Home | History | Annotate | Line # | Download | only in ld128
      1 /*-
      2  * ====================================================
      3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      4  *
      5  * Developed at SunPro, a Sun Microsystems, Inc. business.
      6  * Permission to use, copy, modify, and distribute this
      7  * software is freely granted, provided that this notice
      8  * is preserved.
      9  * ====================================================
     10  */
     11 
     12 /*
     13  * Copyright (c) 2008 Stephen L. Moshier <steve (at) moshier.net>
     14  *
     15  * Permission to use, copy, modify, and distribute this software for any
     16  * purpose with or without fee is hereby granted, provided that the above
     17  * copyright notice and this permission notice appear in all copies.
     18  *
     19  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     20  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     21  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     22  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     23  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     24  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     25  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     26  */
     27 
     28 /* powl(x,y) return x**y
     29  *
     30  *		      n
     31  * Method:  Let x =  2   * (1+f)
     32  *	1. Compute and return log2(x) in two pieces:
     33  *		log2(x) = w1 + w2,
     34  *	   where w1 has 113-53 = 60 bit trailing zeros.
     35  *	2. Perform y*log2(x) = n+y' by simulating multi-precision
     36  *	   arithmetic, where |y'|<=0.5.
     37  *	3. Return x**y = 2**n*exp(y'*log2)
     38  *
     39  * Special cases:
     40  *	1.  (anything) ** 0  is 1
     41  *	2.  (anything) ** 1  is itself
     42  *	3.  (anything) ** NAN is NAN
     43  *	4.  NAN ** (anything except 0) is NAN
     44  *	5.  +-(|x| > 1) **  +INF is +INF
     45  *	6.  +-(|x| > 1) **  -INF is +0
     46  *	7.  +-(|x| < 1) **  +INF is +0
     47  *	8.  +-(|x| < 1) **  -INF is +INF
     48  *	9.  +-1         ** +-INF is NAN
     49  *	10. +0 ** (+anything except 0, NAN)               is +0
     50  *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
     51  *	12. +0 ** (-anything except 0, NAN)               is +INF
     52  *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
     53  *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
     54  *	15. +INF ** (+anything except 0,NAN) is +INF
     55  *	16. +INF ** (-anything except 0,NAN) is +0
     56  *	17. -INF ** (anything)  = -0 ** (-anything)
     57  *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
     58  *	19. (-anything except 0 and inf) ** (non-integer) is NAN
     59  *
     60  */
     61 
     62 #include <sys/cdefs.h>
     63 #include <float.h>
     64 #include <math.h>
     65 
     66 #include "math_private.h"
     67 
     68 static const long double bp[] = {
     69   1.0L,
     70   1.5L,
     71 };
     72 
     73 /* log_2(1.5) */
     74 static const long double dp_h[] = {
     75   0.0,
     76   5.8496250072115607565592654282227158546448E-1L
     77 };
     78 
     79 /* Low part of log_2(1.5) */
     80 static const long double dp_l[] = {
     81   0.0,
     82   1.0579781240112554492329533686862998106046E-16L
     83 };
     84 
     85 static const long double zero = 0.0L,
     86   one = 1.0L,
     87   two = 2.0L,
     88   two113 = 1.0384593717069655257060992658440192E34L,
     89   huge = 1.0e3000L,
     90   tiny = 1.0e-3000L;
     91 
     92 /* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
     93    z = (x-1)/(x+1)
     94    1 <= x <= 1.25
     95    Peak relative error 2.3e-37 */
     96 static const long double LN[] =
     97 {
     98  -3.0779177200290054398792536829702930623200E1L,
     99   6.5135778082209159921251824580292116201640E1L,
    100  -4.6312921812152436921591152809994014413540E1L,
    101   1.2510208195629420304615674658258363295208E1L,
    102  -9.9266909031921425609179910128531667336670E-1L
    103 };
    104 static const long double LD[] =
    105 {
    106  -5.129862866715009066465422805058933131960E1L,
    107   1.452015077564081884387441590064272782044E2L,
    108  -1.524043275549860505277434040464085593165E2L,
    109   7.236063513651544224319663428634139768808E1L,
    110  -1.494198912340228235853027849917095580053E1L
    111   /* 1.0E0 */
    112 };
    113 
    114 /* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
    115    0 <= x <= 0.5
    116    Peak relative error 5.7e-38  */
    117 static const long double PN[] =
    118 {
    119   5.081801691915377692446852383385968225675E8L,
    120   9.360895299872484512023336636427675327355E6L,
    121   4.213701282274196030811629773097579432957E4L,
    122   5.201006511142748908655720086041570288182E1L,
    123   9.088368420359444263703202925095675982530E-3L,
    124 };
    125 static const long double PD[] =
    126 {
    127   3.049081015149226615468111430031590411682E9L,
    128   1.069833887183886839966085436512368982758E8L,
    129   8.259257717868875207333991924545445705394E5L,
    130   1.872583833284143212651746812884298360922E3L,
    131   /* 1.0E0 */
    132 };
    133 
    134 static const long double
    135   /* ln 2 */
    136   lg2 = 6.9314718055994530941723212145817656807550E-1L,
    137   lg2_h = 6.9314718055994528622676398299518041312695E-1L,
    138   lg2_l = 2.3190468138462996154948554638754786504121E-17L,
    139   ovt = 8.0085662595372944372e-0017L,
    140   /* 2/(3*log(2)) */
    141   cp = 9.6179669392597560490661645400126142495110E-1L,
    142   cp_h = 9.6179669392597555432899980587535537779331E-1L,
    143   cp_l = 5.0577616648125906047157785230014751039424E-17L;
    144 
    145 long double
    146 powl(long double x, long double y)
    147 {
    148   long double z, ax, z_h, z_l, p_h, p_l;
    149   long double yy1, t1, t2, r, s, t, u, v, w;
    150   long double s2, s_h, s_l, t_h, t_l;
    151   int32_t i, j, k, yisint, n;
    152   u_int32_t ix, iy;
    153   int32_t hx, hy;
    154   ieee_quad_shape_type o, p, q;
    155 
    156   p.value = x;
    157   hx = p.parts32.mswhi;
    158   ix = hx & 0x7fffffff;
    159 
    160   q.value = y;
    161   hy = q.parts32.mswhi;
    162   iy = hy & 0x7fffffff;
    163 
    164 
    165   /* y==zero: x**0 = 1 */
    166   if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
    167     return one;
    168 
    169   /* 1.0**y = 1; -1.0**+-Inf = 1 */
    170   if (x == one)
    171     return one;
    172   if (x == -1.0L && iy == 0x7fff0000
    173       && (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
    174     return one;
    175 
    176   /* +-NaN return x+y */
    177   if ((ix > 0x7fff0000)
    178       || ((ix == 0x7fff0000)
    179 	  && ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
    180       || (iy > 0x7fff0000)
    181       || ((iy == 0x7fff0000)
    182 	  && ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
    183     return nan_mix(x, y);
    184 
    185   /* determine if y is an odd int when x < 0
    186    * yisint = 0       ... y is not an integer
    187    * yisint = 1       ... y is an odd int
    188    * yisint = 2       ... y is an even int
    189    */
    190   yisint = 0;
    191   if (hx < 0)
    192     {
    193       if (iy >= 0x40700000)	/* 2^113 */
    194 	yisint = 2;		/* even integer y */
    195       else if (iy >= 0x3fff0000)	/* 1.0 */
    196 	{
    197 	  if (floorl (y) == y)
    198 	    {
    199 	      z = 0.5 * y;
    200 	      if (floorl (z) == z)
    201 		yisint = 2;
    202 	      else
    203 		yisint = 1;
    204 	    }
    205 	}
    206     }
    207 
    208   /* special value of y */
    209   if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
    210     {
    211       if (iy == 0x7fff0000)	/* y is +-inf */
    212 	{
    213 	  if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
    214 	    p.parts32.lswlo) == 0)
    215 	    return y - y;	/* +-1**inf is NaN */
    216 	  else if (ix >= 0x3fff0000)	/* (|x|>1)**+-inf = inf,0 */
    217 	    return (hy >= 0) ? y : zero;
    218 	  else			/* (|x|<1)**-,+inf = inf,0 */
    219 	    return (hy < 0) ? -y : zero;
    220 	}
    221       if (iy == 0x3fff0000)
    222 	{			/* y is  +-1 */
    223 	  if (hy < 0)
    224 	    return one / x;
    225 	  else
    226 	    return x;
    227 	}
    228       if (hy == 0x40000000)
    229 	return x * x;		/* y is  2 */
    230       if (hy == 0x3ffe0000)
    231 	{			/* y is  0.5 */
    232 	  if (hx >= 0)		/* x >= +0 */
    233 	    return sqrtl (x);
    234 	}
    235     }
    236 
    237   ax = fabsl (x);
    238   /* special value of x */
    239   if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0)
    240     {
    241       if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
    242 	{
    243 	  z = ax;		/*x is +-0,+-inf,+-1 */
    244 	  if (hy < 0)
    245 	    z = one / z;	/* z = (1/|x|) */
    246 	  if (hx < 0)
    247 	    {
    248 	      if (((ix - 0x3fff0000) | yisint) == 0)
    249 		{
    250 		  z = (z - z) / (z - z);	/* (-1)**non-int is NaN */
    251 		}
    252 	      else if (yisint == 1)
    253 		z = -z;		/* (x<0)**odd = -(|x|**odd) */
    254 	    }
    255 	  return z;
    256 	}
    257     }
    258 
    259   /* (x<0)**(non-int) is NaN */
    260   if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
    261     return (x - x) / (x - x);
    262 
    263   /* |y| is huge.
    264      2^-16495 = 1/2 of smallest representable value.
    265      If (1 - 1/131072)^y underflows, y > 1.4986e9 */
    266   if (iy > 0x401d654b)
    267     {
    268       /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
    269       if (iy > 0x407d654b)
    270 	{
    271 	  if (ix <= 0x3ffeffff)
    272 	    return (hy < 0) ? huge * huge : tiny * tiny;
    273 	  if (ix >= 0x3fff0000)
    274 	    return (hy > 0) ? huge * huge : tiny * tiny;
    275 	}
    276       /* over/underflow if x is not close to one */
    277       if (ix < 0x3ffeffff)
    278 	return (hy < 0) ? huge * huge : tiny * tiny;
    279       if (ix > 0x3fff0000)
    280 	return (hy > 0) ? huge * huge : tiny * tiny;
    281     }
    282 
    283   n = 0;
    284   /* take care subnormal number */
    285   if (ix < 0x00010000)
    286     {
    287       ax *= two113;
    288       n -= 113;
    289       o.value = ax;
    290       ix = o.parts32.mswhi;
    291     }
    292   n += ((ix) >> 16) - 0x3fff;
    293   j = ix & 0x0000ffff;
    294   /* determine interval */
    295   ix = j | 0x3fff0000;		/* normalize ix */
    296   if (j <= 0x3988)
    297     k = 0;			/* |x|<sqrt(3/2) */
    298   else if (j < 0xbb67)
    299     k = 1;			/* |x|<sqrt(3)   */
    300   else
    301     {
    302       k = 0;
    303       n += 1;
    304       ix -= 0x00010000;
    305     }
    306 
    307   o.value = ax;
    308   o.parts32.mswhi = ix;
    309   ax = o.value;
    310 
    311   /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
    312   u = ax - bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
    313   v = one / (ax + bp[k]);
    314   s = u * v;
    315   s_h = s;
    316 
    317   o.value = s_h;
    318   o.parts32.lswlo = 0;
    319   o.parts32.lswhi &= 0xf8000000;
    320   s_h = o.value;
    321   /* t_h=ax+bp[k] High */
    322   t_h = ax + bp[k];
    323   o.value = t_h;
    324   o.parts32.lswlo = 0;
    325   o.parts32.lswhi &= 0xf8000000;
    326   t_h = o.value;
    327   t_l = ax - (t_h - bp[k]);
    328   s_l = v * ((u - s_h * t_h) - s_h * t_l);
    329   /* compute log(ax) */
    330   s2 = s * s;
    331   u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
    332   v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
    333   r = s2 * s2 * u / v;
    334   r += s_l * (s_h + s);
    335   s2 = s_h * s_h;
    336   t_h = 3.0 + s2 + r;
    337   o.value = t_h;
    338   o.parts32.lswlo = 0;
    339   o.parts32.lswhi &= 0xf8000000;
    340   t_h = o.value;
    341   t_l = r - ((t_h - 3.0) - s2);
    342   /* u+v = s*(1+...) */
    343   u = s_h * t_h;
    344   v = s_l * t_h + t_l * s;
    345   /* 2/(3log2)*(s+...) */
    346   p_h = u + v;
    347   o.value = p_h;
    348   o.parts32.lswlo = 0;
    349   o.parts32.lswhi &= 0xf8000000;
    350   p_h = o.value;
    351   p_l = v - (p_h - u);
    352   z_h = cp_h * p_h;		/* cp_h+cp_l = 2/(3*log2) */
    353   z_l = cp_l * p_h + p_l * cp + dp_l[k];
    354   /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
    355   t = (long double) n;
    356   t1 = (((z_h + z_l) + dp_h[k]) + t);
    357   o.value = t1;
    358   o.parts32.lswlo = 0;
    359   o.parts32.lswhi &= 0xf8000000;
    360   t1 = o.value;
    361   t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
    362 
    363   /* s (sign of result -ve**odd) = -1 else = 1 */
    364   s = one;
    365   if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
    366     s = -one;			/* (-ve)**(odd int) */
    367 
    368   /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
    369   yy1 = y;
    370   o.value = yy1;
    371   o.parts32.lswlo = 0;
    372   o.parts32.lswhi &= 0xf8000000;
    373   yy1 = o.value;
    374   p_l = (y - yy1) * t1 + y * t2;
    375   p_h = yy1 * t1;
    376   z = p_l + p_h;
    377   o.value = z;
    378   j = o.parts32.mswhi;
    379   if (j >= 0x400d0000) /* z >= 16384 */
    380     {
    381       /* if z > 16384 */
    382       if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi |
    383 	o.parts32.lswlo) != 0)
    384 	return s * huge * huge;	/* overflow */
    385       else
    386 	{
    387 	  if (p_l + ovt > z - p_h)
    388 	    return s * huge * huge;	/* overflow */
    389 	}
    390     }
    391   else if ((j & 0x7fffffff) >= 0x400d01b9)	/* z <= -16495 */
    392     {
    393       /* z < -16495 */
    394       if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi |
    395 	o.parts32.lswlo)
    396 	  != 0)
    397 	return s * tiny * tiny;	/* underflow */
    398       else
    399 	{
    400 	  if (p_l <= z - p_h)
    401 	    return s * tiny * tiny;	/* underflow */
    402 	}
    403     }
    404   /* compute 2**(p_h+p_l) */
    405   i = j & 0x7fffffff;
    406   k = (i >> 16) - 0x3fff;
    407   n = 0;
    408   if (i > 0x3ffe0000)
    409     {				/* if |z| > 0.5, set n = [z+0.5] */
    410       n = floorl (z + 0.5L);
    411       t = n;
    412       p_h -= t;
    413     }
    414   t = p_l + p_h;
    415   o.value = t;
    416   o.parts32.lswlo = 0;
    417   o.parts32.lswhi &= 0xf8000000;
    418   t = o.value;
    419   u = t * lg2_h;
    420   v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
    421   z = u + v;
    422   w = v - (z - u);
    423   /*  exp(z) */
    424   t = z * z;
    425   u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
    426   v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
    427   t1 = z - t * u / v;
    428   r = (z * t1) / (t1 - two) - (w + z * w);
    429   z = one - (r - z);
    430   o.value = z;
    431   j = o.parts32.mswhi;
    432   j += (n << 16);
    433   if ((j >> 16) <= 0)
    434     z = scalbnl (z, n);	/* subnormal output */
    435   else
    436     {
    437       o.parts32.mswhi = j;
    438       z = o.value;
    439     }
    440   return s * z;
    441 }
    442