args.param.sgl[i].tsg_address =
   1539 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
   1540 			tc->tc_args.param.sgl[i].tsg_length =
   1541 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
   1542 		}
   1543 		/* XXX Needed? */
   1544 		for (; i < TWE_SG_SIZE; i++) {
   1545 			tc->tc_args.param.sgl[i].tsg_address = 0;
   1546 			tc->tc_args.param.sgl[i].tsg_length = 0;
   1547 		}
   1548 		break;
   1549 	case 3:
   1550 		for (i = 0; i < nsegs; i++) {
   1551 			tc->tc_args.io.sgl[i].tsg_address =
   1552 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
   1553 			tc->tc_args.io.sgl[i].tsg_length =
   1554 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
   1555 		}
   1556 		/* XXX Needed? */
   1557 		for (; i < TWE_SG_SIZE; i++) {
   1558 			tc->tc_args.io.sgl[i].tsg_address = 0;
   1559 			tc->tc_args.io.sgl[i].tsg_length = 0;
   1560 		}
   1561 		break;
   1562 	default:
   1563 		/*
   1564 		 * In all likelihood, this is a command passed from
   1565 		 * management tools in userspace where no S/G list is
   1566 		 * necessary because no data is being passed.
   1567 		 */
   1568 		break;
   1569 	}
   1570 
   1571 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
   1572 		flags = BUS_DMASYNC_PREREAD;
   1573 	else
   1574 		flags = 0;
   1575 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
   1576 		flags |= BUS_DMASYNC_PREWRITE;
   1577 
   1578 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
   1579 	    ccb->ccb_datasize, flags);
   1580 	return (0);
   1581 }
   1582 
   1583 /*
   1584  * Unmap the specified CCB's command block and data buffer (if any) and
   1585  * perform DMA synchronisation.
   1586  */
   1587 void
   1588 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
   1589 {
   1590 	int flags, s;
   1591 
   1592 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
   1593 		flags = BUS_DMASYNC_POSTREAD;
   1594 	else
   1595 		flags = 0;
   1596 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
   1597 		flags |= BUS_DMASYNC_POSTWRITE;
   1598 
   1599 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
   1600 	    ccb->ccb_datasize, flags);
   1601 	bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
   1602 
   1603 	if (ccb->ccb_abuf != (vaddr_t)0) {
   1604 		if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
   1605 			memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
   1606 			    ccb->ccb_datasize);
   1607 		s = splvm();
   1608 		/* XXX */
   1609 		uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
   1610 		    ccb->ccb_datasize);
   1611 		splx(s);
   1612 	}
   1613 }
   1614 
   1615 /*
   1616  * Submit a command to the controller and poll on completion.  Return
   1617  * non-zero on timeout (but don't check status, as some command types don't
   1618  * return status).  Must be called with interrupts blocked.
   1619  */
   1620 int
   1621 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
   1622 {
   1623 	int rv;
   1624 
   1625 	if ((rv = twe_ccb_submit(sc, ccb)) != 0)
   1626 		return (rv);
   1627 
   1628 	for (timo *= 1000; timo != 0; timo--) {
   1629 		twe_poll(sc);
   1630 		if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
   1631 			break;
   1632 		DELAY(100);
   1633 	}
   1634 
   1635 	return (timo == 0);
   1636 }
   1637 
   1638 /*
   1639  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
   1640  * the order that they were enqueued and try to submit their command blocks
   1641  * to the controller for execution.
   1642  */
   1643 void
   1644 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
   1645 {
   1646 	int s;
   1647 
   1648 	s = splbio();
   1649 
   1650 	if (ccb != NULL)
   1651 		SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
   1652 
   1653 	while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
   1654 		if (twe_ccb_submit(sc, ccb))
   1655 			break;
   1656 		SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
   1657 	}
   1658 
   1659 	splx(s);
   1660 }
   1661 
   1662 /*
   1663  * Submit the command block associated with the specified CCB to the
   1664  * controller for execution.  Must be called with interrupts blocked.
   1665  */
   1666 int
   1667 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
   1668 {
   1669 	bus_addr_t pa;
   1670 	int rv;
   1671 	u_int status;
   1672 
   1673 	/* Check to see if we can post a command. */
   1674 	status = twe_inl(sc, TWE_REG_STS);
   1675 	twe_status_check(sc, status);
   1676 
   1677 	if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
   1678 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
   1679 		    (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
   1680 		    sizeof(struct twe_cmd),
   1681 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1682 #ifdef DIAGNOSTIC
   1683 		if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
   1684 			panic("%s: CCB %ld not ALLOCED\n",
   1685 			    device_xname(sc->sc_dev), (long)(ccb - sc->sc_ccbs));
   1686 #endif
   1687 		ccb->ccb_flags |= TWE_CCB_ACTIVE;
   1688 		pa = sc->sc_cmds_paddr +
   1689 		    ccb->ccb_cmdid * sizeof(struct twe_cmd);
   1690 		twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
   1691 		rv = 0;
   1692 	} else
   1693 		rv = EBUSY;
   1694 
   1695 	return (rv);
   1696 }
   1697 
   1698 
   1699 /*
   1700  * Accept an open operation on the control device.
   1701  */
   1702 static int
   1703 tweopen(dev_t dev, int flag, int mode, struct lwp *l)
   1704 {
   1705 	struct twe_softc *twe;
   1706 
   1707 	if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL)
   1708 		return (ENXIO);
   1709 	if ((twe->sc_flags & TWEF_OPEN) != 0)
   1710 		return (EBUSY);
   1711 
   1712 	twe->sc_flags |= TWEF_OPEN;
   1713 	return (0);
   1714 }
   1715 
   1716 /*
   1717  * Accept the last close on the control device.
   1718  */
   1719 static int
   1720 tweclose(dev_t dev, int flag, int mode,
   1721     struct lwp *l)
   1722 {
   1723 	struct twe_softc *twe;
   1724 
   1725 	twe = device_lookup_private(&twe_cd, minor(dev));
   1726 	twe->sc_flags &= ~TWEF_OPEN;
   1727 	return (0);
   1728 }
   1729 
   1730 void
   1731 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
   1732 {
   1733 
   1734 	/* Just wake up the sleeper. */
   1735 	wakeup(ccb);
   1736 }
   1737 
   1738 /*
   1739  * Handle control operations.
   1740  */
   1741 static int
   1742 tweioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1743 {
   1744 	struct twe_softc *twe;
   1745 	struct twe_ccb *ccb;
   1746 	struct twe_param *param;
   1747 	struct twe_usercommand *tu;
   1748 	struct twe_paramcommand *tp;
   1749 	struct twe_drivecommand *td;
   1750 	void *pdata = NULL;
   1751 	int s, error = 0;
   1752 	u_int8_t cmdid;
   1753 
   1754 	twe = device_lookup_private(&twe_cd, minor(dev));
   1755 	tu = (struct twe_usercommand *)data;
   1756 	tp = (struct twe_paramcommand *)data;
   1757 	td = (struct twe_drivecommand *)data;
   1758 
   1759 	/* This is intended to be compatible with the FreeBSD interface. */
   1760 	switch (cmd) {
   1761 	case TWEIO_COMMAND:
   1762 		error = kauth_authorize_device_passthru(l->l_cred, dev,
   1763 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
   1764 		if (error)
   1765 			return (error);
   1766 
   1767 		/* XXX mutex */
   1768 		if (tu->tu_size > 0) {
   1769 			/*
   1770 			 * XXX Handle > TWE_SECTOR_SIZE?  Let's see if
   1771 			 * it's really necessary, first.
   1772 			 */
   1773 			if (tu->tu_size > TWE_SECTOR_SIZE) {
   1774 #ifdef TWE_DEBUG
   1775 				printf("%s: TWEIO_COMMAND: tu_size = %zu\n",
   1776 				    device_xname(twe->sc_dev), tu->tu_size);
   1777 #endif
   1778 				return EINVAL;
   1779 			}
   1780 			pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
   1781 			error = copyin(tu->tu_data, pdata, tu->tu_size);
   1782 			if (error != 0)
   1783 				goto done;
   1784 			ccb = twe_ccb_alloc_wait(twe,
   1785 			    TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
   1786 			KASSERT(ccb != NULL);
   1787 			ccb->ccb_data = pdata;
   1788 			ccb->ccb_datasize = TWE_SECTOR_SIZE;
   1789 		} else {
   1790 			ccb = twe_ccb_alloc_wait(twe, 0);
   1791 			KASSERT(ccb != NULL);
   1792 		}
   1793 
   1794 		ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
   1795 		ccb->ccb_tx.tx_context = NULL;
   1796 		ccb->ccb_tx.tx_dv = twe->sc_dev;
   1797 
   1798 		cmdid = ccb->ccb_cmdid;
   1799 		memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
   1800 		ccb->ccb_cmd->tc_cmdid = cmdid;
   1801 
   1802 		/* Map the transfer. */
   1803 		if ((error = twe_ccb_map(twe, ccb)) != 0) {
   1804 			twe_ccb_free(twe, ccb);
   1805 			goto done;
   1806 		}
   1807 
   1808 		/* Submit the command and wait up to 1 minute. */
   1809 		error = 0;
   1810 		twe_ccb_enqueue(twe, ccb);
   1811 		s = splbio();
   1812 		while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
   1813 			if ((error = tsleep(ccb, PRIBIO, "tweioctl",
   1814 					    60 * hz)) != 0)
   1815 				break;
   1816 		splx(s);
   1817 
   1818 		/* Copy the command back to the ioctl argument. */
   1819 		memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
   1820 #ifdef TWE_DEBUG
   1821 		printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
   1822 		    "tc_status = 0x%02x\n", device_xname(twe->sc_dev),
   1823 		    tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
   1824 #endif
   1825 
   1826 		s = splbio();
   1827 		twe_ccb_free(twe, ccb);
   1828 		splx(s);
   1829 
   1830 		if (tu->tu_size > 0)
   1831 			error = copyout(pdata, tu->tu_data, tu->tu_size);
   1832 		goto done;
   1833 
   1834 	case TWEIO_STATS:
   1835 		return (ENOENT);
   1836 
   1837 	case TWEIO_AEN_POLL:
   1838 		s = splbio();
   1839 		*(u_int *)data = twe_aen_dequeue(twe);
   1840 		splx(s);
   1841 		return (0);
   1842 
   1843 	case TWEIO_AEN_WAIT:
   1844 		s = splbio();
   1845 		while ((*(u_int *)data =
   1846 		    twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
   1847 			twe->sc_flags |= TWEF_AENQ_WAIT;
   1848 			error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
   1849 			    "tweaen", 0);
   1850 			if (error == EINTR) {
   1851 				splx(s);
   1852 				return (error);
   1853 			}
   1854 		}
   1855 		splx(s);
   1856 		return (0);
   1857 
   1858 	case TWEIO_GET_PARAM:
   1859 		error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
   1860 		    tp->tp_size, 0, &param);
   1861 		if (error != 0)
   1862 			return (error);
   1863 		if (param->tp_param_size > tp->tp_size) {
   1864 			error = EFAULT;
   1865 			goto done;
   1866 		}
   1867 		error = copyout(param->tp_data, tp->tp_data,
   1868 		    param->tp_param_size);
   1869 		free(param, M_DEVBUF);
   1870 		goto done;
   1871 
   1872 	case TWEIO_SET_PARAM:
   1873 		pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
   1874 		if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
   1875 			goto done;
   1876 		error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
   1877 		    tp->tp_size, pdata);
   1878 		goto done;
   1879 
   1880 	case TWEIO_RESET:
   1881 		s = splbio();
   1882 		twe_reset(twe);
   1883 		splx(s);
   1884 		return (0);
   1885 
   1886 	case TWEIO_ADD_UNIT:
   1887 		/* XXX mutex */
   1888 		return (twe_add_unit(twe, td->td_unit));
   1889 
   1890 	case TWEIO_DEL_UNIT:
   1891 		/* XXX mutex */
   1892 		return (twe_del_unit(twe, td->td_unit));
   1893 
   1894 	default:
   1895 		return EINVAL;
   1896 	}
   1897 done:
   1898 	if (pdata)
   1899 		free(pdata, M_DEVBUF);
   1900 	return error;
   1901 }
   1902 
   1903 const struct cdevsw twe_cdevsw = {
   1904 	.d_open = tweopen,
   1905 	.d_close = tweclose,
   1906 	.d_read = noread,
   1907 	.d_write = nowrite,
   1908 	.d_ioctl = tweioctl,
   1909 	.d_stop = nostop,
   1910 	.d_tty = notty,
   1911 	.d_poll = nopoll,
   1912 	.d_mmap = nommap,
   1913 	.d_kqfilter = nokqfilter,
   1914 	.d_discard = nodiscard,
   1915 	.d_flag = D_OTHER
   1916 };
   1917 
   1918 /*
   1919  * Print some information about the controller
   1920  */
   1921 static void
   1922 twe_describe_controller(struct twe_softc *sc)
   1923 {
   1924 	struct twe_param *p[6];
   1925 	int i, rv = 0;
   1926 	uint32_t dsize;
   1927 	uint8_t ports;
   1928 
   1929 	ports = 0;
   1930 
   1931 	/* get the port count */
   1932 	rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
   1933 		TWE_PARAM_CONTROLLER_PortCount, &ports);
   1934 
   1935 	/* get version strings */
   1936 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
   1937 		16, NULL, &p[0]);
   1938 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
   1939 		16, NULL, &p[1]);
   1940 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
   1941 		16, NULL, &p[2]);
   1942 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
   1943 		8, NULL, &p[3]);
   1944 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
   1945 		8, NULL, &p[4]);
   1946 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
   1947 		8, NULL, &p[5]);
   1948 
   1949 	if (rv) {
   1950 		/* some error occurred */
   1951 		aprint_error_dev(sc->sc_dev,
   1952 		    "failed to fetch version information\n");
   1953 		return;
   1954 	}
   1955 
   1956 	aprint_normal_dev(sc->sc_dev, "%d ports, Firmware %.16s, BIOS %.16s\n",
   1957 	    ports, p[1]->tp_data, p[2]->tp_data);
   1958 
   1959 	aprint_verbose_dev(sc->sc_dev,
   1960 	    "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
   1961 	    p[0]->tp_data, p[3]->tp_data,
   1962 	    p[4]->tp_data, p[5]->tp_data);
   1963 
   1964 	free(p[0], M_DEVBUF);
   1965 	free(p[1], M_DEVBUF);
   1966 	free(p[2], M_DEVBUF);
   1967 	free(p[3], M_DEVBUF);
   1968 	free(p[4], M_DEVBUF);
   1969 	free(p[5], M_DEVBUF);
   1970 
   1971 	rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
   1972 	    TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
   1973 	if (rv) {
   1974 		aprint_error_dev(sc->sc_dev,
   1975 		    "failed to get drive status summary\n");
   1976 		return;
   1977 	}
   1978 	for (i = 0; i < ports; i++) {
   1979 		if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
   1980 			continue;
   1981 		rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
   1982 		    TWE_PARAM_DRIVEINFO_Size, &dsize);
   1983 		if (rv) {
   1984 			aprint_error_dev(sc->sc_dev,
   1985 			    "unable to get drive size for port %d\n", i);
   1986 			continue;
   1987 		}
   1988 		rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
   1989 		    TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
   1990 		if (rv) {
   1991 			aprint_error_dev(sc->sc_dev,
   1992 			    "unable to get drive model for port %d\n", i);
   1993 			continue;
   1994 		}
   1995 		aprint_verbose_dev(sc->sc_dev, "port %d: %.40s %d MB\n",
   1996 		    i, p[1]->tp_data, dsize / 2048);
   1997 		free(p[1], M_DEVBUF);
   1998 	}
   1999 	free(p[0], M_DEVBUF);
   2000 }
   2001 
   2002 MODULE(MODULE_CLASS_DRIVER, twe, "pci");
   2003 
   2004 #ifdef _MODULE
   2005 #include "ioconf.c"
   2006 #endif
   2007 
   2008 static int
   2009 twe_modcmd(modcmd_t cmd, void *opaque)
   2010 {
   2011 	int error = 0;
   2012 
   2013 #ifdef _MODULE
   2014 	switch (cmd) {
   2015 	case MODULE_CMD_INIT:
   2016 		error = config_init_component(cfdriver_ioconf_twe,
   2017 		    cfattach_ioconf_twe, cfdata_ioconf_twe);
   2018 		break;
   2019 	case MODULE_CMD_FINI:
   2020 		error = config_fini_component(cfdriver_ioconf_twe,
   2021 		    cfattach_ioconf_twe, cfdata_ioconf_twe);
   2022 		break;
   2023 	default:
   2024 		error = ENOTTY;
   2025 		break;
   2026 	}
   2027 #endif
   2028 
   2029 	return error;
   2030 }
   2031