Home | History | Annotate | Line # | Download | only in uvm
      1 /*	$NetBSD: uvm_aobj.c,v 1.157 2023/02/24 11:03:13 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  *
     28  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     29  */
     30 
     31 /*
     32  * uvm_aobj.c: anonymous memory uvm_object pager
     33  *
     34  * author: Chuck Silvers <chuq (at) chuq.com>
     35  * started: Jan-1998
     36  *
     37  * - design mostly from Chuck Cranor
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.157 2023/02/24 11:03:13 riastradh Exp $");
     42 
     43 #ifdef _KERNEL_OPT
     44 #include "opt_uvmhist.h"
     45 #endif
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/pool.h>
     52 #include <sys/atomic.h>
     53 
     54 #include <uvm/uvm.h>
     55 #include <uvm/uvm_page_array.h>
     56 
     57 /*
     58  * An anonymous UVM object (aobj) manages anonymous-memory.  In addition to
     59  * keeping the list of resident pages, it may also keep a list of allocated
     60  * swap blocks.  Depending on the size of the object, this list is either
     61  * stored in an array (small objects) or in a hash table (large objects).
     62  *
     63  * Lock order
     64  *
     65  *	uao_list_lock ->
     66  *		uvm_object::vmobjlock
     67  */
     68 
     69 /*
     70  * Note: for hash tables, we break the address space of the aobj into blocks
     71  * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
     72  */
     73 
     74 #define	UAO_SWHASH_CLUSTER_SHIFT	4
     75 #define	UAO_SWHASH_CLUSTER_SIZE		(1 << UAO_SWHASH_CLUSTER_SHIFT)
     76 
     77 /* Get the "tag" for this page index. */
     78 #define	UAO_SWHASH_ELT_TAG(idx)		((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
     79 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
     80     ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
     81 
     82 /* Given an ELT and a page index, find the swap slot. */
     83 #define	UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
     84     ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
     85 
     86 /* Given an ELT, return its pageidx base. */
     87 #define	UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     88     ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     89 
     90 /* The hash function. */
     91 #define	UAO_SWHASH_HASH(aobj, idx) \
     92     (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
     93     & (aobj)->u_swhashmask)])
     94 
     95 /*
     96  * The threshold which determines whether we will use an array or a
     97  * hash table to store the list of allocated swap blocks.
     98  */
     99 #define	UAO_SWHASH_THRESHOLD		(UAO_SWHASH_CLUSTER_SIZE * 4)
    100 #define	UAO_USES_SWHASH(aobj) \
    101     ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
    102 
    103 /* The number of buckets in a hash, with an upper bound. */
    104 #define	UAO_SWHASH_MAXBUCKETS		256
    105 #define	UAO_SWHASH_BUCKETS(aobj) \
    106     (MIN((aobj)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
    107 
    108 /*
    109  * uao_swhash_elt: when a hash table is being used, this structure defines
    110  * the format of an entry in the bucket list.
    111  */
    112 
    113 struct uao_swhash_elt {
    114 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    115 	voff_t tag;				/* our 'tag' */
    116 	int count;				/* our number of active slots */
    117 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    118 };
    119 
    120 /*
    121  * uao_swhash: the swap hash table structure
    122  */
    123 
    124 LIST_HEAD(uao_swhash, uao_swhash_elt);
    125 
    126 /*
    127  * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
    128  * Note: pages for this pool must not come from a pageable kernel map.
    129  */
    130 static struct pool	uao_swhash_elt_pool	__cacheline_aligned;
    131 
    132 /*
    133  * uvm_aobj: the actual anon-backed uvm_object
    134  *
    135  * => the uvm_object is at the top of the structure, this allows
    136  *   (struct uvm_aobj *) == (struct uvm_object *)
    137  * => only one of u_swslots and u_swhash is used in any given aobj
    138  */
    139 
    140 struct uvm_aobj {
    141 	struct uvm_object u_obj; /* has: lock, pgops, #pages, #refs */
    142 	pgoff_t u_pages;	 /* number of pages in entire object */
    143 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    144 	int *u_swslots;		 /* array of offset->swapslot mappings */
    145 				 /*
    146 				  * hashtable of offset->swapslot mappings
    147 				  * (u_swhash is an array of bucket heads)
    148 				  */
    149 	struct uao_swhash *u_swhash;
    150 	u_long u_swhashmask;		/* mask for hashtable */
    151 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    152 	int u_freelist;		  /* freelist to allocate pages from */
    153 };
    154 
    155 static void	uao_free(struct uvm_aobj *);
    156 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    157 		    int *, int, vm_prot_t, int, int);
    158 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
    159 
    160 #if defined(VMSWAP)
    161 static struct uao_swhash_elt *uao_find_swhash_elt
    162     (struct uvm_aobj *, int, bool);
    163 
    164 static bool uao_pagein(struct uvm_aobj *, int, int);
    165 static bool uao_pagein_page(struct uvm_aobj *, int);
    166 #endif /* defined(VMSWAP) */
    167 
    168 static struct vm_page	*uao_pagealloc(struct uvm_object *, voff_t, int);
    169 
    170 /*
    171  * aobj_pager
    172  *
    173  * note that some functions (e.g. put) are handled elsewhere
    174  */
    175 
    176 const struct uvm_pagerops aobj_pager = {
    177 	.pgo_reference = uao_reference,
    178 	.pgo_detach = uao_detach,
    179 	.pgo_get = uao_get,
    180 	.pgo_put = uao_put,
    181 };
    182 
    183 /*
    184  * uao_list: global list of active aobjs, locked by uao_list_lock
    185  */
    186 
    187 static LIST_HEAD(aobjlist, uvm_aobj) uao_list	__cacheline_aligned;
    188 static kmutex_t		uao_list_lock		__cacheline_aligned;
    189 
    190 /*
    191  * hash table/array related functions
    192  */
    193 
    194 #if defined(VMSWAP)
    195 
    196 /*
    197  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    198  * offset.
    199  *
    200  * => the object should be locked by the caller
    201  */
    202 
    203 static struct uao_swhash_elt *
    204 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
    205 {
    206 	struct uao_swhash *swhash;
    207 	struct uao_swhash_elt *elt;
    208 	voff_t page_tag;
    209 
    210 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    211 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    212 
    213 	/*
    214 	 * now search the bucket for the requested tag
    215 	 */
    216 
    217 	LIST_FOREACH(elt, swhash, list) {
    218 		if (elt->tag == page_tag) {
    219 			return elt;
    220 		}
    221 	}
    222 	if (!create) {
    223 		return NULL;
    224 	}
    225 
    226 	/*
    227 	 * allocate a new entry for the bucket and init/insert it in
    228 	 */
    229 
    230 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    231 	if (elt == NULL) {
    232 		return NULL;
    233 	}
    234 	LIST_INSERT_HEAD(swhash, elt, list);
    235 	elt->tag = page_tag;
    236 	elt->count = 0;
    237 	memset(elt->slots, 0, sizeof(elt->slots));
    238 	return elt;
    239 }
    240 
    241 /*
    242  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    243  *
    244  * => object must be locked by caller
    245  */
    246 
    247 int
    248 uao_find_swslot(struct uvm_object *uobj, int pageidx)
    249 {
    250 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    251 	struct uao_swhash_elt *elt;
    252 
    253 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
    254 
    255 	/*
    256 	 * if noswap flag is set, then we never return a slot
    257 	 */
    258 
    259 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    260 		return 0;
    261 
    262 	/*
    263 	 * if hashing, look in hash table.
    264 	 */
    265 
    266 	if (UAO_USES_SWHASH(aobj)) {
    267 		elt = uao_find_swhash_elt(aobj, pageidx, false);
    268 		return elt ? UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) : 0;
    269 	}
    270 
    271 	/*
    272 	 * otherwise, look in the array
    273 	 */
    274 
    275 	return aobj->u_swslots[pageidx];
    276 }
    277 
    278 /*
    279  * uao_set_swslot: set the swap slot for a page in an aobj.
    280  *
    281  * => setting a slot to zero frees the slot
    282  * => object must be locked by caller
    283  * => we return the old slot number, or -1 if we failed to allocate
    284  *    memory to record the new slot number
    285  */
    286 
    287 int
    288 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
    289 {
    290 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    291 	struct uao_swhash_elt *elt;
    292 	int oldslot;
    293 	UVMHIST_FUNC(__func__);
    294 	UVMHIST_CALLARGS(pdhist, "aobj %#jx pageidx %jd slot %jd",
    295 	    (uintptr_t)aobj, pageidx, slot, 0);
    296 
    297 	KASSERT(rw_write_held(uobj->vmobjlock) || uobj->uo_refs == 0);
    298 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
    299 
    300 	/*
    301 	 * if noswap flag is set, then we can't set a non-zero slot.
    302 	 */
    303 
    304 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    305 		KASSERTMSG(slot == 0, "uao_set_swslot: no swap object");
    306 		return 0;
    307 	}
    308 
    309 	/*
    310 	 * are we using a hash table?  if so, add it in the hash.
    311 	 */
    312 
    313 	if (UAO_USES_SWHASH(aobj)) {
    314 
    315 		/*
    316 		 * Avoid allocating an entry just to free it again if
    317 		 * the page had not swap slot in the first place, and
    318 		 * we are freeing.
    319 		 */
    320 
    321 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    322 		if (elt == NULL) {
    323 			return slot ? -1 : 0;
    324 		}
    325 
    326 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    327 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    328 
    329 		/*
    330 		 * now adjust the elt's reference counter and free it if we've
    331 		 * dropped it to zero.
    332 		 */
    333 
    334 		if (slot) {
    335 			if (oldslot == 0)
    336 				elt->count++;
    337 		} else {
    338 			if (oldslot)
    339 				elt->count--;
    340 
    341 			if (elt->count == 0) {
    342 				LIST_REMOVE(elt, list);
    343 				pool_put(&uao_swhash_elt_pool, elt);
    344 			}
    345 		}
    346 	} else {
    347 		/* we are using an array */
    348 		oldslot = aobj->u_swslots[pageidx];
    349 		aobj->u_swslots[pageidx] = slot;
    350 	}
    351 	return oldslot;
    352 }
    353 
    354 #endif /* defined(VMSWAP) */
    355 
    356 /*
    357  * end of hash/array functions
    358  */
    359 
    360 /*
    361  * uao_free: free all resources held by an aobj, and then free the aobj
    362  *
    363  * => the aobj should be dead
    364  */
    365 
    366 static void
    367 uao_free(struct uvm_aobj *aobj)
    368 {
    369 	struct uvm_object *uobj = &aobj->u_obj;
    370 
    371 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
    372 	KASSERT(rw_write_held(uobj->vmobjlock));
    373 	uao_dropswap_range(uobj, 0, 0);
    374 	rw_exit(uobj->vmobjlock);
    375 
    376 #if defined(VMSWAP)
    377 	if (UAO_USES_SWHASH(aobj)) {
    378 
    379 		/*
    380 		 * free the hash table itself.
    381 		 */
    382 
    383 		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
    384 	} else {
    385 
    386 		/*
    387 		 * free the array itself.
    388 		 */
    389 
    390 		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
    391 	}
    392 #endif /* defined(VMSWAP) */
    393 
    394 	/*
    395 	 * finally free the aobj itself
    396 	 */
    397 
    398 	uvm_obj_destroy(uobj, true);
    399 	kmem_free(aobj, sizeof(struct uvm_aobj));
    400 }
    401 
    402 /*
    403  * pager functions
    404  */
    405 
    406 /*
    407  * uao_create: create an aobj of the given size and return its uvm_object.
    408  *
    409  * => for normal use, flags are always zero
    410  * => for the kernel object, the flags are:
    411  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    412  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    413  */
    414 
    415 struct uvm_object *
    416 uao_create(voff_t size, int flags)
    417 {
    418 	static struct uvm_aobj kernel_object_store;
    419 	static krwlock_t bootstrap_kernel_object_lock;
    420 	static int kobj_alloced __diagused = 0;
    421 	pgoff_t pages = round_page((uint64_t)size) >> PAGE_SHIFT;
    422 	struct uvm_aobj *aobj;
    423 	int refs;
    424 
    425 	/*
    426 	 * Allocate a new aobj, unless kernel object is requested.
    427 	 */
    428 
    429 	if (flags & UAO_FLAG_KERNOBJ) {
    430 		KASSERT(!kobj_alloced);
    431 		aobj = &kernel_object_store;
    432 		aobj->u_pages = pages;
    433 		aobj->u_flags = UAO_FLAG_NOSWAP;
    434 		refs = UVM_OBJ_KERN;
    435 		kobj_alloced = UAO_FLAG_KERNOBJ;
    436 	} else if (flags & UAO_FLAG_KERNSWAP) {
    437 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    438 		aobj = &kernel_object_store;
    439 		kobj_alloced = UAO_FLAG_KERNSWAP;
    440 		refs = 0xdeadbeaf; /* XXX: gcc */
    441 	} else {
    442 		aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
    443 		aobj->u_pages = pages;
    444 		aobj->u_flags = 0;
    445 		refs = 1;
    446 	}
    447 
    448 	/*
    449 	 * no freelist by default
    450 	 */
    451 
    452 	aobj->u_freelist = VM_NFREELIST;
    453 
    454 	/*
    455  	 * allocate hash/array if necessary
    456  	 *
    457  	 * note: in the KERNSWAP case no need to worry about locking since
    458  	 * we are still booting we should be the only thread around.
    459  	 */
    460 
    461 	const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
    462 	if (flags == 0 || kernswap) {
    463 #if defined(VMSWAP)
    464 
    465 		/* allocate hash table or array depending on object size */
    466 		if (UAO_USES_SWHASH(aobj)) {
    467 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    468 			    HASH_LIST, true, &aobj->u_swhashmask);
    469 		} else {
    470 			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
    471 			    KM_SLEEP);
    472 		}
    473 #endif /* defined(VMSWAP) */
    474 
    475 		/*
    476 		 * Replace kernel_object's temporary static lock with
    477 		 * a regular rw_obj.  We cannot use uvm_obj_setlock()
    478 		 * because that would try to free the old lock.
    479 		 */
    480 
    481 		if (kernswap) {
    482 			aobj->u_obj.vmobjlock = rw_obj_alloc();
    483 			rw_destroy(&bootstrap_kernel_object_lock);
    484 		}
    485 		if (flags) {
    486 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    487 			return &aobj->u_obj;
    488 		}
    489 	}
    490 
    491 	/*
    492 	 * Initialise UVM object.
    493 	 */
    494 
    495 	const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
    496 	uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
    497 	if (__predict_false(kernobj)) {
    498 		/* Use a temporary static lock for kernel_object. */
    499 		rw_init(&bootstrap_kernel_object_lock);
    500 		uvm_obj_setlock(&aobj->u_obj, &bootstrap_kernel_object_lock);
    501 	}
    502 
    503 	/*
    504  	 * now that aobj is ready, add it to the global list
    505  	 */
    506 
    507 	mutex_enter(&uao_list_lock);
    508 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    509 	mutex_exit(&uao_list_lock);
    510 	return(&aobj->u_obj);
    511 }
    512 
    513 /*
    514  * uao_set_pgfl: allocate pages only from the specified freelist.
    515  *
    516  * => must be called before any pages are allocated for the object.
    517  * => reset by setting it to VM_NFREELIST, meaning any freelist.
    518  */
    519 
    520 void
    521 uao_set_pgfl(struct uvm_object *uobj, int freelist)
    522 {
    523 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    524 
    525 	KASSERTMSG((0 <= freelist), "invalid freelist %d", freelist);
    526 	KASSERTMSG((freelist <= VM_NFREELIST), "invalid freelist %d",
    527 	    freelist);
    528 
    529 	aobj->u_freelist = freelist;
    530 }
    531 
    532 /*
    533  * uao_pagealloc: allocate a page for aobj.
    534  */
    535 
    536 static inline struct vm_page *
    537 uao_pagealloc(struct uvm_object *uobj, voff_t offset, int flags)
    538 {
    539 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    540 
    541 	if (__predict_true(aobj->u_freelist == VM_NFREELIST))
    542 		return uvm_pagealloc(uobj, offset, NULL, flags);
    543 	else
    544 		return uvm_pagealloc_strat(uobj, offset, NULL, flags,
    545 		    UVM_PGA_STRAT_ONLY, aobj->u_freelist);
    546 }
    547 
    548 /*
    549  * uao_init: set up aobj pager subsystem
    550  *
    551  * => called at boot time from uvm_pager_init()
    552  */
    553 
    554 void
    555 uao_init(void)
    556 {
    557 	static int uao_initialized;
    558 
    559 	if (uao_initialized)
    560 		return;
    561 	uao_initialized = true;
    562 	LIST_INIT(&uao_list);
    563 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
    564 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
    565 	    0, 0, 0, "uaoeltpl", NULL, IPL_VM);
    566 }
    567 
    568 /*
    569  * uao_reference: hold a reference to an anonymous UVM object.
    570  */
    571 void
    572 uao_reference(struct uvm_object *uobj)
    573 {
    574 	/* Kernel object is persistent. */
    575 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    576 		return;
    577 	}
    578 	atomic_inc_uint(&uobj->uo_refs);
    579 }
    580 
    581 /*
    582  * uao_detach: drop a reference to an anonymous UVM object.
    583  */
    584 void
    585 uao_detach(struct uvm_object *uobj)
    586 {
    587 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    588 	struct uvm_page_array a;
    589 	struct vm_page *pg;
    590 
    591 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    592 
    593 	/*
    594 	 * Detaching from kernel object is a NOP.
    595 	 */
    596 
    597 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    598 		return;
    599 
    600 	/*
    601 	 * Drop the reference.  If it was the last one, destroy the object.
    602 	 */
    603 
    604 	KASSERT(uobj->uo_refs > 0);
    605 	UVMHIST_LOG(maphist,"  (uobj=%#jx)  ref=%jd",
    606 	    (uintptr_t)uobj, uobj->uo_refs, 0, 0);
    607 	membar_release();
    608 	if (atomic_dec_uint_nv(&uobj->uo_refs) > 0) {
    609 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    610 		return;
    611 	}
    612 	membar_acquire();
    613 
    614 	/*
    615 	 * Remove the aobj from the global list.
    616 	 */
    617 
    618 	mutex_enter(&uao_list_lock);
    619 	LIST_REMOVE(aobj, u_list);
    620 	mutex_exit(&uao_list_lock);
    621 
    622 	/*
    623 	 * Free all the pages left in the aobj.  For each page, when the
    624 	 * page is no longer busy (and thus after any disk I/O that it is
    625 	 * involved in is complete), release any swap resources and free
    626 	 * the page itself.
    627 	 */
    628 	uvm_page_array_init(&a, uobj, 0);
    629 	rw_enter(uobj->vmobjlock, RW_WRITER);
    630 	while ((pg = uvm_page_array_fill_and_peek(&a, 0, 0)) != NULL) {
    631 		uvm_page_array_advance(&a);
    632 		pmap_page_protect(pg, VM_PROT_NONE);
    633 		if (pg->flags & PG_BUSY) {
    634 			uvm_pagewait(pg, uobj->vmobjlock, "uao_det");
    635 			uvm_page_array_clear(&a);
    636 			rw_enter(uobj->vmobjlock, RW_WRITER);
    637 			continue;
    638 		}
    639 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    640 		uvm_pagefree(pg);
    641 	}
    642 	uvm_page_array_fini(&a);
    643 
    644 	/*
    645 	 * Finally, free the anonymous UVM object itself.
    646 	 */
    647 
    648 	uao_free(aobj);
    649 }
    650 
    651 /*
    652  * uao_put: flush pages out of a uvm object
    653  *
    654  * => object should be locked by caller.  we may _unlock_ the object
    655  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    656  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    657  *	XXXJRT a page, we simply just deactivate it.  Should probably
    658  *	XXXJRT handle this better, in the future (although "flushing"
    659  *	XXXJRT anonymous memory isn't terribly important).
    660  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    661  *	or block.
    662  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    663  *	for flushing.
    664  * => we return 0 unless we encountered some sort of I/O error
    665  *	XXXJRT currently never happens, as we never directly initiate
    666  *	XXXJRT I/O
    667  */
    668 
    669 static int
    670 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    671 {
    672 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    673 	struct uvm_page_array a;
    674 	struct vm_page *pg;
    675 	voff_t curoff;
    676 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    677 
    678 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
    679 	KASSERT(rw_write_held(uobj->vmobjlock));
    680 
    681 	if (flags & PGO_ALLPAGES) {
    682 		start = 0;
    683 		stop = aobj->u_pages << PAGE_SHIFT;
    684 	} else {
    685 		start = trunc_page(start);
    686 		if (stop == 0) {
    687 			stop = aobj->u_pages << PAGE_SHIFT;
    688 		} else {
    689 			stop = round_page(stop);
    690 		}
    691 		if (stop > (uint64_t)(aobj->u_pages << PAGE_SHIFT)) {
    692 			printf("uao_put: strange, got an out of range "
    693 			    "flush %#jx > %#jx (fixed)\n",
    694 			    (uintmax_t)stop,
    695 			    (uintmax_t)(aobj->u_pages << PAGE_SHIFT));
    696 			stop = aobj->u_pages << PAGE_SHIFT;
    697 		}
    698 	}
    699 	UVMHIST_LOG(maphist,
    700 	    " flush start=%#jx, stop=%#jx, flags=%#jx",
    701 	    start, stop, flags, 0);
    702 
    703 	/*
    704 	 * Don't need to do any work here if we're not freeing
    705 	 * or deactivating pages.
    706 	 */
    707 
    708 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    709 		rw_exit(uobj->vmobjlock);
    710 		return 0;
    711 	}
    712 
    713 	/* locked: uobj */
    714 	uvm_page_array_init(&a, uobj, 0);
    715 	curoff = start;
    716 	while ((pg = uvm_page_array_fill_and_peek(&a, curoff, 0)) != NULL) {
    717 		if (pg->offset >= stop) {
    718 			break;
    719 		}
    720 
    721 		/*
    722 		 * wait and try again if the page is busy.
    723 		 */
    724 
    725 		if (pg->flags & PG_BUSY) {
    726 			uvm_pagewait(pg, uobj->vmobjlock, "uao_put");
    727 			uvm_page_array_clear(&a);
    728 			rw_enter(uobj->vmobjlock, RW_WRITER);
    729 			continue;
    730 		}
    731 		uvm_page_array_advance(&a);
    732 		curoff = pg->offset + PAGE_SIZE;
    733 
    734 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    735 
    736 		/*
    737 		 * XXX In these first 3 cases, we always just
    738 		 * XXX deactivate the page.  We may want to
    739 		 * XXX handle the different cases more specifically
    740 		 * XXX in the future.
    741 		 */
    742 
    743 		case PGO_CLEANIT|PGO_FREE:
    744 		case PGO_CLEANIT|PGO_DEACTIVATE:
    745 		case PGO_DEACTIVATE:
    746  deactivate_it:
    747  			uvm_pagelock(pg);
    748 			uvm_pagedeactivate(pg);
    749  			uvm_pageunlock(pg);
    750 			break;
    751 
    752 		case PGO_FREE:
    753 			/*
    754 			 * If there are multiple references to
    755 			 * the object, just deactivate the page.
    756 			 */
    757 
    758 			if (uobj->uo_refs > 1)
    759 				goto deactivate_it;
    760 
    761 			/*
    762 			 * free the swap slot and the page.
    763 			 */
    764 
    765 			pmap_page_protect(pg, VM_PROT_NONE);
    766 
    767 			/*
    768 			 * freeing swapslot here is not strictly necessary.
    769 			 * however, leaving it here doesn't save much
    770 			 * because we need to update swap accounting anyway.
    771 			 */
    772 
    773 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    774 			uvm_pagefree(pg);
    775 			break;
    776 
    777 		default:
    778 			panic("%s: impossible", __func__);
    779 		}
    780 	}
    781 	rw_exit(uobj->vmobjlock);
    782 	uvm_page_array_fini(&a);
    783 	return 0;
    784 }
    785 
    786 /*
    787  * uao_get: fetch me a page
    788  *
    789  * we have three cases:
    790  * 1: page is resident     -> just return the page.
    791  * 2: page is zero-fill    -> allocate a new page and zero it.
    792  * 3: page is swapped out  -> fetch the page from swap.
    793  *
    794  * case 1 can be handled with PGO_LOCKED, cases 2 and 3 cannot.
    795  * so, if the "center" page hits case 2/3 then we will need to return EBUSY.
    796  *
    797  * => prefer map unlocked (not required)
    798  * => object must be locked!  we will _unlock_ it before starting any I/O.
    799  * => flags: PGO_LOCKED: fault data structures are locked
    800  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    801  * => NOTE: caller must check for released pages!!
    802  */
    803 
    804 static int
    805 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
    806     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
    807 {
    808 	voff_t current_offset;
    809 	struct vm_page *ptmp;
    810 	int lcv, gotpages, maxpages, swslot, pageidx;
    811 	bool overwrite = ((flags & PGO_OVERWRITE) != 0);
    812 	struct uvm_page_array a;
    813 
    814 	UVMHIST_FUNC(__func__);
    815 	UVMHIST_CALLARGS(pdhist, "aobj=%#jx offset=%jd, flags=%#jx",
    816 		    (uintptr_t)uobj, offset, flags,0);
    817 
    818 	/*
    819 	 * the object must be locked.  it can only be a read lock when
    820 	 * processing a read fault with PGO_LOCKED.
    821 	 */
    822 
    823 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
    824 	KASSERT(rw_lock_held(uobj->vmobjlock));
    825 	KASSERT(rw_write_held(uobj->vmobjlock) ||
    826 	   ((flags & PGO_LOCKED) != 0 && (access_type & VM_PROT_WRITE) == 0));
    827 
    828 	/*
    829  	 * get number of pages
    830  	 */
    831 
    832 	maxpages = *npagesp;
    833 
    834 	/*
    835  	 * step 1: handled the case where fault data structures are locked.
    836  	 */
    837 
    838 	if (flags & PGO_LOCKED) {
    839 
    840 		/*
    841  		 * step 1a: get pages that are already resident.   only do
    842 		 * this if the data structures are locked (i.e. the first
    843 		 * time through).
    844  		 */
    845 
    846 		uvm_page_array_init(&a, uobj, 0);
    847 		gotpages = 0;	/* # of pages we got so far */
    848 		for (lcv = 0; lcv < maxpages; lcv++) {
    849 			ptmp = uvm_page_array_fill_and_peek(&a,
    850 			    offset + (lcv << PAGE_SHIFT), maxpages);
    851 			if (ptmp == NULL) {
    852 				break;
    853 			}
    854 			KASSERT(ptmp->offset >= offset);
    855 			lcv = (ptmp->offset - offset) >> PAGE_SHIFT;
    856 			if (lcv >= maxpages) {
    857 				break;
    858 			}
    859 			uvm_page_array_advance(&a);
    860 
    861 			/*
    862 			 * to be useful must get a non-busy page
    863 			 */
    864 
    865 			if ((ptmp->flags & PG_BUSY) != 0) {
    866 				continue;
    867 			}
    868 
    869 			/*
    870 			 * useful page: plug it in our result array
    871 			 */
    872 
    873 			KASSERT(uvm_pagegetdirty(ptmp) !=
    874 			    UVM_PAGE_STATUS_CLEAN);
    875 			pps[lcv] = ptmp;
    876 			gotpages++;
    877 		}
    878 		uvm_page_array_fini(&a);
    879 
    880 		/*
    881  		 * step 1b: now we've either done everything needed or we
    882 		 * to unlock and do some waiting or I/O.
    883  		 */
    884 
    885 		UVMHIST_LOG(pdhist, "<- done (done=%jd)",
    886 		    (pps[centeridx] != NULL), 0,0,0);
    887 		*npagesp = gotpages;
    888 		return pps[centeridx] != NULL ? 0 : EBUSY;
    889 	}
    890 
    891 	/*
    892  	 * step 2: get non-resident or busy pages.
    893  	 * object is locked.   data structures are unlocked.
    894  	 */
    895 
    896 	if ((flags & PGO_SYNCIO) == 0) {
    897 		goto done;
    898 	}
    899 
    900 	uvm_page_array_init(&a, uobj, 0);
    901 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;) {
    902 
    903 		/*
    904  		 * we have yet to locate the current page (pps[lcv]).   we
    905 		 * first look for a page that is already at the current offset.
    906 		 * if we find a page, we check to see if it is busy or
    907 		 * released.  if that is the case, then we sleep on the page
    908 		 * until it is no longer busy or released and repeat the lookup.
    909 		 * if the page we found is neither busy nor released, then we
    910 		 * busy it (so we own it) and plug it into pps[lcv].   we are
    911 		 * ready to move on to the next page.
    912  		 */
    913 
    914 		ptmp = uvm_page_array_fill_and_peek(&a, current_offset,
    915 		    maxpages - lcv);
    916 
    917 		if (ptmp != NULL && ptmp->offset == current_offset) {
    918 			/* page is there, see if we need to wait on it */
    919 			if ((ptmp->flags & PG_BUSY) != 0) {
    920 				UVMHIST_LOG(pdhist,
    921 				    "sleeping, ptmp->flags %#jx\n",
    922 				    ptmp->flags,0,0,0);
    923 				uvm_pagewait(ptmp, uobj->vmobjlock, "uao_get");
    924 				rw_enter(uobj->vmobjlock, RW_WRITER);
    925 				uvm_page_array_clear(&a);
    926 				continue;
    927 			}
    928 
    929 			/*
    930  			 * if we get here then the page is resident and
    931 			 * unbusy.  we busy it now (so we own it).  if
    932 			 * overwriting, mark the page dirty up front as
    933 			 * it will be zapped via an unmanaged mapping.
    934  			 */
    935 
    936 			KASSERT(uvm_pagegetdirty(ptmp) !=
    937 			    UVM_PAGE_STATUS_CLEAN);
    938 			if (overwrite) {
    939 				uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_DIRTY);
    940 			}
    941 			/* we own it, caller must un-busy */
    942 			ptmp->flags |= PG_BUSY;
    943 			UVM_PAGE_OWN(ptmp, "uao_get2");
    944 			pps[lcv++] = ptmp;
    945 			current_offset += PAGE_SIZE;
    946 			uvm_page_array_advance(&a);
    947 			continue;
    948 		} else {
    949 			KASSERT(ptmp == NULL || ptmp->offset > current_offset);
    950 		}
    951 
    952 		/*
    953 		 * not resident.  allocate a new busy/fake/clean page in the
    954 		 * object.  if it's in swap we need to do I/O to fill in the
    955 		 * data, otherwise the page needs to be cleared: if it's not
    956 		 * destined to be overwritten, then zero it here and now.
    957 		 */
    958 
    959 		pageidx = current_offset >> PAGE_SHIFT;
    960 		swslot = uao_find_swslot(uobj, pageidx);
    961 		ptmp = uao_pagealloc(uobj, current_offset,
    962 		    swslot != 0 || overwrite ? 0 : UVM_PGA_ZERO);
    963 
    964 		/* out of RAM? */
    965 		if (ptmp == NULL) {
    966 			rw_exit(uobj->vmobjlock);
    967 			UVMHIST_LOG(pdhist, "sleeping, ptmp == NULL",0,0,0,0);
    968 			uvm_wait("uao_getpage");
    969 			rw_enter(uobj->vmobjlock, RW_WRITER);
    970 			uvm_page_array_clear(&a);
    971 			continue;
    972 		}
    973 
    974 		/*
    975  		 * if swslot == 0, page hasn't existed before and is zeroed.
    976  		 * otherwise we have a "fake/busy/clean" page that we just
    977  		 * allocated.  do the needed "i/o", reading from swap.
    978  		 */
    979 
    980 		if (swslot != 0) {
    981 #if defined(VMSWAP)
    982 			int error;
    983 
    984 			UVMHIST_LOG(pdhist, "pagein from swslot %jd",
    985 			     swslot, 0,0,0);
    986 
    987 			/*
    988 			 * page in the swapped-out page.
    989 			 * unlock object for i/o, relock when done.
    990 			 */
    991 
    992 			uvm_page_array_clear(&a);
    993 			rw_exit(uobj->vmobjlock);
    994 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
    995 			rw_enter(uobj->vmobjlock, RW_WRITER);
    996 
    997 			/*
    998 			 * I/O done.  check for errors.
    999 			 */
   1000 
   1001 			if (error != 0) {
   1002 				UVMHIST_LOG(pdhist, "<- done (error=%jd)",
   1003 				    error,0,0,0);
   1004 
   1005 				/*
   1006 				 * remove the swap slot from the aobj
   1007 				 * and mark the aobj as having no real slot.
   1008 				 * don't free the swap slot, thus preventing
   1009 				 * it from being used again.
   1010 				 */
   1011 
   1012 				swslot = uao_set_swslot(uobj, pageidx,
   1013 				    SWSLOT_BAD);
   1014 				if (swslot > 0) {
   1015 					uvm_swap_markbad(swslot, 1);
   1016 				}
   1017 
   1018 				uvm_pagefree(ptmp);
   1019 				rw_exit(uobj->vmobjlock);
   1020 				UVMHIST_LOG(pdhist, "<- done (error)",
   1021 				    error,lcv,0,0);
   1022 				if (lcv != 0) {
   1023 					uvm_page_unbusy(pps, lcv);
   1024 				}
   1025 				memset(pps, 0, maxpages * sizeof(pps[0]));
   1026 				uvm_page_array_fini(&a);
   1027 				return error;
   1028 			}
   1029 #else /* defined(VMSWAP) */
   1030 			panic("%s: pagein", __func__);
   1031 #endif /* defined(VMSWAP) */
   1032 		}
   1033 
   1034 		/*
   1035 		 * note that we will allow the page being writably-mapped
   1036 		 * (!PG_RDONLY) regardless of access_type.  if overwrite,
   1037 		 * the page can be modified through an unmanaged mapping
   1038 		 * so mark it dirty up front.
   1039 		 */
   1040 		if (overwrite) {
   1041 			uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_DIRTY);
   1042 		} else {
   1043 			uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_UNKNOWN);
   1044 		}
   1045 
   1046 		/*
   1047  		 * we got the page!   clear the fake flag (indicates valid
   1048 		 * data now in page) and plug into our result array.   note
   1049 		 * that page is still busy.
   1050  		 *
   1051  		 * it is the callers job to:
   1052  		 * => check if the page is released
   1053  		 * => unbusy the page
   1054  		 * => activate the page
   1055  		 */
   1056 		KASSERT(uvm_pagegetdirty(ptmp) != UVM_PAGE_STATUS_CLEAN);
   1057 		KASSERT((ptmp->flags & PG_FAKE) != 0);
   1058 		KASSERT(ptmp->offset == current_offset);
   1059 		ptmp->flags &= ~PG_FAKE;
   1060 		pps[lcv++] = ptmp;
   1061 		current_offset += PAGE_SIZE;
   1062 	}
   1063 	uvm_page_array_fini(&a);
   1064 
   1065 	/*
   1066  	 * finally, unlock object and return.
   1067  	 */
   1068 
   1069 done:
   1070 	rw_exit(uobj->vmobjlock);
   1071 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1072 	return 0;
   1073 }
   1074 
   1075 #if defined(VMSWAP)
   1076 
   1077 /*
   1078  * uao_dropswap:  release any swap resources from this aobj page.
   1079  *
   1080  * => aobj must be locked or have a reference count of 0.
   1081  */
   1082 
   1083 void
   1084 uao_dropswap(struct uvm_object *uobj, int pageidx)
   1085 {
   1086 	int slot;
   1087 
   1088 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
   1089 
   1090 	slot = uao_set_swslot(uobj, pageidx, 0);
   1091 	if (slot) {
   1092 		uvm_swap_free(slot, 1);
   1093 	}
   1094 }
   1095 
   1096 /*
   1097  * page in every page in every aobj that is paged-out to a range of swslots.
   1098  *
   1099  * => nothing should be locked.
   1100  * => returns true if pagein was aborted due to lack of memory.
   1101  */
   1102 
   1103 bool
   1104 uao_swap_off(int startslot, int endslot)
   1105 {
   1106 	struct uvm_aobj *aobj;
   1107 
   1108 	/*
   1109 	 * Walk the list of all anonymous UVM objects.  Grab the first.
   1110 	 */
   1111 	mutex_enter(&uao_list_lock);
   1112 	if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
   1113 		mutex_exit(&uao_list_lock);
   1114 		return false;
   1115 	}
   1116 	uao_reference(&aobj->u_obj);
   1117 
   1118 	do {
   1119 		struct uvm_aobj *nextaobj;
   1120 		bool rv;
   1121 
   1122 		/*
   1123 		 * Prefetch the next object and immediately hold a reference
   1124 		 * on it, so neither the current nor the next entry could
   1125 		 * disappear while we are iterating.
   1126 		 */
   1127 		if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
   1128 			uao_reference(&nextaobj->u_obj);
   1129 		}
   1130 		mutex_exit(&uao_list_lock);
   1131 
   1132 		/*
   1133 		 * Page in all pages in the swap slot range.
   1134 		 */
   1135 		rw_enter(aobj->u_obj.vmobjlock, RW_WRITER);
   1136 		rv = uao_pagein(aobj, startslot, endslot);
   1137 		rw_exit(aobj->u_obj.vmobjlock);
   1138 
   1139 		/* Drop the reference of the current object. */
   1140 		uao_detach(&aobj->u_obj);
   1141 		if (rv) {
   1142 			if (nextaobj) {
   1143 				uao_detach(&nextaobj->u_obj);
   1144 			}
   1145 			return rv;
   1146 		}
   1147 
   1148 		aobj = nextaobj;
   1149 		mutex_enter(&uao_list_lock);
   1150 	} while (aobj);
   1151 
   1152 	mutex_exit(&uao_list_lock);
   1153 	return false;
   1154 }
   1155 
   1156 /*
   1157  * page in any pages from aobj in the given range.
   1158  *
   1159  * => aobj must be locked and is returned locked.
   1160  * => returns true if pagein was aborted due to lack of memory.
   1161  */
   1162 static bool
   1163 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
   1164 {
   1165 	bool rv;
   1166 
   1167 	if (UAO_USES_SWHASH(aobj)) {
   1168 		struct uao_swhash_elt *elt;
   1169 		int buck;
   1170 
   1171 restart:
   1172 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1173 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1174 			     elt != NULL;
   1175 			     elt = LIST_NEXT(elt, list)) {
   1176 				int i;
   1177 
   1178 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1179 					int slot = elt->slots[i];
   1180 
   1181 					/*
   1182 					 * if the slot isn't in range, skip it.
   1183 					 */
   1184 
   1185 					if (slot < startslot ||
   1186 					    slot >= endslot) {
   1187 						continue;
   1188 					}
   1189 
   1190 					/*
   1191 					 * process the page,
   1192 					 * the start over on this object
   1193 					 * since the swhash elt
   1194 					 * may have been freed.
   1195 					 */
   1196 
   1197 					rv = uao_pagein_page(aobj,
   1198 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1199 					if (rv) {
   1200 						return rv;
   1201 					}
   1202 					goto restart;
   1203 				}
   1204 			}
   1205 		}
   1206 	} else {
   1207 		int i;
   1208 
   1209 		for (i = 0; i < aobj->u_pages; i++) {
   1210 			int slot = aobj->u_swslots[i];
   1211 
   1212 			/*
   1213 			 * if the slot isn't in range, skip it
   1214 			 */
   1215 
   1216 			if (slot < startslot || slot >= endslot) {
   1217 				continue;
   1218 			}
   1219 
   1220 			/*
   1221 			 * process the page.
   1222 			 */
   1223 
   1224 			rv = uao_pagein_page(aobj, i);
   1225 			if (rv) {
   1226 				return rv;
   1227 			}
   1228 		}
   1229 	}
   1230 
   1231 	return false;
   1232 }
   1233 
   1234 /*
   1235  * uao_pagein_page: page in a single page from an anonymous UVM object.
   1236  *
   1237  * => Returns true if pagein was aborted due to lack of memory.
   1238  * => Object must be locked and is returned locked.
   1239  */
   1240 
   1241 static bool
   1242 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
   1243 {
   1244 	struct uvm_object *uobj = &aobj->u_obj;
   1245 	struct vm_page *pg;
   1246 	int rv, npages;
   1247 
   1248 	pg = NULL;
   1249 	npages = 1;
   1250 
   1251 	KASSERT(rw_write_held(uobj->vmobjlock));
   1252 	rv = uao_get(uobj, (voff_t)pageidx << PAGE_SHIFT, &pg, &npages,
   1253 	    0, VM_PROT_READ | VM_PROT_WRITE, 0, PGO_SYNCIO);
   1254 
   1255 	/*
   1256 	 * relock and finish up.
   1257 	 */
   1258 
   1259 	rw_enter(uobj->vmobjlock, RW_WRITER);
   1260 	switch (rv) {
   1261 	case 0:
   1262 		break;
   1263 
   1264 	case EIO:
   1265 	case ERESTART:
   1266 
   1267 		/*
   1268 		 * nothing more to do on errors.
   1269 		 * ERESTART can only mean that the anon was freed,
   1270 		 * so again there's nothing to do.
   1271 		 */
   1272 
   1273 		return false;
   1274 
   1275 	default:
   1276 		return true;
   1277 	}
   1278 
   1279 	/*
   1280 	 * ok, we've got the page now.
   1281 	 * mark it as dirty, clear its swslot and un-busy it.
   1282 	 */
   1283 	uao_dropswap(&aobj->u_obj, pageidx);
   1284 
   1285 	/*
   1286 	 * make sure it's on a page queue.
   1287 	 */
   1288 	uvm_pagelock(pg);
   1289 	uvm_pageenqueue(pg);
   1290 	uvm_pagewakeup(pg);
   1291 	uvm_pageunlock(pg);
   1292 
   1293 	pg->flags &= ~(PG_BUSY|PG_FAKE);
   1294 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   1295 	UVM_PAGE_OWN(pg, NULL);
   1296 
   1297 	return false;
   1298 }
   1299 
   1300 /*
   1301  * uao_dropswap_range: drop swapslots in the range.
   1302  *
   1303  * => aobj must be locked and is returned locked.
   1304  * => start is inclusive.  end is exclusive.
   1305  */
   1306 
   1307 void
   1308 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
   1309 {
   1310 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
   1311 	int swpgonlydelta = 0;
   1312 
   1313 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
   1314 	KASSERT(rw_write_held(uobj->vmobjlock));
   1315 
   1316 	if (end == 0) {
   1317 		end = INT64_MAX;
   1318 	}
   1319 
   1320 	if (UAO_USES_SWHASH(aobj)) {
   1321 		int i, hashbuckets = aobj->u_swhashmask + 1;
   1322 		voff_t taghi;
   1323 		voff_t taglo;
   1324 
   1325 		taglo = UAO_SWHASH_ELT_TAG(start);
   1326 		taghi = UAO_SWHASH_ELT_TAG(end);
   1327 
   1328 		for (i = 0; i < hashbuckets; i++) {
   1329 			struct uao_swhash_elt *elt, *next;
   1330 
   1331 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
   1332 			     elt != NULL;
   1333 			     elt = next) {
   1334 				int startidx, endidx;
   1335 				int j;
   1336 
   1337 				next = LIST_NEXT(elt, list);
   1338 
   1339 				if (elt->tag < taglo || taghi < elt->tag) {
   1340 					continue;
   1341 				}
   1342 
   1343 				if (elt->tag == taglo) {
   1344 					startidx =
   1345 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
   1346 				} else {
   1347 					startidx = 0;
   1348 				}
   1349 
   1350 				if (elt->tag == taghi) {
   1351 					endidx =
   1352 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
   1353 				} else {
   1354 					endidx = UAO_SWHASH_CLUSTER_SIZE;
   1355 				}
   1356 
   1357 				for (j = startidx; j < endidx; j++) {
   1358 					int slot = elt->slots[j];
   1359 
   1360 					KASSERT(uvm_pagelookup(&aobj->u_obj,
   1361 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
   1362 					    + j) << PAGE_SHIFT) == NULL);
   1363 					if (slot > 0) {
   1364 						uvm_swap_free(slot, 1);
   1365 						swpgonlydelta++;
   1366 						KASSERT(elt->count > 0);
   1367 						elt->slots[j] = 0;
   1368 						elt->count--;
   1369 					}
   1370 				}
   1371 
   1372 				if (elt->count == 0) {
   1373 					LIST_REMOVE(elt, list);
   1374 					pool_put(&uao_swhash_elt_pool, elt);
   1375 				}
   1376 			}
   1377 		}
   1378 	} else {
   1379 		int i;
   1380 
   1381 		if (aobj->u_pages < end) {
   1382 			end = aobj->u_pages;
   1383 		}
   1384 		for (i = start; i < end; i++) {
   1385 			int slot = aobj->u_swslots[i];
   1386 
   1387 			if (slot > 0) {
   1388 				uvm_swap_free(slot, 1);
   1389 				swpgonlydelta++;
   1390 			}
   1391 		}
   1392 	}
   1393 
   1394 	/*
   1395 	 * adjust the counter of pages only in swap for all
   1396 	 * the swap slots we've freed.
   1397 	 */
   1398 
   1399 	if (swpgonlydelta > 0) {
   1400 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
   1401 		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
   1402 	}
   1403 }
   1404 
   1405 #endif /* defined(VMSWAP) */
   1406