Home | History | Annotate | Line # | Download | only in arm32
      1 /*	$NetBSD: pmap.c,v 1.443 2024/04/13 12:28:01 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 2002-2003 Wasabi Systems, Inc.
     40  * Copyright (c) 2001 Richard Earnshaw
     41  * Copyright (c) 2001-2002 Christopher Gilbert
     42  * All rights reserved.
     43  *
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. The name of the company nor the name of the author may be used to
     50  *    endorse or promote products derived from this software without specific
     51  *    prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     54  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     55  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     57  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     58  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     59  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  */
     65 
     66 /*-
     67  * Copyright (c) 1999, 2020 The NetBSD Foundation, Inc.
     68  * All rights reserved.
     69  *
     70  * This code is derived from software contributed to The NetBSD Foundation
     71  * by Charles M. Hannum.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  *
     82  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     83  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     85  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     86  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     87  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     88  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     89  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     90  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     91  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     92  * POSSIBILITY OF SUCH DAMAGE.
     93  */
     94 
     95 /*
     96  * Copyright (c) 1994-1998 Mark Brinicombe.
     97  * Copyright (c) 1994 Brini.
     98  * All rights reserved.
     99  *
    100  * This code is derived from software written for Brini by Mark Brinicombe
    101  *
    102  * Redistribution and use in source and binary forms, with or without
    103  * modification, are permitted provided that the following conditions
    104  * are met:
    105  * 1. Redistributions of source code must retain the above copyright
    106  *    notice, this list of conditions and the following disclaimer.
    107  * 2. Redistributions in binary form must reproduce the above copyright
    108  *    notice, this list of conditions and the following disclaimer in the
    109  *    documentation and/or other materials provided with the distribution.
    110  * 3. All advertising materials mentioning features or use of this software
    111  *    must display the following acknowledgement:
    112  *	This product includes software developed by Mark Brinicombe.
    113  * 4. The name of the author may not be used to endorse or promote products
    114  *    derived from this software without specific prior written permission.
    115  *
    116  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
    117  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
    118  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    119  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
    120  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    121  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    122  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    123  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    124  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
    125  *
    126  * RiscBSD kernel project
    127  *
    128  * pmap.c
    129  *
    130  * Machine dependent vm stuff
    131  *
    132  * Created      : 20/09/94
    133  */
    134 
    135 /*
    136  * armv6 and VIPT cache support by 3am Software Foundry,
    137  * Copyright (c) 2007 Microsoft
    138  */
    139 
    140 /*
    141  * Performance improvements, UVM changes, overhauls and part-rewrites
    142  * were contributed by Neil A. Carson <neil (at) causality.com>.
    143  */
    144 
    145 /*
    146  * Overhauled again to speedup the pmap, use MMU Domains so that L1 tables
    147  * can be shared, and re-work the KVM layout, by Steve Woodford of Wasabi
    148  * Systems, Inc.
    149  *
    150  * There are still a few things outstanding at this time:
    151  *
    152  *   - There are some unresolved issues for MP systems:
    153  *
    154  *     o The L1 metadata needs a lock, or more specifically, some places
    155  *       need to acquire an exclusive lock when modifying L1 translation
    156  *       table entries.
    157  *
    158  *     o When one cpu modifies an L1 entry, and that L1 table is also
    159  *       being used by another cpu, then the latter will need to be told
    160  *       that a tlb invalidation may be necessary. (But only if the old
    161  *       domain number in the L1 entry being over-written is currently
    162  *       the active domain on that cpu). I guess there are lots more tlb
    163  *       shootdown issues too...
    164  *
    165  *     o If the vector_page is at 0x00000000 instead of in kernel VA space,
    166  *       then MP systems will lose big-time because of the MMU domain hack.
    167  *       The only way this can be solved (apart from moving the vector
    168  *       page to 0xffff0000) is to reserve the first 1MB of user address
    169  *       space for kernel use only. This would require re-linking all
    170  *       applications so that the text section starts above this 1MB
    171  *       boundary.
    172  *
    173  *     o Tracking which VM space is resident in the cache/tlb has not yet
    174  *       been implemented for MP systems.
    175  *
    176  *     o Finally, there is a pathological condition where two cpus running
    177  *       two separate processes (not lwps) which happen to share an L1
    178  *       can get into a fight over one or more L1 entries. This will result
    179  *       in a significant slow-down if both processes are in tight loops.
    180  */
    181 
    182 /* Include header files */
    183 
    184 #include "opt_arm_debug.h"
    185 #include "opt_cpuoptions.h"
    186 #include "opt_ddb.h"
    187 #include "opt_efi.h"
    188 #include "opt_lockdebug.h"
    189 #include "opt_multiprocessor.h"
    190 
    191 #ifdef MULTIPROCESSOR
    192 #define _INTR_PRIVATE
    193 #endif
    194 
    195 #include <sys/cdefs.h>
    196 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.443 2024/04/13 12:28:01 skrll Exp $");
    197 
    198 #include <sys/param.h>
    199 #include <sys/types.h>
    200 
    201 #include <sys/asan.h>
    202 #include <sys/atomic.h>
    203 #include <sys/bus.h>
    204 #include <sys/cpu.h>
    205 #include <sys/intr.h>
    206 #include <sys/kernel.h>
    207 #include <sys/kernhist.h>
    208 #include <sys/kmem.h>
    209 #include <sys/pool.h>
    210 #include <sys/proc.h>
    211 #include <sys/sysctl.h>
    212 #include <sys/systm.h>
    213 
    214 #include <uvm/uvm.h>
    215 #include <uvm/pmap/pmap_pvt.h>
    216 
    217 #include <arm/locore.h>
    218 
    219 #ifdef DDB
    220 #include <arm/db_machdep.h>
    221 #endif
    222 
    223 #ifdef VERBOSE_INIT_ARM
    224 #define VPRINTF(...)	printf(__VA_ARGS__)
    225 #else
    226 #define VPRINTF(...)	__nothing
    227 #endif
    228 
    229 #if defined(EFI_RUNTIME)
    230 #if !defined(ARM_MMU_EXTENDED)
    231 #error EFI_RUNTIME is only supported with ARM_MMU_EXTENDED
    232 #endif
    233 #endif
    234 
    235 /*
    236  * pmap_kernel() points here
    237  */
    238 static struct pmap	kernel_pmap_store = {
    239 #ifndef ARM_MMU_EXTENDED
    240 	.pm_activated = true,
    241 	.pm_domain = PMAP_DOMAIN_KERNEL,
    242 	.pm_cstate.cs_all = PMAP_CACHE_STATE_ALL,
    243 #endif
    244 };
    245 struct pmap * const	kernel_pmap_ptr = &kernel_pmap_store;
    246 #undef pmap_kernel
    247 #define pmap_kernel()	(&kernel_pmap_store)
    248 
    249 #if defined(EFI_RUNTIME)
    250 static struct pmap	efirt_pmap;
    251 
    252 struct pmap *
    253 pmap_efirt(void)
    254 {
    255 	return &efirt_pmap;
    256 }
    257 #endif
    258 
    259 #ifdef PMAP_NEED_ALLOC_POOLPAGE
    260 int			arm_poolpage_vmfreelist = VM_FREELIST_DEFAULT;
    261 #endif
    262 
    263 /*
    264  * Pool and cache that pmap structures are allocated from.
    265  * We use a cache to avoid clearing the pm_l2[] array (1KB)
    266  * in pmap_create().
    267  */
    268 static struct pool_cache pmap_cache;
    269 
    270 /*
    271  * Pool of PV structures
    272  */
    273 static struct pool pmap_pv_pool;
    274 static void *pmap_bootstrap_pv_page_alloc(struct pool *, int);
    275 static void pmap_bootstrap_pv_page_free(struct pool *, void *);
    276 static struct pool_allocator pmap_bootstrap_pv_allocator = {
    277 	pmap_bootstrap_pv_page_alloc, pmap_bootstrap_pv_page_free
    278 };
    279 
    280 /*
    281  * Pool and cache of l2_dtable structures.
    282  * We use a cache to avoid clearing the structures when they're
    283  * allocated. (196 bytes)
    284  */
    285 static struct pool_cache pmap_l2dtable_cache;
    286 static vaddr_t pmap_kernel_l2dtable_kva;
    287 
    288 /*
    289  * Pool and cache of L2 page descriptors.
    290  * We use a cache to avoid clearing the descriptor table
    291  * when they're allocated. (1KB)
    292  */
    293 static struct pool_cache pmap_l2ptp_cache;
    294 static vaddr_t pmap_kernel_l2ptp_kva;
    295 static paddr_t pmap_kernel_l2ptp_phys;
    296 
    297 #ifdef PMAPCOUNTERS
    298 #define	PMAP_EVCNT_INITIALIZER(name) \
    299 	EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", name)
    300 
    301 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
    302 static struct evcnt pmap_ev_vac_clean_one =
    303    PMAP_EVCNT_INITIALIZER("clean page (1 color)");
    304 static struct evcnt pmap_ev_vac_flush_one =
    305    PMAP_EVCNT_INITIALIZER("flush page (1 color)");
    306 static struct evcnt pmap_ev_vac_flush_lots =
    307    PMAP_EVCNT_INITIALIZER("flush page (2+ colors)");
    308 static struct evcnt pmap_ev_vac_flush_lots2 =
    309    PMAP_EVCNT_INITIALIZER("flush page (2+ colors, kmpage)");
    310 EVCNT_ATTACH_STATIC(pmap_ev_vac_clean_one);
    311 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_one);
    312 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots);
    313 EVCNT_ATTACH_STATIC(pmap_ev_vac_flush_lots2);
    314 
    315 static struct evcnt pmap_ev_vac_color_new =
    316    PMAP_EVCNT_INITIALIZER("new page color");
    317 static struct evcnt pmap_ev_vac_color_reuse =
    318    PMAP_EVCNT_INITIALIZER("ok first page color");
    319 static struct evcnt pmap_ev_vac_color_ok =
    320    PMAP_EVCNT_INITIALIZER("ok page color");
    321 static struct evcnt pmap_ev_vac_color_blind =
    322    PMAP_EVCNT_INITIALIZER("blind page color");
    323 static struct evcnt pmap_ev_vac_color_change =
    324    PMAP_EVCNT_INITIALIZER("change page color");
    325 static struct evcnt pmap_ev_vac_color_erase =
    326    PMAP_EVCNT_INITIALIZER("erase page color");
    327 static struct evcnt pmap_ev_vac_color_none =
    328    PMAP_EVCNT_INITIALIZER("no page color");
    329 static struct evcnt pmap_ev_vac_color_restore =
    330    PMAP_EVCNT_INITIALIZER("restore page color");
    331 
    332 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_new);
    333 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_reuse);
    334 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_ok);
    335 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_blind);
    336 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_change);
    337 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_erase);
    338 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_none);
    339 EVCNT_ATTACH_STATIC(pmap_ev_vac_color_restore);
    340 #endif
    341 
    342 static struct evcnt pmap_ev_mappings =
    343    PMAP_EVCNT_INITIALIZER("pages mapped");
    344 static struct evcnt pmap_ev_unmappings =
    345    PMAP_EVCNT_INITIALIZER("pages unmapped");
    346 static struct evcnt pmap_ev_remappings =
    347    PMAP_EVCNT_INITIALIZER("pages remapped");
    348 
    349 EVCNT_ATTACH_STATIC(pmap_ev_mappings);
    350 EVCNT_ATTACH_STATIC(pmap_ev_unmappings);
    351 EVCNT_ATTACH_STATIC(pmap_ev_remappings);
    352 
    353 static struct evcnt pmap_ev_kernel_mappings =
    354    PMAP_EVCNT_INITIALIZER("kernel pages mapped");
    355 static struct evcnt pmap_ev_kernel_unmappings =
    356    PMAP_EVCNT_INITIALIZER("kernel pages unmapped");
    357 static struct evcnt pmap_ev_kernel_remappings =
    358    PMAP_EVCNT_INITIALIZER("kernel pages remapped");
    359 
    360 EVCNT_ATTACH_STATIC(pmap_ev_kernel_mappings);
    361 EVCNT_ATTACH_STATIC(pmap_ev_kernel_unmappings);
    362 EVCNT_ATTACH_STATIC(pmap_ev_kernel_remappings);
    363 
    364 static struct evcnt pmap_ev_kenter_mappings =
    365    PMAP_EVCNT_INITIALIZER("kenter pages mapped");
    366 static struct evcnt pmap_ev_kenter_unmappings =
    367    PMAP_EVCNT_INITIALIZER("kenter pages unmapped");
    368 static struct evcnt pmap_ev_kenter_remappings =
    369    PMAP_EVCNT_INITIALIZER("kenter pages remapped");
    370 static struct evcnt pmap_ev_pt_mappings =
    371    PMAP_EVCNT_INITIALIZER("page table pages mapped");
    372 
    373 EVCNT_ATTACH_STATIC(pmap_ev_kenter_mappings);
    374 EVCNT_ATTACH_STATIC(pmap_ev_kenter_unmappings);
    375 EVCNT_ATTACH_STATIC(pmap_ev_kenter_remappings);
    376 EVCNT_ATTACH_STATIC(pmap_ev_pt_mappings);
    377 
    378 static struct evcnt pmap_ev_fixup_mod =
    379    PMAP_EVCNT_INITIALIZER("page modification emulations");
    380 static struct evcnt pmap_ev_fixup_ref =
    381    PMAP_EVCNT_INITIALIZER("page reference emulations");
    382 static struct evcnt pmap_ev_fixup_exec =
    383    PMAP_EVCNT_INITIALIZER("exec pages fixed up");
    384 static struct evcnt pmap_ev_fixup_pdes =
    385    PMAP_EVCNT_INITIALIZER("pdes fixed up");
    386 #ifndef ARM_MMU_EXTENDED
    387 static struct evcnt pmap_ev_fixup_ptesync =
    388    PMAP_EVCNT_INITIALIZER("ptesync fixed");
    389 #endif
    390 
    391 EVCNT_ATTACH_STATIC(pmap_ev_fixup_mod);
    392 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ref);
    393 EVCNT_ATTACH_STATIC(pmap_ev_fixup_exec);
    394 EVCNT_ATTACH_STATIC(pmap_ev_fixup_pdes);
    395 #ifndef ARM_MMU_EXTENDED
    396 EVCNT_ATTACH_STATIC(pmap_ev_fixup_ptesync);
    397 #endif
    398 
    399 #ifdef PMAP_CACHE_VIPT
    400 static struct evcnt pmap_ev_exec_mappings =
    401    PMAP_EVCNT_INITIALIZER("exec pages mapped");
    402 static struct evcnt pmap_ev_exec_cached =
    403    PMAP_EVCNT_INITIALIZER("exec pages cached");
    404 
    405 EVCNT_ATTACH_STATIC(pmap_ev_exec_mappings);
    406 EVCNT_ATTACH_STATIC(pmap_ev_exec_cached);
    407 
    408 static struct evcnt pmap_ev_exec_synced =
    409    PMAP_EVCNT_INITIALIZER("exec pages synced");
    410 static struct evcnt pmap_ev_exec_synced_map =
    411    PMAP_EVCNT_INITIALIZER("exec pages synced (MP)");
    412 static struct evcnt pmap_ev_exec_synced_unmap =
    413    PMAP_EVCNT_INITIALIZER("exec pages synced (UM)");
    414 static struct evcnt pmap_ev_exec_synced_remap =
    415    PMAP_EVCNT_INITIALIZER("exec pages synced (RM)");
    416 static struct evcnt pmap_ev_exec_synced_clearbit =
    417    PMAP_EVCNT_INITIALIZER("exec pages synced (DG)");
    418 #ifndef ARM_MMU_EXTENDED
    419 static struct evcnt pmap_ev_exec_synced_kremove =
    420    PMAP_EVCNT_INITIALIZER("exec pages synced (KU)");
    421 #endif
    422 
    423 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced);
    424 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_map);
    425 #ifndef ARM_MMU_EXTENDED
    426 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_unmap);
    427 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_remap);
    428 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_clearbit);
    429 EVCNT_ATTACH_STATIC(pmap_ev_exec_synced_kremove);
    430 #endif
    431 
    432 static struct evcnt pmap_ev_exec_discarded_unmap =
    433    PMAP_EVCNT_INITIALIZER("exec pages discarded (UM)");
    434 static struct evcnt pmap_ev_exec_discarded_zero =
    435    PMAP_EVCNT_INITIALIZER("exec pages discarded (ZP)");
    436 static struct evcnt pmap_ev_exec_discarded_copy =
    437    PMAP_EVCNT_INITIALIZER("exec pages discarded (CP)");
    438 static struct evcnt pmap_ev_exec_discarded_page_protect =
    439    PMAP_EVCNT_INITIALIZER("exec pages discarded (PP)");
    440 static struct evcnt pmap_ev_exec_discarded_clearbit =
    441    PMAP_EVCNT_INITIALIZER("exec pages discarded (DG)");
    442 static struct evcnt pmap_ev_exec_discarded_kremove =
    443    PMAP_EVCNT_INITIALIZER("exec pages discarded (KU)");
    444 #ifdef ARM_MMU_EXTENDED
    445 static struct evcnt pmap_ev_exec_discarded_modfixup =
    446    PMAP_EVCNT_INITIALIZER("exec pages discarded (MF)");
    447 #endif
    448 
    449 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_unmap);
    450 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_zero);
    451 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_copy);
    452 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_page_protect);
    453 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_clearbit);
    454 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_kremove);
    455 #ifdef ARM_MMU_EXTENDED
    456 EVCNT_ATTACH_STATIC(pmap_ev_exec_discarded_modfixup);
    457 #endif
    458 #endif /* PMAP_CACHE_VIPT */
    459 
    460 static struct evcnt pmap_ev_updates = PMAP_EVCNT_INITIALIZER("updates");
    461 static struct evcnt pmap_ev_collects = PMAP_EVCNT_INITIALIZER("collects");
    462 static struct evcnt pmap_ev_activations = PMAP_EVCNT_INITIALIZER("activations");
    463 
    464 EVCNT_ATTACH_STATIC(pmap_ev_updates);
    465 EVCNT_ATTACH_STATIC(pmap_ev_collects);
    466 EVCNT_ATTACH_STATIC(pmap_ev_activations);
    467 
    468 #define	PMAPCOUNT(x)	((void)(pmap_ev_##x.ev_count++))
    469 #else
    470 #define	PMAPCOUNT(x)	((void)0)
    471 #endif
    472 
    473 #ifdef ARM_MMU_EXTENDED
    474 void pmap_md_pdetab_activate(pmap_t, struct lwp *);
    475 void pmap_md_pdetab_deactivate(pmap_t pm);
    476 #endif
    477 
    478 /*
    479  * pmap copy/zero page, and mem(5) hook point
    480  */
    481 static pt_entry_t *csrc_pte, *cdst_pte;
    482 static vaddr_t csrcp, cdstp;
    483 #ifdef MULTIPROCESSOR
    484 static size_t cnptes;
    485 #define	cpu_csrc_pte(o)	(csrc_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    486 #define	cpu_cdst_pte(o)	(cdst_pte + cnptes * cpu_number() + ((o) >> L2_S_SHIFT))
    487 #define	cpu_csrcp(o)	(csrcp + L2_S_SIZE * cnptes * cpu_number() + (o))
    488 #define	cpu_cdstp(o)	(cdstp + L2_S_SIZE * cnptes * cpu_number() + (o))
    489 #else
    490 #define	cpu_csrc_pte(o)	(csrc_pte + ((o) >> L2_S_SHIFT))
    491 #define	cpu_cdst_pte(o)	(cdst_pte + ((o) >> L2_S_SHIFT))
    492 #define	cpu_csrcp(o)	(csrcp + (o))
    493 #define	cpu_cdstp(o)	(cdstp + (o))
    494 #endif
    495 vaddr_t memhook;			/* used by mem.c & others */
    496 kmutex_t memlock __cacheline_aligned;	/* used by mem.c & others */
    497 kmutex_t pmap_lock __cacheline_aligned;
    498 kmutex_t kpm_lock __cacheline_aligned;
    499 extern void *msgbufaddr;
    500 int pmap_kmpages;
    501 /*
    502  * Flag to indicate if pmap_init() has done its thing
    503  */
    504 bool pmap_initialized;
    505 
    506 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    507 /*
    508  * Virtual end of direct-mapped memory
    509  */
    510 vaddr_t pmap_directlimit;
    511 #endif
    512 
    513 /*
    514  * Misc. locking data structures
    515  */
    516 
    517 static inline void
    518 pmap_acquire_pmap_lock(pmap_t pm)
    519 {
    520 #if defined(MULTIPROCESSOR) && defined(DDB)
    521 	if (__predict_false(db_onproc != NULL))
    522 		return;
    523 #endif
    524 
    525 	mutex_enter(&pm->pm_lock);
    526 }
    527 
    528 static inline void
    529 pmap_release_pmap_lock(pmap_t pm)
    530 {
    531 #if defined(MULTIPROCESSOR) && defined(DDB)
    532 	if (__predict_false(db_onproc != NULL))
    533 		return;
    534 #endif
    535 	mutex_exit(&pm->pm_lock);
    536 }
    537 
    538 static inline void
    539 pmap_acquire_page_lock(struct vm_page_md *md)
    540 {
    541 	mutex_enter(&pmap_lock);
    542 }
    543 
    544 static inline void
    545 pmap_release_page_lock(struct vm_page_md *md)
    546 {
    547 	mutex_exit(&pmap_lock);
    548 }
    549 
    550 static inline int __diagused
    551 pmap_page_locked_p(struct vm_page_md *md)
    552 {
    553 	return mutex_owned(&pmap_lock);
    554 }
    555 
    556 
    557 /*
    558  * Metadata for L1 translation tables.
    559  */
    560 #ifndef ARM_MMU_EXTENDED
    561 struct l1_ttable {
    562 	/* Entry on the L1 Table list */
    563 	SLIST_ENTRY(l1_ttable) l1_link;
    564 
    565 	/* Entry on the L1 Least Recently Used list */
    566 	TAILQ_ENTRY(l1_ttable) l1_lru;
    567 
    568 	/* Track how many domains are allocated from this L1 */
    569 	volatile u_int l1_domain_use_count;
    570 
    571 	/*
    572 	 * A free-list of domain numbers for this L1.
    573 	 * We avoid using ffs() and a bitmap to track domains since ffs()
    574 	 * is slow on ARM.
    575 	 */
    576 	uint8_t l1_domain_first;
    577 	uint8_t l1_domain_free[PMAP_DOMAINS];
    578 
    579 	/* Physical address of this L1 page table */
    580 	paddr_t l1_physaddr;
    581 
    582 	/* KVA of this L1 page table */
    583 	pd_entry_t *l1_kva;
    584 };
    585 
    586 /*
    587  * L1 Page Tables are tracked using a Least Recently Used list.
    588  *  - New L1s are allocated from the HEAD.
    589  *  - Freed L1s are added to the TAIL.
    590  *  - Recently accessed L1s (where an 'access' is some change to one of
    591  *    the userland pmaps which owns this L1) are moved to the TAIL.
    592  */
    593 static TAILQ_HEAD(, l1_ttable) l1_lru_list;
    594 static kmutex_t l1_lru_lock __cacheline_aligned;
    595 
    596 /*
    597  * A list of all L1 tables
    598  */
    599 static SLIST_HEAD(, l1_ttable) l1_list;
    600 #endif /* ARM_MMU_EXTENDED */
    601 
    602 /*
    603  * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots.
    604  *
    605  * This is normally 16MB worth L2 page descriptors for any given pmap.
    606  * Reference counts are maintained for L2 descriptors so they can be
    607  * freed when empty.
    608  */
    609 struct l2_bucket {
    610 	pt_entry_t *l2b_kva;		/* KVA of L2 Descriptor Table */
    611 	paddr_t l2b_pa;			/* Physical address of same */
    612 	u_short l2b_l1slot;		/* This L2 table's L1 index */
    613 	u_short l2b_occupancy;		/* How many active descriptors */
    614 };
    615 
    616 struct l2_dtable {
    617 	/* The number of L2 page descriptors allocated to this l2_dtable */
    618 	u_int l2_occupancy;
    619 
    620 	/* List of L2 page descriptors */
    621 	struct l2_bucket l2_bucket[L2_BUCKET_SIZE];
    622 };
    623 
    624 /*
    625  * Given an L1 table index, calculate the corresponding l2_dtable index
    626  * and bucket index within the l2_dtable.
    627  */
    628 #define L2_BUCKET_XSHIFT	(L2_BUCKET_XLOG2 - L1_S_SHIFT)
    629 #define L2_BUCKET_XFRAME	(~(vaddr_t)0 << L2_BUCKET_XLOG2)
    630 #define L2_BUCKET_IDX(l1slot)	((l1slot) >> L2_BUCKET_XSHIFT)
    631 #define L2_IDX(l1slot)		(L2_BUCKET_IDX(l1slot) >> L2_BUCKET_LOG2)
    632 #define L2_BUCKET(l1slot)	(L2_BUCKET_IDX(l1slot) & (L2_BUCKET_SIZE - 1))
    633 
    634 __CTASSERT(0x100000000ULL == ((uint64_t)L2_SIZE * L2_BUCKET_SIZE * L1_S_SIZE));
    635 __CTASSERT(L2_BUCKET_XFRAME == ~(L2_BUCKET_XSIZE-1));
    636 
    637 /*
    638  * Given a virtual address, this macro returns the
    639  * virtual address required to drop into the next L2 bucket.
    640  */
    641 #define	L2_NEXT_BUCKET_VA(va)	(((va) & L2_BUCKET_XFRAME) + L2_BUCKET_XSIZE)
    642 
    643 /*
    644  * L2 allocation.
    645  */
    646 #define	pmap_alloc_l2_dtable()		\
    647 	    pool_cache_get(&pmap_l2dtable_cache, PR_NOWAIT)
    648 #define	pmap_free_l2_dtable(l2)		\
    649 	    pool_cache_put(&pmap_l2dtable_cache, (l2))
    650 #define pmap_alloc_l2_ptp(pap)		\
    651 	    ((pt_entry_t *)pool_cache_get_paddr(&pmap_l2ptp_cache,\
    652 	    PR_NOWAIT, (pap)))
    653 
    654 /*
    655  * We try to map the page tables write-through, if possible.  However, not
    656  * all CPUs have a write-through cache mode, so on those we have to sync
    657  * the cache when we frob page tables.
    658  *
    659  * We try to evaluate this at compile time, if possible.  However, it's
    660  * not always possible to do that, hence this run-time var.
    661  */
    662 int	pmap_needs_pte_sync;
    663 
    664 /*
    665  * Real definition of pv_entry.
    666  */
    667 struct pv_entry {
    668 	SLIST_ENTRY(pv_entry) pv_link;	/* next pv_entry */
    669 	pmap_t		pv_pmap;        /* pmap where mapping lies */
    670 	vaddr_t		pv_va;          /* virtual address for mapping */
    671 	u_int		pv_flags;       /* flags */
    672 };
    673 
    674 /*
    675  * Macros to determine if a mapping might be resident in the
    676  * instruction/data cache and/or TLB
    677  */
    678 #if ARM_MMU_V7 > 0 && !defined(ARM_MMU_EXTENDED)
    679 /*
    680  * Speculative loads by Cortex cores can cause TLB entries to be filled even if
    681  * there are no explicit accesses, so there may be always be TLB entries to
    682  * flush.  If we used ASIDs then this would not be a problem.
    683  */
    684 #define	PV_BEEN_EXECD(f)  (((f) & PVF_EXEC) == PVF_EXEC)
    685 #define	PV_BEEN_REFD(f)   (true)
    686 #else
    687 #define	PV_BEEN_EXECD(f)  (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC))
    688 #define	PV_BEEN_REFD(f)   (((f) & PVF_REF) != 0)
    689 #endif
    690 #define	PV_IS_EXEC_P(f)   (((f) & PVF_EXEC) != 0)
    691 #define	PV_IS_KENTRY_P(f) (((f) & PVF_KENTRY) != 0)
    692 #define	PV_IS_WRITE_P(f)  (((f) & PVF_WRITE) != 0)
    693 
    694 /*
    695  * Local prototypes
    696  */
    697 static bool		pmap_set_pt_cache_mode(pd_entry_t *, vaddr_t, size_t);
    698 static void		pmap_alloc_specials(vaddr_t *, int, vaddr_t *,
    699 			    pt_entry_t **);
    700 static bool		pmap_is_current(pmap_t) __unused;
    701 static bool		pmap_is_cached(pmap_t);
    702 static void		pmap_enter_pv(struct vm_page_md *, paddr_t, struct pv_entry *,
    703 			    pmap_t, vaddr_t, u_int);
    704 static struct pv_entry *pmap_find_pv(struct vm_page_md *, pmap_t, vaddr_t);
    705 static struct pv_entry *pmap_remove_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    706 static u_int		pmap_modify_pv(struct vm_page_md *, paddr_t, pmap_t, vaddr_t,
    707 			    u_int, u_int);
    708 
    709 static void		pmap_pinit(pmap_t);
    710 static int		pmap_pmap_ctor(void *, void *, int);
    711 
    712 static void		pmap_alloc_l1(pmap_t);
    713 static void		pmap_free_l1(pmap_t);
    714 #ifndef ARM_MMU_EXTENDED
    715 static void		pmap_use_l1(pmap_t);
    716 #endif
    717 
    718 static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vaddr_t);
    719 static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vaddr_t);
    720 static void		pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int);
    721 static int		pmap_l2ptp_ctor(void *, void *, int);
    722 static int		pmap_l2dtable_ctor(void *, void *, int);
    723 
    724 static void		pmap_vac_me_harder(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    725 #ifdef PMAP_CACHE_VIVT
    726 static void		pmap_vac_me_kpmap(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    727 static void		pmap_vac_me_user(struct vm_page_md *, paddr_t, pmap_t, vaddr_t);
    728 #endif
    729 
    730 static void		pmap_clearbit(struct vm_page_md *, paddr_t, u_int);
    731 #ifdef PMAP_CACHE_VIVT
    732 static bool		pmap_clean_page(struct vm_page_md *, bool);
    733 #endif
    734 #ifdef PMAP_CACHE_VIPT
    735 static void		pmap_syncicache_page(struct vm_page_md *, paddr_t);
    736 enum pmap_flush_op {
    737 	PMAP_FLUSH_PRIMARY,
    738 	PMAP_FLUSH_SECONDARY,
    739 	PMAP_CLEAN_PRIMARY
    740 };
    741 #ifndef ARM_MMU_EXTENDED
    742 static void		pmap_flush_page(struct vm_page_md *, paddr_t, enum pmap_flush_op);
    743 #endif
    744 #endif
    745 static void		pmap_page_remove(struct vm_page_md *, paddr_t);
    746 static void		pmap_pv_remove(paddr_t);
    747 
    748 #ifndef ARM_MMU_EXTENDED
    749 static void		pmap_init_l1(struct l1_ttable *, pd_entry_t *);
    750 #endif
    751 static vaddr_t		kernel_pt_lookup(paddr_t);
    752 
    753 #ifdef ARM_MMU_EXTENDED
    754 static struct pool_cache pmap_l1tt_cache;
    755 
    756 static int		pmap_l1tt_ctor(void *, void *, int);
    757 static void *		pmap_l1tt_alloc(struct pool *, int);
    758 static void		pmap_l1tt_free(struct pool *, void *);
    759 
    760 static struct pool_allocator pmap_l1tt_allocator = {
    761 	.pa_alloc = pmap_l1tt_alloc,
    762 	.pa_free = pmap_l1tt_free,
    763 	.pa_pagesz = L1TT_SIZE,
    764 };
    765 #endif
    766 
    767 /*
    768  * Misc variables
    769  */
    770 vaddr_t virtual_avail;
    771 vaddr_t virtual_end;
    772 vaddr_t pmap_curmaxkvaddr;
    773 
    774 paddr_t avail_start;
    775 paddr_t avail_end;
    776 
    777 pv_addrqh_t pmap_boot_freeq = SLIST_HEAD_INITIALIZER(&pmap_boot_freeq);
    778 pv_addr_t kernelpages;
    779 pv_addr_t kernel_l1pt;
    780 pv_addr_t systempage;
    781 #if defined(EFI_RUNTIME)
    782 pv_addr_t efirt_l1pt;
    783 #endif
    784 
    785 #ifdef PMAP_CACHE_VIPT
    786 #define PMAP_VALIDATE_MD_PAGE(md)	\
    787 	KASSERTMSG(arm_cache_prefer_mask == 0 || (((md)->pvh_attrs & PVF_WRITE) == 0) == ((md)->urw_mappings + (md)->krw_mappings == 0), \
    788 	    "(md) %p: attrs=%#x urw=%u krw=%u", (md), \
    789 	    (md)->pvh_attrs, (md)->urw_mappings, (md)->krw_mappings);
    790 #endif /* PMAP_CACHE_VIPT */
    791 /*
    792  * A bunch of routines to conditionally flush the caches/TLB depending
    793  * on whether the specified pmap actually needs to be flushed at any
    794  * given time.
    795  */
    796 static inline void
    797 pmap_tlb_flush_SE(pmap_t pm, vaddr_t va, u_int flags)
    798 {
    799 #ifdef ARM_MMU_EXTENDED
    800 	pmap_tlb_invalidate_addr(pm, va);
    801 #else
    802 	if (pm->pm_cstate.cs_tlb_id != 0) {
    803 		if (PV_BEEN_EXECD(flags)) {
    804 			cpu_tlb_flushID_SE(va);
    805 		} else if (PV_BEEN_REFD(flags)) {
    806 			cpu_tlb_flushD_SE(va);
    807 		}
    808 	}
    809 #endif /* ARM_MMU_EXTENDED */
    810 }
    811 
    812 #ifndef ARM_MMU_EXTENDED
    813 static inline void
    814 pmap_tlb_flushID(pmap_t pm)
    815 {
    816 	if (pm->pm_cstate.cs_tlb_id) {
    817 		cpu_tlb_flushID();
    818 #if ARM_MMU_V7 == 0
    819 		/*
    820 		 * Speculative loads by Cortex cores can cause TLB entries to
    821 		 * be filled even if there are no explicit accesses, so there
    822 		 * may be always be TLB entries to flush.  If we used ASIDs
    823 		 * then it would not be a problem.
    824 		 * This is not true for other CPUs.
    825 		 */
    826 		pm->pm_cstate.cs_tlb = 0;
    827 #endif /* ARM_MMU_V7 */
    828 	}
    829 }
    830 
    831 static inline void
    832 pmap_tlb_flushD(pmap_t pm)
    833 {
    834 	if (pm->pm_cstate.cs_tlb_d) {
    835 		cpu_tlb_flushD();
    836 #if ARM_MMU_V7 == 0
    837 		/*
    838 		 * Speculative loads by Cortex cores can cause TLB entries to
    839 		 * be filled even if there are no explicit accesses, so there
    840 		 * may be always be TLB entries to flush.  If we used ASIDs
    841 		 * then it would not be a problem.
    842 		 * This is not true for other CPUs.
    843 		 */
    844 		pm->pm_cstate.cs_tlb_d = 0;
    845 #endif /* ARM_MMU_V7 */
    846 	}
    847 }
    848 #endif /* ARM_MMU_EXTENDED */
    849 
    850 #ifdef PMAP_CACHE_VIVT
    851 static inline void
    852 pmap_cache_wbinv_page(pmap_t pm, vaddr_t va, bool do_inv, u_int flags)
    853 {
    854 	if (PV_BEEN_EXECD(flags) && pm->pm_cstate.cs_cache_id) {
    855 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
    856 	} else if (PV_BEEN_REFD(flags) && pm->pm_cstate.cs_cache_d) {
    857 		if (do_inv) {
    858 			if (flags & PVF_WRITE)
    859 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
    860 			else
    861 				cpu_dcache_inv_range(va, PAGE_SIZE);
    862 		} else if (flags & PVF_WRITE) {
    863 			cpu_dcache_wb_range(va, PAGE_SIZE);
    864 		}
    865 	}
    866 }
    867 
    868 static inline void
    869 pmap_cache_wbinv_all(pmap_t pm, u_int flags)
    870 {
    871 	if (PV_BEEN_EXECD(flags)) {
    872 		if (pm->pm_cstate.cs_cache_id) {
    873 			cpu_idcache_wbinv_all();
    874 			pm->pm_cstate.cs_cache = 0;
    875 		}
    876 	} else if (pm->pm_cstate.cs_cache_d) {
    877 		cpu_dcache_wbinv_all();
    878 		pm->pm_cstate.cs_cache_d = 0;
    879 	}
    880 }
    881 #endif /* PMAP_CACHE_VIVT */
    882 
    883 static inline uint8_t
    884 pmap_domain(pmap_t pm)
    885 {
    886 #ifdef ARM_MMU_EXTENDED
    887 	return pm == pmap_kernel() ? PMAP_DOMAIN_KERNEL : PMAP_DOMAIN_USER;
    888 #else
    889 	return pm->pm_domain;
    890 #endif
    891 }
    892 
    893 static inline pd_entry_t *
    894 pmap_l1_kva(pmap_t pm)
    895 {
    896 #ifdef ARM_MMU_EXTENDED
    897 	return pm->pm_l1;
    898 #else
    899 	return pm->pm_l1->l1_kva;
    900 #endif
    901 }
    902 
    903 static inline bool
    904 pmap_is_current(pmap_t pm)
    905 {
    906 	if (pm == pmap_kernel() || curproc->p_vmspace->vm_map.pmap == pm)
    907 		return true;
    908 
    909 	return false;
    910 }
    911 
    912 static inline bool
    913 pmap_is_cached(pmap_t pm)
    914 {
    915 #ifdef ARM_MMU_EXTENDED
    916 	if (pm == pmap_kernel())
    917 		return true;
    918 #ifdef MULTIPROCESSOR
    919 	// Is this pmap active on any CPU?
    920 	if (!kcpuset_iszero(pm->pm_active))
    921 		return true;
    922 #else
    923 	struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
    924 	// Is this pmap active?
    925 	if (PMAP_PAI_ASIDVALID_P(PMAP_PAI(pm, ti), ti))
    926 		return true;
    927 #endif
    928 #else
    929 	struct cpu_info * const ci = curcpu();
    930 	if (pm == pmap_kernel() || ci->ci_pmap_lastuser == NULL
    931 	    || ci->ci_pmap_lastuser == pm)
    932 		return true;
    933 #endif /* ARM_MMU_EXTENDED */
    934 
    935 	return false;
    936 }
    937 
    938 /*
    939  * PTE_SYNC_CURRENT:
    940  *
    941  *     Make sure the pte is written out to RAM.
    942  *     We need to do this for one of two cases:
    943  *       - We're dealing with the kernel pmap
    944  *       - There is no pmap active in the cache/tlb.
    945  *       - The specified pmap is 'active' in the cache/tlb.
    946  */
    947 
    948 #ifdef PMAP_INCLUDE_PTE_SYNC
    949 static inline void
    950 pmap_pte_sync_current(pmap_t pm, pt_entry_t *ptep)
    951 {
    952 	if (PMAP_NEEDS_PTE_SYNC && pmap_is_cached(pm))
    953 		PTE_SYNC(ptep);
    954 	dsb(sy);
    955 }
    956 
    957 # define PTE_SYNC_CURRENT(pm, ptep)	pmap_pte_sync_current(pm, ptep)
    958 #else
    959 # define PTE_SYNC_CURRENT(pm, ptep)	__nothing
    960 #endif
    961 
    962 /*
    963  * main pv_entry manipulation functions:
    964  *   pmap_enter_pv: enter a mapping onto a vm_page list
    965  *   pmap_remove_pv: remove a mapping from a vm_page list
    966  *
    967  * NOTE: pmap_enter_pv expects to lock the pvh itself
    968  *       pmap_remove_pv expects the caller to lock the pvh before calling
    969  */
    970 
    971 /*
    972  * pmap_enter_pv: enter a mapping onto a vm_page lst
    973  *
    974  * => caller should hold the proper lock on pmap_main_lock
    975  * => caller should have pmap locked
    976  * => we will gain the lock on the vm_page and allocate the new pv_entry
    977  * => caller should adjust ptp's wire_count before calling
    978  * => caller should not adjust pmap's wire_count
    979  */
    980 static void
    981 pmap_enter_pv(struct vm_page_md *md, paddr_t pa, struct pv_entry *pv, pmap_t pm,
    982     vaddr_t va, u_int flags)
    983 {
    984 	UVMHIST_FUNC(__func__);
    985 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
    986 	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
    987 	UVMHIST_LOG(maphist, "...pv %#jx flags %#jx",
    988 	    (uintptr_t)pv, flags, 0, 0);
    989 
    990 	struct pv_entry **pvp;
    991 
    992 	pv->pv_pmap = pm;
    993 	pv->pv_va = va;
    994 	pv->pv_flags = flags;
    995 
    996 	pvp = &SLIST_FIRST(&md->pvh_list);
    997 #ifdef PMAP_CACHE_VIPT
    998 	/*
    999 	 * Insert unmanaged entries, writeable first, at the head of
   1000 	 * the pv list.
   1001 	 */
   1002 	if (__predict_true(!PV_IS_KENTRY_P(flags))) {
   1003 		while (*pvp != NULL && PV_IS_KENTRY_P((*pvp)->pv_flags))
   1004 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1005 	}
   1006 	if (!PV_IS_WRITE_P(flags)) {
   1007 		while (*pvp != NULL && PV_IS_WRITE_P((*pvp)->pv_flags))
   1008 			pvp = &SLIST_NEXT(*pvp, pv_link);
   1009 	}
   1010 #endif
   1011 	SLIST_NEXT(pv, pv_link) = *pvp;		/* add to ... */
   1012 	*pvp = pv;				/* ... locked list */
   1013 	md->pvh_attrs |= flags & (PVF_REF | PVF_MOD);
   1014 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1015 	if ((pv->pv_flags & PVF_KWRITE) == PVF_KWRITE)
   1016 		md->pvh_attrs |= PVF_KMOD;
   1017 	if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1018 		md->pvh_attrs |= PVF_DIRTY;
   1019 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1020 #endif
   1021 	if (pm == pmap_kernel()) {
   1022 		PMAPCOUNT(kernel_mappings);
   1023 		if (flags & PVF_WRITE)
   1024 			md->krw_mappings++;
   1025 		else
   1026 			md->kro_mappings++;
   1027 	} else {
   1028 		if (flags & PVF_WRITE)
   1029 			md->urw_mappings++;
   1030 		else
   1031 			md->uro_mappings++;
   1032 	}
   1033 
   1034 #ifdef PMAP_CACHE_VIPT
   1035 #ifndef ARM_MMU_EXTENDED
   1036 	/*
   1037 	 * Even though pmap_vac_me_harder will set PVF_WRITE for us,
   1038 	 * do it here as well to keep the mappings & KVF_WRITE consistent.
   1039 	 */
   1040 	if (arm_cache_prefer_mask != 0 && (flags & PVF_WRITE) != 0) {
   1041 		md->pvh_attrs |= PVF_WRITE;
   1042 	}
   1043 #endif
   1044 	/*
   1045 	 * If this is an exec mapping and its the first exec mapping
   1046 	 * for this page, make sure to sync the I-cache.
   1047 	 */
   1048 	if (PV_IS_EXEC_P(flags)) {
   1049 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   1050 			pmap_syncicache_page(md, pa);
   1051 			PMAPCOUNT(exec_synced_map);
   1052 		}
   1053 		PMAPCOUNT(exec_mappings);
   1054 	}
   1055 #endif
   1056 
   1057 	PMAPCOUNT(mappings);
   1058 
   1059 	if (pv->pv_flags & PVF_WIRED)
   1060 		++pm->pm_stats.wired_count;
   1061 }
   1062 
   1063 /*
   1064  *
   1065  * pmap_find_pv: Find a pv entry
   1066  *
   1067  * => caller should hold lock on vm_page
   1068  */
   1069 static inline struct pv_entry *
   1070 pmap_find_pv(struct vm_page_md *md, pmap_t pm, vaddr_t va)
   1071 {
   1072 	struct pv_entry *pv;
   1073 
   1074 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1075 		if (pm == pv->pv_pmap && va == pv->pv_va)
   1076 			break;
   1077 	}
   1078 
   1079 	return pv;
   1080 }
   1081 
   1082 /*
   1083  * pmap_remove_pv: try to remove a mapping from a pv_list
   1084  *
   1085  * => caller should hold proper lock on pmap_main_lock
   1086  * => pmap should be locked
   1087  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1088  * => caller should adjust ptp's wire_count and free PTP if needed
   1089  * => caller should NOT adjust pmap's wire_count
   1090  * => we return the removed pv
   1091  */
   1092 static struct pv_entry *
   1093 pmap_remove_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1094 {
   1095 	UVMHIST_FUNC(__func__);
   1096 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
   1097 	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
   1098 
   1099 	struct pv_entry *pv, **prevptr;
   1100 
   1101 	prevptr = &SLIST_FIRST(&md->pvh_list); /* prev pv_entry ptr */
   1102 	pv = *prevptr;
   1103 
   1104 	while (pv) {
   1105 		if (pv->pv_pmap == pm && pv->pv_va == va) {	/* match? */
   1106 			UVMHIST_LOG(maphist, "pm %#jx md %#jx flags %#jx",
   1107 			    (uintptr_t)pm, (uintptr_t)md, pv->pv_flags, 0);
   1108 			if (pv->pv_flags & PVF_WIRED) {
   1109 				--pm->pm_stats.wired_count;
   1110 			}
   1111 			*prevptr = SLIST_NEXT(pv, pv_link);	/* remove it! */
   1112 			if (pm == pmap_kernel()) {
   1113 				PMAPCOUNT(kernel_unmappings);
   1114 				if (pv->pv_flags & PVF_WRITE)
   1115 					md->krw_mappings--;
   1116 				else
   1117 					md->kro_mappings--;
   1118 			} else {
   1119 				if (pv->pv_flags & PVF_WRITE)
   1120 					md->urw_mappings--;
   1121 				else
   1122 					md->uro_mappings--;
   1123 			}
   1124 
   1125 			PMAPCOUNT(unmappings);
   1126 #ifdef PMAP_CACHE_VIPT
   1127 			/*
   1128 			 * If this page has had an exec mapping, then if
   1129 			 * this was the last mapping, discard the contents,
   1130 			 * otherwise sync the i-cache for this page.
   1131 			 */
   1132 			if (PV_IS_EXEC_P(md->pvh_attrs)) {
   1133 				if (SLIST_EMPTY(&md->pvh_list)) {
   1134 					md->pvh_attrs &= ~PVF_EXEC;
   1135 					PMAPCOUNT(exec_discarded_unmap);
   1136 				} else if (pv->pv_flags & PVF_WRITE) {
   1137 					pmap_syncicache_page(md, pa);
   1138 					PMAPCOUNT(exec_synced_unmap);
   1139 				}
   1140 			}
   1141 #endif /* PMAP_CACHE_VIPT */
   1142 			break;
   1143 		}
   1144 		prevptr = &SLIST_NEXT(pv, pv_link);	/* previous pointer */
   1145 		pv = *prevptr;				/* advance */
   1146 	}
   1147 
   1148 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1149 	/*
   1150 	 * If we no longer have a WRITEABLE KENTRY at the head of list,
   1151 	 * clear the KMOD attribute from the page.
   1152 	 */
   1153 	if (SLIST_FIRST(&md->pvh_list) == NULL
   1154 	    || (SLIST_FIRST(&md->pvh_list)->pv_flags & PVF_KWRITE) != PVF_KWRITE)
   1155 		md->pvh_attrs &= ~PVF_KMOD;
   1156 
   1157 	/*
   1158 	 * If this was a writeable page and there are no more writeable
   1159 	 * mappings (ignoring KMPAGE), clear the WRITE flag and writeback
   1160 	 * the contents to memory.
   1161 	 */
   1162 	if (arm_cache_prefer_mask != 0) {
   1163 		if (md->krw_mappings + md->urw_mappings == 0)
   1164 			md->pvh_attrs &= ~PVF_WRITE;
   1165 		PMAP_VALIDATE_MD_PAGE(md);
   1166 	}
   1167 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1168 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1169 
   1170 	/* return removed pv */
   1171 	return pv;
   1172 }
   1173 
   1174 /*
   1175  *
   1176  * pmap_modify_pv: Update pv flags
   1177  *
   1178  * => caller should hold lock on vm_page [so that attrs can be adjusted]
   1179  * => caller should NOT adjust pmap's wire_count
   1180  * => caller must call pmap_vac_me_harder() if writable status of a page
   1181  *    may have changed.
   1182  * => we return the old flags
   1183  *
   1184  * Modify a physical-virtual mapping in the pv table
   1185  */
   1186 static u_int
   1187 pmap_modify_pv(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va,
   1188     u_int clr_mask, u_int set_mask)
   1189 {
   1190 	struct pv_entry *npv;
   1191 	u_int flags, oflags;
   1192 	UVMHIST_FUNC(__func__);
   1193 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
   1194 	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
   1195 	UVMHIST_LOG(maphist, "... clr %#jx set %#jx", clr_mask, set_mask, 0, 0);
   1196 
   1197 	KASSERT(!PV_IS_KENTRY_P(clr_mask));
   1198 	KASSERT(!PV_IS_KENTRY_P(set_mask));
   1199 
   1200 	if ((npv = pmap_find_pv(md, pm, va)) == NULL) {
   1201 		UVMHIST_LOG(maphist, "<--- done (not found)", 0, 0, 0, 0);
   1202 		return 0;
   1203 	}
   1204 
   1205 	/*
   1206 	 * There is at least one VA mapping this page.
   1207 	 */
   1208 
   1209 	if (clr_mask & (PVF_REF | PVF_MOD)) {
   1210 		md->pvh_attrs |= set_mask & (PVF_REF | PVF_MOD);
   1211 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   1212 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) != PVF_NC)
   1213 			md->pvh_attrs |= PVF_DIRTY;
   1214 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1215 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   1216 	}
   1217 
   1218 	oflags = npv->pv_flags;
   1219 	npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask;
   1220 
   1221 	if ((flags ^ oflags) & PVF_WIRED) {
   1222 		if (flags & PVF_WIRED)
   1223 			++pm->pm_stats.wired_count;
   1224 		else
   1225 			--pm->pm_stats.wired_count;
   1226 	}
   1227 
   1228 	if ((flags ^ oflags) & PVF_WRITE) {
   1229 		if (pm == pmap_kernel()) {
   1230 			if (flags & PVF_WRITE) {
   1231 				md->krw_mappings++;
   1232 				md->kro_mappings--;
   1233 			} else {
   1234 				md->kro_mappings++;
   1235 				md->krw_mappings--;
   1236 			}
   1237 		} else {
   1238 			if (flags & PVF_WRITE) {
   1239 				md->urw_mappings++;
   1240 				md->uro_mappings--;
   1241 			} else {
   1242 				md->uro_mappings++;
   1243 				md->urw_mappings--;
   1244 			}
   1245 		}
   1246 	}
   1247 #ifdef PMAP_CACHE_VIPT
   1248 	if (arm_cache_prefer_mask != 0) {
   1249 		if (md->urw_mappings + md->krw_mappings == 0) {
   1250 			md->pvh_attrs &= ~PVF_WRITE;
   1251 		} else {
   1252 			md->pvh_attrs |= PVF_WRITE;
   1253 		}
   1254 	}
   1255 	/*
   1256 	 * We have two cases here: the first is from enter_pv (new exec
   1257 	 * page), the second is a combined pmap_remove_pv/pmap_enter_pv.
   1258 	 * Since in latter, pmap_enter_pv won't do anything, we just have
   1259 	 * to do what pmap_remove_pv would do.
   1260 	 */
   1261 	if ((PV_IS_EXEC_P(flags) && !PV_IS_EXEC_P(md->pvh_attrs))
   1262 	    || (PV_IS_EXEC_P(md->pvh_attrs)
   1263 		|| (!(flags & PVF_WRITE) && (oflags & PVF_WRITE)))) {
   1264 		pmap_syncicache_page(md, pa);
   1265 		PMAPCOUNT(exec_synced_remap);
   1266 	}
   1267 #ifndef ARM_MMU_EXTENDED
   1268 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   1269 #endif /* !ARM_MMU_EXTENDED */
   1270 #endif /* PMAP_CACHE_VIPT */
   1271 
   1272 	PMAPCOUNT(remappings);
   1273 
   1274 	UVMHIST_LOG(maphist, "<--- done", 0, 0, 0, 0);
   1275 
   1276 	return oflags;
   1277 }
   1278 
   1279 
   1280 #if defined(ARM_MMU_EXTENDED)
   1281 int
   1282 pmap_maxproc_set(int nmaxproc)
   1283 {
   1284 	static const char pmap_l1ttpool_warnmsg[] =
   1285 	    "WARNING: l1ttpool limit reached; increase kern.maxproc";
   1286 
   1287 	pool_cache_prime(&pmap_l1tt_cache, nmaxproc);
   1288 
   1289 	/*
   1290 	 * Set the hard limit on the pmap_l1tt_cache to the number
   1291 	 * of processes the kernel is to support.  Log the limit
   1292 	 * reached message max once a minute.
   1293 	 */
   1294 	pool_cache_sethardlimit(&pmap_l1tt_cache, nmaxproc,
   1295 	    pmap_l1ttpool_warnmsg, 60);
   1296 
   1297 	return 0;
   1298 }
   1299 
   1300 #endif
   1301 
   1302 /*
   1303  * Allocate an L1 translation table for the specified pmap.
   1304  * This is called at pmap creation time.
   1305  */
   1306 static void
   1307 pmap_alloc_l1(pmap_t pm)
   1308 {
   1309 #ifdef ARM_MMU_EXTENDED
   1310 	vaddr_t va = (vaddr_t)pool_cache_get_paddr(&pmap_l1tt_cache, PR_WAITOK,
   1311 	    &pm->pm_l1_pa);
   1312 
   1313 	pm->pm_l1 = (pd_entry_t *)va;
   1314 	PTE_SYNC_RANGE(pm->pm_l1, L1TT_SIZE / sizeof(pt_entry_t));
   1315 #else
   1316 	struct l1_ttable *l1;
   1317 	uint8_t domain;
   1318 
   1319 	/*
   1320 	 * Remove the L1 at the head of the LRU list
   1321 	 */
   1322 	mutex_spin_enter(&l1_lru_lock);
   1323 	l1 = TAILQ_FIRST(&l1_lru_list);
   1324 	KDASSERT(l1 != NULL);
   1325 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1326 
   1327 	/*
   1328 	 * Pick the first available domain number, and update
   1329 	 * the link to the next number.
   1330 	 */
   1331 	domain = l1->l1_domain_first;
   1332 	l1->l1_domain_first = l1->l1_domain_free[domain];
   1333 
   1334 	/*
   1335 	 * If there are still free domain numbers in this L1,
   1336 	 * put it back on the TAIL of the LRU list.
   1337 	 */
   1338 	if (++l1->l1_domain_use_count < PMAP_DOMAINS)
   1339 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1340 
   1341 	mutex_spin_exit(&l1_lru_lock);
   1342 
   1343 	/*
   1344 	 * Fix up the relevant bits in the pmap structure
   1345 	 */
   1346 	pm->pm_l1 = l1;
   1347 	pm->pm_domain = domain + 1;
   1348 #endif
   1349 }
   1350 
   1351 /*
   1352  * Free an L1 translation table.
   1353  * This is called at pmap destruction time.
   1354  */
   1355 static void
   1356 pmap_free_l1(pmap_t pm)
   1357 {
   1358 #ifdef ARM_MMU_EXTENDED
   1359 	pool_cache_put_paddr(&pmap_l1tt_cache, (void *)pm->pm_l1, pm->pm_l1_pa);
   1360 
   1361 	pm->pm_l1 = NULL;
   1362 	pm->pm_l1_pa = 0;
   1363 #else
   1364 	struct l1_ttable *l1 = pm->pm_l1;
   1365 
   1366 	mutex_spin_enter(&l1_lru_lock);
   1367 
   1368 	/*
   1369 	 * If this L1 is currently on the LRU list, remove it.
   1370 	 */
   1371 	if (l1->l1_domain_use_count < PMAP_DOMAINS)
   1372 		TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1373 
   1374 	/*
   1375 	 * Free up the domain number which was allocated to the pmap
   1376 	 */
   1377 	l1->l1_domain_free[pmap_domain(pm) - 1] = l1->l1_domain_first;
   1378 	l1->l1_domain_first = pmap_domain(pm) - 1;
   1379 	l1->l1_domain_use_count--;
   1380 
   1381 	/*
   1382 	 * The L1 now must have at least 1 free domain, so add
   1383 	 * it back to the LRU list. If the use count is zero,
   1384 	 * put it at the head of the list, otherwise it goes
   1385 	 * to the tail.
   1386 	 */
   1387 	if (l1->l1_domain_use_count == 0)
   1388 		TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru);
   1389 	else
   1390 		TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1391 
   1392 	mutex_spin_exit(&l1_lru_lock);
   1393 #endif /* ARM_MMU_EXTENDED */
   1394 }
   1395 
   1396 #ifndef ARM_MMU_EXTENDED
   1397 static inline void
   1398 pmap_use_l1(pmap_t pm)
   1399 {
   1400 	struct l1_ttable *l1;
   1401 
   1402 	/*
   1403 	 * Do nothing if we're in interrupt context.
   1404 	 * Access to an L1 by the kernel pmap must not affect
   1405 	 * the LRU list.
   1406 	 */
   1407 	if (cpu_intr_p() || pm == pmap_kernel())
   1408 		return;
   1409 
   1410 	l1 = pm->pm_l1;
   1411 
   1412 	/*
   1413 	 * If the L1 is not currently on the LRU list, just return
   1414 	 */
   1415 	if (l1->l1_domain_use_count == PMAP_DOMAINS)
   1416 		return;
   1417 
   1418 	mutex_spin_enter(&l1_lru_lock);
   1419 
   1420 	/*
   1421 	 * Check the use count again, now that we've acquired the lock
   1422 	 */
   1423 	if (l1->l1_domain_use_count == PMAP_DOMAINS) {
   1424 		mutex_spin_exit(&l1_lru_lock);
   1425 		return;
   1426 	}
   1427 
   1428 	/*
   1429 	 * Move the L1 to the back of the LRU list
   1430 	 */
   1431 	TAILQ_REMOVE(&l1_lru_list, l1, l1_lru);
   1432 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   1433 
   1434 	mutex_spin_exit(&l1_lru_lock);
   1435 }
   1436 #endif /* !ARM_MMU_EXTENDED */
   1437 
   1438 /*
   1439  * void pmap_free_l2_ptp(pt_entry_t *, paddr_t *)
   1440  *
   1441  * Free an L2 descriptor table.
   1442  */
   1443 static inline void
   1444 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1445 pmap_free_l2_ptp(bool need_sync, pt_entry_t *l2, paddr_t pa)
   1446 #else
   1447 pmap_free_l2_ptp(pt_entry_t *l2, paddr_t pa)
   1448 #endif
   1449 {
   1450 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1451 	/*
   1452 	 * Note: With a write-back cache, we may need to sync this
   1453 	 * L2 table before re-using it.
   1454 	 * This is because it may have belonged to a non-current
   1455 	 * pmap, in which case the cache syncs would have been
   1456 	 * skipped for the pages that were being unmapped. If the
   1457 	 * L2 table were then to be immediately re-allocated to
   1458 	 * the *current* pmap, it may well contain stale mappings
   1459 	 * which have not yet been cleared by a cache write-back
   1460 	 * and so would still be visible to the mmu.
   1461 	 */
   1462 	if (need_sync)
   1463 		PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1464 #endif /* PMAP_INCLUDE_PTE_SYNC && PMAP_CACHE_VIVT */
   1465 	pool_cache_put_paddr(&pmap_l2ptp_cache, (void *)l2, pa);
   1466 }
   1467 
   1468 /*
   1469  * Returns a pointer to the L2 bucket associated with the specified pmap
   1470  * and VA, or NULL if no L2 bucket exists for the address.
   1471  */
   1472 static inline struct l2_bucket *
   1473 pmap_get_l2_bucket(pmap_t pm, vaddr_t va)
   1474 {
   1475 	const size_t l1slot = l1pte_index(va);
   1476 	struct l2_dtable *l2;
   1477 	struct l2_bucket *l2b;
   1478 
   1479 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL ||
   1480 	    (l2b = &l2->l2_bucket[L2_BUCKET(l1slot)])->l2b_kva == NULL)
   1481 		return NULL;
   1482 
   1483 	return l2b;
   1484 }
   1485 
   1486 /*
   1487  * Returns a pointer to the L2 bucket associated with the specified pmap
   1488  * and VA.
   1489  *
   1490  * If no L2 bucket exists, perform the necessary allocations to put an L2
   1491  * bucket/page table in place.
   1492  *
   1493  * Note that if a new L2 bucket/page was allocated, the caller *must*
   1494  * increment the bucket occupancy counter appropriately *before*
   1495  * releasing the pmap's lock to ensure no other thread or cpu deallocates
   1496  * the bucket/page in the meantime.
   1497  */
   1498 static struct l2_bucket *
   1499 pmap_alloc_l2_bucket(pmap_t pm, vaddr_t va)
   1500 {
   1501 	const size_t l1slot = l1pte_index(va);
   1502 	struct l2_dtable *l2;
   1503 
   1504 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   1505 		/*
   1506 		 * No mapping at this address, as there is
   1507 		 * no entry in the L1 table.
   1508 		 * Need to allocate a new l2_dtable.
   1509 		 */
   1510 		if ((l2 = pmap_alloc_l2_dtable()) == NULL)
   1511 			return NULL;
   1512 
   1513 		/*
   1514 		 * Link it into the parent pmap
   1515 		 */
   1516 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   1517 	}
   1518 
   1519 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   1520 
   1521 	/*
   1522 	 * Fetch pointer to the L2 page table associated with the address.
   1523 	 */
   1524 	if (l2b->l2b_kva == NULL) {
   1525 		pt_entry_t *ptep;
   1526 
   1527 		/*
   1528 		 * No L2 page table has been allocated. Chances are, this
   1529 		 * is because we just allocated the l2_dtable, above.
   1530 		 */
   1531 		if ((ptep = pmap_alloc_l2_ptp(&l2b->l2b_pa)) == NULL) {
   1532 			/*
   1533 			 * Oops, no more L2 page tables available at this
   1534 			 * time. We may need to deallocate the l2_dtable
   1535 			 * if we allocated a new one above.
   1536 			 */
   1537 			if (l2->l2_occupancy == 0) {
   1538 				pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1539 				pmap_free_l2_dtable(l2);
   1540 			}
   1541 			return NULL;
   1542 		}
   1543 
   1544 		l2->l2_occupancy++;
   1545 		l2b->l2b_kva = ptep;
   1546 		l2b->l2b_l1slot = l1slot;
   1547 
   1548 #ifdef ARM_MMU_EXTENDED
   1549 		/*
   1550 		 * We know there will be a mapping here, so simply
   1551 		 * enter this PTP into the L1 now.
   1552 		 */
   1553 		pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1554 		pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   1555 		    | L1_C_DOM(pmap_domain(pm));
   1556 		KASSERT(*pdep == 0);
   1557 		l1pte_setone(pdep, npde);
   1558 		PDE_SYNC(pdep);
   1559 #endif
   1560 	}
   1561 
   1562 	return l2b;
   1563 }
   1564 
   1565 /*
   1566  * One or more mappings in the specified L2 descriptor table have just been
   1567  * invalidated.
   1568  *
   1569  * Garbage collect the metadata and descriptor table itself if necessary.
   1570  *
   1571  * The pmap lock must be acquired when this is called (not necessary
   1572  * for the kernel pmap).
   1573  */
   1574 static void
   1575 pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count)
   1576 {
   1577 	KDASSERT(count <= l2b->l2b_occupancy);
   1578 
   1579 	/*
   1580 	 * Update the bucket's reference count according to how many
   1581 	 * PTEs the caller has just invalidated.
   1582 	 */
   1583 	l2b->l2b_occupancy -= count;
   1584 
   1585 	/*
   1586 	 * Note:
   1587 	 *
   1588 	 * Level 2 page tables allocated to the kernel pmap are never freed
   1589 	 * as that would require checking all Level 1 page tables and
   1590 	 * removing any references to the Level 2 page table. See also the
   1591 	 * comment elsewhere about never freeing bootstrap L2 descriptors.
   1592 	 *
   1593 	 * We make do with just invalidating the mapping in the L2 table.
   1594 	 *
   1595 	 * This isn't really a big deal in practice and, in fact, leads
   1596 	 * to a performance win over time as we don't need to continually
   1597 	 * alloc/free.
   1598 	 */
   1599 	if (l2b->l2b_occupancy > 0 || pm == pmap_kernel())
   1600 		return;
   1601 
   1602 	/*
   1603 	 * There are no more valid mappings in this level 2 page table.
   1604 	 * Go ahead and NULL-out the pointer in the bucket, then
   1605 	 * free the page table.
   1606 	 */
   1607 	const size_t l1slot = l2b->l2b_l1slot;
   1608 	pt_entry_t * const ptep = l2b->l2b_kva;
   1609 	l2b->l2b_kva = NULL;
   1610 
   1611 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   1612 	pd_entry_t pde __diagused = *pdep;
   1613 
   1614 #ifdef ARM_MMU_EXTENDED
   1615 	/*
   1616 	 * Invalidate the L1 slot.
   1617 	 */
   1618 	KASSERT((pde & L1_TYPE_MASK) == L1_TYPE_C);
   1619 #else
   1620 	/*
   1621 	 * If the L1 slot matches the pmap's domain number, then invalidate it.
   1622 	 */
   1623 	if ((pde & (L1_C_DOM_MASK|L1_TYPE_MASK))
   1624 	    == (L1_C_DOM(pmap_domain(pm))|L1_TYPE_C)) {
   1625 #endif
   1626 		l1pte_setone(pdep, 0);
   1627 		PDE_SYNC(pdep);
   1628 #ifndef ARM_MMU_EXTENDED
   1629 	}
   1630 #endif
   1631 
   1632 	/*
   1633 	 * Release the L2 descriptor table back to the pool cache.
   1634 	 */
   1635 #if defined(PMAP_INCLUDE_PTE_SYNC) && defined(PMAP_CACHE_VIVT)
   1636 	pmap_free_l2_ptp(!pmap_is_cached(pm), ptep, l2b->l2b_pa);
   1637 #else
   1638 	pmap_free_l2_ptp(ptep, l2b->l2b_pa);
   1639 #endif
   1640 
   1641 	/*
   1642 	 * Update the reference count in the associated l2_dtable
   1643 	 */
   1644 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   1645 	if (--l2->l2_occupancy > 0)
   1646 		return;
   1647 
   1648 	/*
   1649 	 * There are no more valid mappings in any of the Level 1
   1650 	 * slots managed by this l2_dtable. Go ahead and NULL-out
   1651 	 * the pointer in the parent pmap and free the l2_dtable.
   1652 	 */
   1653 	pm->pm_l2[L2_IDX(l1slot)] = NULL;
   1654 	pmap_free_l2_dtable(l2);
   1655 }
   1656 
   1657 #if defined(ARM_MMU_EXTENDED)
   1658 /*
   1659  * Pool cache constructors for L1 translation tables
   1660  */
   1661 
   1662 static int
   1663 pmap_l1tt_ctor(void *arg, void *v, int flags)
   1664 {
   1665 #ifndef PMAP_INCLUDE_PTE_SYNC
   1666 #error not supported
   1667 #endif
   1668 
   1669 	memset(v, 0, L1TT_SIZE);
   1670 	PTE_SYNC_RANGE(v, L1TT_SIZE / sizeof(pt_entry_t));
   1671 	return 0;
   1672 }
   1673 #endif
   1674 
   1675 /*
   1676  * Pool cache constructors for L2 descriptor tables, metadata and pmap
   1677  * structures.
   1678  */
   1679 static int
   1680 pmap_l2ptp_ctor(void *arg, void *v, int flags)
   1681 {
   1682 #ifndef PMAP_INCLUDE_PTE_SYNC
   1683 	vaddr_t va = (vaddr_t)v & ~PGOFSET;
   1684 
   1685 	/*
   1686 	 * The mappings for these page tables were initially made using
   1687 	 * pmap_kenter_pa() by the pool subsystem. Therefore, the cache-
   1688 	 * mode will not be right for page table mappings. To avoid
   1689 	 * polluting the pmap_kenter_pa() code with a special case for
   1690 	 * page tables, we simply fix up the cache-mode here if it's not
   1691 	 * correct.
   1692 	 */
   1693 	if (pte_l2_s_cache_mode != pte_l2_s_cache_mode_pt) {
   1694 		const struct l2_bucket * const l2b =
   1695 		    pmap_get_l2_bucket(pmap_kernel(), va);
   1696 		KASSERTMSG(l2b != NULL, "%#lx", va);
   1697 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   1698 		const pt_entry_t opte = *ptep;
   1699 
   1700 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   1701 			/*
   1702 			 * Page tables must have the cache-mode set correctly.
   1703 			 */
   1704 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   1705 			    | pte_l2_s_cache_mode_pt;
   1706 			l2pte_set(ptep, npte, opte);
   1707 			PTE_SYNC(ptep);
   1708 			cpu_tlb_flushD_SE(va);
   1709 			cpu_cpwait();
   1710 		}
   1711 	}
   1712 #endif
   1713 
   1714 	memset(v, 0, L2_TABLE_SIZE_REAL);
   1715 	PTE_SYNC_RANGE(v, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   1716 	return 0;
   1717 }
   1718 
   1719 static int
   1720 pmap_l2dtable_ctor(void *arg, void *v, int flags)
   1721 {
   1722 
   1723 	memset(v, 0, sizeof(struct l2_dtable));
   1724 	return 0;
   1725 }
   1726 
   1727 static int
   1728 pmap_pmap_ctor(void *arg, void *v, int flags)
   1729 {
   1730 
   1731 	memset(v, 0, sizeof(struct pmap));
   1732 	return 0;
   1733 }
   1734 
   1735 static void
   1736 pmap_pinit(pmap_t pm)
   1737 {
   1738 #ifndef ARM_HAS_VBAR
   1739 	struct l2_bucket *l2b;
   1740 
   1741 	if (vector_page < KERNEL_BASE) {
   1742 		/*
   1743 		 * Map the vector page.
   1744 		 */
   1745 		pmap_enter(pm, vector_page, systempage.pv_pa,
   1746 		    VM_PROT_READ | VM_PROT_EXECUTE,
   1747 		    VM_PROT_READ | VM_PROT_EXECUTE | PMAP_WIRED);
   1748 		pmap_update(pm);
   1749 
   1750 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   1751 		l2b = pmap_get_l2_bucket(pm, vector_page);
   1752 		KASSERTMSG(l2b != NULL, "%#lx", vector_page);
   1753 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   1754 		    L1_C_DOM(pmap_domain(pm));
   1755 	} else
   1756 		pm->pm_pl1vec = NULL;
   1757 #endif
   1758 }
   1759 
   1760 #ifdef PMAP_CACHE_VIVT
   1761 /*
   1762  * Since we have a virtually indexed cache, we may need to inhibit caching if
   1763  * there is more than one mapping and at least one of them is writable.
   1764  * Since we purge the cache on every context switch, we only need to check for
   1765  * other mappings within the same pmap, or kernel_pmap.
   1766  * This function is also called when a page is unmapped, to possibly reenable
   1767  * caching on any remaining mappings.
   1768  *
   1769  * The code implements the following logic, where:
   1770  *
   1771  * KW = # of kernel read/write pages
   1772  * KR = # of kernel read only pages
   1773  * UW = # of user read/write pages
   1774  * UR = # of user read only pages
   1775  *
   1776  * KC = kernel mapping is cacheable
   1777  * UC = user mapping is cacheable
   1778  *
   1779  *               KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   1780  *             +---------------------------------------------
   1781  * UW=0,UR=0   | ---        KC=1       KC=1       KC=0
   1782  * UW=0,UR>0   | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   1783  * UW=1,UR=0   | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1784  * UW>1,UR>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   1785  */
   1786 
   1787 static const int pmap_vac_flags[4][4] = {
   1788 	{-1,		0,		0,		PVF_KNC},
   1789 	{0,		0,		PVF_NC,		PVF_NC},
   1790 	{0,		PVF_NC,		PVF_NC,		PVF_NC},
   1791 	{PVF_UNC,	PVF_NC,		PVF_NC,		PVF_NC}
   1792 };
   1793 
   1794 static inline int
   1795 pmap_get_vac_flags(const struct vm_page_md *md)
   1796 {
   1797 	int kidx, uidx;
   1798 
   1799 	kidx = 0;
   1800 	if (md->kro_mappings || md->krw_mappings > 1)
   1801 		kidx |= 1;
   1802 	if (md->krw_mappings)
   1803 		kidx |= 2;
   1804 
   1805 	uidx = 0;
   1806 	if (md->uro_mappings || md->urw_mappings > 1)
   1807 		uidx |= 1;
   1808 	if (md->urw_mappings)
   1809 		uidx |= 2;
   1810 
   1811 	return pmap_vac_flags[uidx][kidx];
   1812 }
   1813 
   1814 static inline void
   1815 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1816 {
   1817 	int nattr;
   1818 
   1819 	nattr = pmap_get_vac_flags(md);
   1820 
   1821 	if (nattr < 0) {
   1822 		md->pvh_attrs &= ~PVF_NC;
   1823 		return;
   1824 	}
   1825 
   1826 	if (nattr == 0 && (md->pvh_attrs & PVF_NC) == 0)
   1827 		return;
   1828 
   1829 	if (pm == pmap_kernel())
   1830 		pmap_vac_me_kpmap(md, pa, pm, va);
   1831 	else
   1832 		pmap_vac_me_user(md, pa, pm, va);
   1833 
   1834 	md->pvh_attrs = (md->pvh_attrs & ~PVF_NC) | nattr;
   1835 }
   1836 
   1837 static void
   1838 pmap_vac_me_kpmap(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1839 {
   1840 	u_int u_cacheable, u_entries;
   1841 	struct pv_entry *pv;
   1842 	pmap_t last_pmap = pm;
   1843 
   1844 	/*
   1845 	 * Pass one, see if there are both kernel and user pmaps for
   1846 	 * this page.  Calculate whether there are user-writable or
   1847 	 * kernel-writable pages.
   1848 	 */
   1849 	u_cacheable = 0;
   1850 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1851 		if (pv->pv_pmap != pm && (pv->pv_flags & PVF_NC) == 0)
   1852 			u_cacheable++;
   1853 	}
   1854 
   1855 	u_entries = md->urw_mappings + md->uro_mappings;
   1856 
   1857 	/*
   1858 	 * We know we have just been updating a kernel entry, so if
   1859 	 * all user pages are already cacheable, then there is nothing
   1860 	 * further to do.
   1861 	 */
   1862 	if (md->k_mappings == 0 && u_cacheable == u_entries)
   1863 		return;
   1864 
   1865 	if (u_entries) {
   1866 		/*
   1867 		 * Scan over the list again, for each entry, if it
   1868 		 * might not be set correctly, call pmap_vac_me_user
   1869 		 * to recalculate the settings.
   1870 		 */
   1871 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1872 			/*
   1873 			 * We know kernel mappings will get set
   1874 			 * correctly in other calls.  We also know
   1875 			 * that if the pmap is the same as last_pmap
   1876 			 * then we've just handled this entry.
   1877 			 */
   1878 			if (pv->pv_pmap == pm || pv->pv_pmap == last_pmap)
   1879 				continue;
   1880 
   1881 			/*
   1882 			 * If there are kernel entries and this page
   1883 			 * is writable but non-cacheable, then we can
   1884 			 * skip this entry also.
   1885 			 */
   1886 			if (md->k_mappings &&
   1887 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   1888 			    (PVF_NC | PVF_WRITE))
   1889 				continue;
   1890 
   1891 			/*
   1892 			 * Similarly if there are no kernel-writable
   1893 			 * entries and the page is already
   1894 			 * read-only/cacheable.
   1895 			 */
   1896 			if (md->krw_mappings == 0 &&
   1897 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   1898 				continue;
   1899 
   1900 			/*
   1901 			 * For some of the remaining cases, we know
   1902 			 * that we must recalculate, but for others we
   1903 			 * can't tell if they are correct or not, so
   1904 			 * we recalculate anyway.
   1905 			 */
   1906 			pmap_vac_me_user(md, pa, (last_pmap = pv->pv_pmap), 0);
   1907 		}
   1908 
   1909 		if (md->k_mappings == 0)
   1910 			return;
   1911 	}
   1912 
   1913 	pmap_vac_me_user(md, pa, pm, va);
   1914 }
   1915 
   1916 static void
   1917 pmap_vac_me_user(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   1918 {
   1919 	pmap_t kpmap = pmap_kernel();
   1920 	struct pv_entry *pv, *npv = NULL;
   1921 	u_int entries = 0;
   1922 	u_int writable = 0;
   1923 	u_int cacheable_entries = 0;
   1924 	u_int kern_cacheable = 0;
   1925 	u_int other_writable = 0;
   1926 
   1927 	/*
   1928 	 * Count mappings and writable mappings in this pmap.
   1929 	 * Include kernel mappings as part of our own.
   1930 	 * Keep a pointer to the first one.
   1931 	 */
   1932 	npv = NULL;
   1933 	KASSERT(pmap_page_locked_p(md));
   1934 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   1935 		/* Count mappings in the same pmap */
   1936 		if (pm == pv->pv_pmap || kpmap == pv->pv_pmap) {
   1937 			if (entries++ == 0)
   1938 				npv = pv;
   1939 
   1940 			/* Cacheable mappings */
   1941 			if ((pv->pv_flags & PVF_NC) == 0) {
   1942 				cacheable_entries++;
   1943 				if (kpmap == pv->pv_pmap)
   1944 					kern_cacheable++;
   1945 			}
   1946 
   1947 			/* Writable mappings */
   1948 			if (pv->pv_flags & PVF_WRITE)
   1949 				++writable;
   1950 		} else if (pv->pv_flags & PVF_WRITE)
   1951 			other_writable = 1;
   1952 	}
   1953 
   1954 	/*
   1955 	 * Enable or disable caching as necessary.
   1956 	 * Note: the first entry might be part of the kernel pmap,
   1957 	 * so we can't assume this is indicative of the state of the
   1958 	 * other (maybe non-kpmap) entries.
   1959 	 */
   1960 	if ((entries > 1 && writable) ||
   1961 	    (entries > 0 && pm == kpmap && other_writable)) {
   1962 		if (cacheable_entries == 0) {
   1963 			return;
   1964 		}
   1965 
   1966 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1967 			if ((pm != pv->pv_pmap && kpmap != pv->pv_pmap) ||
   1968 			    (pv->pv_flags & PVF_NC))
   1969 				continue;
   1970 
   1971 			pv->pv_flags |= PVF_NC;
   1972 
   1973 			struct l2_bucket * const l2b
   1974 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   1975 			KASSERTMSG(l2b != NULL, "%#lx", va);
   1976 			pt_entry_t * const ptep
   1977 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   1978 			const pt_entry_t opte = *ptep;
   1979 			pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   1980 
   1981 			if ((va != pv->pv_va || pm != pv->pv_pmap)
   1982 			    && l2pte_valid_p(opte)) {
   1983 				pmap_cache_wbinv_page(pv->pv_pmap, pv->pv_va,
   1984 				    true, pv->pv_flags);
   1985 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   1986 				    pv->pv_flags);
   1987 			}
   1988 
   1989 			l2pte_set(ptep, npte, opte);
   1990 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   1991 		}
   1992 		cpu_cpwait();
   1993 	} else if (entries > cacheable_entries) {
   1994 		/*
   1995 		 * Turn cacheing back on for some pages.  If it is a kernel
   1996 		 * page, only do so if there are no other writable pages.
   1997 		 */
   1998 		for (pv = npv; pv; pv = SLIST_NEXT(pv, pv_link)) {
   1999 			if (!(pv->pv_flags & PVF_NC) || (pm != pv->pv_pmap &&
   2000 			    (kpmap != pv->pv_pmap || other_writable)))
   2001 				continue;
   2002 
   2003 			pv->pv_flags &= ~PVF_NC;
   2004 
   2005 			struct l2_bucket * const l2b
   2006 			    = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va);
   2007 			KASSERTMSG(l2b != NULL, "%#lx", va);
   2008 			pt_entry_t * const ptep
   2009 			    = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2010 			const pt_entry_t opte = *ptep;
   2011 			pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   2012 			    | pte_l2_s_cache_mode;
   2013 
   2014 			if (l2pte_valid_p(opte)) {
   2015 				pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va,
   2016 				    pv->pv_flags);
   2017 			}
   2018 
   2019 			l2pte_set(ptep, npte, opte);
   2020 			PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2021 		}
   2022 	}
   2023 }
   2024 #endif
   2025 
   2026 #ifdef PMAP_CACHE_VIPT
   2027 static void
   2028 pmap_vac_me_harder(struct vm_page_md *md, paddr_t pa, pmap_t pm, vaddr_t va)
   2029 {
   2030 
   2031 #ifndef ARM_MMU_EXTENDED
   2032 	struct pv_entry *pv;
   2033 	vaddr_t tst_mask;
   2034 	bool bad_alias;
   2035 	const u_int
   2036 	    rw_mappings = md->urw_mappings + md->krw_mappings,
   2037 	    ro_mappings = md->uro_mappings + md->kro_mappings;
   2038 
   2039 	/* do we need to do anything? */
   2040 	if (arm_cache_prefer_mask == 0)
   2041 		return;
   2042 
   2043 	UVMHIST_FUNC(__func__);
   2044 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx pm %#jx va %#jx",
   2045 	    (uintptr_t)md, (uintptr_t)pa, (uintptr_t)pm, va);
   2046 
   2047 	KASSERT(!va || pm);
   2048 	KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2049 
   2050 	/* Already a conflict? */
   2051 	if (__predict_false(md->pvh_attrs & PVF_NC)) {
   2052 		/* just an add, things are already non-cached */
   2053 		KASSERT(!(md->pvh_attrs & PVF_DIRTY));
   2054 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2055 		bad_alias = false;
   2056 		if (va) {
   2057 			PMAPCOUNT(vac_color_none);
   2058 			bad_alias = true;
   2059 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2060 			goto fixup;
   2061 		}
   2062 		pv = SLIST_FIRST(&md->pvh_list);
   2063 		/* the list can't be empty because it would be cachable */
   2064 		if (md->pvh_attrs & PVF_KMPAGE) {
   2065 			tst_mask = md->pvh_attrs;
   2066 		} else {
   2067 			KASSERT(pv);
   2068 			tst_mask = pv->pv_va;
   2069 			pv = SLIST_NEXT(pv, pv_link);
   2070 		}
   2071 		/*
   2072 		 * Only check for a bad alias if we have writable mappings.
   2073 		 */
   2074 		tst_mask &= arm_cache_prefer_mask;
   2075 		if (rw_mappings > 0) {
   2076 			for (; pv && !bad_alias; pv = SLIST_NEXT(pv, pv_link)) {
   2077 				/* if there's a bad alias, stop checking. */
   2078 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask))
   2079 					bad_alias = true;
   2080 			}
   2081 			md->pvh_attrs |= PVF_WRITE;
   2082 			if (!bad_alias)
   2083 				md->pvh_attrs |= PVF_DIRTY;
   2084 		} else {
   2085 			/*
   2086 			 * We have only read-only mappings.  Let's see if there
   2087 			 * are multiple colors in use or if we mapped a KMPAGE.
   2088 			 * If the latter, we have a bad alias.  If the former,
   2089 			 * we need to remember that.
   2090 			 */
   2091 			for (; pv; pv = SLIST_NEXT(pv, pv_link)) {
   2092 				if (tst_mask != (pv->pv_va & arm_cache_prefer_mask)) {
   2093 					if (md->pvh_attrs & PVF_KMPAGE)
   2094 						bad_alias = true;
   2095 					break;
   2096 				}
   2097 			}
   2098 			md->pvh_attrs &= ~PVF_WRITE;
   2099 			/*
   2100 			 * No KMPAGE and we exited early, so we must have
   2101 			 * multiple color mappings.
   2102 			 */
   2103 			if (!bad_alias && pv != NULL)
   2104 				md->pvh_attrs |= PVF_MULTCLR;
   2105 		}
   2106 
   2107 		/* If no conflicting colors, set everything back to cached */
   2108 		if (!bad_alias) {
   2109 #ifdef DEBUG
   2110 			if ((md->pvh_attrs & PVF_WRITE)
   2111 			    || ro_mappings < 2) {
   2112 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2113 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2114 			}
   2115 #endif
   2116 			md->pvh_attrs &= (PAGE_SIZE - 1) & ~PVF_NC;
   2117 			md->pvh_attrs |= tst_mask | PVF_COLORED;
   2118 			/*
   2119 			 * Restore DIRTY bit if page is modified
   2120 			 */
   2121 			if (md->pvh_attrs & PVF_DMOD)
   2122 				md->pvh_attrs |= PVF_DIRTY;
   2123 			PMAPCOUNT(vac_color_restore);
   2124 		} else {
   2125 			KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2126 			KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2127 		}
   2128 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2129 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2130 	} else if (!va) {
   2131 		KASSERT(pmap_is_page_colored_p(md));
   2132 		KASSERT(!(md->pvh_attrs & PVF_WRITE)
   2133 		    || (md->pvh_attrs & PVF_DIRTY));
   2134 		if (rw_mappings == 0) {
   2135 			md->pvh_attrs &= ~PVF_WRITE;
   2136 			if (ro_mappings == 1
   2137 			    && (md->pvh_attrs & PVF_MULTCLR)) {
   2138 				/*
   2139 				 * If this is the last readonly mapping
   2140 				 * but it doesn't match the current color
   2141 				 * for the page, change the current color
   2142 				 * to match this last readonly mapping.
   2143 				 */
   2144 				pv = SLIST_FIRST(&md->pvh_list);
   2145 				tst_mask = (md->pvh_attrs ^ pv->pv_va)
   2146 				    & arm_cache_prefer_mask;
   2147 				if (tst_mask) {
   2148 					md->pvh_attrs ^= tst_mask;
   2149 					PMAPCOUNT(vac_color_change);
   2150 				}
   2151 			}
   2152 		}
   2153 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2154 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2155 		return;
   2156 	} else if (!pmap_is_page_colored_p(md)) {
   2157 		/* not colored so we just use its color */
   2158 		KASSERT(md->pvh_attrs & (PVF_WRITE|PVF_DIRTY));
   2159 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2160 		PMAPCOUNT(vac_color_new);
   2161 		md->pvh_attrs &= PAGE_SIZE - 1;
   2162 		md->pvh_attrs |= PVF_COLORED
   2163 		    | (va & arm_cache_prefer_mask)
   2164 		    | (rw_mappings > 0 ? PVF_WRITE : 0);
   2165 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2166 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2167 		return;
   2168 	} else if (((md->pvh_attrs ^ va) & arm_cache_prefer_mask) == 0) {
   2169 		bad_alias = false;
   2170 		if (rw_mappings > 0) {
   2171 			/*
   2172 			 * We now have writeable mappings and if we have
   2173 			 * readonly mappings in more than once color, we have
   2174 			 * an aliasing problem.  Regardless mark the page as
   2175 			 * writeable.
   2176 			 */
   2177 			if (md->pvh_attrs & PVF_MULTCLR) {
   2178 				if (ro_mappings < 2) {
   2179 					/*
   2180 					 * If we only have less than two
   2181 					 * read-only mappings, just flush the
   2182 					 * non-primary colors from the cache.
   2183 					 */
   2184 					pmap_flush_page(md, pa,
   2185 					    PMAP_FLUSH_SECONDARY);
   2186 				} else {
   2187 					bad_alias = true;
   2188 				}
   2189 			}
   2190 			md->pvh_attrs |= PVF_WRITE;
   2191 		}
   2192 		/* If no conflicting colors, set everything back to cached */
   2193 		if (!bad_alias) {
   2194 #ifdef DEBUG
   2195 			if (rw_mappings > 0
   2196 			    || (md->pvh_attrs & PMAP_KMPAGE)) {
   2197 				tst_mask = md->pvh_attrs & arm_cache_prefer_mask;
   2198 				SLIST_FOREACH(pv, &md->pvh_list, pv_link)
   2199 					KDASSERT(((tst_mask ^ pv->pv_va) & arm_cache_prefer_mask) == 0);
   2200 			}
   2201 #endif
   2202 			if (SLIST_EMPTY(&md->pvh_list))
   2203 				PMAPCOUNT(vac_color_reuse);
   2204 			else
   2205 				PMAPCOUNT(vac_color_ok);
   2206 
   2207 			/* matching color, just return */
   2208 			KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2209 			KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2210 			return;
   2211 		}
   2212 		KASSERT(SLIST_FIRST(&md->pvh_list) != NULL);
   2213 		KASSERT(SLIST_NEXT(SLIST_FIRST(&md->pvh_list), pv_link) != NULL);
   2214 
   2215 		/* color conflict.  evict from cache. */
   2216 
   2217 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2218 		md->pvh_attrs &= ~PVF_COLORED;
   2219 		md->pvh_attrs |= PVF_NC;
   2220 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2221 		KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2222 		PMAPCOUNT(vac_color_erase);
   2223 	} else if (rw_mappings == 0
   2224 		   && (md->pvh_attrs & PVF_KMPAGE) == 0) {
   2225 		KASSERT((md->pvh_attrs & PVF_WRITE) == 0);
   2226 
   2227 		/*
   2228 		 * If the page has dirty cache lines, clean it.
   2229 		 */
   2230 		if (md->pvh_attrs & PVF_DIRTY)
   2231 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   2232 
   2233 		/*
   2234 		 * If this is the first remapping (we know that there are no
   2235 		 * writeable mappings), then this is a simple color change.
   2236 		 * Otherwise this is a seconary r/o mapping, which means
   2237 		 * we don't have to do anything.
   2238 		 */
   2239 		if (ro_mappings == 1) {
   2240 			KASSERT(((md->pvh_attrs ^ va) & arm_cache_prefer_mask) != 0);
   2241 			md->pvh_attrs &= PAGE_SIZE - 1;
   2242 			md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2243 			PMAPCOUNT(vac_color_change);
   2244 		} else {
   2245 			PMAPCOUNT(vac_color_blind);
   2246 		}
   2247 		md->pvh_attrs |= PVF_MULTCLR;
   2248 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2249 		KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2250 		return;
   2251 	} else {
   2252 		if (rw_mappings > 0)
   2253 			md->pvh_attrs |= PVF_WRITE;
   2254 
   2255 		/* color conflict.  evict from cache. */
   2256 		pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   2257 
   2258 		/* the list can't be empty because this was a enter/modify */
   2259 		pv = SLIST_FIRST(&md->pvh_list);
   2260 		if ((md->pvh_attrs & PVF_KMPAGE) == 0) {
   2261 			KASSERT(pv);
   2262 			/*
   2263 			 * If there's only one mapped page, change color to the
   2264 			 * page's new color and return.  Restore the DIRTY bit
   2265 			 * that was erased by pmap_flush_page.
   2266 			 */
   2267 			if (SLIST_NEXT(pv, pv_link) == NULL) {
   2268 				md->pvh_attrs &= PAGE_SIZE - 1;
   2269 				md->pvh_attrs |= (va & arm_cache_prefer_mask);
   2270 				if (md->pvh_attrs & PVF_DMOD)
   2271 					md->pvh_attrs |= PVF_DIRTY;
   2272 				PMAPCOUNT(vac_color_change);
   2273 				KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2274 				KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2275 				KASSERT(!(md->pvh_attrs & PVF_MULTCLR));
   2276 				return;
   2277 			}
   2278 		}
   2279 		bad_alias = true;
   2280 		md->pvh_attrs &= ~PVF_COLORED;
   2281 		md->pvh_attrs |= PVF_NC;
   2282 		PMAPCOUNT(vac_color_erase);
   2283 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   2284 	}
   2285 
   2286   fixup:
   2287 	KASSERT((rw_mappings == 0) == !(md->pvh_attrs & PVF_WRITE));
   2288 
   2289 	/*
   2290 	 * Turn cacheing on/off for all pages.
   2291 	 */
   2292 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2293 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pv->pv_pmap,
   2294 		    pv->pv_va);
   2295 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2296 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2297 		const pt_entry_t opte = *ptep;
   2298 		pt_entry_t npte = opte & ~L2_S_CACHE_MASK;
   2299 		if (bad_alias) {
   2300 			pv->pv_flags |= PVF_NC;
   2301 		} else {
   2302 			pv->pv_flags &= ~PVF_NC;
   2303 			npte |= pte_l2_s_cache_mode;
   2304 		}
   2305 
   2306 		if (opte == npte)	/* only update is there's a change */
   2307 			continue;
   2308 
   2309 		if (l2pte_valid_p(opte)) {
   2310 			pmap_tlb_flush_SE(pv->pv_pmap, pv->pv_va, pv->pv_flags);
   2311 		}
   2312 
   2313 		l2pte_set(ptep, npte, opte);
   2314 		PTE_SYNC_CURRENT(pv->pv_pmap, ptep);
   2315 	}
   2316 #endif /* !ARM_MMU_EXTENDED */
   2317 }
   2318 #endif	/* PMAP_CACHE_VIPT */
   2319 
   2320 
   2321 /*
   2322  * Modify pte bits for all ptes corresponding to the given physical address.
   2323  * We use `maskbits' rather than `clearbits' because we're always passing
   2324  * constants and the latter would require an extra inversion at run-time.
   2325  */
   2326 static void
   2327 pmap_clearbit(struct vm_page_md *md, paddr_t pa, u_int maskbits)
   2328 {
   2329 	struct pv_entry *pv;
   2330 #ifdef PMAP_CACHE_VIPT
   2331 	const bool want_syncicache = PV_IS_EXEC_P(md->pvh_attrs);
   2332 	bool need_syncicache = false;
   2333 #ifndef ARM_MMU_EXTENDED
   2334 	bool need_vac_me_harder = false;
   2335 #endif
   2336 #endif /* PMAP_CACHE_VIPT */
   2337 
   2338 	UVMHIST_FUNC(__func__);
   2339 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx maskbits %#jx",
   2340 	    (uintptr_t)md, pa, maskbits, 0);
   2341 
   2342 #ifdef PMAP_CACHE_VIPT
   2343 	/*
   2344 	 * If we might want to sync the I-cache and we've modified it,
   2345 	 * then we know we definitely need to sync or discard it.
   2346 	 */
   2347 	if (want_syncicache) {
   2348 		if (md->pvh_attrs & PVF_MOD) {
   2349 			need_syncicache = true;
   2350 		}
   2351 	}
   2352 #endif
   2353 	KASSERT(pmap_page_locked_p(md));
   2354 
   2355 	/*
   2356 	 * Clear saved attributes (modify, reference)
   2357 	 */
   2358 	md->pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF));
   2359 
   2360 	if (SLIST_EMPTY(&md->pvh_list)) {
   2361 #if defined(PMAP_CACHE_VIPT)
   2362 		if (need_syncicache) {
   2363 			/*
   2364 			 * No one has it mapped, so just discard it.  The next
   2365 			 * exec remapping will cause it to be synced.
   2366 			 */
   2367 			md->pvh_attrs &= ~PVF_EXEC;
   2368 			PMAPCOUNT(exec_discarded_clearbit);
   2369 		}
   2370 #endif
   2371 		return;
   2372 	}
   2373 
   2374 	/*
   2375 	 * Loop over all current mappings setting/clearing as appropriate
   2376 	 */
   2377 	for (pv = SLIST_FIRST(&md->pvh_list); pv != NULL;) {
   2378 		pmap_t pm = pv->pv_pmap;
   2379 		const vaddr_t va = pv->pv_va;
   2380 		const u_int oflags = pv->pv_flags;
   2381 #ifndef ARM_MMU_EXTENDED
   2382 		/*
   2383 		 * Kernel entries are unmanaged and as such not to be changed.
   2384 		 */
   2385 		if (PV_IS_KENTRY_P(oflags)) {
   2386 			pv = SLIST_NEXT(pv, pv_link);
   2387 			continue;
   2388 		}
   2389 #endif
   2390 
   2391 		/*
   2392 		 * Try to get a hold on the pmap's lock.  We must do this
   2393 		 * while still holding the page locked, to know that the
   2394 		 * page is still associated with the pmap and the mapping is
   2395 		 * in place.  If a hold can't be had, unlock and wait for
   2396 		 * the pmap's lock to become available and retry.  The pmap
   2397 		 * must be ref'd over this dance to stop it disappearing
   2398 		 * behind us.
   2399 		 */
   2400 		if (!mutex_tryenter(&pm->pm_lock)) {
   2401 			pmap_reference(pm);
   2402 			pmap_release_page_lock(md);
   2403 			pmap_acquire_pmap_lock(pm);
   2404 			/* nothing, just wait for it */
   2405 			pmap_release_pmap_lock(pm);
   2406 			pmap_destroy(pm);
   2407 			/* Restart from the beginning. */
   2408 			pmap_acquire_page_lock(md);
   2409 			pv = SLIST_FIRST(&md->pvh_list);
   2410 			continue;
   2411 		}
   2412 		pv->pv_flags &= ~maskbits;
   2413 
   2414 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, va);
   2415 		KASSERTMSG(l2b != NULL, "%#lx", va);
   2416 
   2417 		pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   2418 		const pt_entry_t opte = *ptep;
   2419 		pt_entry_t npte = opte;
   2420 
   2421 #if defined(ARM_MMU_EXTENDED)
   2422 		if ((maskbits & PVF_EXEC) != 0 && l2pte_valid_p(opte)) {
   2423 			KASSERT((opte & L2_TYPE_S) != 0);
   2424 			npte |= L2_XS_XN;
   2425 		}
   2426 
   2427 		KASSERT((opte & L2_XS_nG) == (pm == pmap_kernel() ? 0 : L2_XS_nG));
   2428 #endif
   2429 
   2430 		UVMHIST_LOG(maphist, "pv %#jx pm %#jx va %#jx flag %#jx",
   2431 		    (uintptr_t)pv, (uintptr_t)pm, va, oflags);
   2432 
   2433 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   2434 #ifdef PMAP_CACHE_VIVT
   2435 			if ((oflags & PVF_NC)) {
   2436 				/*
   2437 				 * Entry is not cacheable:
   2438 				 *
   2439 				 * Don't turn caching on again if this is a
   2440 				 * modified emulation. This would be
   2441 				 * inconsitent with the settings created by
   2442 				 * pmap_vac_me_harder(). Otherwise, it's safe
   2443 				 * to re-enable cacheing.
   2444 				 *
   2445 				 * There's no need to call pmap_vac_me_harder()
   2446 				 * here: all pages are losing their write
   2447 				 * permission.
   2448 				 */
   2449 				if (maskbits & PVF_WRITE) {
   2450 					npte |= pte_l2_s_cache_mode;
   2451 					pv->pv_flags &= ~PVF_NC;
   2452 				}
   2453 			} else if (l2pte_writable_p(opte)) {
   2454 				/*
   2455 				 * Entry is writable/cacheable: check if pmap
   2456 				 * is current if it is flush it, otherwise it
   2457 				 * won't be in the cache
   2458 				 */
   2459 				pmap_cache_wbinv_page(pm, va,
   2460 				    (maskbits & PVF_REF) != 0,
   2461 				    oflags|PVF_WRITE);
   2462 			}
   2463 #endif
   2464 
   2465 			/* make the pte read only */
   2466 			npte = l2pte_set_readonly(npte);
   2467 
   2468 			if ((maskbits & oflags & PVF_WRITE)) {
   2469 				/*
   2470 				 * Keep alias accounting up to date
   2471 				 */
   2472 				if (pm == pmap_kernel()) {
   2473 					md->krw_mappings--;
   2474 					md->kro_mappings++;
   2475 				} else {
   2476 					md->urw_mappings--;
   2477 					md->uro_mappings++;
   2478 				}
   2479 #ifdef PMAP_CACHE_VIPT
   2480 				if (arm_cache_prefer_mask != 0) {
   2481 					if (md->urw_mappings + md->krw_mappings == 0) {
   2482 						md->pvh_attrs &= ~PVF_WRITE;
   2483 					} else {
   2484 						PMAP_VALIDATE_MD_PAGE(md);
   2485 					}
   2486 				}
   2487 				if (want_syncicache)
   2488 					need_syncicache = true;
   2489 #ifndef ARM_MMU_EXTENDED
   2490 				need_vac_me_harder = true;
   2491 #endif
   2492 #endif /* PMAP_CACHE_VIPT */
   2493 			}
   2494 		}
   2495 
   2496 		if (maskbits & PVF_REF) {
   2497 			if (true
   2498 #ifndef ARM_MMU_EXTENDED
   2499 			    && (oflags & PVF_NC) == 0
   2500 #endif
   2501 			    && (maskbits & (PVF_WRITE|PVF_MOD)) == 0
   2502 			    && l2pte_valid_p(npte)) {
   2503 #ifdef PMAP_CACHE_VIVT
   2504 				/*
   2505 				 * Check npte here; we may have already
   2506 				 * done the wbinv above, and the validity
   2507 				 * of the PTE is the same for opte and
   2508 				 * npte.
   2509 				 */
   2510 				pmap_cache_wbinv_page(pm, va, true, oflags);
   2511 #endif
   2512 			}
   2513 
   2514 			/*
   2515 			 * Make the PTE invalid so that we will take a
   2516 			 * page fault the next time the mapping is
   2517 			 * referenced.
   2518 			 */
   2519 			npte &= ~L2_TYPE_MASK;
   2520 			npte |= L2_TYPE_INV;
   2521 		}
   2522 
   2523 		if (npte != opte) {
   2524 			l2pte_reset(ptep);
   2525 			PTE_SYNC(ptep);
   2526 
   2527 			/* Flush the TLB entry if a current pmap. */
   2528 			pmap_tlb_flush_SE(pm, va, oflags);
   2529 
   2530 			l2pte_set(ptep, npte, 0);
   2531 			PTE_SYNC(ptep);
   2532 		}
   2533 
   2534 		pmap_release_pmap_lock(pm);
   2535 
   2536 		UVMHIST_LOG(maphist, "pm %#jx va %#jx opte %#jx npte %#jx",
   2537 		    (uintptr_t)pm, va, opte, npte);
   2538 
   2539 		/* Move to next entry. */
   2540 		pv = SLIST_NEXT(pv, pv_link);
   2541 	}
   2542 
   2543 #if defined(PMAP_CACHE_VIPT)
   2544 	/*
   2545 	 * If we need to sync the I-cache and we haven't done it yet, do it.
   2546 	 */
   2547 	if (need_syncicache) {
   2548 		pmap_syncicache_page(md, pa);
   2549 		PMAPCOUNT(exec_synced_clearbit);
   2550 	}
   2551 #ifndef ARM_MMU_EXTENDED
   2552 	/*
   2553 	 * If we are changing this to read-only, we need to call vac_me_harder
   2554 	 * so we can change all the read-only pages to cacheable.  We pretend
   2555 	 * this as a page deletion.
   2556 	 */
   2557 	if (need_vac_me_harder) {
   2558 		if (md->pvh_attrs & PVF_NC)
   2559 			pmap_vac_me_harder(md, pa, NULL, 0);
   2560 	}
   2561 #endif /* !ARM_MMU_EXTENDED */
   2562 #endif /* PMAP_CACHE_VIPT */
   2563 }
   2564 
   2565 /*
   2566  * pmap_clean_page()
   2567  *
   2568  * This is a local function used to work out the best strategy to clean
   2569  * a single page referenced by its entry in the PV table. It's used by
   2570  * pmap_copy_page, pmap_zero_page and maybe some others later on.
   2571  *
   2572  * Its policy is effectively:
   2573  *  o If there are no mappings, we don't bother doing anything with the cache.
   2574  *  o If there is one mapping, we clean just that page.
   2575  *  o If there are multiple mappings, we clean the entire cache.
   2576  *
   2577  * So that some functions can be further optimised, it returns 0 if it didn't
   2578  * clean the entire cache, or 1 if it did.
   2579  *
   2580  * XXX One bug in this routine is that if the pv_entry has a single page
   2581  * mapped at 0x00000000 a whole cache clean will be performed rather than
   2582  * just the 1 page. Since this should not occur in everyday use and if it does
   2583  * it will just result in not the most efficient clean for the page.
   2584  */
   2585 #ifdef PMAP_CACHE_VIVT
   2586 static bool
   2587 pmap_clean_page(struct vm_page_md *md, bool is_src)
   2588 {
   2589 	struct pv_entry *pv;
   2590 	pmap_t pm_to_clean = NULL;
   2591 	bool cache_needs_cleaning = false;
   2592 	vaddr_t page_to_clean = 0;
   2593 	u_int flags = 0;
   2594 
   2595 	/*
   2596 	 * Since we flush the cache each time we change to a different
   2597 	 * user vmspace, we only need to flush the page if it is in the
   2598 	 * current pmap.
   2599 	 */
   2600 	KASSERT(pmap_page_locked_p(md));
   2601 	SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   2602 		if (pmap_is_current(pv->pv_pmap)) {
   2603 			flags |= pv->pv_flags;
   2604 			/*
   2605 			 * The page is mapped non-cacheable in
   2606 			 * this map.  No need to flush the cache.
   2607 			 */
   2608 			if (pv->pv_flags & PVF_NC) {
   2609 #ifdef DIAGNOSTIC
   2610 				KASSERT(!cache_needs_cleaning);
   2611 #endif
   2612 				break;
   2613 			} else if (is_src && (pv->pv_flags & PVF_WRITE) == 0)
   2614 				continue;
   2615 			if (cache_needs_cleaning) {
   2616 				page_to_clean = 0;
   2617 				break;
   2618 			} else {
   2619 				page_to_clean = pv->pv_va;
   2620 				pm_to_clean = pv->pv_pmap;
   2621 			}
   2622 			cache_needs_cleaning = true;
   2623 		}
   2624 	}
   2625 
   2626 	if (page_to_clean) {
   2627 		pmap_cache_wbinv_page(pm_to_clean, page_to_clean,
   2628 		    !is_src, flags | PVF_REF);
   2629 	} else if (cache_needs_cleaning) {
   2630 		pmap_t const pm = curproc->p_vmspace->vm_map.pmap;
   2631 
   2632 		pmap_cache_wbinv_all(pm, flags);
   2633 		return true;
   2634 	}
   2635 	return false;
   2636 }
   2637 #endif
   2638 
   2639 #ifdef PMAP_CACHE_VIPT
   2640 /*
   2641  * Sync a page with the I-cache.  Since this is a VIPT, we must pick the
   2642  * right cache alias to make sure we flush the right stuff.
   2643  */
   2644 void
   2645 pmap_syncicache_page(struct vm_page_md *md, paddr_t pa)
   2646 {
   2647 	pmap_t kpm = pmap_kernel();
   2648 	const size_t way_size = arm_pcache.icache_type == CACHE_TYPE_PIPT
   2649 	    ? PAGE_SIZE
   2650 	    : arm_pcache.icache_way_size;
   2651 
   2652 	UVMHIST_FUNC(__func__);
   2653 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx (attrs=%#jx)",
   2654 	    (uintptr_t)md, pa, md->pvh_attrs, 0);
   2655 
   2656 	/*
   2657 	 * No need to clean the page if it's non-cached.
   2658 	 */
   2659 #ifndef ARM_MMU_EXTENDED
   2660 	if (md->pvh_attrs & PVF_NC)
   2661 		return;
   2662 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & PVF_COLORED);
   2663 #endif
   2664 
   2665 	pt_entry_t * const ptep = cpu_cdst_pte(0);
   2666 	const vaddr_t dstp = cpu_cdstp(0);
   2667 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   2668 	if (way_size <= PAGE_SIZE) {
   2669 		bool ok = false;
   2670 		vaddr_t vdstp = pmap_direct_mapped_phys(pa, &ok, dstp);
   2671 		if (ok) {
   2672 			cpu_icache_sync_range(vdstp, way_size);
   2673 			return;
   2674 		}
   2675 	}
   2676 #endif
   2677 
   2678 	/*
   2679 	 * We don't worry about the color of the exec page, we map the
   2680 	 * same page to pages in the way and then do the icache_sync on
   2681 	 * the entire way making sure we are cleaned.
   2682 	 */
   2683 	const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   2684 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   2685 
   2686 	for (size_t i = 0, j = 0; i < way_size;
   2687 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2688 		l2pte_reset(ptep + j);
   2689 		PTE_SYNC(ptep + j);
   2690 
   2691 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2692 		/*
   2693 		 * Set up a PTE with to flush these cache lines.
   2694 		 */
   2695 		l2pte_set(ptep + j, npte, 0);
   2696 	}
   2697 	PTE_SYNC_RANGE(ptep, way_size / L2_S_SIZE);
   2698 
   2699 	/*
   2700 	 * Flush it.
   2701 	 */
   2702 	cpu_icache_sync_range(dstp, way_size);
   2703 
   2704 	for (size_t i = 0, j = 0; i < way_size;
   2705 	     i += PAGE_SIZE, j += PAGE_SIZE / L2_S_SIZE) {
   2706 		/*
   2707 		 * Unmap the page(s).
   2708 		 */
   2709 		l2pte_reset(ptep + j);
   2710 		PTE_SYNC(ptep + j);
   2711 
   2712 		pmap_tlb_flush_SE(kpm, dstp + i, PVF_REF | PVF_EXEC);
   2713 	}
   2714 
   2715 	md->pvh_attrs |= PVF_EXEC;
   2716 	PMAPCOUNT(exec_synced);
   2717 }
   2718 
   2719 #ifndef ARM_MMU_EXTENDED
   2720 void
   2721 pmap_flush_page(struct vm_page_md *md, paddr_t pa, enum pmap_flush_op flush)
   2722 {
   2723 	vsize_t va_offset, end_va;
   2724 	bool wbinv_p;
   2725 
   2726 	if (arm_cache_prefer_mask == 0)
   2727 		return;
   2728 
   2729 	UVMHIST_FUNC(__func__);
   2730 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx op %#jx",
   2731 	    (uintptr_t)md, pa, op, 0);
   2732 
   2733 	switch (flush) {
   2734 	case PMAP_FLUSH_PRIMARY:
   2735 		if (md->pvh_attrs & PVF_MULTCLR) {
   2736 			va_offset = 0;
   2737 			end_va = arm_cache_prefer_mask;
   2738 			md->pvh_attrs &= ~PVF_MULTCLR;
   2739 			PMAPCOUNT(vac_flush_lots);
   2740 		} else {
   2741 			va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2742 			end_va = va_offset;
   2743 			PMAPCOUNT(vac_flush_one);
   2744 		}
   2745 		/*
   2746 		 * Mark that the page is no longer dirty.
   2747 		 */
   2748 		md->pvh_attrs &= ~PVF_DIRTY;
   2749 		wbinv_p = true;
   2750 		break;
   2751 	case PMAP_FLUSH_SECONDARY:
   2752 		va_offset = 0;
   2753 		end_va = arm_cache_prefer_mask;
   2754 		wbinv_p = true;
   2755 		md->pvh_attrs &= ~PVF_MULTCLR;
   2756 		PMAPCOUNT(vac_flush_lots);
   2757 		break;
   2758 	case PMAP_CLEAN_PRIMARY:
   2759 		va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   2760 		end_va = va_offset;
   2761 		wbinv_p = false;
   2762 		/*
   2763 		 * Mark that the page is no longer dirty.
   2764 		 */
   2765 		if ((md->pvh_attrs & PVF_DMOD) == 0)
   2766 			md->pvh_attrs &= ~PVF_DIRTY;
   2767 		PMAPCOUNT(vac_clean_one);
   2768 		break;
   2769 	default:
   2770 		return;
   2771 	}
   2772 
   2773 	KASSERT(!(md->pvh_attrs & PVF_NC));
   2774 
   2775 	UVMHIST_LOG(maphist, "md %#jx (attrs=%#jx)", (uintptr_t)md,
   2776 	    md->pvh_attrs, 0, 0);
   2777 
   2778 	const size_t scache_line_size = arm_scache.dcache_line_size;
   2779 
   2780 	for (; va_offset <= end_va; va_offset += PAGE_SIZE) {
   2781 		pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   2782 		const vaddr_t dstp = cpu_cdstp(va_offset);
   2783 		const pt_entry_t opte = *ptep;
   2784 
   2785 		if (flush == PMAP_FLUSH_SECONDARY
   2786 		    && va_offset == (md->pvh_attrs & arm_cache_prefer_mask))
   2787 			continue;
   2788 
   2789 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2790 		/*
   2791 		 * Set up a PTE with the right coloring to flush
   2792 		 * existing cache entries.
   2793 		 */
   2794 		const pt_entry_t npte = L2_S_PROTO
   2795 		    | pa
   2796 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE)
   2797 		    | pte_l2_s_cache_mode;
   2798 		l2pte_set(ptep, npte, opte);
   2799 		PTE_SYNC(ptep);
   2800 
   2801 		/*
   2802 		 * Flush it.  Make sure to flush secondary cache too since
   2803 		 * bus_dma will ignore uncached pages.
   2804 		 */
   2805 		if (scache_line_size != 0) {
   2806 			cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2807 			if (wbinv_p) {
   2808 				cpu_sdcache_wbinv_range(dstp, pa, PAGE_SIZE);
   2809 				cpu_dcache_inv_range(dstp, PAGE_SIZE);
   2810 			} else {
   2811 				cpu_sdcache_wb_range(dstp, pa, PAGE_SIZE);
   2812 			}
   2813 		} else {
   2814 			if (wbinv_p) {
   2815 				cpu_dcache_wbinv_range(dstp, PAGE_SIZE);
   2816 			} else {
   2817 				cpu_dcache_wb_range(dstp, PAGE_SIZE);
   2818 			}
   2819 		}
   2820 
   2821 		/*
   2822 		 * Restore the page table entry since we might have interrupted
   2823 		 * pmap_zero_page or pmap_copy_page which was already using
   2824 		 * this pte.
   2825 		 */
   2826 		if (opte) {
   2827 			l2pte_set(ptep, opte, npte);
   2828 		} else {
   2829 			l2pte_reset(ptep);
   2830 		}
   2831 		PTE_SYNC(ptep);
   2832 		pmap_tlb_flush_SE(pmap_kernel(), dstp, PVF_REF | PVF_EXEC);
   2833 	}
   2834 }
   2835 #endif /* ARM_MMU_EXTENDED */
   2836 #endif /* PMAP_CACHE_VIPT */
   2837 
   2838 /*
   2839  * Routine:	pmap_page_remove
   2840  * Function:
   2841  *		Removes this physical page from
   2842  *		all physical maps in which it resides.
   2843  *		Reflects back modify bits to the pager.
   2844  */
   2845 static void
   2846 pmap_page_remove(struct vm_page_md *md, paddr_t pa)
   2847 {
   2848 	struct l2_bucket *l2b;
   2849 	struct pv_entry *pv;
   2850 	pt_entry_t *ptep;
   2851 #ifndef ARM_MMU_EXTENDED
   2852 	bool flush = false;
   2853 #endif
   2854 	u_int flags = 0;
   2855 
   2856 	UVMHIST_FUNC(__func__);
   2857 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx", (uintptr_t)md, pa, 0, 0);
   2858 
   2859 	kpreempt_disable();
   2860 	pmap_acquire_page_lock(md);
   2861 	struct pv_entry **pvp = &SLIST_FIRST(&md->pvh_list);
   2862 	if (*pvp == NULL) {
   2863 #ifdef PMAP_CACHE_VIPT
   2864 		/*
   2865 		 * We *know* the page contents are about to be replaced.
   2866 		 * Discard the exec contents
   2867 		 */
   2868 		if (PV_IS_EXEC_P(md->pvh_attrs))
   2869 			PMAPCOUNT(exec_discarded_page_protect);
   2870 		md->pvh_attrs &= ~PVF_EXEC;
   2871 		PMAP_VALIDATE_MD_PAGE(md);
   2872 #endif
   2873 		pmap_release_page_lock(md);
   2874 		kpreempt_enable();
   2875 
   2876 		return;
   2877 	}
   2878 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   2879 	KASSERT(arm_cache_prefer_mask == 0 || pmap_is_page_colored_p(md));
   2880 #endif
   2881 
   2882 	/*
   2883 	 * Clear alias counts
   2884 	 */
   2885 #ifdef PMAP_CACHE_VIVT
   2886 	md->k_mappings = 0;
   2887 #endif
   2888 	md->urw_mappings = md->uro_mappings = 0;
   2889 
   2890 #ifdef PMAP_CACHE_VIVT
   2891 	pmap_clean_page(md, false);
   2892 #endif
   2893 
   2894 	for (pv = *pvp; pv != NULL;) {
   2895 		pmap_t pm = pv->pv_pmap;
   2896 #ifndef ARM_MMU_EXTENDED
   2897 		if (flush == false && pmap_is_current(pm))
   2898 			flush = true;
   2899 #endif
   2900 
   2901 #ifdef PMAP_CACHE_VIPT
   2902 		if (pm == pmap_kernel() && PV_IS_KENTRY_P(pv->pv_flags)) {
   2903 			/* If this was unmanaged mapping, it must be ignored. */
   2904 			pvp = &SLIST_NEXT(pv, pv_link);
   2905 			pv = *pvp;
   2906 			continue;
   2907 		}
   2908 #endif
   2909 
   2910 		/*
   2911 		 * Try to get a hold on the pmap's lock.  We must do this
   2912 		 * while still holding the page locked, to know that the
   2913 		 * page is still associated with the pmap and the mapping is
   2914 		 * in place.  If a hold can't be had, unlock and wait for
   2915 		 * the pmap's lock to become available and retry.  The pmap
   2916 		 * must be ref'd over this dance to stop it disappearing
   2917 		 * behind us.
   2918 		 */
   2919 		if (!mutex_tryenter(&pm->pm_lock)) {
   2920 			pmap_reference(pm);
   2921 			pmap_release_page_lock(md);
   2922 			pmap_acquire_pmap_lock(pm);
   2923 			/* nothing, just wait for it */
   2924 			pmap_release_pmap_lock(pm);
   2925 			pmap_destroy(pm);
   2926 			/* Restart from the beginning. */
   2927 			pmap_acquire_page_lock(md);
   2928 			pvp = &SLIST_FIRST(&md->pvh_list);
   2929 			pv = *pvp;
   2930 			continue;
   2931 		}
   2932 
   2933 		if (pm == pmap_kernel()) {
   2934 #ifdef PMAP_CACHE_VIPT
   2935 			if (pv->pv_flags & PVF_WRITE)
   2936 				md->krw_mappings--;
   2937 			else
   2938 				md->kro_mappings--;
   2939 #endif
   2940 			PMAPCOUNT(kernel_unmappings);
   2941 		}
   2942 		*pvp = SLIST_NEXT(pv, pv_link); /* remove from list */
   2943 		PMAPCOUNT(unmappings);
   2944 
   2945 		pmap_release_page_lock(md);
   2946 
   2947 		l2b = pmap_get_l2_bucket(pm, pv->pv_va);
   2948 		KASSERTMSG(l2b != NULL, "%#lx", pv->pv_va);
   2949 
   2950 		ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)];
   2951 
   2952 		/*
   2953 		 * Update statistics
   2954 		 */
   2955 		--pm->pm_stats.resident_count;
   2956 
   2957 		/* Wired bit */
   2958 		if (pv->pv_flags & PVF_WIRED)
   2959 			--pm->pm_stats.wired_count;
   2960 
   2961 		flags |= pv->pv_flags;
   2962 
   2963 		/*
   2964 		 * Invalidate the PTEs.
   2965 		 */
   2966 		l2pte_reset(ptep);
   2967 		PTE_SYNC_CURRENT(pm, ptep);
   2968 
   2969 #ifdef ARM_MMU_EXTENDED
   2970 		pmap_tlb_invalidate_addr(pm, pv->pv_va);
   2971 #endif
   2972 
   2973 		pmap_free_l2_bucket(pm, l2b, PAGE_SIZE / L2_S_SIZE);
   2974 
   2975 		pmap_release_pmap_lock(pm);
   2976 
   2977 		pool_put(&pmap_pv_pool, pv);
   2978 		pmap_acquire_page_lock(md);
   2979 
   2980 		/*
   2981 		 * Restart at the beginning of the list.
   2982 		 */
   2983 		pvp = &SLIST_FIRST(&md->pvh_list);
   2984 		pv = *pvp;
   2985 	}
   2986 	/*
   2987 	 * if we reach the end of the list and there are still mappings, they
   2988 	 * might be able to be cached now.  And they must be kernel mappings.
   2989 	 */
   2990 	if (!SLIST_EMPTY(&md->pvh_list)) {
   2991 		pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   2992 	}
   2993 
   2994 #ifdef PMAP_CACHE_VIPT
   2995 	/*
   2996 	 * Its EXEC cache is now gone.
   2997 	 */
   2998 	if (PV_IS_EXEC_P(md->pvh_attrs))
   2999 		PMAPCOUNT(exec_discarded_page_protect);
   3000 	md->pvh_attrs &= ~PVF_EXEC;
   3001 	KASSERT(md->urw_mappings == 0);
   3002 	KASSERT(md->uro_mappings == 0);
   3003 #ifndef ARM_MMU_EXTENDED
   3004 	if (arm_cache_prefer_mask != 0) {
   3005 		if (md->krw_mappings == 0)
   3006 			md->pvh_attrs &= ~PVF_WRITE;
   3007 		PMAP_VALIDATE_MD_PAGE(md);
   3008 	}
   3009 #endif /* ARM_MMU_EXTENDED */
   3010 #endif /* PMAP_CACHE_VIPT */
   3011 	pmap_release_page_lock(md);
   3012 
   3013 #ifndef ARM_MMU_EXTENDED
   3014 	if (flush) {
   3015 		/*
   3016 		 * Note: We can't use pmap_tlb_flush{I,D}() here since that
   3017 		 * would need a subsequent call to pmap_update() to ensure
   3018 		 * curpm->pm_cstate.cs_all is reset. Our callers are not
   3019 		 * required to do that (see pmap(9)), so we can't modify
   3020 		 * the current pmap's state.
   3021 		 */
   3022 		if (PV_BEEN_EXECD(flags))
   3023 			cpu_tlb_flushID();
   3024 		else
   3025 			cpu_tlb_flushD();
   3026 	}
   3027 	cpu_cpwait();
   3028 #endif /* ARM_MMU_EXTENDED */
   3029 
   3030 	kpreempt_enable();
   3031 }
   3032 
   3033 /*
   3034  * pmap_t pmap_create(void)
   3035  *
   3036  *      Create a new pmap structure from scratch.
   3037  */
   3038 pmap_t
   3039 pmap_create(void)
   3040 {
   3041 	pmap_t pm;
   3042 
   3043 	pm = pool_cache_get(&pmap_cache, PR_WAITOK);
   3044 
   3045 	mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_NONE);
   3046 
   3047 	pm->pm_refs = 1;
   3048 	pm->pm_stats.wired_count = 0;
   3049 	pm->pm_stats.resident_count = 1;
   3050 #ifdef ARM_MMU_EXTENDED
   3051 #ifdef MULTIPROCESSOR
   3052 	kcpuset_create(&pm->pm_active, true);
   3053 	kcpuset_create(&pm->pm_onproc, true);
   3054 #endif
   3055 #else
   3056 	pm->pm_cstate.cs_all = 0;
   3057 #endif
   3058 	pmap_alloc_l1(pm);
   3059 
   3060 	/*
   3061 	 * Note: The pool cache ensures that the pm_l2[] array is already
   3062 	 * initialised to zero.
   3063 	 */
   3064 
   3065 	pmap_pinit(pm);
   3066 
   3067 	return pm;
   3068 }
   3069 
   3070 u_int
   3071 arm32_mmap_flags(paddr_t pa)
   3072 {
   3073 	/*
   3074 	 * the upper 8 bits in pmap_enter()'s flags are reserved for MD stuff
   3075 	 * and we're using the upper bits in page numbers to pass flags around
   3076 	 * so we might as well use the same bits
   3077 	 */
   3078 	return (u_int)pa & PMAP_MD_MASK;
   3079 }
   3080 /*
   3081  * int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot,
   3082  *      u_int flags)
   3083  *
   3084  *      Insert the given physical page (p) at
   3085  *      the specified virtual address (v) in the
   3086  *      target physical map with the protection requested.
   3087  *
   3088  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   3089  *      or lose information.  That is, this routine must actually
   3090  *      insert this page into the given map NOW.
   3091  */
   3092 int
   3093 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3094 {
   3095 	struct l2_bucket *l2b;
   3096 	struct vm_page *pg, *opg;
   3097 	u_int nflags;
   3098 	u_int oflags;
   3099 	const bool kpm_p = pm == pmap_kernel();
   3100 #if defined(EFI_RUNTIME)
   3101 	const bool efirt_p = pm == pmap_efirt();
   3102 #else
   3103 	const bool efirt_p = false;
   3104 #endif
   3105 #ifdef ARM_HAS_VBAR
   3106 	const bool vector_page_p = false;
   3107 #else
   3108 	const bool vector_page_p = (va == vector_page);
   3109 #endif
   3110 	struct pmap_page *pp = pmap_pv_tracked(pa);
   3111 	struct pv_entry *new_pv = NULL;
   3112 	struct pv_entry *old_pv = NULL;
   3113 	int error = 0;
   3114 
   3115 	UVMHIST_FUNC(__func__);
   3116 	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx pa %#jx prot %#jx",
   3117 	    (uintptr_t)pm, va, pa, prot);
   3118 	UVMHIST_LOG(maphist, "  flag %#jx", flags, 0, 0, 0);
   3119 
   3120 	KDASSERT((flags & PMAP_WIRED) == 0 || (flags & VM_PROT_ALL) != 0);
   3121 	KDASSERT(((va | pa) & PGOFSET) == 0);
   3122 
   3123 	/*
   3124 	 * Get a pointer to the page.  Later on in this function, we
   3125 	 * test for a managed page by checking pg != NULL.
   3126 	 */
   3127 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   3128 	/*
   3129 	 * if we may need a new pv entry allocate if now, as we can't do it
   3130 	 * with the kernel_pmap locked
   3131 	 */
   3132 	if (pg || pp)
   3133 		new_pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3134 
   3135 	nflags = 0;
   3136 	if (prot & VM_PROT_WRITE)
   3137 		nflags |= PVF_WRITE;
   3138 	if (prot & VM_PROT_EXECUTE)
   3139 		nflags |= PVF_EXEC;
   3140 	if (flags & PMAP_WIRED)
   3141 		nflags |= PVF_WIRED;
   3142 
   3143 	kpreempt_disable();
   3144 	pmap_acquire_pmap_lock(pm);
   3145 
   3146 	/*
   3147 	 * Fetch the L2 bucket which maps this page, allocating one if
   3148 	 * necessary for user pmaps.
   3149 	 */
   3150 	if (kpm_p) {
   3151 		l2b = pmap_get_l2_bucket(pm, va);
   3152 	} else {
   3153 		l2b = pmap_alloc_l2_bucket(pm, va);
   3154 	}
   3155 	if (l2b == NULL) {
   3156 		if (flags & PMAP_CANFAIL) {
   3157 			pmap_release_pmap_lock(pm);
   3158 			kpreempt_enable();
   3159 
   3160 			error = ENOMEM;
   3161 			goto free_pv;
   3162 		}
   3163 		panic("pmap_enter: failed to allocate L2 bucket");
   3164 	}
   3165 	pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(va)];
   3166 	const pt_entry_t opte = *ptep;
   3167 	pt_entry_t npte = pa;
   3168 	oflags = 0;
   3169 
   3170 	if (opte) {
   3171 		/*
   3172 		 * There is already a mapping at this address.
   3173 		 * If the physical address is different, lookup the
   3174 		 * vm_page.
   3175 		 */
   3176 		if (l2pte_pa(opte) != pa) {
   3177 			KASSERT(!pmap_pv_tracked(pa));
   3178 			opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3179 		} else
   3180 			opg = pg;
   3181 	} else
   3182 		opg = NULL;
   3183 
   3184 	if (pg || pp) {
   3185 		KASSERT((pg != NULL) != (pp != NULL));
   3186 		struct vm_page_md *md = (pg != NULL) ? VM_PAGE_TO_MD(pg) :
   3187 		    PMAP_PAGE_TO_MD(pp);
   3188 
   3189 		UVMHIST_LOG(maphist, "  pg %#jx pp %#jx pvh_attrs %#jx "
   3190 		    "nflags %#jx", (uintptr_t)pg, (uintptr_t)pp,
   3191 		    md->pvh_attrs, nflags);
   3192 
   3193 		/*
   3194 		 * This is to be a managed mapping.
   3195 		 */
   3196 		pmap_acquire_page_lock(md);
   3197 		if ((flags & VM_PROT_ALL) || (md->pvh_attrs & PVF_REF)) {
   3198 			/*
   3199 			 * - The access type indicates that we don't need
   3200 			 *   to do referenced emulation.
   3201 			 * OR
   3202 			 * - The physical page has already been referenced
   3203 			 *   so no need to re-do referenced emulation here.
   3204 			 */
   3205 			npte |= l2pte_set_readonly(L2_S_PROTO);
   3206 
   3207 			nflags |= PVF_REF;
   3208 
   3209 			if ((prot & VM_PROT_WRITE) != 0 &&
   3210 			    ((flags & VM_PROT_WRITE) != 0 ||
   3211 			     (md->pvh_attrs & PVF_MOD) != 0)) {
   3212 				/*
   3213 				 * This is a writable mapping, and the
   3214 				 * page's mod state indicates it has
   3215 				 * already been modified. Make it
   3216 				 * writable from the outset.
   3217 				 */
   3218 				npte = l2pte_set_writable(npte);
   3219 				nflags |= PVF_MOD;
   3220 			}
   3221 
   3222 #ifdef ARM_MMU_EXTENDED
   3223 			/*
   3224 			 * If the page has been cleaned, then the pvh_attrs
   3225 			 * will have PVF_EXEC set, so mark it execute so we
   3226 			 * don't get an access fault when trying to execute
   3227 			 * from it.
   3228 			 */
   3229 			if (md->pvh_attrs & nflags & PVF_EXEC) {
   3230 				npte &= ~L2_XS_XN;
   3231 			}
   3232 #endif
   3233 		} else {
   3234 			/*
   3235 			 * Need to do page referenced emulation.
   3236 			 */
   3237 			npte |= L2_TYPE_INV;
   3238 		}
   3239 
   3240 		if (flags & ARM32_MMAP_WRITECOMBINE) {
   3241 			npte |= pte_l2_s_wc_mode;
   3242 		} else
   3243 			npte |= pte_l2_s_cache_mode;
   3244 
   3245 		if (pg != NULL && pg == opg) {
   3246 			/*
   3247 			 * We're changing the attrs of an existing mapping.
   3248 			 */
   3249 			oflags = pmap_modify_pv(md, pa, pm, va,
   3250 			    PVF_WRITE | PVF_EXEC | PVF_WIRED |
   3251 			    PVF_MOD | PVF_REF, nflags);
   3252 
   3253 #ifdef PMAP_CACHE_VIVT
   3254 			/*
   3255 			 * We may need to flush the cache if we're
   3256 			 * doing rw-ro...
   3257 			 */
   3258 			if (pm->pm_cstate.cs_cache_d &&
   3259 			    (oflags & PVF_NC) == 0 &&
   3260 			    l2pte_writable_p(opte) &&
   3261 			    (prot & VM_PROT_WRITE) == 0)
   3262 				cpu_dcache_wb_range(va, PAGE_SIZE);
   3263 #endif
   3264 		} else {
   3265 			struct pv_entry *pv;
   3266 			/*
   3267 			 * New mapping, or changing the backing page
   3268 			 * of an existing mapping.
   3269 			 */
   3270 			if (opg) {
   3271 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3272 				paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3273 
   3274 				/*
   3275 				 * Replacing an existing mapping with a new one.
   3276 				 * It is part of our managed memory so we
   3277 				 * must remove it from the PV list
   3278 				 */
   3279 				pv = pmap_remove_pv(omd, opa, pm, va);
   3280 				pmap_vac_me_harder(omd, opa, pm, 0);
   3281 				oflags = pv->pv_flags;
   3282 
   3283 #ifdef PMAP_CACHE_VIVT
   3284 				/*
   3285 				 * If the old mapping was valid (ref/mod
   3286 				 * emulation creates 'invalid' mappings
   3287 				 * initially) then make sure to frob
   3288 				 * the cache.
   3289 				 */
   3290 				if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3291 					pmap_cache_wbinv_page(pm, va, true,
   3292 					    oflags);
   3293 				}
   3294 #endif
   3295 			} else {
   3296 				pv = new_pv;
   3297 				new_pv = NULL;
   3298 				if (pv == NULL) {
   3299 					pmap_release_page_lock(md);
   3300 					pmap_release_pmap_lock(pm);
   3301 					if ((flags & PMAP_CANFAIL) == 0)
   3302 						panic("pmap_enter: "
   3303 						    "no pv entries");
   3304 
   3305 					pmap_free_l2_bucket(pm, l2b, 0);
   3306 					UVMHIST_LOG(maphist, "  <-- done (ENOMEM)",
   3307 					    0, 0, 0, 0);
   3308 					kpreempt_enable();
   3309 
   3310 					return ENOMEM;
   3311 				}
   3312 			}
   3313 
   3314 			pmap_enter_pv(md, pa, pv, pm, va, nflags);
   3315 		}
   3316 		pmap_release_page_lock(md);
   3317 	} else {
   3318 		/*
   3319 		 * We're mapping an unmanaged page.
   3320 		 * These are always readable, and possibly writable, from
   3321 		 * the get go as we don't need to track ref/mod status.
   3322 		 */
   3323 		npte |= l2pte_set_readonly(L2_S_PROTO);
   3324 		if (prot & VM_PROT_WRITE)
   3325 			npte = l2pte_set_writable(npte);
   3326 
   3327 		if (efirt_p) {
   3328 			if (prot & VM_PROT_EXECUTE) {
   3329 				npte &= ~L2_XS_XN;	/* and executable */
   3330 			}
   3331 		}
   3332 
   3333 		/*
   3334 		 * Make sure the vector table is mapped cacheable
   3335 		 */
   3336 		if ((vector_page_p && !kpm_p)
   3337 		    || (flags & ARM32_MMAP_CACHEABLE)) {
   3338 			npte |= pte_l2_s_cache_mode;
   3339 #ifdef ARM_MMU_EXTENDED
   3340 			npte &= ~L2_XS_XN;	/* and executable */
   3341 #endif
   3342 		} else if (flags & ARM32_MMAP_WRITECOMBINE) {
   3343 			npte |= pte_l2_s_wc_mode;
   3344 		}
   3345 		if (opg) {
   3346 			/*
   3347 			 * Looks like there's an existing 'managed' mapping
   3348 			 * at this address.
   3349 			 */
   3350 			struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3351 			paddr_t opa = VM_PAGE_TO_PHYS(opg);
   3352 
   3353 			pmap_acquire_page_lock(omd);
   3354 			old_pv = pmap_remove_pv(omd, opa, pm, va);
   3355 			pmap_vac_me_harder(omd, opa, pm, 0);
   3356 			oflags = old_pv->pv_flags;
   3357 			pmap_release_page_lock(omd);
   3358 
   3359 #ifdef PMAP_CACHE_VIVT
   3360 			if (!(oflags & PVF_NC) && l2pte_valid_p(opte)) {
   3361 				pmap_cache_wbinv_page(pm, va, true, oflags);
   3362 			}
   3363 #endif
   3364 		}
   3365 	}
   3366 
   3367 	/*
   3368 	 * Make sure userland mappings get the right permissions
   3369 	 */
   3370 	if (!vector_page_p && !kpm_p) {
   3371 		npte |= L2_S_PROT_U;
   3372 #ifdef ARM_MMU_EXTENDED
   3373 		npte |= L2_XS_nG;	/* user pages are not global */
   3374 #endif
   3375 	}
   3376 
   3377 	/*
   3378 	 * Keep the stats up to date
   3379 	 */
   3380 	if (opte == 0) {
   3381 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3382 		pm->pm_stats.resident_count++;
   3383 	}
   3384 
   3385 	UVMHIST_LOG(maphist, " opte %#jx npte %#jx", opte, npte, 0, 0);
   3386 
   3387 #if defined(ARM_MMU_EXTENDED)
   3388 	/*
   3389 	 * If exec protection was requested but the page hasn't been synced,
   3390 	 * sync it now and allow execution from it.
   3391 	 */
   3392 
   3393 	if ((nflags & PVF_EXEC) && (npte & L2_XS_XN)) {
   3394 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3395 		npte &= ~L2_XS_XN;
   3396 		pmap_syncicache_page(md, pa);
   3397 		PMAPCOUNT(exec_synced_map);
   3398 	}
   3399 #endif
   3400 	/*
   3401 	 * If this is just a wiring change, the two PTEs will be
   3402 	 * identical, so there's no need to update the page table.
   3403 	 */
   3404 	if (npte != opte) {
   3405 		l2pte_reset(ptep);
   3406 		PTE_SYNC(ptep);
   3407 		if (l2pte_valid_p(opte)) {
   3408 			pmap_tlb_flush_SE(pm, va, oflags);
   3409 		}
   3410 		l2pte_set(ptep, npte, 0);
   3411 		PTE_SYNC(ptep);
   3412 #ifndef ARM_MMU_EXTENDED
   3413 		bool is_cached = pmap_is_cached(pm);
   3414 		if (is_cached) {
   3415 			/*
   3416 			 * We only need to frob the cache/tlb if this pmap
   3417 			 * is current
   3418 			 */
   3419 			if (!vector_page_p && l2pte_valid_p(npte)) {
   3420 				/*
   3421 				 * This mapping is likely to be accessed as
   3422 				 * soon as we return to userland. Fix up the
   3423 				 * L1 entry to avoid taking another
   3424 				 * page/domain fault.
   3425 				 */
   3426 				pd_entry_t *pdep = pmap_l1_kva(pm)
   3427 				     + l1pte_index(va);
   3428 				pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa
   3429 				    | L1_C_DOM(pmap_domain(pm));
   3430 				if (*pdep != pde) {
   3431 					l1pte_setone(pdep, pde);
   3432 					PDE_SYNC(pdep);
   3433 				}
   3434 			}
   3435 		}
   3436 
   3437 		UVMHIST_LOG(maphist, "  is_cached %jd cs 0x%08jx",
   3438 		    is_cached, pm->pm_cstate.cs_all, 0, 0);
   3439 
   3440 		if (pg != NULL) {
   3441 			struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3442 
   3443 			pmap_acquire_page_lock(md);
   3444 			pmap_vac_me_harder(md, pa, pm, va);
   3445 			pmap_release_page_lock(md);
   3446 		}
   3447 #endif
   3448 	}
   3449 #if defined(PMAP_CACHE_VIPT) && defined(DIAGNOSTIC)
   3450 	if (pg) {
   3451 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3452 
   3453 		pmap_acquire_page_lock(md);
   3454 #ifndef ARM_MMU_EXTENDED
   3455 		KASSERT((md->pvh_attrs & PVF_DMOD) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3456 #endif
   3457 		PMAP_VALIDATE_MD_PAGE(md);
   3458 		pmap_release_page_lock(md);
   3459 	}
   3460 #endif
   3461 
   3462 	pmap_release_pmap_lock(pm);
   3463 	kpreempt_enable();
   3464 
   3465 	if (old_pv)
   3466 		pool_put(&pmap_pv_pool, old_pv);
   3467 free_pv:
   3468 	if (new_pv)
   3469 		pool_put(&pmap_pv_pool, new_pv);
   3470 
   3471 	return error;
   3472 }
   3473 
   3474 /*
   3475  * pmap_remove()
   3476  *
   3477  * pmap_remove is responsible for nuking a number of mappings for a range
   3478  * of virtual address space in the current pmap. To do this efficiently
   3479  * is interesting, because in a number of cases a wide virtual address
   3480  * range may be supplied that contains few actual mappings. So, the
   3481  * optimisations are:
   3482  *  1. Skip over hunks of address space for which no L1 or L2 entry exists.
   3483  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   3484  *     maybe do just a partial cache clean. This path of execution is
   3485  *     complicated by the fact that the cache must be flushed _before_
   3486  *     the PTE is nuked, being a VAC :-)
   3487  *  3. If we're called after UVM calls pmap_remove_all(), we can defer
   3488  *     all invalidations until pmap_update(), since pmap_remove_all() has
   3489  *     already flushed the cache.
   3490  *  4. Maybe later fast-case a single page, but I don't think this is
   3491  *     going to make _that_ much difference overall.
   3492  */
   3493 
   3494 #define	PMAP_REMOVE_CLEAN_LIST_SIZE	3
   3495 
   3496 void
   3497 pmap_remove(pmap_t pm, vaddr_t sva, vaddr_t eva)
   3498 {
   3499 	SLIST_HEAD(,pv_entry) opv_list;
   3500 	struct pv_entry *pv, *npv;
   3501 	UVMHIST_FUNC(__func__);
   3502 	UVMHIST_CALLARGS(maphist, " (pm=%#jx, sva=%#jx, eva=%#jx)",
   3503 	    (uintptr_t)pm, sva, eva, 0);
   3504 
   3505 #ifdef PMAP_FAULTINFO
   3506 	curpcb->pcb_faultinfo.pfi_faultaddr = 0;
   3507 	curpcb->pcb_faultinfo.pfi_repeats = 0;
   3508 	curpcb->pcb_faultinfo.pfi_faultptep = NULL;
   3509 #endif
   3510 
   3511 	SLIST_INIT(&opv_list);
   3512 	/*
   3513 	 * we lock in the pmap => pv_head direction
   3514 	 */
   3515 	kpreempt_disable();
   3516 	pmap_acquire_pmap_lock(pm);
   3517 
   3518 #ifndef ARM_MMU_EXTENDED
   3519 	u_int cleanlist_idx, total, cnt;
   3520 	struct {
   3521 		vaddr_t va;
   3522 		pt_entry_t *ptep;
   3523 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   3524 
   3525 	if (pm->pm_remove_all || !pmap_is_cached(pm)) {
   3526 		cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3527 		if (pm->pm_cstate.cs_tlb == 0)
   3528 			pm->pm_remove_all = true;
   3529 	} else
   3530 		cleanlist_idx = 0;
   3531 	total = 0;
   3532 #endif
   3533 
   3534 	while (sva < eva) {
   3535 		/*
   3536 		 * Do one L2 bucket's worth at a time.
   3537 		 */
   3538 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(sva);
   3539 		if (next_bucket > eva)
   3540 			next_bucket = eva;
   3541 
   3542 		struct l2_bucket * const l2b = pmap_get_l2_bucket(pm, sva);
   3543 		if (l2b == NULL) {
   3544 			sva = next_bucket;
   3545 			continue;
   3546 		}
   3547 
   3548 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   3549 		u_int mappings = 0;
   3550 
   3551 		for (;sva < next_bucket;
   3552 		     sva += PAGE_SIZE, ptep += PAGE_SIZE / L2_S_SIZE) {
   3553 			pt_entry_t opte = *ptep;
   3554 
   3555 			if (opte == 0) {
   3556 				/* Nothing here, move along */
   3557 				continue;
   3558 			}
   3559 
   3560 			u_int flags = PVF_REF;
   3561 			paddr_t pa = l2pte_pa(opte);
   3562 			struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   3563 
   3564 			/*
   3565 			 * Update flags. In a number of circumstances,
   3566 			 * we could cluster a lot of these and do a
   3567 			 * number of sequential pages in one go.
   3568 			 */
   3569 			if (pg != NULL) {
   3570 				struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3571 
   3572 				pmap_acquire_page_lock(md);
   3573 				pv = pmap_remove_pv(md, pa, pm, sva);
   3574 				pmap_vac_me_harder(md, pa, pm, 0);
   3575 				pmap_release_page_lock(md);
   3576 				if (pv != NULL) {
   3577 					if (pm->pm_remove_all == false) {
   3578 						flags = pv->pv_flags;
   3579 					}
   3580 					SLIST_INSERT_HEAD(&opv_list,
   3581 					    pv, pv_link);
   3582 				}
   3583 			}
   3584 			mappings += PAGE_SIZE / L2_S_SIZE;
   3585 
   3586 			if (!l2pte_valid_p(opte)) {
   3587 				/*
   3588 				 * Ref/Mod emulation is still active for this
   3589 				 * mapping, therefore it is has not yet been
   3590 				 * accessed. No need to frob the cache/tlb.
   3591 				 */
   3592 				l2pte_reset(ptep);
   3593 				PTE_SYNC_CURRENT(pm, ptep);
   3594 				continue;
   3595 			}
   3596 
   3597 #ifdef ARM_MMU_EXTENDED
   3598 			l2pte_reset(ptep);
   3599 			PTE_SYNC(ptep);
   3600 			if (__predict_false(pm->pm_remove_all == false)) {
   3601 				pmap_tlb_flush_SE(pm, sva, flags);
   3602 			}
   3603 #else
   3604 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3605 				/* Add to the clean list. */
   3606 				cleanlist[cleanlist_idx].ptep = ptep;
   3607 				cleanlist[cleanlist_idx].va =
   3608 				    sva | (flags & PVF_EXEC);
   3609 				cleanlist_idx++;
   3610 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3611 				/* Nuke everything if needed. */
   3612 #ifdef PMAP_CACHE_VIVT
   3613 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3614 #endif
   3615 				/*
   3616 				 * Roll back the previous PTE list,
   3617 				 * and zero out the current PTE.
   3618 				 */
   3619 				for (cnt = 0;
   3620 				     cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   3621 					l2pte_reset(cleanlist[cnt].ptep);
   3622 					PTE_SYNC(cleanlist[cnt].ptep);
   3623 				}
   3624 				l2pte_reset(ptep);
   3625 				PTE_SYNC(ptep);
   3626 				cleanlist_idx++;
   3627 				pm->pm_remove_all = true;
   3628 			} else {
   3629 				l2pte_reset(ptep);
   3630 				PTE_SYNC(ptep);
   3631 				if (pm->pm_remove_all == false) {
   3632 					pmap_tlb_flush_SE(pm, sva, flags);
   3633 				}
   3634 			}
   3635 #endif
   3636 		}
   3637 
   3638 #ifndef ARM_MMU_EXTENDED
   3639 		/*
   3640 		 * Deal with any left overs
   3641 		 */
   3642 		if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   3643 			total += cleanlist_idx;
   3644 			for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   3645 				l2pte_reset(cleanlist[cnt].ptep);
   3646 				PTE_SYNC_CURRENT(pm, cleanlist[cnt].ptep);
   3647 				vaddr_t va = cleanlist[cnt].va;
   3648 				if (pm->pm_cstate.cs_all != 0) {
   3649 					vaddr_t clva = va & ~PAGE_MASK;
   3650 					u_int flags = va & PVF_EXEC;
   3651 #ifdef PMAP_CACHE_VIVT
   3652 					pmap_cache_wbinv_page(pm, clva, true,
   3653 					    PVF_REF | PVF_WRITE | flags);
   3654 #endif
   3655 					pmap_tlb_flush_SE(pm, clva,
   3656 					    PVF_REF | flags);
   3657 				}
   3658 			}
   3659 
   3660 			/*
   3661 			 * If it looks like we're removing a whole bunch
   3662 			 * of mappings, it's faster to just write-back
   3663 			 * the whole cache now and defer TLB flushes until
   3664 			 * pmap_update() is called.
   3665 			 */
   3666 			if (total <= PMAP_REMOVE_CLEAN_LIST_SIZE)
   3667 				cleanlist_idx = 0;
   3668 			else {
   3669 				cleanlist_idx = PMAP_REMOVE_CLEAN_LIST_SIZE + 1;
   3670 #ifdef PMAP_CACHE_VIVT
   3671 				pmap_cache_wbinv_all(pm, PVF_EXEC);
   3672 #endif
   3673 				pm->pm_remove_all = true;
   3674 			}
   3675 		}
   3676 #endif /* ARM_MMU_EXTENDED */
   3677 
   3678 		pmap_free_l2_bucket(pm, l2b, mappings);
   3679 		pm->pm_stats.resident_count -= mappings / (PAGE_SIZE/L2_S_SIZE);
   3680 	}
   3681 
   3682 	pmap_release_pmap_lock(pm);
   3683 	kpreempt_enable();
   3684 
   3685 	SLIST_FOREACH_SAFE(pv, &opv_list, pv_link, npv) {
   3686 		pool_put(&pmap_pv_pool, pv);
   3687 	}
   3688 }
   3689 
   3690 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3691 static struct pv_entry *
   3692 pmap_kremove_pg(struct vm_page *pg, vaddr_t va)
   3693 {
   3694 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   3695 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   3696 	struct pv_entry *pv;
   3697 
   3698 	KASSERT(arm_cache_prefer_mask == 0 || md->pvh_attrs & (PVF_COLORED|PVF_NC));
   3699 	KASSERT((md->pvh_attrs & PVF_KMPAGE) == 0);
   3700 	KASSERT(pmap_page_locked_p(md));
   3701 
   3702 	pv = pmap_remove_pv(md, pa, pmap_kernel(), va);
   3703 	KASSERTMSG(pv, "pg %p (pa #%lx) va %#lx", pg, pa, va);
   3704 	KASSERT(PV_IS_KENTRY_P(pv->pv_flags));
   3705 
   3706 	/*
   3707 	 * We are removing a writeable mapping to a cached exec page, if
   3708 	 * it's the last mapping then clear its execness otherwise sync
   3709 	 * the page to the icache.
   3710 	 */
   3711 	if ((md->pvh_attrs & (PVF_NC|PVF_EXEC)) == PVF_EXEC
   3712 	    && (pv->pv_flags & PVF_WRITE) != 0) {
   3713 		if (SLIST_EMPTY(&md->pvh_list)) {
   3714 			md->pvh_attrs &= ~PVF_EXEC;
   3715 			PMAPCOUNT(exec_discarded_kremove);
   3716 		} else {
   3717 			pmap_syncicache_page(md, pa);
   3718 			PMAPCOUNT(exec_synced_kremove);
   3719 		}
   3720 	}
   3721 	pmap_vac_me_harder(md, pa, pmap_kernel(), 0);
   3722 
   3723 	return pv;
   3724 }
   3725 #endif /* PMAP_CACHE_VIPT && !ARM_MMU_EXTENDED */
   3726 
   3727 /*
   3728  * pmap_kenter_pa: enter an unmanaged, wired kernel mapping
   3729  *
   3730  * We assume there is already sufficient KVM space available
   3731  * to do this, as we can't allocate L2 descriptor tables/metadata
   3732  * from here.
   3733  */
   3734 void
   3735 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   3736 {
   3737 #ifdef PMAP_CACHE_VIVT
   3738 	struct vm_page *pg = (flags & PMAP_KMPAGE) ? PHYS_TO_VM_PAGE(pa) : NULL;
   3739 #endif
   3740 #ifdef PMAP_CACHE_VIPT
   3741 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   3742 	struct vm_page *opg;
   3743 #ifndef ARM_MMU_EXTENDED
   3744 	struct pv_entry *pv = NULL;
   3745 #endif
   3746 #endif
   3747 	struct vm_page_md *md = pg != NULL ? VM_PAGE_TO_MD(pg) : NULL;
   3748 
   3749 	UVMHIST_FUNC(__func__);
   3750 
   3751 	if (pmap_initialized) {
   3752 		UVMHIST_CALLARGS(maphist,
   3753 		    "va=%#jx, pa=%#jx, prot=%#jx, flags=%#jx", va, pa, prot,
   3754 		     flags);
   3755 	}
   3756 
   3757 	kpreempt_disable();
   3758 	pmap_t kpm = pmap_kernel();
   3759 	pmap_acquire_pmap_lock(kpm);
   3760 	struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3761 	const size_t l1slot __diagused = l1pte_index(va);
   3762 	KASSERTMSG(l2b != NULL,
   3763 	    "va %#lx pa %#lx prot %d maxkvaddr %#lx: l2 %p l2b %p kva %p",
   3764 	    va, pa, prot, pmap_curmaxkvaddr, kpm->pm_l2[L2_IDX(l1slot)],
   3765 	    kpm->pm_l2[L2_IDX(l1slot)]
   3766 		? &kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)]
   3767 		: NULL,
   3768 	    kpm->pm_l2[L2_IDX(l1slot)]
   3769 		? kpm->pm_l2[L2_IDX(l1slot)]->l2_bucket[L2_BUCKET(l1slot)].l2b_kva
   3770 		: NULL);
   3771 	KASSERT(l2b->l2b_kva != NULL);
   3772 
   3773 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   3774 	const pt_entry_t opte = *ptep;
   3775 
   3776 	if (opte == 0) {
   3777 		PMAPCOUNT(kenter_mappings);
   3778 		l2b->l2b_occupancy += PAGE_SIZE / L2_S_SIZE;
   3779 	} else {
   3780 		PMAPCOUNT(kenter_remappings);
   3781 #ifdef PMAP_CACHE_VIPT
   3782 		opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3783 		struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3784 		if (opg && arm_cache_prefer_mask != 0) {
   3785 			KASSERT(opg != pg);
   3786 			KASSERT((omd->pvh_attrs & PVF_KMPAGE) == 0);
   3787 			KASSERT((flags & PMAP_KMPAGE) == 0);
   3788 #ifndef ARM_MMU_EXTENDED
   3789 			pmap_acquire_page_lock(omd);
   3790 			pv = pmap_kremove_pg(opg, va);
   3791 			pmap_release_page_lock(omd);
   3792 #endif
   3793 		}
   3794 #endif
   3795 		if (l2pte_valid_p(opte)) {
   3796 			l2pte_reset(ptep);
   3797 			PTE_SYNC(ptep);
   3798 #ifdef PMAP_CACHE_VIVT
   3799 			cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3800 #endif
   3801 			cpu_tlb_flushD_SE(va);
   3802 			cpu_cpwait();
   3803 		}
   3804 	}
   3805 	pmap_release_pmap_lock(kpm);
   3806 	pt_entry_t npte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   3807 
   3808 	if (flags & PMAP_PTE) {
   3809 		KASSERT((flags & PMAP_CACHE_MASK) == 0);
   3810 		if (!(flags & PMAP_NOCACHE))
   3811 			npte |= pte_l2_s_cache_mode_pt;
   3812 	} else {
   3813 		switch (flags & (PMAP_CACHE_MASK | PMAP_DEV_MASK)) {
   3814 		case PMAP_DEV ... PMAP_DEV | PMAP_CACHE_MASK:
   3815 			break;
   3816 		case PMAP_NOCACHE:
   3817 			npte |= pte_l2_s_nocache_mode;
   3818 			break;
   3819 		case PMAP_WRITE_COMBINE:
   3820 			npte |= pte_l2_s_wc_mode;
   3821 			break;
   3822 		default:
   3823 			npte |= pte_l2_s_cache_mode;
   3824 			break;
   3825 		}
   3826 	}
   3827 #ifdef ARM_MMU_EXTENDED
   3828 	if (prot & VM_PROT_EXECUTE)
   3829 		npte &= ~L2_XS_XN;
   3830 #endif
   3831 	l2pte_set(ptep, npte, 0);
   3832 	PTE_SYNC(ptep);
   3833 
   3834 	if (pg) {
   3835 		if (flags & PMAP_KMPAGE) {
   3836 			KASSERT(md->urw_mappings == 0);
   3837 			KASSERT(md->uro_mappings == 0);
   3838 			KASSERT(md->krw_mappings == 0);
   3839 			KASSERT(md->kro_mappings == 0);
   3840 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3841 			KASSERT(pv == NULL);
   3842 			KASSERT(arm_cache_prefer_mask == 0 || (va & PVF_COLORED) == 0);
   3843 			KASSERT((md->pvh_attrs & PVF_NC) == 0);
   3844 			/* if there is a color conflict, evict from cache. */
   3845 			if (pmap_is_page_colored_p(md)
   3846 			    && ((va ^ md->pvh_attrs) & arm_cache_prefer_mask)) {
   3847 				PMAPCOUNT(vac_color_change);
   3848 				pmap_flush_page(md, pa, PMAP_FLUSH_PRIMARY);
   3849 			} else if (md->pvh_attrs & PVF_MULTCLR) {
   3850 				/*
   3851 				 * If this page has multiple colors, expunge
   3852 				 * them.
   3853 				 */
   3854 				PMAPCOUNT(vac_flush_lots2);
   3855 				pmap_flush_page(md, pa, PMAP_FLUSH_SECONDARY);
   3856 			}
   3857 			/*
   3858 			 * Since this is a KMPAGE, there can be no contention
   3859 			 * for this page so don't lock it.
   3860 			 */
   3861 			md->pvh_attrs &= PAGE_SIZE - 1;
   3862 			md->pvh_attrs |= PVF_KMPAGE | PVF_COLORED | PVF_DIRTY
   3863 			    | (va & arm_cache_prefer_mask);
   3864 #else /* !PMAP_CACHE_VIPT || ARM_MMU_EXTENDED */
   3865 			md->pvh_attrs |= PVF_KMPAGE;
   3866 #endif
   3867 			atomic_inc_32(&pmap_kmpages);
   3868 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3869 		} else if (arm_cache_prefer_mask != 0) {
   3870 			if (pv == NULL) {
   3871 				pv = pool_get(&pmap_pv_pool, PR_NOWAIT);
   3872 				KASSERT(pv != NULL);
   3873 			}
   3874 			pmap_acquire_page_lock(md);
   3875 			pmap_enter_pv(md, pa, pv, pmap_kernel(), va,
   3876 			    PVF_WIRED | PVF_KENTRY
   3877 			    | (prot & VM_PROT_WRITE ? PVF_WRITE : 0));
   3878 			if ((prot & VM_PROT_WRITE)
   3879 			    && !(md->pvh_attrs & PVF_NC))
   3880 				md->pvh_attrs |= PVF_DIRTY;
   3881 			KASSERT((prot & VM_PROT_WRITE) == 0 || (md->pvh_attrs & (PVF_DIRTY|PVF_NC)));
   3882 			pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   3883 			pmap_release_page_lock(md);
   3884 #endif
   3885 		}
   3886 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3887 	} else {
   3888 		if (pv != NULL)
   3889 			pool_put(&pmap_pv_pool, pv);
   3890 #endif
   3891 	}
   3892 	kpreempt_enable();
   3893 
   3894 	if (pmap_initialized) {
   3895 		UVMHIST_LOG(maphist, "  <-- done (ptep %#jx: %#jx -> %#jx)",
   3896 		    (uintptr_t)ptep, opte, npte, 0);
   3897 	}
   3898 
   3899 }
   3900 
   3901 void
   3902 pmap_kremove(vaddr_t va, vsize_t len)
   3903 {
   3904 #ifdef UVMHIST
   3905 	u_int total_mappings = 0;
   3906 #endif
   3907 
   3908 	PMAPCOUNT(kenter_unmappings);
   3909 
   3910 	UVMHIST_FUNC(__func__);
   3911 	UVMHIST_CALLARGS(maphist, " (va=%#jx, len=%#jx)", va, len, 0, 0);
   3912 
   3913 	const vaddr_t eva = va + len;
   3914 	pmap_t kpm = pmap_kernel();
   3915 
   3916 	kpreempt_disable();
   3917 	pmap_acquire_pmap_lock(kpm);
   3918 
   3919 	while (va < eva) {
   3920 		vaddr_t next_bucket = L2_NEXT_BUCKET_VA(va);
   3921 		if (next_bucket > eva)
   3922 			next_bucket = eva;
   3923 
   3924 		struct l2_bucket * const l2b = pmap_get_l2_bucket(kpm, va);
   3925 		KDASSERT(l2b != NULL);
   3926 
   3927 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   3928 		pt_entry_t *ptep = sptep;
   3929 		u_int mappings = 0;
   3930 
   3931 		while (va < next_bucket) {
   3932 			const pt_entry_t opte = *ptep;
   3933 			struct vm_page *opg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   3934 			if (opg != NULL) {
   3935 				struct vm_page_md *omd = VM_PAGE_TO_MD(opg);
   3936 
   3937 				if (omd->pvh_attrs & PVF_KMPAGE) {
   3938 					KASSERT(omd->urw_mappings == 0);
   3939 					KASSERT(omd->uro_mappings == 0);
   3940 					KASSERT(omd->krw_mappings == 0);
   3941 					KASSERT(omd->kro_mappings == 0);
   3942 					omd->pvh_attrs &= ~PVF_KMPAGE;
   3943 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3944 					if (arm_cache_prefer_mask != 0) {
   3945 						omd->pvh_attrs &= ~PVF_WRITE;
   3946 					}
   3947 #endif
   3948 					atomic_dec_32(&pmap_kmpages);
   3949 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   3950 				} else if (arm_cache_prefer_mask != 0) {
   3951 					pmap_acquire_page_lock(omd);
   3952 					pool_put(&pmap_pv_pool,
   3953 					    pmap_kremove_pg(opg, va));
   3954 					pmap_release_page_lock(omd);
   3955 #endif
   3956 				}
   3957 			}
   3958 			if (l2pte_valid_p(opte)) {
   3959 				l2pte_reset(ptep);
   3960 				PTE_SYNC(ptep);
   3961 #ifdef PMAP_CACHE_VIVT
   3962 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   3963 #endif
   3964 				cpu_tlb_flushD_SE(va);
   3965 
   3966 				mappings += PAGE_SIZE / L2_S_SIZE;
   3967 			}
   3968 			va += PAGE_SIZE;
   3969 			ptep += PAGE_SIZE / L2_S_SIZE;
   3970 		}
   3971 		KDASSERTMSG(mappings <= l2b->l2b_occupancy, "%u %u",
   3972 		    mappings, l2b->l2b_occupancy);
   3973 		l2b->l2b_occupancy -= mappings;
   3974 		//PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   3975 #ifdef UVMHIST
   3976 		total_mappings += mappings;
   3977 #endif
   3978 	}
   3979 	pmap_release_pmap_lock(kpm);
   3980 	cpu_cpwait();
   3981 	kpreempt_enable();
   3982 
   3983 	UVMHIST_LOG(maphist, "  <--- done (%ju mappings removed)",
   3984 	    total_mappings, 0, 0, 0);
   3985 }
   3986 
   3987 bool
   3988 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   3989 {
   3990 
   3991 	return pmap_extract_coherency(pm, va, pap, NULL);
   3992 }
   3993 
   3994 bool
   3995 pmap_extract_coherency(pmap_t pm, vaddr_t va, paddr_t *pap, bool *coherentp)
   3996 {
   3997 	struct l2_dtable *l2;
   3998 	pd_entry_t *pdep, pde;
   3999 	pt_entry_t *ptep, pte;
   4000 	paddr_t pa;
   4001 	u_int l1slot;
   4002 	bool coherent;
   4003 
   4004 	kpreempt_disable();
   4005 	pmap_acquire_pmap_lock(pm);
   4006 
   4007 	l1slot = l1pte_index(va);
   4008 	pdep = pmap_l1_kva(pm) + l1slot;
   4009 	pde = *pdep;
   4010 
   4011 	if (l1pte_section_p(pde)) {
   4012 		/*
   4013 		 * These should only happen for pmap_kernel()
   4014 		 */
   4015 		KDASSERT(pm == pmap_kernel());
   4016 		pmap_release_pmap_lock(pm);
   4017 		kpreempt_enable();
   4018 
   4019 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   4020 		if (l1pte_supersection_p(pde)) {
   4021 			pa = (pde & L1_SS_FRAME) | (va & L1_SS_OFFSET);
   4022 		} else
   4023 #endif
   4024 			pa = (pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   4025 		coherent = (pde & L1_S_CACHE_MASK) == 0;
   4026 	} else {
   4027 		/*
   4028 		 * Note that we can't rely on the validity of the L1
   4029 		 * descriptor as an indication that a mapping exists.
   4030 		 * We have to look it up in the L2 dtable.
   4031 		 */
   4032 		l2 = pm->pm_l2[L2_IDX(l1slot)];
   4033 
   4034 		if (l2 == NULL ||
   4035 		    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   4036 			pmap_release_pmap_lock(pm);
   4037 			kpreempt_enable();
   4038 
   4039 			return false;
   4040 		}
   4041 
   4042 		pte = ptep[l2pte_index(va)];
   4043 		pmap_release_pmap_lock(pm);
   4044 		kpreempt_enable();
   4045 
   4046 		if (pte == 0)
   4047 			return false;
   4048 
   4049 		switch (pte & L2_TYPE_MASK) {
   4050 		case L2_TYPE_L:
   4051 			pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   4052 			coherent = (pte & L2_L_CACHE_MASK) == 0;
   4053 			break;
   4054 
   4055 		default:
   4056 			pa = (pte & ~PAGE_MASK) | (va & PAGE_MASK);
   4057 			coherent = (pte & L2_S_CACHE_MASK) == 0;
   4058 			break;
   4059 		}
   4060 	}
   4061 
   4062 	if (pap != NULL)
   4063 		*pap = pa;
   4064 
   4065 	if (coherentp != NULL)
   4066 		*coherentp = (pm == pmap_kernel() && coherent);
   4067 
   4068 	return true;
   4069 }
   4070 
   4071 /*
   4072  * pmap_pv_remove: remove an unmanaged pv-tracked page from all pmaps
   4073  *	that map it
   4074  */
   4075 
   4076 static void
   4077 pmap_pv_remove(paddr_t pa)
   4078 {
   4079 	struct pmap_page *pp;
   4080 
   4081 	KASSERT(kpreempt_disabled());
   4082 	pp = pmap_pv_tracked(pa);
   4083 	if (pp == NULL)
   4084 		panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
   4085 		    pa);
   4086 
   4087 	struct vm_page_md *md = PMAP_PAGE_TO_MD(pp);
   4088 	pmap_page_remove(md, pa);
   4089 }
   4090 
   4091 void
   4092 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
   4093 {
   4094 
   4095 	/* the only case is remove at the moment */
   4096 	KASSERT(prot == VM_PROT_NONE);
   4097 	pmap_pv_remove(pa);
   4098 }
   4099 
   4100 void
   4101 pmap_protect(pmap_t pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   4102 {
   4103 	struct l2_bucket *l2b;
   4104 	vaddr_t next_bucket;
   4105 
   4106 	UVMHIST_FUNC(__func__);
   4107 	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx prot %#jx",
   4108 	    (uintptr_t)pm, sva, eva, prot);
   4109 
   4110 	if ((prot & VM_PROT_READ) == 0) {
   4111 		pmap_remove(pm, sva, eva);
   4112 		return;
   4113 	}
   4114 
   4115 	if (prot & VM_PROT_WRITE) {
   4116 		/*
   4117 		 * If this is a read->write transition, just ignore it and let
   4118 		 * uvm_fault() take care of it later.
   4119 		 */
   4120 		return;
   4121 	}
   4122 
   4123 	kpreempt_disable();
   4124 	pmap_acquire_pmap_lock(pm);
   4125 
   4126 #ifndef ARM_MMU_EXTENDED
   4127 	const bool flush = eva - sva >= PAGE_SIZE * 4;
   4128 	u_int flags = 0;
   4129 #endif
   4130 	u_int clr_mask = PVF_WRITE | ((prot & VM_PROT_EXECUTE) ? 0 : PVF_EXEC);
   4131 
   4132 	while (sva < eva) {
   4133 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   4134 		if (next_bucket > eva)
   4135 			next_bucket = eva;
   4136 
   4137 		l2b = pmap_get_l2_bucket(pm, sva);
   4138 		if (l2b == NULL) {
   4139 			sva = next_bucket;
   4140 			continue;
   4141 		}
   4142 
   4143 		pt_entry_t *ptep = &l2b->l2b_kva[l2pte_index(sva)];
   4144 
   4145 		while (sva < next_bucket) {
   4146 			const pt_entry_t opte = *ptep;
   4147 			if (l2pte_valid_p(opte) && l2pte_writable_p(opte)) {
   4148 				struct vm_page *pg;
   4149 #ifndef ARM_MMU_EXTENDED
   4150 				u_int f;
   4151 #endif
   4152 
   4153 #ifdef PMAP_CACHE_VIVT
   4154 				/*
   4155 				 * OK, at this point, we know we're doing
   4156 				 * write-protect operation.  If the pmap is
   4157 				 * active, write-back the page.
   4158 				 */
   4159 				pmap_cache_wbinv_page(pm, sva, false,
   4160 				    PVF_REF | PVF_WRITE);
   4161 #endif
   4162 
   4163 				pg = PHYS_TO_VM_PAGE(l2pte_pa(opte));
   4164 				pt_entry_t npte = l2pte_set_readonly(opte);
   4165 				l2pte_reset(ptep);
   4166 				PTE_SYNC(ptep);
   4167 #ifdef ARM_MMU_EXTENDED
   4168 				pmap_tlb_flush_SE(pm, sva, PVF_REF);
   4169 #endif
   4170 				l2pte_set(ptep, npte, 0);
   4171 				PTE_SYNC(ptep);
   4172 
   4173 				if (pg != NULL) {
   4174 					struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4175 					paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4176 
   4177 					pmap_acquire_page_lock(md);
   4178 #ifndef ARM_MMU_EXTENDED
   4179 					f =
   4180 #endif
   4181 					    pmap_modify_pv(md, pa, pm, sva,
   4182 					       clr_mask, 0);
   4183 					pmap_vac_me_harder(md, pa, pm, sva);
   4184 					pmap_release_page_lock(md);
   4185 #ifndef ARM_MMU_EXTENDED
   4186 				} else {
   4187 					f = PVF_REF | PVF_EXEC;
   4188 				}
   4189 
   4190 				if (flush) {
   4191 					flags |= f;
   4192 				} else {
   4193 					pmap_tlb_flush_SE(pm, sva, f);
   4194 #endif
   4195 				}
   4196 			}
   4197 
   4198 			sva += PAGE_SIZE;
   4199 			ptep += PAGE_SIZE / L2_S_SIZE;
   4200 		}
   4201 	}
   4202 
   4203 #ifndef ARM_MMU_EXTENDED
   4204 	if (flush) {
   4205 		if (PV_BEEN_EXECD(flags)) {
   4206 			pmap_tlb_flushID(pm);
   4207 		} else if (PV_BEEN_REFD(flags)) {
   4208 			pmap_tlb_flushD(pm);
   4209 		}
   4210 	}
   4211 #endif
   4212 
   4213 	pmap_release_pmap_lock(pm);
   4214 	kpreempt_enable();
   4215 }
   4216 
   4217 void
   4218 pmap_icache_sync_range(pmap_t pm, vaddr_t sva, vaddr_t eva)
   4219 {
   4220 	struct l2_bucket *l2b;
   4221 	pt_entry_t *ptep;
   4222 	vaddr_t next_bucket;
   4223 	vsize_t page_size = trunc_page(sva) + PAGE_SIZE - sva;
   4224 
   4225 	UVMHIST_FUNC(__func__);
   4226 	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx...#%jx",
   4227 	    (uintptr_t)pm, sva, eva, 0);
   4228 
   4229 	pmap_acquire_pmap_lock(pm);
   4230 
   4231 	while (sva < eva) {
   4232 		next_bucket = L2_NEXT_BUCKET_VA(sva);
   4233 		if (next_bucket > eva)
   4234 			next_bucket = eva;
   4235 
   4236 		l2b = pmap_get_l2_bucket(pm, sva);
   4237 		if (l2b == NULL) {
   4238 			sva = next_bucket;
   4239 			continue;
   4240 		}
   4241 
   4242 		for (ptep = &l2b->l2b_kva[l2pte_index(sva)];
   4243 		     sva < next_bucket;
   4244 		     sva += page_size,
   4245 		     ptep += PAGE_SIZE / L2_S_SIZE,
   4246 		     page_size = PAGE_SIZE) {
   4247 			if (l2pte_valid_p(*ptep)) {
   4248 				cpu_icache_sync_range(sva,
   4249 				    uimin(page_size, eva - sva));
   4250 			}
   4251 		}
   4252 	}
   4253 
   4254 	pmap_release_pmap_lock(pm);
   4255 }
   4256 
   4257 void
   4258 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   4259 {
   4260 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4261 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4262 
   4263 	UVMHIST_FUNC(__func__);
   4264 	UVMHIST_CALLARGS(maphist, "md %#jx pa %#jx prot %#jx",
   4265 	    (uintptr_t)md, pa, prot, 0);
   4266 
   4267 	switch(prot) {
   4268 	case VM_PROT_READ|VM_PROT_WRITE:
   4269 #if defined(ARM_MMU_EXTENDED)
   4270 		pmap_acquire_page_lock(md);
   4271 		pmap_clearbit(md, pa, PVF_EXEC);
   4272 		pmap_release_page_lock(md);
   4273 		break;
   4274 #endif
   4275 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   4276 		break;
   4277 
   4278 	case VM_PROT_READ:
   4279 #if defined(ARM_MMU_EXTENDED)
   4280 		pmap_acquire_page_lock(md);
   4281 		pmap_clearbit(md, pa, PVF_WRITE|PVF_EXEC);
   4282 		pmap_release_page_lock(md);
   4283 		break;
   4284 #endif
   4285 	case VM_PROT_READ|VM_PROT_EXECUTE:
   4286 		pmap_acquire_page_lock(md);
   4287 		pmap_clearbit(md, pa, PVF_WRITE);
   4288 		pmap_release_page_lock(md);
   4289 		break;
   4290 
   4291 	default:
   4292 		pmap_page_remove(md, pa);
   4293 		break;
   4294 	}
   4295 }
   4296 
   4297 /*
   4298  * pmap_clear_modify:
   4299  *
   4300  *	Clear the "modified" attribute for a page.
   4301  */
   4302 bool
   4303 pmap_clear_modify(struct vm_page *pg)
   4304 {
   4305 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4306 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4307 	bool rv;
   4308 
   4309 	pmap_acquire_page_lock(md);
   4310 
   4311 	if (md->pvh_attrs & PVF_MOD) {
   4312 		rv = true;
   4313 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4314 		/*
   4315 		 * If we are going to clear the modified bit and there are
   4316 		 * no other modified bits set, flush the page to memory and
   4317 		 * mark it clean.
   4318 		 */
   4319 		if ((md->pvh_attrs & (PVF_DMOD|PVF_NC)) == PVF_MOD)
   4320 			pmap_flush_page(md, pa, PMAP_CLEAN_PRIMARY);
   4321 #endif
   4322 		pmap_clearbit(md, pa, PVF_MOD);
   4323 	} else {
   4324 		rv = false;
   4325 	}
   4326 	pmap_release_page_lock(md);
   4327 
   4328 	return rv;
   4329 }
   4330 
   4331 /*
   4332  * pmap_clear_reference:
   4333  *
   4334  *	Clear the "referenced" attribute for a page.
   4335  */
   4336 bool
   4337 pmap_clear_reference(struct vm_page *pg)
   4338 {
   4339 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4340 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   4341 	bool rv;
   4342 
   4343 	pmap_acquire_page_lock(md);
   4344 
   4345 	if (md->pvh_attrs & PVF_REF) {
   4346 		rv = true;
   4347 		pmap_clearbit(md, pa, PVF_REF);
   4348 	} else {
   4349 		rv = false;
   4350 	}
   4351 	pmap_release_page_lock(md);
   4352 
   4353 	return rv;
   4354 }
   4355 
   4356 /*
   4357  * pmap_is_modified:
   4358  *
   4359  *	Test if a page has the "modified" attribute.
   4360  */
   4361 /* See <arm/arm32/pmap.h> */
   4362 
   4363 /*
   4364  * pmap_is_referenced:
   4365  *
   4366  *	Test if a page has the "referenced" attribute.
   4367  */
   4368 /* See <arm/arm32/pmap.h> */
   4369 
   4370 #if defined(ARM_MMU_EXTENDED) && 0
   4371 int
   4372 pmap_prefetchabt_fixup(void *v)
   4373 {
   4374 	struct trapframe * const tf = v;
   4375 	vaddr_t va = trunc_page(tf->tf_pc);
   4376 	int rv = ABORT_FIXUP_FAILED;
   4377 
   4378 	if (!TRAP_USERMODE(tf) && va < VM_MAXUSER_ADDRESS)
   4379 		return rv;
   4380 
   4381 	kpreempt_disable();
   4382 	pmap_t pm = curcpu()->ci_pmap_cur;
   4383 	const size_t l1slot = l1pte_index(va);
   4384 	struct l2_dtable * const l2 = pm->pm_l2[L2_IDX(l1slot)];
   4385 	if (l2 == NULL)
   4386 		goto out;
   4387 
   4388 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4389 	if (l2b->l2b_kva == NULL)
   4390 		goto out;
   4391 
   4392 	/*
   4393 	 * Check the PTE itself.
   4394 	 */
   4395 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4396 	const pt_entry_t opte = *ptep;
   4397 	if ((opte & L2_S_PROT_U) == 0 || (opte & L2_XS_XN) == 0)
   4398 		goto out;
   4399 
   4400 	paddr_t pa = l2pte_pa(opte);
   4401 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4402 	KASSERT(pg != NULL);
   4403 
   4404 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4405 
   4406 	pmap_acquire_page_lock(md);
   4407 	struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4408 	KASSERT(pv != NULL);
   4409 
   4410 	if (PV_IS_EXEC_P(pv->pv_flags)) {
   4411 		l2pte_reset(ptep);
   4412 		PTE_SYNC(ptep);
   4413 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4414 		if (!PV_IS_EXEC_P(md->pvh_attrs)) {
   4415 			pmap_syncicache_page(md, pa);
   4416 		}
   4417 		rv = ABORT_FIXUP_RETURN;
   4418 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
   4419 		PTE_SYNC(ptep);
   4420 	}
   4421 	pmap_release_page_lock(md);
   4422 
   4423   out:
   4424 	kpreempt_enable();
   4425 
   4426 	return rv;
   4427 }
   4428 #endif
   4429 
   4430 int
   4431 pmap_fault_fixup(pmap_t pm, vaddr_t va, vm_prot_t ftype, int user)
   4432 {
   4433 	struct l2_dtable *l2;
   4434 	struct l2_bucket *l2b;
   4435 	paddr_t pa;
   4436 	const size_t l1slot = l1pte_index(va);
   4437 	int rv = 0;
   4438 
   4439 	UVMHIST_FUNC(__func__);
   4440 	UVMHIST_CALLARGS(maphist, "pm=%#jx, va=%#jx, ftype=%#jx, user=%jd",
   4441 	    (uintptr_t)pm, va, ftype, user);
   4442 
   4443 	va = trunc_page(va);
   4444 
   4445 	KASSERT(!user || (pm != pmap_kernel()));
   4446 
   4447 #ifdef ARM_MMU_EXTENDED
   4448 	UVMHIST_LOG(maphist, " ti=%#jx pai=%#jx asid=%#jx",
   4449 	    (uintptr_t)cpu_tlb_info(curcpu()),
   4450 	    (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu())),
   4451 	    (uintptr_t)PMAP_PAI(pm, cpu_tlb_info(curcpu()))->pai_asid, 0);
   4452 #endif
   4453 
   4454 	kpreempt_disable();
   4455 	pmap_acquire_pmap_lock(pm);
   4456 
   4457 	/*
   4458 	 * If there is no l2_dtable for this address, then the process
   4459 	 * has no business accessing it.
   4460 	 *
   4461 	 * Note: This will catch userland processes trying to access
   4462 	 * kernel addresses.
   4463 	 */
   4464 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   4465 	if (l2 == NULL) {
   4466 		UVMHIST_LOG(maphist, " no l2 for l1slot %#jx", l1slot, 0, 0, 0);
   4467 		goto out;
   4468 	}
   4469 
   4470 	/*
   4471 	 * Likewise if there is no L2 descriptor table
   4472 	 */
   4473 	l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   4474 	if (l2b->l2b_kva == NULL) {
   4475 		UVMHIST_LOG(maphist, " <-- done (no ptep for l1slot %#jx)",
   4476 		    l1slot, 0, 0, 0);
   4477 		goto out;
   4478 	}
   4479 
   4480 	/*
   4481 	 * Check the PTE itself.
   4482 	 */
   4483 	pt_entry_t * const ptep = &l2b->l2b_kva[l2pte_index(va)];
   4484 	pt_entry_t const opte = *ptep;
   4485 	if (opte == 0 || (opte & L2_TYPE_MASK) == L2_TYPE_L) {
   4486 		UVMHIST_LOG(maphist, " <-- done (empty pte)",
   4487 		    0, 0, 0, 0);
   4488 		goto out;
   4489 	}
   4490 
   4491 #ifndef ARM_HAS_VBAR
   4492 	/*
   4493 	 * Catch a userland access to the vector page mapped at 0x0
   4494 	 */
   4495 	if (user && (opte & L2_S_PROT_U) == 0) {
   4496 		UVMHIST_LOG(maphist, " <-- done (vector_page)", 0, 0, 0, 0);
   4497 		goto out;
   4498 	}
   4499 #endif
   4500 
   4501 	pa = l2pte_pa(opte);
   4502 	UVMHIST_LOG(maphist, " pa %#jx opte %#jx ", pa, opte, 0, 0);
   4503 
   4504 	if ((ftype & VM_PROT_WRITE) && !l2pte_writable_p(opte)) {
   4505 		/*
   4506 		 * This looks like a good candidate for "page modified"
   4507 		 * emulation...
   4508 		 */
   4509 		struct pv_entry *pv;
   4510 		struct vm_page *pg;
   4511 
   4512 		/* Extract the physical address of the page */
   4513 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4514 			UVMHIST_LOG(maphist, " <-- done (mod/ref unmanaged page)", 0, 0, 0, 0);
   4515 			goto out;
   4516 		}
   4517 
   4518 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4519 
   4520 		/* Get the current flags for this page. */
   4521 		pmap_acquire_page_lock(md);
   4522 		pv = pmap_find_pv(md, pm, va);
   4523 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4524 			pmap_release_page_lock(md);
   4525 			UVMHIST_LOG(maphist, " <-- done (mod/ref emul: no PV)", 0, 0, 0, 0);
   4526 			goto out;
   4527 		}
   4528 
   4529 		/*
   4530 		 * Do the flags say this page is writable? If not then it
   4531 		 * is a genuine write fault. If yes then the write fault is
   4532 		 * our fault as we did not reflect the write access in the
   4533 		 * PTE. Now we know a write has occurred we can correct this
   4534 		 * and also set the modified bit
   4535 		 */
   4536 		if ((pv->pv_flags & PVF_WRITE) == 0) {
   4537 			pmap_release_page_lock(md);
   4538 			UVMHIST_LOG(maphist, " <-- done (write fault)", 0, 0, 0, 0);
   4539 			goto out;
   4540 		}
   4541 
   4542 		md->pvh_attrs |= PVF_REF | PVF_MOD;
   4543 		pv->pv_flags |= PVF_REF | PVF_MOD;
   4544 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   4545 		/*
   4546 		 * If there are cacheable mappings for this page, mark it dirty.
   4547 		 */
   4548 		if ((md->pvh_attrs & PVF_NC) == 0)
   4549 			md->pvh_attrs |= PVF_DIRTY;
   4550 #endif
   4551 #ifdef ARM_MMU_EXTENDED
   4552 		if (md->pvh_attrs & PVF_EXEC) {
   4553 			md->pvh_attrs &= ~PVF_EXEC;
   4554 			PMAPCOUNT(exec_discarded_modfixup);
   4555 		}
   4556 #endif
   4557 		pmap_release_page_lock(md);
   4558 
   4559 		/*
   4560 		 * Re-enable write permissions for the page.  No need to call
   4561 		 * pmap_vac_me_harder(), since this is just a
   4562 		 * modified-emulation fault, and the PVF_WRITE bit isn't
   4563 		 * changing. We've already set the cacheable bits based on
   4564 		 * the assumption that we can write to this page.
   4565 		 */
   4566 		const pt_entry_t npte =
   4567 		    l2pte_set_writable((opte & ~L2_TYPE_MASK) | L2_S_PROTO)
   4568 #ifdef ARM_MMU_EXTENDED
   4569 		    | (pm != pmap_kernel() ? L2_XS_nG : 0)
   4570 #endif
   4571 		    | 0;
   4572 		l2pte_reset(ptep);
   4573 		PTE_SYNC(ptep);
   4574 		pmap_tlb_flush_SE(pm, va,
   4575 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4576 		l2pte_set(ptep, npte, 0);
   4577 		PTE_SYNC(ptep);
   4578 		PMAPCOUNT(fixup_mod);
   4579 		rv = 1;
   4580 		UVMHIST_LOG(maphist, " <-- done (mod/ref emul: changed pte "
   4581 		    "from %#jx to %#jx)", opte, npte, 0, 0);
   4582 	} else if ((opte & L2_TYPE_MASK) == L2_TYPE_INV) {
   4583 		/*
   4584 		 * This looks like a good candidate for "page referenced"
   4585 		 * emulation.
   4586 		 */
   4587 		struct vm_page *pg;
   4588 
   4589 		/* Extract the physical address of the page */
   4590 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) {
   4591 			UVMHIST_LOG(maphist, " <-- done (ref emul: unmanaged page)", 0, 0, 0, 0);
   4592 			goto out;
   4593 		}
   4594 
   4595 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4596 
   4597 		/* Get the current flags for this page. */
   4598 		pmap_acquire_page_lock(md);
   4599 		struct pv_entry *pv = pmap_find_pv(md, pm, va);
   4600 		if (pv == NULL || PV_IS_KENTRY_P(pv->pv_flags)) {
   4601 			pmap_release_page_lock(md);
   4602 			UVMHIST_LOG(maphist, " <-- done (ref emul no PV)", 0, 0, 0, 0);
   4603 			goto out;
   4604 		}
   4605 
   4606 		md->pvh_attrs |= PVF_REF;
   4607 		pv->pv_flags |= PVF_REF;
   4608 
   4609 		pt_entry_t npte =
   4610 		    l2pte_set_readonly((opte & ~L2_TYPE_MASK) | L2_S_PROTO);
   4611 #ifdef ARM_MMU_EXTENDED
   4612 		if (pm != pmap_kernel()) {
   4613 			npte |= L2_XS_nG;
   4614 		}
   4615 		/*
   4616 		 * If we got called from prefetch abort, then ftype will have
   4617 		 * VM_PROT_EXECUTE set.  Now see if we have no-execute set in
   4618 		 * the PTE.
   4619 		 */
   4620 		if (user && (ftype & VM_PROT_EXECUTE) && (npte & L2_XS_XN)) {
   4621 			/*
   4622 			 * Is this a mapping of an executable page?
   4623 			 */
   4624 			if ((pv->pv_flags & PVF_EXEC) == 0) {
   4625 				pmap_release_page_lock(md);
   4626 				UVMHIST_LOG(maphist, " <-- done (ref emul: no exec)",
   4627 				    0, 0, 0, 0);
   4628 				goto out;
   4629 			}
   4630 			/*
   4631 			 * If we haven't synced the page, do so now.
   4632 			 */
   4633 			if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4634 				UVMHIST_LOG(maphist, " ref emul: syncicache "
   4635 				    "page #%#jx", pa, 0, 0, 0);
   4636 				pmap_syncicache_page(md, pa);
   4637 				PMAPCOUNT(fixup_exec);
   4638 			}
   4639 			npte &= ~L2_XS_XN;
   4640 		}
   4641 #endif /* ARM_MMU_EXTENDED */
   4642 		pmap_release_page_lock(md);
   4643 		l2pte_reset(ptep);
   4644 		PTE_SYNC(ptep);
   4645 		pmap_tlb_flush_SE(pm, va,
   4646 		    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4647 		l2pte_set(ptep, npte, 0);
   4648 		PTE_SYNC(ptep);
   4649 		PMAPCOUNT(fixup_ref);
   4650 		rv = 1;
   4651 		UVMHIST_LOG(maphist, " <-- done (ref emul: changed pte from "
   4652 		    "%#jx to %#jx)", opte, npte, 0, 0);
   4653 #ifdef ARM_MMU_EXTENDED
   4654 	} else if (user && (ftype & VM_PROT_EXECUTE) && (opte & L2_XS_XN)) {
   4655 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   4656 		if (pg == NULL) {
   4657 			UVMHIST_LOG(maphist, " <-- done (unmanaged page)", 0, 0, 0, 0);
   4658 			goto out;
   4659 		}
   4660 
   4661 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   4662 
   4663 		/* Get the current flags for this page. */
   4664 		pmap_acquire_page_lock(md);
   4665 		struct pv_entry * const pv = pmap_find_pv(md, pm, va);
   4666 		if (pv == NULL || (pv->pv_flags & PVF_EXEC) == 0) {
   4667 			pmap_release_page_lock(md);
   4668 			UVMHIST_LOG(maphist, " <-- done (no PV or not EXEC)", 0, 0, 0, 0);
   4669 			goto out;
   4670 		}
   4671 
   4672 		/*
   4673 		 * If we haven't synced the page, do so now.
   4674 		 */
   4675 		if ((md->pvh_attrs & PVF_EXEC) == 0) {
   4676 			UVMHIST_LOG(maphist, "syncicache page #%#jx",
   4677 			    pa, 0, 0, 0);
   4678 			pmap_syncicache_page(md, pa);
   4679 		}
   4680 		pmap_release_page_lock(md);
   4681 		/*
   4682 		 * Turn off no-execute.
   4683 		 */
   4684 		KASSERT(opte & L2_XS_nG);
   4685 		l2pte_reset(ptep);
   4686 		PTE_SYNC(ptep);
   4687 		pmap_tlb_flush_SE(pm, va, PVF_EXEC | PVF_REF);
   4688 		l2pte_set(ptep, opte & ~L2_XS_XN, 0);
   4689 		PTE_SYNC(ptep);
   4690 		rv = 1;
   4691 		PMAPCOUNT(fixup_exec);
   4692 		UVMHIST_LOG(maphist, "exec: changed pte from %#jx to %#jx",
   4693 		    opte, opte & ~L2_XS_XN, 0, 0);
   4694 #endif
   4695 	}
   4696 
   4697 #ifndef ARM_MMU_EXTENDED
   4698 	/*
   4699 	 * We know there is a valid mapping here, so simply
   4700 	 * fix up the L1 if necessary.
   4701 	 */
   4702 	pd_entry_t * const pdep = pmap_l1_kva(pm) + l1slot;
   4703 	pd_entry_t pde = L1_C_PROTO | l2b->l2b_pa | L1_C_DOM(pmap_domain(pm));
   4704 	if (*pdep != pde) {
   4705 		l1pte_setone(pdep, pde);
   4706 		PDE_SYNC(pdep);
   4707 		rv = 1;
   4708 		PMAPCOUNT(fixup_pdes);
   4709 	}
   4710 #endif
   4711 
   4712 #ifdef CPU_SA110
   4713 	/*
   4714 	 * There are bugs in the rev K SA110.  This is a check for one
   4715 	 * of them.
   4716 	 */
   4717 	if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 &&
   4718 	    curcpu()->ci_arm_cpurev < 3) {
   4719 		/* Always current pmap */
   4720 		if (l2pte_valid_p(opte)) {
   4721 			extern int kernel_debug;
   4722 			if (kernel_debug & 1) {
   4723 				struct proc *p = curlwp->l_proc;
   4724 				printf("prefetch_abort: page is already "
   4725 				    "mapped - pte=%p *pte=%08x\n", ptep, opte);
   4726 				printf("prefetch_abort: pc=%08lx proc=%p "
   4727 				    "process=%s\n", va, p, p->p_comm);
   4728 				printf("prefetch_abort: far=%08x fs=%x\n",
   4729 				    cpu_faultaddress(), cpu_faultstatus());
   4730 			}
   4731 #ifdef DDB
   4732 			if (kernel_debug & 2)
   4733 				Debugger();
   4734 #endif
   4735 			rv = 1;
   4736 		}
   4737 	}
   4738 #endif /* CPU_SA110 */
   4739 
   4740 #ifndef ARM_MMU_EXTENDED
   4741 	/*
   4742 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4743 	 * stale TLB entry for the faulting address.  That might be due to a
   4744 	 * wrong setting of pmap_needs_pte_sync.  So set it and retry.
   4745 	 */
   4746 	if (rv == 0
   4747 	    && pm->pm_l1->l1_domain_use_count == 1
   4748 	    && pmap_needs_pte_sync == 0) {
   4749 		pmap_needs_pte_sync = 1;
   4750 		PTE_SYNC(ptep);
   4751 		PMAPCOUNT(fixup_ptesync);
   4752 		rv = 1;
   4753 	}
   4754 #endif
   4755 
   4756 #ifndef MULTIPROCESSOR
   4757 #if defined(DEBUG) || 1
   4758 	/*
   4759 	 * If 'rv == 0' at this point, it generally indicates that there is a
   4760 	 * stale TLB entry for the faulting address. This happens when two or
   4761 	 * more processes are sharing an L1. Since we don't flush the TLB on
   4762 	 * a context switch between such processes, we can take domain faults
   4763 	 * for mappings which exist at the same VA in both processes. EVEN IF
   4764 	 * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for
   4765 	 * example.
   4766 	 *
   4767 	 * This is extremely likely to happen if pmap_enter() updated the L1
   4768 	 * entry for a recently entered mapping. In this case, the TLB is
   4769 	 * flushed for the new mapping, but there may still be TLB entries for
   4770 	 * other mappings belonging to other processes in the 1MB range
   4771 	 * covered by the L1 entry.
   4772 	 *
   4773 	 * Since 'rv == 0', we know that the L1 already contains the correct
   4774 	 * value, so the fault must be due to a stale TLB entry.
   4775 	 *
   4776 	 * Since we always need to flush the TLB anyway in the case where we
   4777 	 * fixed up the L1, or frobbed the L2 PTE, we effectively deal with
   4778 	 * stale TLB entries dynamically.
   4779 	 *
   4780 	 * However, the above condition can ONLY happen if the current L1 is
   4781 	 * being shared. If it happens when the L1 is unshared, it indicates
   4782 	 * that other parts of the pmap are not doing their job WRT managing
   4783 	 * the TLB.
   4784 	 */
   4785 	if (rv == 0
   4786 #ifndef ARM_MMU_EXTENDED
   4787 	    && pm->pm_l1->l1_domain_use_count == 1
   4788 #endif
   4789 	    && true) {
   4790 #ifdef DEBUG
   4791 		extern int last_fault_code;
   4792 #else
   4793 		int last_fault_code = ftype & VM_PROT_EXECUTE
   4794 		    ? armreg_ifsr_read()
   4795 		    : armreg_dfsr_read();
   4796 #endif
   4797 		printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n",
   4798 		    pm, va, ftype);
   4799 		printf("fixup: l2 %p, l2b %p, ptep %p, pte %#x\n",
   4800 		    l2, l2b, ptep, opte);
   4801 
   4802 #ifndef ARM_MMU_EXTENDED
   4803 		printf("fixup: pdep %p, pde %#x, fsr %#x\n",
   4804 		    pdep, pde, last_fault_code);
   4805 #else
   4806 		printf("fixup: pdep %p, pde %#x, ttbcr %#x\n",
   4807 		    &pmap_l1_kva(pm)[l1slot], pmap_l1_kva(pm)[l1slot],
   4808 		   armreg_ttbcr_read());
   4809 		printf("fixup: fsr %#x cpm %p casid %#x contextidr %#x dacr %#x\n",
   4810 		    last_fault_code, curcpu()->ci_pmap_cur,
   4811 		    curcpu()->ci_pmap_asid_cur,
   4812 		    armreg_contextidr_read(), armreg_dacr_read());
   4813 #ifdef _ARM_ARCH_7
   4814 		if (ftype & VM_PROT_WRITE)
   4815 			armreg_ats1cuw_write(va);
   4816 		else
   4817 			armreg_ats1cur_write(va);
   4818 		isb();
   4819 		printf("fixup: par %#x\n", armreg_par_read());
   4820 #endif
   4821 #endif
   4822 #ifdef DDB
   4823 		extern int kernel_debug;
   4824 
   4825 		if (kernel_debug & 2) {
   4826 			pmap_release_pmap_lock(pm);
   4827 #ifdef UVMHIST
   4828 			KERNHIST_DUMP(maphist);
   4829 #endif
   4830 			cpu_Debugger();
   4831 			pmap_acquire_pmap_lock(pm);
   4832 		}
   4833 #endif
   4834 	}
   4835 #endif
   4836 #endif
   4837 
   4838 #ifndef ARM_MMU_EXTENDED
   4839 	/* Flush the TLB in the shared L1 case - see comment above */
   4840 	pmap_tlb_flush_SE(pm, va,
   4841 	    (ftype & VM_PROT_EXECUTE) ? PVF_EXEC | PVF_REF : PVF_REF);
   4842 #endif
   4843 
   4844 	rv = 1;
   4845 
   4846 out:
   4847 	pmap_release_pmap_lock(pm);
   4848 	kpreempt_enable();
   4849 
   4850 	return rv;
   4851 }
   4852 
   4853 /*
   4854  * Routine:	pmap_procwr
   4855  *
   4856  * Function:
   4857  *	Synchronize caches corresponding to [addr, addr+len) in p.
   4858  *
   4859  */
   4860 void
   4861 pmap_procwr(struct proc *p, vaddr_t va, int len)
   4862 {
   4863 #ifndef ARM_MMU_EXTENDED
   4864 
   4865 	/* We only need to do anything if it is the current process. */
   4866 	if (p == curproc)
   4867 		cpu_icache_sync_range(va, len);
   4868 #endif
   4869 }
   4870 
   4871 /*
   4872  * Routine:	pmap_unwire
   4873  * Function:	Clear the wired attribute for a map/virtual-address pair.
   4874  *
   4875  * In/out conditions:
   4876  *		The mapping must already exist in the pmap.
   4877  */
   4878 void
   4879 pmap_unwire(pmap_t pm, vaddr_t va)
   4880 {
   4881 	struct l2_bucket *l2b;
   4882 	pt_entry_t *ptep, pte;
   4883 	struct vm_page *pg;
   4884 	paddr_t pa;
   4885 
   4886 	UVMHIST_FUNC(__func__);
   4887 	UVMHIST_CALLARGS(maphist, "pm %#jx va %#jx", (uintptr_t)pm, va, 0, 0);
   4888 
   4889 	kpreempt_disable();
   4890 	pmap_acquire_pmap_lock(pm);
   4891 
   4892 	l2b = pmap_get_l2_bucket(pm, va);
   4893 	KDASSERT(l2b != NULL);
   4894 
   4895 	ptep = &l2b->l2b_kva[l2pte_index(va)];
   4896 	pte = *ptep;
   4897 
   4898 	/* Extract the physical address of the page */
   4899 	pa = l2pte_pa(pte);
   4900 
   4901 	if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   4902 		/* Update the wired bit in the pv entry for this page. */
   4903 		struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   4904 
   4905 		pmap_acquire_page_lock(md);
   4906 		(void) pmap_modify_pv(md, pa, pm, va, PVF_WIRED, 0);
   4907 		pmap_release_page_lock(md);
   4908 	}
   4909 
   4910 	pmap_release_pmap_lock(pm);
   4911 	kpreempt_enable();
   4912 
   4913 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
   4914 }
   4915 
   4916 #ifdef ARM_MMU_EXTENDED
   4917 void
   4918 pmap_md_pdetab_activate(pmap_t pm, struct lwp *l)
   4919 {
   4920 	UVMHIST_FUNC(__func__);
   4921 	struct cpu_info * const ci = curcpu();
   4922 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
   4923 
   4924 	UVMHIST_CALLARGS(maphist, "pm %#jx (pm->pm_l1_pa %08jx asid %ju)",
   4925 	    (uintptr_t)pm, pm->pm_l1_pa, pai->pai_asid, 0);
   4926 
   4927 	/*
   4928 	 * Assume that TTBR1 has only global mappings and TTBR0 only
   4929 	 * has non-global mappings.  To prevent speculation from doing
   4930 	 * evil things we disable translation table walks using TTBR0
   4931 	 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
   4932 	 * Once both are set, table walks are reenabled.
   4933 	 */
   4934 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4935 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4936 	isb();
   4937 
   4938 	pmap_tlb_asid_acquire(pm, l);
   4939 
   4940 	cpu_setttb(pm->pm_l1_pa, pai->pai_asid);
   4941 	/*
   4942 	 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
   4943 	 * have been updated.
   4944 	 */
   4945 	isb();
   4946 
   4947 	if (pm != pmap_kernel()) {
   4948 		armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
   4949 	}
   4950 	cpu_cpwait();
   4951 
   4952 	KASSERTMSG(ci->ci_pmap_asid_cur == pai->pai_asid, "%u vs %u",
   4953 	    ci->ci_pmap_asid_cur, pai->pai_asid);
   4954 	ci->ci_pmap_cur = pm;
   4955 }
   4956 
   4957 void
   4958 pmap_md_pdetab_deactivate(pmap_t pm)
   4959 {
   4960 
   4961 	UVMHIST_FUNC(__func__);
   4962 	UVMHIST_CALLARGS(maphist, "pm %#jx", (uintptr_t)pm, 0, 0, 0);
   4963 
   4964 	kpreempt_disable();
   4965 	struct cpu_info * const ci = curcpu();
   4966 	/*
   4967 	 * Disable translation table walks from TTBR0 while no pmap has been
   4968 	 * activated.
   4969 	 */
   4970 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   4971 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   4972 	isb();
   4973 	pmap_tlb_asid_deactivate(pm);
   4974 	cpu_setttb(pmap_kernel()->pm_l1_pa, KERNEL_PID);
   4975 	isb();
   4976 
   4977 	ci->ci_pmap_cur = pmap_kernel();
   4978 	KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
   4979 	    ci->ci_pmap_asid_cur);
   4980 	kpreempt_enable();
   4981 }
   4982 #endif
   4983 
   4984 
   4985 #if defined(EFI_RUNTIME)
   4986 void
   4987 pmap_activate_efirt(void)
   4988 {
   4989 	struct pmap * const pm = &efirt_pmap;
   4990 
   4991 	UVMHIST_FUNC(__func__);
   4992 	UVMHIST_CALLARGS(maphist, " (pm=%#jx)", (uintptr_t)pm, 0, 0, 0);
   4993 
   4994 	KASSERT(kpreempt_disabled());
   4995 
   4996 	struct cpu_info * const ci = curcpu();
   4997 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(ci));
   4998 
   4999 	PMAPCOUNT(activations);
   5000 
   5001 	/*
   5002 	 * Assume that TTBR1 has only global mappings and TTBR0 only
   5003 	 * has non-global mappings.  To prevent speculation from doing
   5004 	 * evil things we disable translation table walks using TTBR0
   5005 	 * before setting the CONTEXTIDR (ASID) or new TTBR0 value.
   5006 	 * Once both are set, table walks are reenabled.
   5007 	 */
   5008 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   5009 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   5010 	isb();
   5011 
   5012 	armreg_contextidr_write(pai->pai_asid);
   5013 	armreg_ttbr_write(pm->pm_l1_pa |
   5014 	    (ci->ci_mpidr ? TTBR_MPATTR : TTBR_UPATTR));
   5015 	/*
   5016 	 * Now we can reenable tablewalks since the CONTEXTIDR and TTRB0
   5017 	 * have been updated.
   5018 	 */
   5019 	isb();
   5020 
   5021 	armreg_ttbcr_write(old_ttbcr & ~TTBCR_S_PD0);
   5022 
   5023 	ci->ci_pmap_asid_cur = pai->pai_asid;
   5024 	ci->ci_pmap_cur = pm;
   5025 
   5026 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
   5027 }
   5028 
   5029 #endif
   5030 
   5031 
   5032 void
   5033 pmap_activate(struct lwp *l)
   5034 {
   5035 	extern int block_userspace_access;
   5036 	pmap_t npm = l->l_proc->p_vmspace->vm_map.pmap;
   5037 
   5038 	UVMHIST_FUNC(__func__);
   5039 	UVMHIST_CALLARGS(maphist, "l=%#jx pm=%#jx", (uintptr_t)l,
   5040 	    (uintptr_t)npm, 0, 0);
   5041 
   5042 #ifdef ARM_MMU_EXTENDED
   5043 	KASSERT(kpreempt_disabled());
   5044 #endif
   5045 
   5046 	struct cpu_info * const ci = curcpu();
   5047 
   5048 	/*
   5049 	 * If activating a non-current lwp or the current lwp is
   5050 	 * already active, just return.
   5051 	 */
   5052 	if (false
   5053 	    || l != curlwp
   5054 #ifdef ARM_MMU_EXTENDED
   5055 	    || (ci->ci_pmap_cur == npm &&
   5056 		(npm == pmap_kernel()
   5057 		 /* || PMAP_PAI_ASIDVALID_P(pai, cpu_tlb_info(ci)) */))
   5058 #else
   5059 	    || npm->pm_activated == true
   5060 #endif
   5061 	    || false) {
   5062 		UVMHIST_LOG(maphist, " <-- (same pmap)", (uintptr_t)curlwp,
   5063 		    (uintptr_t)l, 0, 0);
   5064 		return;
   5065 	}
   5066 
   5067 #ifndef ARM_MMU_EXTENDED
   5068 	const uint32_t ndacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   5069 	    | (DOMAIN_CLIENT << (pmap_domain(npm) * 2));
   5070 
   5071 	/*
   5072 	 * If TTB and DACR are unchanged, short-circuit all the
   5073 	 * TLB/cache management stuff.
   5074 	 */
   5075 	pmap_t opm = ci->ci_lastlwp
   5076 	    ? ci->ci_lastlwp->l_proc->p_vmspace->vm_map.pmap
   5077 	    : NULL;
   5078 	if (opm != NULL) {
   5079 		uint32_t odacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2))
   5080 		    | (DOMAIN_CLIENT << (pmap_domain(opm) * 2));
   5081 
   5082 		if (opm->pm_l1 == npm->pm_l1 && odacr == ndacr)
   5083 			goto all_done;
   5084 	}
   5085 #endif /* !ARM_MMU_EXTENDED */
   5086 
   5087 	PMAPCOUNT(activations);
   5088 	block_userspace_access = 1;
   5089 
   5090 #ifndef ARM_MMU_EXTENDED
   5091 	/*
   5092 	 * If switching to a user vmspace which is different to the
   5093 	 * most recent one, and the most recent one is potentially
   5094 	 * live in the cache, we must write-back and invalidate the
   5095 	 * entire cache.
   5096 	 */
   5097 	pmap_t rpm = ci->ci_pmap_lastuser;
   5098 
   5099 	/*
   5100 	 * XXXSCW: There's a corner case here which can leave turds in the
   5101 	 * cache as reported in kern/41058. They're probably left over during
   5102 	 * tear-down and switching away from an exiting process. Until the root
   5103 	 * cause is identified and fixed, zap the cache when switching pmaps.
   5104 	 * This will result in a few unnecessary cache flushes, but that's
   5105 	 * better than silently corrupting data.
   5106 	 */
   5107 #if 0
   5108 	if (npm != pmap_kernel() && rpm && npm != rpm &&
   5109 	    rpm->pm_cstate.cs_cache) {
   5110 		rpm->pm_cstate.cs_cache = 0;
   5111 #ifdef PMAP_CACHE_VIVT
   5112 		cpu_idcache_wbinv_all();
   5113 #endif
   5114 	}
   5115 #else
   5116 	if (rpm) {
   5117 		rpm->pm_cstate.cs_cache = 0;
   5118 		if (npm == pmap_kernel())
   5119 			ci->ci_pmap_lastuser = NULL;
   5120 #ifdef PMAP_CACHE_VIVT
   5121 		cpu_idcache_wbinv_all();
   5122 #endif
   5123 	}
   5124 #endif
   5125 
   5126 	/* No interrupts while we frob the TTB/DACR */
   5127 	uint32_t oldirqstate = disable_interrupts(IF32_bits);
   5128 #endif /* !ARM_MMU_EXTENDED */
   5129 
   5130 #ifndef ARM_HAS_VBAR
   5131 	/*
   5132 	 * For ARM_VECTORS_LOW, we MUST, I repeat, MUST fix up the L1
   5133 	 * entry corresponding to 'vector_page' in the incoming L1 table
   5134 	 * before switching to it otherwise subsequent interrupts/exceptions
   5135 	 * (including domain faults!) will jump into hyperspace.
   5136 	 */
   5137 	if (npm->pm_pl1vec != NULL) {
   5138 		cpu_tlb_flushID_SE((u_int)vector_page);
   5139 		cpu_cpwait();
   5140 		*npm->pm_pl1vec = npm->pm_l1vec;
   5141 		PTE_SYNC(npm->pm_pl1vec);
   5142 	}
   5143 #endif
   5144 
   5145 #ifdef ARM_MMU_EXTENDED
   5146 	pmap_md_pdetab_activate(npm, l);
   5147 #else
   5148 	cpu_domains(ndacr);
   5149 	if (npm == pmap_kernel() || npm == rpm) {
   5150 		/*
   5151 		 * Switching to a kernel thread, or back to the
   5152 		 * same user vmspace as before... Simply update
   5153 		 * the TTB (no TLB flush required)
   5154 		 */
   5155 		cpu_setttb(npm->pm_l1->l1_physaddr, false);
   5156 		cpu_cpwait();
   5157 	} else {
   5158 		/*
   5159 		 * Otherwise, update TTB and flush TLB
   5160 		 */
   5161 		cpu_context_switch(npm->pm_l1->l1_physaddr);
   5162 		if (rpm != NULL)
   5163 			rpm->pm_cstate.cs_tlb = 0;
   5164 	}
   5165 
   5166 	restore_interrupts(oldirqstate);
   5167 #endif /* ARM_MMU_EXTENDED */
   5168 
   5169 	block_userspace_access = 0;
   5170 
   5171 #ifndef ARM_MMU_EXTENDED
   5172  all_done:
   5173 	/*
   5174 	 * The new pmap is resident. Make sure it's marked
   5175 	 * as resident in the cache/TLB.
   5176 	 */
   5177 	npm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5178 	if (npm != pmap_kernel())
   5179 		ci->ci_pmap_lastuser = npm;
   5180 
   5181 	/* The old pmap is not longer active */
   5182 	if (opm != npm) {
   5183 		if (opm != NULL)
   5184 			opm->pm_activated = false;
   5185 
   5186 		/* But the new one is */
   5187 		npm->pm_activated = true;
   5188 	}
   5189 	ci->ci_pmap_cur = npm;
   5190 #endif
   5191 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
   5192 }
   5193 
   5194 
   5195 void
   5196 pmap_deactivate(struct lwp *l)
   5197 {
   5198 	pmap_t pm = l->l_proc->p_vmspace->vm_map.pmap;
   5199 
   5200 	UVMHIST_FUNC(__func__);
   5201 	UVMHIST_CALLARGS(maphist, "l=%#jx (pm=%#jx)", (uintptr_t)l,
   5202 		(uintptr_t)pm, 0, 0);
   5203 
   5204 #ifdef ARM_MMU_EXTENDED
   5205 	KASSERT(kpreempt_disabled());
   5206 	pmap_md_pdetab_deactivate(pm);
   5207 #else
   5208 	/*
   5209 	 * If the process is exiting, make sure pmap_activate() does
   5210 	 * a full MMU context-switch and cache flush, which we might
   5211 	 * otherwise skip. See PR port-arm/38950.
   5212 	 */
   5213 	if (l->l_proc->p_sflag & PS_WEXIT)
   5214 		curcpu()->ci_lastlwp = NULL;
   5215 
   5216 	pm->pm_activated = false;
   5217 #endif
   5218 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   5219 }
   5220 
   5221 
   5222 #if defined(EFI_RUNTIME)
   5223 void
   5224 pmap_deactivate_efirt(void)
   5225 {
   5226 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
   5227 
   5228 	KASSERT(kpreempt_disabled());
   5229 	struct cpu_info * const ci = curcpu();
   5230 
   5231 	/*
   5232 	 * Disable translation table walks from TTBR0 while no pmap has been
   5233 	 * activated.
   5234 	 */
   5235 	const uint32_t old_ttbcr = armreg_ttbcr_read();
   5236 	armreg_ttbcr_write(old_ttbcr | TTBCR_S_PD0);
   5237 	isb();
   5238 
   5239 	armreg_contextidr_write(KERNEL_PID);
   5240 	isb();
   5241 
   5242 	KASSERTMSG(ci->ci_pmap_asid_cur == KERNEL_PID, "ci_pmap_asid_cur %u",
   5243 	    ci->ci_pmap_asid_cur);
   5244 
   5245 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
   5246 }
   5247 #endif
   5248 
   5249 
   5250 void
   5251 pmap_update(pmap_t pm)
   5252 {
   5253 
   5254 	UVMHIST_FUNC(__func__);
   5255 	UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
   5256 	    pm->pm_remove_all, 0, 0);
   5257 
   5258 #ifndef ARM_MMU_EXTENDED
   5259 	if (pm->pm_remove_all) {
   5260 		/*
   5261 		 * Finish up the pmap_remove_all() optimisation by flushing
   5262 		 * the TLB.
   5263 		 */
   5264 		pmap_tlb_flushID(pm);
   5265 		pm->pm_remove_all = false;
   5266 	}
   5267 
   5268 	if (pmap_is_current(pm)) {
   5269 		/*
   5270 		 * If we're dealing with a current userland pmap, move its L1
   5271 		 * to the end of the LRU.
   5272 		 */
   5273 		if (pm != pmap_kernel())
   5274 			pmap_use_l1(pm);
   5275 
   5276 		/*
   5277 		 * We can assume we're done with frobbing the cache/tlb for
   5278 		 * now. Make sure any future pmap ops don't skip cache/tlb
   5279 		 * flushes.
   5280 		 */
   5281 		pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5282 	}
   5283 #else
   5284 
   5285 	kpreempt_disable();
   5286 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
   5287 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
   5288 	if (pending && pmap_tlb_shootdown_bystanders(pmap)) {
   5289 		PMAP_COUNT(shootdown_ipis);
   5290 	}
   5291 #endif
   5292 
   5293 	/*
   5294 	 * If pmap_remove_all was called, we deactivated ourselves and released
   5295 	 * our ASID.  Now we have to reactivate ourselves.
   5296 	 */
   5297 	if (__predict_false(pm->pm_remove_all)) {
   5298 		pm->pm_remove_all = false;
   5299 
   5300 		KASSERT(pm != pmap_kernel());
   5301 		pmap_md_pdetab_activate(pm, curlwp);
   5302 	}
   5303 
   5304 	if (arm_has_mpext_p)
   5305 		armreg_bpiallis_write(0);
   5306 	else
   5307 		armreg_bpiall_write(0);
   5308 
   5309 	kpreempt_enable();
   5310 
   5311 	KASSERTMSG(pm == pmap_kernel()
   5312 	    || curcpu()->ci_pmap_cur != pm
   5313 	    || pm->pm_pai[0].pai_asid == curcpu()->ci_pmap_asid_cur,
   5314 	    "pmap/asid %p/%#x != %s cur pmap/asid %p/%#x", pm,
   5315 	    pm->pm_pai[0].pai_asid, curcpu()->ci_data.cpu_name,
   5316 	    curcpu()->ci_pmap_cur, curcpu()->ci_pmap_asid_cur);
   5317 #endif
   5318 
   5319 	PMAPCOUNT(updates);
   5320 
   5321 	/*
   5322 	 * make sure TLB/cache operations have completed.
   5323 	 */
   5324 	cpu_cpwait();
   5325 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   5326 }
   5327 
   5328 bool
   5329 pmap_remove_all(pmap_t pm)
   5330 {
   5331 
   5332 	UVMHIST_FUNC(__func__);
   5333 	UVMHIST_CALLARGS(maphist, "(pm=%#jx)", (uintptr_t)pm, 0, 0, 0);
   5334 
   5335 	KASSERT(pm != pmap_kernel());
   5336 
   5337 	kpreempt_disable();
   5338 	/*
   5339 	 * The vmspace described by this pmap is about to be torn down.
   5340 	 * Until pmap_update() is called, UVM will only make calls
   5341 	 * to pmap_remove(). We can make life much simpler by flushing
   5342 	 * the cache now, and deferring TLB invalidation to pmap_update().
   5343 	 */
   5344 #ifdef PMAP_CACHE_VIVT
   5345 	pmap_cache_wbinv_all(pm, PVF_EXEC);
   5346 #endif
   5347 #ifdef ARM_MMU_EXTENDED
   5348 #ifdef MULTIPROCESSOR
   5349 	struct cpu_info * const ci = curcpu();
   5350 	// This should be the last CPU with this pmap onproc
   5351 	KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
   5352 	if (kcpuset_isset(pm->pm_onproc, cpu_index(ci)))
   5353 #endif
   5354 		pmap_tlb_asid_deactivate(pm);
   5355 #ifdef MULTIPROCESSOR
   5356 	KASSERT(kcpuset_iszero(pm->pm_onproc));
   5357 #endif
   5358 
   5359 	pmap_tlb_asid_release_all(pm);
   5360 #endif
   5361 	pm->pm_remove_all = true;
   5362 	kpreempt_enable();
   5363 
   5364 	UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
   5365 	return false;
   5366 }
   5367 
   5368 /*
   5369  * Retire the given physical map from service.
   5370  * Should only be called if the map contains no valid mappings.
   5371  */
   5372 void
   5373 pmap_destroy(pmap_t pm)
   5374 {
   5375 	UVMHIST_FUNC(__func__);
   5376 	UVMHIST_CALLARGS(maphist, "pm=%#jx remove_all %jd", (uintptr_t)pm,
   5377 	    pm ? pm->pm_remove_all : 0, 0, 0);
   5378 
   5379 	if (pm == NULL)
   5380 		return;
   5381 
   5382 	if (pm->pm_remove_all) {
   5383 #ifdef ARM_MMU_EXTENDED
   5384  		pmap_tlb_asid_release_all(pm);
   5385 #else
   5386 		pmap_tlb_flushID(pm);
   5387 #endif
   5388 		pm->pm_remove_all = false;
   5389 	}
   5390 
   5391 	/*
   5392 	 * Drop reference count
   5393 	 */
   5394 	membar_release();
   5395 	if (atomic_dec_uint_nv(&pm->pm_refs) > 0) {
   5396 #ifndef ARM_MMU_EXTENDED
   5397 		if (pmap_is_current(pm)) {
   5398 			if (pm != pmap_kernel())
   5399 				pmap_use_l1(pm);
   5400 			pm->pm_cstate.cs_all = PMAP_CACHE_STATE_ALL;
   5401 		}
   5402 #endif
   5403 		return;
   5404 	}
   5405 	membar_acquire();
   5406 
   5407 	/*
   5408 	 * reference count is zero, free pmap resources and then free pmap.
   5409 	 */
   5410 
   5411 #ifndef ARM_HAS_VBAR
   5412 	if (vector_page < KERNEL_BASE) {
   5413 		KDASSERT(!pmap_is_current(pm));
   5414 
   5415 		/* Remove the vector page mapping */
   5416 		pmap_remove(pm, vector_page, vector_page + PAGE_SIZE);
   5417 		pmap_update(pm);
   5418 	}
   5419 #endif
   5420 
   5421 	pmap_free_l1(pm);
   5422 
   5423 #ifdef ARM_MMU_EXTENDED
   5424 #ifdef MULTIPROCESSOR
   5425 	kcpuset_destroy(pm->pm_active);
   5426 	kcpuset_destroy(pm->pm_onproc);
   5427 #endif
   5428 #else
   5429 	struct cpu_info * const ci = curcpu();
   5430 	if (ci->ci_pmap_lastuser == pm)
   5431 		ci->ci_pmap_lastuser = NULL;
   5432 #endif
   5433 
   5434 	mutex_destroy(&pm->pm_lock);
   5435 	pool_cache_put(&pmap_cache, pm);
   5436 	UVMHIST_LOG(maphist, "  <-- done", 0, 0, 0, 0);
   5437 }
   5438 
   5439 
   5440 /*
   5441  * void pmap_reference(pmap_t pm)
   5442  *
   5443  * Add a reference to the specified pmap.
   5444  */
   5445 void
   5446 pmap_reference(pmap_t pm)
   5447 {
   5448 
   5449 	if (pm == NULL)
   5450 		return;
   5451 
   5452 #ifndef ARM_MMU_EXTENDED
   5453 	pmap_use_l1(pm);
   5454 #endif
   5455 
   5456 	atomic_inc_uint(&pm->pm_refs);
   5457 }
   5458 
   5459 #if (ARM_MMU_V6 + ARM_MMU_V7) > 0
   5460 
   5461 static struct evcnt pmap_prefer_nochange_ev =
   5462     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "nochange");
   5463 static struct evcnt pmap_prefer_change_ev =
   5464     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap prefer", "change");
   5465 
   5466 EVCNT_ATTACH_STATIC(pmap_prefer_change_ev);
   5467 EVCNT_ATTACH_STATIC(pmap_prefer_nochange_ev);
   5468 
   5469 void
   5470 pmap_prefer(vaddr_t hint, vaddr_t *vap, int td)
   5471 {
   5472 	vsize_t mask = arm_cache_prefer_mask | (PAGE_SIZE - 1);
   5473 	vaddr_t va = *vap;
   5474 	vaddr_t diff = (hint - va) & mask;
   5475 	if (diff == 0) {
   5476 		pmap_prefer_nochange_ev.ev_count++;
   5477 	} else {
   5478 		pmap_prefer_change_ev.ev_count++;
   5479 		if (__predict_false(td))
   5480 			va -= mask + 1;
   5481 		*vap = va + diff;
   5482 	}
   5483 }
   5484 #endif /* ARM_MMU_V6 | ARM_MMU_V7 */
   5485 
   5486 /*
   5487  * pmap_zero_page()
   5488  *
   5489  * Zero a given physical page by mapping it at a page hook point.
   5490  * In doing the zero page op, the page we zero is mapped cachable, as with
   5491  * StrongARM accesses to non-cached pages are non-burst making writing
   5492  * _any_ bulk data very slow.
   5493  */
   5494 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5495 void
   5496 pmap_zero_page_generic(paddr_t pa)
   5497 {
   5498 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5499 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5500 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5501 #endif
   5502 #if defined(PMAP_CACHE_VIPT)
   5503 	/* Choose the last page color it had, if any */
   5504 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5505 #else
   5506 	const vsize_t va_offset = 0;
   5507 #endif
   5508 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5509 	/*
   5510 	 * Is this page mapped at its natural color?
   5511 	 * If we have all of memory mapped, then just convert PA to VA.
   5512 	 */
   5513 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5514 	   || va_offset == (pa & arm_cache_prefer_mask);
   5515 	const vaddr_t vdstp = okcolor
   5516 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5517 	    : cpu_cdstp(va_offset);
   5518 #else
   5519 	const bool okcolor = false;
   5520 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5521 #endif
   5522 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5523 
   5524 
   5525 #ifdef DEBUG
   5526 	if (!SLIST_EMPTY(&md->pvh_list))
   5527 		panic("pmap_zero_page: page has mappings");
   5528 #endif
   5529 
   5530 	KDASSERT((pa & PGOFSET) == 0);
   5531 
   5532 	if (!okcolor) {
   5533 		/*
   5534 		 * Hook in the page, zero it, and purge the cache for that
   5535 		 * zeroed page. Invalidate the TLB as needed.
   5536 		 */
   5537 		const pt_entry_t npte = L2_S_PROTO | pa | pte_l2_s_cache_mode
   5538 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE);
   5539 		l2pte_set(ptep, npte, 0);
   5540 		PTE_SYNC(ptep);
   5541 		cpu_tlb_flushD_SE(vdstp);
   5542 		cpu_cpwait();
   5543 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT) \
   5544     && !defined(ARM_MMU_EXTENDED)
   5545 		/*
   5546 		 * If we are direct-mapped and our color isn't ok, then before
   5547 		 * we bzero the page invalidate its contents from the cache and
   5548 		 * reset the color to its natural color.
   5549 		 */
   5550 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5551 		md->pvh_attrs &= ~arm_cache_prefer_mask;
   5552 		md->pvh_attrs |= (pa & arm_cache_prefer_mask);
   5553 #endif
   5554 	}
   5555 	bzero_page(vdstp);
   5556 	if (!okcolor) {
   5557 		/*
   5558 		 * Unmap the page.
   5559 		 */
   5560 		l2pte_reset(ptep);
   5561 		PTE_SYNC(ptep);
   5562 		cpu_tlb_flushD_SE(vdstp);
   5563 #ifdef PMAP_CACHE_VIVT
   5564 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5565 #endif
   5566 	}
   5567 #ifdef PMAP_CACHE_VIPT
   5568 	/*
   5569 	 * This page is now cache resident so it now has a page color.
   5570 	 * Any contents have been obliterated so clear the EXEC flag.
   5571 	 */
   5572 #ifndef ARM_MMU_EXTENDED
   5573 	if (!pmap_is_page_colored_p(md)) {
   5574 		PMAPCOUNT(vac_color_new);
   5575 		md->pvh_attrs |= PVF_COLORED;
   5576 	}
   5577 	md->pvh_attrs |= PVF_DIRTY;
   5578 #endif
   5579 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5580 		md->pvh_attrs &= ~PVF_EXEC;
   5581 		PMAPCOUNT(exec_discarded_zero);
   5582 	}
   5583 #endif
   5584 }
   5585 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5586 
   5587 #if ARM_MMU_XSCALE == 1
   5588 void
   5589 pmap_zero_page_xscale(paddr_t pa)
   5590 {
   5591 #ifdef DEBUG
   5592 	struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   5593 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5594 
   5595 	if (!SLIST_EMPTY(&md->pvh_list))
   5596 		panic("pmap_zero_page: page has mappings");
   5597 #endif
   5598 
   5599 	KDASSERT((pa & PGOFSET) == 0);
   5600 
   5601 	/*
   5602 	 * Hook in the page, zero it, and purge the cache for that
   5603 	 * zeroed page. Invalidate the TLB as needed.
   5604 	 */
   5605 
   5606 	pt_entry_t npte = L2_S_PROTO | pa |
   5607 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   5608 	    L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5609 	l2pte_set(cdst_pte, npte, 0);
   5610 	PTE_SYNC(cdst_pte);
   5611 	cpu_tlb_flushD_SE(cdstp);
   5612 	cpu_cpwait();
   5613 	bzero_page(cdstp);
   5614 	xscale_cache_clean_minidata();
   5615 	l2pte_reset(cdst_pte);
   5616 	PTE_SYNC(cdst_pte);
   5617 }
   5618 #endif /* ARM_MMU_XSCALE == 1 */
   5619 
   5620 /* pmap_pageidlezero()
   5621  *
   5622  * The same as above, except that we assume that the page is not
   5623  * mapped.  This means we never have to flush the cache first.  Called
   5624  * from the idle loop.
   5625  */
   5626 bool
   5627 pmap_pageidlezero(paddr_t pa)
   5628 {
   5629 	bool rv = true;
   5630 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5631 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   5632 	struct vm_page_md *md = VM_PAGE_TO_MD(pg);
   5633 #endif
   5634 #ifdef PMAP_CACHE_VIPT
   5635 	/* Choose the last page color it had, if any */
   5636 	const vsize_t va_offset = md->pvh_attrs & arm_cache_prefer_mask;
   5637 #else
   5638 	const vsize_t va_offset = 0;
   5639 #endif
   5640 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   5641 	bool okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5642 	   || va_offset == (pa & arm_cache_prefer_mask);
   5643 	const vaddr_t vdstp = okcolor
   5644 	    ? pmap_direct_mapped_phys(pa, &okcolor, cpu_cdstp(va_offset))
   5645 	    : cpu_cdstp(va_offset);
   5646 #else
   5647 	const bool okcolor = false;
   5648 	const vaddr_t vdstp = cpu_cdstp(va_offset);
   5649 #endif
   5650 	pt_entry_t * const ptep = cpu_cdst_pte(va_offset);
   5651 
   5652 
   5653 #ifdef DEBUG
   5654 	if (!SLIST_EMPTY(&md->pvh_list))
   5655 		panic("pmap_pageidlezero: page has mappings");
   5656 #endif
   5657 
   5658 	KDASSERT((pa & PGOFSET) == 0);
   5659 
   5660 	if (!okcolor) {
   5661 		/*
   5662 		 * Hook in the page, zero it, and purge the cache for that
   5663 		 * zeroed page. Invalidate the TLB as needed.
   5664 		 */
   5665 		const pt_entry_t npte = L2_S_PROTO | pa |
   5666 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5667 		l2pte_set(ptep, npte, 0);
   5668 		PTE_SYNC(ptep);
   5669 		cpu_tlb_flushD_SE(vdstp);
   5670 		cpu_cpwait();
   5671 	}
   5672 
   5673 	uint64_t *ptr = (uint64_t *)vdstp;
   5674 	for (size_t i = 0; i < PAGE_SIZE / sizeof(*ptr); i++) {
   5675 		if (sched_curcpu_runnable_p() != 0) {
   5676 			/*
   5677 			 * A process has become ready.  Abort now,
   5678 			 * so we don't keep it waiting while we
   5679 			 * do slow memory access to finish this
   5680 			 * page.
   5681 			 */
   5682 			rv = false;
   5683 			break;
   5684 		}
   5685 		*ptr++ = 0;
   5686 	}
   5687 
   5688 #ifdef PMAP_CACHE_VIVT
   5689 	if (rv)
   5690 		/*
   5691 		 * if we aborted we'll rezero this page again later so don't
   5692 		 * purge it unless we finished it
   5693 		 */
   5694 		cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5695 #elif defined(PMAP_CACHE_VIPT)
   5696 	/*
   5697 	 * This page is now cache resident so it now has a page color.
   5698 	 * Any contents have been obliterated so clear the EXEC flag.
   5699 	 */
   5700 #ifndef ARM_MMU_EXTENDED
   5701 	if (!pmap_is_page_colored_p(md)) {
   5702 		PMAPCOUNT(vac_color_new);
   5703 		md->pvh_attrs |= PVF_COLORED;
   5704 	}
   5705 #endif
   5706 	if (PV_IS_EXEC_P(md->pvh_attrs)) {
   5707 		md->pvh_attrs &= ~PVF_EXEC;
   5708 		PMAPCOUNT(exec_discarded_zero);
   5709 	}
   5710 #endif
   5711 	/*
   5712 	 * Unmap the page.
   5713 	 */
   5714 	if (!okcolor) {
   5715 		l2pte_reset(ptep);
   5716 		PTE_SYNC(ptep);
   5717 		cpu_tlb_flushD_SE(vdstp);
   5718 	}
   5719 
   5720 	return rv;
   5721 }
   5722 
   5723 /*
   5724  * pmap_copy_page()
   5725  *
   5726  * Copy one physical page into another, by mapping the pages into
   5727  * hook points. The same comment regarding cachability as in
   5728  * pmap_zero_page also applies here.
   5729  */
   5730 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   5731 void
   5732 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   5733 {
   5734 	struct vm_page * const src_pg = PHYS_TO_VM_PAGE(src);
   5735 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5736 #if defined(PMAP_CACHE_VIPT) || defined(DEBUG)
   5737 	struct vm_page * const dst_pg = PHYS_TO_VM_PAGE(dst);
   5738 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(dst_pg);
   5739 #endif
   5740 #ifdef PMAP_CACHE_VIPT
   5741 	const vsize_t src_va_offset = src_md->pvh_attrs & arm_cache_prefer_mask;
   5742 	const vsize_t dst_va_offset = dst_md->pvh_attrs & arm_cache_prefer_mask;
   5743 #else
   5744 	const vsize_t src_va_offset = 0;
   5745 	const vsize_t dst_va_offset = 0;
   5746 #endif
   5747 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   5748 	/*
   5749 	 * Is this page mapped at its natural color?
   5750 	 * If we have all of memory mapped, then just convert PA to VA.
   5751 	 */
   5752 	bool src_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5753 	    || src_va_offset == (src & arm_cache_prefer_mask);
   5754 	bool dst_okcolor = arm_pcache.dcache_type == CACHE_TYPE_PIPT
   5755 	    || dst_va_offset == (dst & arm_cache_prefer_mask);
   5756 	const vaddr_t vsrcp = src_okcolor
   5757 	    ? pmap_direct_mapped_phys(src, &src_okcolor,
   5758 		cpu_csrcp(src_va_offset))
   5759 	    : cpu_csrcp(src_va_offset);
   5760 	const vaddr_t vdstp = pmap_direct_mapped_phys(dst, &dst_okcolor,
   5761 	    cpu_cdstp(dst_va_offset));
   5762 #else
   5763 	const bool src_okcolor = false;
   5764 	const bool dst_okcolor = false;
   5765 	const vaddr_t vsrcp = cpu_csrcp(src_va_offset);
   5766 	const vaddr_t vdstp = cpu_cdstp(dst_va_offset);
   5767 #endif
   5768 	pt_entry_t * const src_ptep = cpu_csrc_pte(src_va_offset);
   5769 	pt_entry_t * const dst_ptep = cpu_cdst_pte(dst_va_offset);
   5770 
   5771 #ifdef DEBUG
   5772 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5773 		panic("pmap_copy_page: dst page has mappings");
   5774 #endif
   5775 
   5776 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5777 	KASSERT(arm_cache_prefer_mask == 0 || src_md->pvh_attrs & (PVF_COLORED|PVF_NC));
   5778 #endif
   5779 	KDASSERT((src & PGOFSET) == 0);
   5780 	KDASSERT((dst & PGOFSET) == 0);
   5781 
   5782 	/*
   5783 	 * Clean the source page.  Hold the source page's lock for
   5784 	 * the duration of the copy so that no other mappings can
   5785 	 * be created while we have a potentially aliased mapping.
   5786 	 */
   5787 #ifdef PMAP_CACHE_VIVT
   5788 	pmap_acquire_page_lock(src_md);
   5789 	(void) pmap_clean_page(src_md, true);
   5790 	pmap_release_page_lock(src_md);
   5791 #endif
   5792 
   5793 	/*
   5794 	 * Map the pages into the page hook points, copy them, and purge
   5795 	 * the cache for the appropriate page. Invalidate the TLB
   5796 	 * as required.
   5797 	 */
   5798 	if (!src_okcolor) {
   5799 		const pt_entry_t nsrc_pte = L2_S_PROTO
   5800 		    | src
   5801 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   5802 		    | ((src_md->pvh_attrs & PVF_NC) ? 0 : pte_l2_s_cache_mode)
   5803 #else // defined(PMAP_CACHE_VIVT) || defined(ARM_MMU_EXTENDED)
   5804 		    | pte_l2_s_cache_mode
   5805 #endif
   5806 		    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ);
   5807 		l2pte_set(src_ptep, nsrc_pte, 0);
   5808 		PTE_SYNC(src_ptep);
   5809 		cpu_tlb_flushD_SE(vsrcp);
   5810 		cpu_cpwait();
   5811 	}
   5812 	if (!dst_okcolor) {
   5813 		const pt_entry_t ndst_pte = L2_S_PROTO | dst |
   5814 		    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   5815 		l2pte_set(dst_ptep, ndst_pte, 0);
   5816 		PTE_SYNC(dst_ptep);
   5817 		cpu_tlb_flushD_SE(vdstp);
   5818 		cpu_cpwait();
   5819 #if defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS) && defined(PMAP_CACHE_VIPT)
   5820 		/*
   5821 		 * If we are direct-mapped and our color isn't ok, then before
   5822 		 * we bcopy to the new page invalidate its contents from the
   5823 		 * cache and reset its color to its natural color.
   5824 		 */
   5825 		cpu_dcache_inv_range(vdstp, PAGE_SIZE);
   5826 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5827 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5828 #endif
   5829 	}
   5830 	bcopy_page(vsrcp, vdstp);
   5831 #ifdef PMAP_CACHE_VIVT
   5832 	cpu_dcache_inv_range(vsrcp, PAGE_SIZE);
   5833 	cpu_dcache_wbinv_range(vdstp, PAGE_SIZE);
   5834 #endif
   5835 	/*
   5836 	 * Unmap the pages.
   5837 	 */
   5838 	if (!src_okcolor) {
   5839 		l2pte_reset(src_ptep);
   5840 		PTE_SYNC(src_ptep);
   5841 		cpu_tlb_flushD_SE(vsrcp);
   5842 		cpu_cpwait();
   5843 	}
   5844 	if (!dst_okcolor) {
   5845 		l2pte_reset(dst_ptep);
   5846 		PTE_SYNC(dst_ptep);
   5847 		cpu_tlb_flushD_SE(vdstp);
   5848 		cpu_cpwait();
   5849 	}
   5850 #ifdef PMAP_CACHE_VIPT
   5851 	/*
   5852 	 * Now that the destination page is in the cache, mark it as colored.
   5853 	 * If this was an exec page, discard it.
   5854 	 */
   5855 	pmap_acquire_page_lock(dst_md);
   5856 #ifndef ARM_MMU_EXTENDED
   5857 	if (arm_pcache.cache_type == CACHE_TYPE_PIPT) {
   5858 		dst_md->pvh_attrs &= ~arm_cache_prefer_mask;
   5859 		dst_md->pvh_attrs |= (dst & arm_cache_prefer_mask);
   5860 	}
   5861 	if (!pmap_is_page_colored_p(dst_md)) {
   5862 		PMAPCOUNT(vac_color_new);
   5863 		dst_md->pvh_attrs |= PVF_COLORED;
   5864 	}
   5865 	dst_md->pvh_attrs |= PVF_DIRTY;
   5866 #endif
   5867 	if (PV_IS_EXEC_P(dst_md->pvh_attrs)) {
   5868 		dst_md->pvh_attrs &= ~PVF_EXEC;
   5869 		PMAPCOUNT(exec_discarded_copy);
   5870 	}
   5871 	pmap_release_page_lock(dst_md);
   5872 #endif
   5873 }
   5874 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   5875 
   5876 #if ARM_MMU_XSCALE == 1
   5877 void
   5878 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   5879 {
   5880 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   5881 	struct vm_page_md *src_md = VM_PAGE_TO_MD(src_pg);
   5882 #ifdef DEBUG
   5883 	struct vm_page_md *dst_md = VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst));
   5884 
   5885 	if (!SLIST_EMPTY(&dst_md->pvh_list))
   5886 		panic("pmap_copy_page: dst page has mappings");
   5887 #endif
   5888 
   5889 	KDASSERT((src & PGOFSET) == 0);
   5890 	KDASSERT((dst & PGOFSET) == 0);
   5891 
   5892 	/*
   5893 	 * Clean the source page.  Hold the source page's lock for
   5894 	 * the duration of the copy so that no other mappings can
   5895 	 * be created while we have a potentially aliased mapping.
   5896 	 */
   5897 #ifdef PMAP_CACHE_VIVT
   5898 	pmap_acquire_page_lock(src_md);
   5899 	(void) pmap_clean_page(src_md, true);
   5900 	pmap_release_page_lock(src_md);
   5901 #endif
   5902 
   5903 	/*
   5904 	 * Map the pages into the page hook points, copy them, and purge
   5905 	 * the cache for the appropriate page. Invalidate the TLB
   5906 	 * as required.
   5907 	 */
   5908 	const pt_entry_t nsrc_pte = L2_S_PROTO | src
   5909 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   5910 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5911 	l2pte_set(csrc_pte, nsrc_pte, 0);
   5912 	PTE_SYNC(csrc_pte);
   5913 
   5914 	const pt_entry_t ndst_pte = L2_S_PROTO | dst
   5915 	    | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE)
   5916 	    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X);	/* mini-data */
   5917 	l2pte_set(cdst_pte, ndst_pte, 0);
   5918 	PTE_SYNC(cdst_pte);
   5919 
   5920 	cpu_tlb_flushD_SE(csrcp);
   5921 	cpu_tlb_flushD_SE(cdstp);
   5922 	cpu_cpwait();
   5923 	bcopy_page(csrcp, cdstp);
   5924 	xscale_cache_clean_minidata();
   5925 	l2pte_reset(csrc_pte);
   5926 	l2pte_reset(cdst_pte);
   5927 	PTE_SYNC(csrc_pte);
   5928 	PTE_SYNC(cdst_pte);
   5929 }
   5930 #endif /* ARM_MMU_XSCALE == 1 */
   5931 
   5932 /*
   5933  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5934  *
   5935  * Return the start and end addresses of the kernel's virtual space.
   5936  * These values are setup in pmap_bootstrap and are updated as pages
   5937  * are allocated.
   5938  */
   5939 void
   5940 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   5941 {
   5942 	*start = virtual_avail;
   5943 	*end = virtual_end;
   5944 }
   5945 
   5946 /*
   5947  * Helper function for pmap_grow_l2_bucket()
   5948  */
   5949 static inline int
   5950 pmap_grow_map(vaddr_t va, paddr_t *pap)
   5951 {
   5952 	paddr_t pa;
   5953 
   5954 	KASSERT((va & PGOFSET) == 0);
   5955 
   5956 	if (uvm.page_init_done == false) {
   5957 #ifdef PMAP_STEAL_MEMORY
   5958 		pv_addr_t pv;
   5959 		pmap_boot_pagealloc(PAGE_SIZE,
   5960 #ifdef PMAP_CACHE_VIPT
   5961 		    arm_cache_prefer_mask,
   5962 		    va & arm_cache_prefer_mask,
   5963 #else
   5964 		    0, 0,
   5965 #endif
   5966 		    &pv);
   5967 		pa = pv.pv_pa;
   5968 #else
   5969 		if (uvm_page_physget(&pa) == false)
   5970 			return 1;
   5971 #endif	/* PMAP_STEAL_MEMORY */
   5972 	} else {
   5973 		struct vm_page *pg;
   5974 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
   5975 		if (pg == NULL)
   5976 			return 1;
   5977 		pa = VM_PAGE_TO_PHYS(pg);
   5978 		/*
   5979 		 * This new page must not have any mappings.
   5980 		 */
   5981 		struct vm_page_md *md __diagused = VM_PAGE_TO_MD(pg);
   5982 		KASSERT(SLIST_EMPTY(&md->pvh_list));
   5983 	}
   5984 
   5985 	/*
   5986 	 * Enter it via pmap_kenter_pa and let that routine do the hard work.
   5987 	 */
   5988 	pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
   5989 	    PMAP_KMPAGE | PMAP_PTE);
   5990 
   5991 	if (pap)
   5992 		*pap = pa;
   5993 
   5994 	PMAPCOUNT(pt_mappings);
   5995 
   5996 	const pmap_t kpm __diagused = pmap_kernel();
   5997 	struct l2_bucket * const l2b __diagused = pmap_get_l2_bucket(kpm, va);
   5998 	KASSERT(l2b != NULL);
   5999 
   6000 	pt_entry_t * const ptep __diagused = &l2b->l2b_kva[l2pte_index(va)];
   6001 	const pt_entry_t pte __diagused = *ptep;
   6002 	KASSERT(l2pte_valid_p(pte));
   6003 	KASSERT((pte & L2_S_CACHE_MASK) == pte_l2_s_cache_mode_pt);
   6004 
   6005 	memset((void *)va, 0, PAGE_SIZE);
   6006 
   6007 	return 0;
   6008 }
   6009 
   6010 /*
   6011  * This is the same as pmap_alloc_l2_bucket(), except that it is only
   6012  * used by pmap_growkernel().
   6013  */
   6014 static inline struct l2_bucket *
   6015 pmap_grow_l2_bucket(pmap_t pm, vaddr_t va)
   6016 {
   6017 	const size_t l1slot = l1pte_index(va);
   6018 	struct l2_dtable *l2;
   6019 	vaddr_t nva;
   6020 
   6021 	CTASSERT((PAGE_SIZE % L2_TABLE_SIZE_REAL) == 0);
   6022 	if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   6023 		/*
   6024 		 * No mapping at this address, as there is
   6025 		 * no entry in the L1 table.
   6026 		 * Need to allocate a new l2_dtable.
   6027 		 */
   6028 		nva = pmap_kernel_l2dtable_kva;
   6029 		if ((nva & PGOFSET) == 0) {
   6030 			/*
   6031 			 * Need to allocate a backing page
   6032 			 */
   6033 			if (pmap_grow_map(nva, NULL))
   6034 				return NULL;
   6035 		}
   6036 
   6037 		l2 = (struct l2_dtable *)nva;
   6038 		nva += sizeof(struct l2_dtable);
   6039 
   6040 		if ((nva & PGOFSET) < (pmap_kernel_l2dtable_kva & PGOFSET)) {
   6041 			/*
   6042 			 * The new l2_dtable straddles a page boundary.
   6043 			 * Map in another page to cover it.
   6044 			 */
   6045 			if (pmap_grow_map(nva & ~PGOFSET, NULL))
   6046 				return NULL;
   6047 		}
   6048 
   6049 		pmap_kernel_l2dtable_kva = nva;
   6050 
   6051 		/*
   6052 		 * Link it into the parent pmap
   6053 		 */
   6054 		pm->pm_l2[L2_IDX(l1slot)] = l2;
   6055 	}
   6056 
   6057 	struct l2_bucket * const l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   6058 
   6059 	/*
   6060 	 * Fetch pointer to the L2 page table associated with the address.
   6061 	 */
   6062 	if (l2b->l2b_kva == NULL) {
   6063 		pt_entry_t *ptep;
   6064 
   6065 		/*
   6066 		 * No L2 page table has been allocated. Chances are, this
   6067 		 * is because we just allocated the l2_dtable, above.
   6068 		 */
   6069 		nva = pmap_kernel_l2ptp_kva;
   6070 		ptep = (pt_entry_t *)nva;
   6071 		if ((nva & PGOFSET) == 0) {
   6072 			/*
   6073 			 * Need to allocate a backing page
   6074 			 */
   6075 			if (pmap_grow_map(nva, &pmap_kernel_l2ptp_phys))
   6076 				return NULL;
   6077 			PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t));
   6078 		}
   6079 
   6080 		l2->l2_occupancy++;
   6081 		l2b->l2b_kva = ptep;
   6082 		l2b->l2b_l1slot = l1slot;
   6083 		l2b->l2b_pa = pmap_kernel_l2ptp_phys;
   6084 
   6085 		pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL;
   6086 		pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL;
   6087 	}
   6088 
   6089 	return l2b;
   6090 }
   6091 
   6092 vaddr_t
   6093 pmap_growkernel(vaddr_t maxkvaddr)
   6094 {
   6095 	UVMHIST_FUNC(__func__);
   6096 	UVMHIST_CALLARGS(maphist, "growing kernel from %#jx to %#jx",
   6097 	    pmap_curmaxkvaddr, maxkvaddr, 0, 0);
   6098 
   6099 	pmap_t kpm = pmap_kernel();
   6100 #ifndef ARM_MMU_EXTENDED
   6101 	struct l1_ttable *l1;
   6102 #endif
   6103 	int s;
   6104 
   6105 	if (maxkvaddr <= pmap_curmaxkvaddr)
   6106 		goto out;		/* we are OK */
   6107 
   6108 	KDASSERT(maxkvaddr <= virtual_end);
   6109 
   6110 	/*
   6111 	 * whoops!   we need to add kernel PTPs
   6112 	 */
   6113 
   6114 	vaddr_t pmap_maxkvaddr = pmap_curmaxkvaddr;
   6115 
   6116 	s = splvm();	/* to be safe */
   6117 	mutex_enter(&kpm_lock);
   6118 
   6119 	/* Map 1MB at a time */
   6120 	size_t l1slot = l1pte_index(pmap_maxkvaddr);
   6121 #ifdef ARM_MMU_EXTENDED
   6122 	pd_entry_t * const spdep = &kpm->pm_l1[l1slot];
   6123 	pd_entry_t *pdep = spdep;
   6124 #endif
   6125 	for (;pmap_curmaxkvaddr < maxkvaddr; pmap_curmaxkvaddr += L1_S_SIZE,
   6126 #ifdef ARM_MMU_EXTENDED
   6127 	     pdep++,
   6128 #endif
   6129 	     l1slot++) {
   6130 		struct l2_bucket *l2b =
   6131 		    pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr);
   6132 		KASSERT(l2b != NULL);
   6133 
   6134 		const pd_entry_t npde = L1_C_PROTO | l2b->l2b_pa
   6135 		    | L1_C_DOM(PMAP_DOMAIN_KERNEL);
   6136 #ifdef ARM_MMU_EXTENDED
   6137 		KASSERT(*pdep == 0);
   6138 		l1pte_setone(pdep, npde);
   6139 #else
   6140 		/* Distribute new L1 entry to all L1s */
   6141 		SLIST_FOREACH(l1, &l1_list, l1_link) {
   6142 			pd_entry_t * const pdep = &l1->l1_kva[l1slot];
   6143 			l1pte_setone(pdep, npde);
   6144 			PDE_SYNC(pdep);
   6145 		}
   6146 #endif
   6147 	}
   6148 #ifdef ARM_MMU_EXTENDED
   6149 	PDE_SYNC_RANGE(spdep, pdep - spdep);
   6150 #endif
   6151 
   6152 #ifdef PMAP_CACHE_VIVT
   6153 	/*
   6154 	 * flush out the cache, expensive but growkernel will happen so
   6155 	 * rarely
   6156 	 */
   6157 	cpu_dcache_wbinv_all();
   6158 	cpu_tlb_flushD();
   6159 	cpu_cpwait();
   6160 #endif
   6161 
   6162 	mutex_exit(&kpm_lock);
   6163 	splx(s);
   6164 
   6165 	kasan_shadow_map((void *)pmap_maxkvaddr,
   6166 	    (size_t)(pmap_curmaxkvaddr - pmap_maxkvaddr));
   6167 
   6168 out:
   6169 	return pmap_curmaxkvaddr;
   6170 }
   6171 
   6172 /************************ Utility routines ****************************/
   6173 
   6174 #ifndef ARM_HAS_VBAR
   6175 /*
   6176  * vector_page_setprot:
   6177  *
   6178  *	Manipulate the protection of the vector page.
   6179  */
   6180 void
   6181 vector_page_setprot(int prot)
   6182 {
   6183 	struct l2_bucket *l2b;
   6184 	pt_entry_t *ptep;
   6185 
   6186 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
   6187 	/*
   6188 	 * If we are using VBAR to use the vectors in the kernel, then it's
   6189 	 * already mapped in the kernel text so no need to anything here.
   6190 	 */
   6191 	if (vector_page != ARM_VECTORS_LOW && vector_page != ARM_VECTORS_HIGH) {
   6192 		KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
   6193 		return;
   6194 	}
   6195 #endif
   6196 
   6197 	l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page);
   6198 	KASSERT(l2b != NULL);
   6199 
   6200 	ptep = &l2b->l2b_kva[l2pte_index(vector_page)];
   6201 
   6202 	const pt_entry_t opte = *ptep;
   6203 #ifdef ARM_MMU_EXTENDED
   6204 	const pt_entry_t npte = (opte & ~(L2_S_PROT_MASK|L2_XS_XN))
   6205 	    | L2_S_PROT(PTE_KERNEL, prot);
   6206 #else
   6207 	const pt_entry_t npte = (opte & ~L2_S_PROT_MASK)
   6208 	    | L2_S_PROT(PTE_KERNEL, prot);
   6209 #endif
   6210 	l2pte_set(ptep, npte, opte);
   6211 	PTE_SYNC(ptep);
   6212 	cpu_tlb_flushD_SE(vector_page);
   6213 	cpu_cpwait();
   6214 }
   6215 #endif
   6216 
   6217 /*
   6218  * Fetch pointers to the PDE/PTE for the given pmap/VA pair.
   6219  * Returns true if the mapping exists, else false.
   6220  *
   6221  * NOTE: This function is only used by a couple of arm-specific modules.
   6222  * It is not safe to take any pmap locks here, since we could be right
   6223  * in the middle of debugging the pmap anyway...
   6224  *
   6225  * It is possible for this routine to return false even though a valid
   6226  * mapping does exist. This is because we don't lock, so the metadata
   6227  * state may be inconsistent.
   6228  *
   6229  * NOTE: We can return a NULL *ptp in the case where the L1 pde is
   6230  * a "section" mapping.
   6231  */
   6232 bool
   6233 pmap_get_pde_pte(pmap_t pm, vaddr_t va, pd_entry_t **pdp, pt_entry_t **ptp)
   6234 {
   6235 	struct l2_dtable *l2;
   6236 	pd_entry_t *pdep, pde;
   6237 	pt_entry_t *ptep;
   6238 	u_short l1slot;
   6239 
   6240 	if (pm->pm_l1 == NULL)
   6241 		return false;
   6242 
   6243 	l1slot = l1pte_index(va);
   6244 	*pdp = pdep = pmap_l1_kva(pm) + l1slot;
   6245 	pde = *pdep;
   6246 
   6247 	if (l1pte_section_p(pde)) {
   6248 		*ptp = NULL;
   6249 		return true;
   6250 	}
   6251 
   6252 	l2 = pm->pm_l2[L2_IDX(l1slot)];
   6253 	if (l2 == NULL ||
   6254 	    (ptep = l2->l2_bucket[L2_BUCKET(l1slot)].l2b_kva) == NULL) {
   6255 		return false;
   6256 	}
   6257 
   6258 	*ptp = &ptep[l2pte_index(va)];
   6259 	return true;
   6260 }
   6261 
   6262 bool
   6263 pmap_get_pde(pmap_t pm, vaddr_t va, pd_entry_t **pdp)
   6264 {
   6265 
   6266 	if (pm->pm_l1 == NULL)
   6267 		return false;
   6268 
   6269 	*pdp = pmap_l1_kva(pm) + l1pte_index(va);
   6270 
   6271 	return true;
   6272 }
   6273 
   6274 /************************ Bootstrapping routines ****************************/
   6275 
   6276 #ifndef ARM_MMU_EXTENDED
   6277 static void
   6278 pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt)
   6279 {
   6280 	int i;
   6281 
   6282 	l1->l1_kva = l1pt;
   6283 	l1->l1_domain_use_count = 0;
   6284 	l1->l1_domain_first = 0;
   6285 
   6286 	for (i = 0; i < PMAP_DOMAINS; i++)
   6287 		l1->l1_domain_free[i] = i + 1;
   6288 
   6289 	/*
   6290 	 * Copy the kernel's L1 entries to each new L1.
   6291 	 */
   6292 	if (pmap_initialized)
   6293 		memcpy(l1pt, pmap_l1_kva(pmap_kernel()), L1_TABLE_SIZE);
   6294 
   6295 	if (pmap_extract(pmap_kernel(), (vaddr_t)l1pt,
   6296 	    &l1->l1_physaddr) == false)
   6297 		panic("pmap_init_l1: can't get PA of L1 at %p", l1pt);
   6298 
   6299 	SLIST_INSERT_HEAD(&l1_list, l1, l1_link);
   6300 	TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru);
   6301 }
   6302 #endif /* !ARM_MMU_EXTENDED */
   6303 
   6304 /*
   6305  * pmap_bootstrap() is called from the board-specific initarm() routine
   6306  * once the kernel L1/L2 descriptors tables have been set up.
   6307  *
   6308  * This is a somewhat convoluted process since pmap bootstrap is, effectively,
   6309  * spread over a number of disparate files/functions.
   6310  *
   6311  * We are passed the following parameters
   6312  *  - vstart
   6313  *    1MB-aligned start of managed kernel virtual memory.
   6314  *  - vend
   6315  *    1MB-aligned end of managed kernel virtual memory.
   6316  *
   6317  * We use 'kernel_l1pt' to build the metadata (struct l1_ttable and
   6318  * struct l2_dtable) necessary to track kernel mappings.
   6319  */
   6320 #define	PMAP_STATIC_L2_SIZE 16
   6321 void
   6322 pmap_bootstrap(vaddr_t vstart, vaddr_t vend)
   6323 {
   6324 	static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE];
   6325 #ifndef ARM_MMU_EXTENDED
   6326 	static struct l1_ttable static_l1;
   6327 	struct l1_ttable *l1 = &static_l1;
   6328 #endif
   6329 	struct l2_dtable *l2;
   6330 	struct l2_bucket *l2b;
   6331 	pd_entry_t *l1pt = (pd_entry_t *) kernel_l1pt.pv_va;
   6332 	pmap_t pm = pmap_kernel();
   6333 	pt_entry_t *ptep;
   6334 	paddr_t pa;
   6335 	vsize_t size;
   6336 	int nptes, l2idx, l2next = 0;
   6337 
   6338 #ifdef ARM_MMU_EXTENDED
   6339 	KASSERT(pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt);
   6340 	KASSERT(pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt);
   6341 #endif
   6342 
   6343 	VPRINTF("kpm ");
   6344 	/*
   6345 	 * Initialise the kernel pmap object
   6346 	 */
   6347 	curcpu()->ci_pmap_cur = pm;
   6348 	pm->pm_refs = 1;
   6349 #ifdef ARM_MMU_EXTENDED
   6350 	pm->pm_l1 = l1pt;
   6351 	pm->pm_l1_pa = kernel_l1pt.pv_pa;
   6352 	VPRINTF("tlb0 ");
   6353 	pmap_tlb_info_init(&pmap_tlb0_info);
   6354 #ifdef MULTIPROCESSOR
   6355 	VPRINTF("kcpusets ");
   6356 	pm->pm_onproc = kcpuset_running;
   6357 	pm->pm_active = kcpuset_running;
   6358 #endif
   6359 #else
   6360 	pm->pm_l1 = l1;
   6361 #endif
   6362 	mutex_init(&pm->pm_lock, MUTEX_DEFAULT, IPL_VM);
   6363 
   6364 
   6365 #if defined(EFI_RUNTIME)
   6366 	VPRINTF("efirt ");
   6367 	memset(&efirt_pmap, 0, sizeof(efirt_pmap));
   6368 	struct pmap * const efipm = &efirt_pmap;
   6369 	struct pmap_asid_info * const efipai = PMAP_PAI(efipm, cpu_tlb_info(curcpu()));
   6370 
   6371 	efipai->pai_asid = KERNEL_PID;
   6372 	efipm->pm_refs = 1;
   6373 	efipm->pm_stats.wired_count = 0;
   6374 	efipm->pm_stats.resident_count = 1;
   6375 	efipm->pm_l1 = (pd_entry_t *)efirt_l1pt.pv_va;
   6376 	efipm->pm_l1_pa = efirt_l1pt.pv_pa;
   6377 	// Needed?
   6378 #ifdef MULTIPROCESSOR
   6379 	kcpuset_create(&efipm->pm_active, true);
   6380 	kcpuset_create(&efipm->pm_onproc, true);
   6381 #endif
   6382 	mutex_init(&efipm->pm_lock, MUTEX_DEFAULT, IPL_NONE);
   6383 #endif
   6384 
   6385 	VPRINTF("locks ");
   6386 	/*
   6387 	 * pmap_kenter_pa() and pmap_kremove() may be called from interrupt
   6388 	 * context, so its locks have to be at IPL_VM
   6389 	 */
   6390 	mutex_init(&pmap_lock, MUTEX_DEFAULT, IPL_VM);
   6391 	mutex_init(&kpm_lock, MUTEX_DEFAULT, IPL_NONE);
   6392 
   6393 	VPRINTF("l1pt ");
   6394 	/*
   6395 	 * Scan the L1 translation table created by initarm() and create
   6396 	 * the required metadata for all valid mappings found in it.
   6397 	 */
   6398 	for (size_t l1slot = 0;
   6399 	     l1slot < L1_TABLE_SIZE / sizeof(pd_entry_t);
   6400 	     l1slot++) {
   6401 		pd_entry_t pde = l1pt[l1slot];
   6402 
   6403 		/*
   6404 		 * We're only interested in Coarse mappings.
   6405 		 * pmap_extract() can deal with section mappings without
   6406 		 * recourse to checking L2 metadata.
   6407 		 */
   6408 		if ((pde & L1_TYPE_MASK) != L1_TYPE_C)
   6409 			continue;
   6410 
   6411 		/*
   6412 		 * Lookup the KVA of this L2 descriptor table
   6413 		 */
   6414 		pa = l1pte_pa(pde);
   6415 		ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6416 		if (ptep == NULL) {
   6417 			panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx",
   6418 			    (u_int)l1slot << L1_S_SHIFT, pa);
   6419 		}
   6420 
   6421 		/*
   6422 		 * Fetch the associated L2 metadata structure.
   6423 		 * Allocate a new one if necessary.
   6424 		 */
   6425 		if ((l2 = pm->pm_l2[L2_IDX(l1slot)]) == NULL) {
   6426 			if (l2next == PMAP_STATIC_L2_SIZE)
   6427 				panic("pmap_bootstrap: out of static L2s");
   6428 			pm->pm_l2[L2_IDX(l1slot)] = l2 = &static_l2[l2next++];
   6429 		}
   6430 
   6431 		/*
   6432 		 * One more L1 slot tracked...
   6433 		 */
   6434 		l2->l2_occupancy++;
   6435 
   6436 		/*
   6437 		 * Fill in the details of the L2 descriptor in the
   6438 		 * appropriate bucket.
   6439 		 */
   6440 		l2b = &l2->l2_bucket[L2_BUCKET(l1slot)];
   6441 		l2b->l2b_kva = ptep;
   6442 		l2b->l2b_pa = pa;
   6443 		l2b->l2b_l1slot = l1slot;
   6444 
   6445 		/*
   6446 		 * Establish an initial occupancy count for this descriptor
   6447 		 */
   6448 		for (l2idx = 0;
   6449 		    l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t));
   6450 		    l2idx++) {
   6451 			if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) {
   6452 				l2b->l2b_occupancy++;
   6453 			}
   6454 		}
   6455 
   6456 		/*
   6457 		 * Make sure the descriptor itself has the correct cache mode.
   6458 		 * If not, fix it, but whine about the problem. Port-meisters
   6459 		 * should consider this a clue to fix up their initarm()
   6460 		 * function. :)
   6461 		 */
   6462 		if (pmap_set_pt_cache_mode(l1pt, (vaddr_t)ptep, 1)) {
   6463 			printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6464 			    "L2 pte @ %p\n", ptep);
   6465 		}
   6466 	}
   6467 
   6468 	VPRINTF("cache(l1pt) ");
   6469 	/*
   6470 	 * Ensure the primary (kernel) L1 has the correct cache mode for
   6471 	 * a page table. Bitch if it is not correctly set.
   6472 	 */
   6473 	if (pmap_set_pt_cache_mode(l1pt, kernel_l1pt.pv_va,
   6474 		    L1_TABLE_SIZE / L2_S_SIZE)) {
   6475 		printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6476 		    "primary L1 @ 0x%lx\n", kernel_l1pt.pv_va);
   6477 	}
   6478 #if defined(EFI_RUNTIME)
   6479 	if (pmap_set_pt_cache_mode(l1pt, efirt_l1pt.pv_va,
   6480 		    L1_TABLE_SIZE / L2_S_SIZE)) {
   6481 		printf("pmap_bootstrap: WARNING! wrong cache mode for "
   6482 		    "EFI RT L1 @ 0x%lx\n", efirt_l1pt.pv_va);
   6483 	}
   6484 #endif
   6485 
   6486 #ifdef PMAP_CACHE_VIVT
   6487 	cpu_dcache_wbinv_all();
   6488 	cpu_tlb_flushID();
   6489 	cpu_cpwait();
   6490 #endif
   6491 
   6492 	/*
   6493 	 * now we allocate the "special" VAs which are used for tmp mappings
   6494 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   6495 	 * virtual_avail (note that there are no pages mapped at these VAs).
   6496 	 *
   6497 	 * Managed KVM space start from wherever initarm() tells us.
   6498 	 */
   6499 	virtual_avail = vstart;
   6500 	virtual_end = vend;
   6501 
   6502 	VPRINTF("specials ");
   6503 
   6504 	pmap_alloc_specials(&virtual_avail, 1, &memhook, NULL);
   6505 
   6506 #ifdef PMAP_CACHE_VIPT
   6507 	/*
   6508 	 * If we have a VIPT cache, we need one page/pte per possible alias
   6509 	 * page so we won't violate cache aliasing rules.
   6510 	 */
   6511 	virtual_avail = (virtual_avail + arm_cache_prefer_mask) & ~arm_cache_prefer_mask;
   6512 	nptes = (arm_cache_prefer_mask >> L2_S_SHIFT) + 1;
   6513 	nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
   6514 	if (arm_pcache.icache_type != CACHE_TYPE_PIPT
   6515 	    && arm_pcache.icache_way_size > nptes * L2_S_SIZE) {
   6516 		nptes = arm_pcache.icache_way_size >> L2_S_SHIFT;
   6517 		nptes = roundup(nptes, PAGE_SIZE / L2_S_SIZE);
   6518 	}
   6519 #else
   6520 	nptes = PAGE_SIZE / L2_S_SIZE;
   6521 #endif
   6522 #ifdef MULTIPROCESSOR
   6523 	cnptes = nptes;
   6524 	nptes *= arm_cpu_max;
   6525 #endif
   6526 	pmap_alloc_specials(&virtual_avail, nptes, &csrcp, &csrc_pte);
   6527 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)csrc_pte, nptes);
   6528 	pmap_alloc_specials(&virtual_avail, nptes, &cdstp, &cdst_pte);
   6529 	pmap_set_pt_cache_mode(l1pt, (vaddr_t)cdst_pte, nptes);
   6530 	if (msgbufaddr == NULL) {
   6531 		pmap_alloc_specials(&virtual_avail,
   6532 		    round_page(MSGBUFSIZE) / PAGE_SIZE,
   6533 		    (void *)&msgbufaddr, NULL);
   6534 	}
   6535 
   6536 	/*
   6537 	 * Allocate a range of kernel virtual address space to be used
   6538 	 * for L2 descriptor tables and metadata allocation in
   6539 	 * pmap_growkernel().
   6540 	 */
   6541 	size = howmany(virtual_end - pmap_curmaxkvaddr, L1_S_SIZE);
   6542 	pmap_alloc_specials(&virtual_avail,
   6543 	    round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE,
   6544 	    &pmap_kernel_l2ptp_kva, NULL);
   6545 
   6546 	size = howmany(size, L2_BUCKET_SIZE);
   6547 	pmap_alloc_specials(&virtual_avail,
   6548 	    round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE,
   6549 	    &pmap_kernel_l2dtable_kva, NULL);
   6550 
   6551 #ifndef ARM_MMU_EXTENDED
   6552 	/*
   6553 	 * init the static-global locks and global pmap list.
   6554 	 */
   6555 	mutex_init(&l1_lru_lock, MUTEX_DEFAULT, IPL_VM);
   6556 
   6557 	/*
   6558 	 * We can now initialise the first L1's metadata.
   6559 	 */
   6560 	SLIST_INIT(&l1_list);
   6561 	TAILQ_INIT(&l1_lru_list);
   6562 	pmap_init_l1(l1, l1pt);
   6563 #endif /* ARM_MMU_EXTENDED */
   6564 
   6565 #ifndef ARM_HAS_VBAR
   6566 	/* Set up vector page L1 details, if necessary */
   6567 	if (vector_page < KERNEL_BASE) {
   6568 		pm->pm_pl1vec = pmap_l1_kva(pm) + l1pte_index(vector_page);
   6569 		l2b = pmap_get_l2_bucket(pm, vector_page);
   6570 		KDASSERT(l2b != NULL);
   6571 		pm->pm_l1vec = l2b->l2b_pa | L1_C_PROTO |
   6572 		    L1_C_DOM(pmap_domain(pm));
   6573 	} else
   6574 		pm->pm_pl1vec = NULL;
   6575 #endif
   6576 
   6577 	VPRINTF("pools ");
   6578 	/*
   6579 	 * Initialize the pmap cache
   6580 	 */
   6581 	pool_cache_bootstrap(&pmap_cache, sizeof(struct pmap), 0, 0, 0,
   6582 	    "pmappl", NULL, IPL_NONE, pmap_pmap_ctor, NULL, NULL);
   6583 
   6584 	/*
   6585 	 * Initialize the pv pool.
   6586 	 */
   6587 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvepl",
   6588 	    &pmap_bootstrap_pv_allocator, IPL_NONE);
   6589 
   6590 	/*
   6591 	 * Initialize the L2 dtable pool and cache.
   6592 	 */
   6593 	pool_cache_bootstrap(&pmap_l2dtable_cache, sizeof(struct l2_dtable), 0,
   6594 	    0, 0, "l2dtblpl", NULL, IPL_NONE, pmap_l2dtable_ctor, NULL, NULL);
   6595 
   6596 	/*
   6597 	 * Initialise the L2 descriptor table pool and cache
   6598 	 */
   6599 	pool_cache_bootstrap(&pmap_l2ptp_cache, L2_TABLE_SIZE_REAL,
   6600 	    L2_TABLE_SIZE_REAL, 0, 0, "l2ptppl", NULL, IPL_NONE,
   6601 	    pmap_l2ptp_ctor, NULL, NULL);
   6602 
   6603 	mutex_init(&memlock, MUTEX_DEFAULT, IPL_NONE);
   6604 
   6605 	cpu_dcache_wbinv_all();
   6606 }
   6607 
   6608 static bool
   6609 pmap_set_pt_cache_mode(pd_entry_t *kl1, vaddr_t va, size_t nptes)
   6610 {
   6611 #ifdef ARM_MMU_EXTENDED
   6612 	return false;
   6613 #else
   6614 	if (pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
   6615 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
   6616 		return false;
   6617 
   6618 	const vaddr_t eva = va + nptes * PAGE_SIZE;
   6619 	int rv = 0;
   6620 
   6621 	while (va < eva) {
   6622 		/*
   6623 		 * Make sure the descriptor itself has the correct cache mode
   6624 		 */
   6625 		pd_entry_t * const pdep = &kl1[l1pte_index(va)];
   6626 		pd_entry_t pde = *pdep;
   6627 
   6628 		if (l1pte_section_p(pde)) {
   6629 			KASSERT((L1_S_CACHE_MASK & L1_S_V6_SUPER) == 0);
   6630 			if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) {
   6631 				*pdep = (pde & ~L1_S_CACHE_MASK) |
   6632 				    pte_l1_s_cache_mode_pt;
   6633 				PDE_SYNC(pdep);
   6634 				cpu_dcache_wbinv_range((vaddr_t)pdep,
   6635 				    sizeof(*pdep));
   6636 				rv = 1;
   6637 			}
   6638 			return rv;
   6639 		}
   6640 		vaddr_t pa = l1pte_pa(pde);
   6641 		pt_entry_t *ptep = (pt_entry_t *)kernel_pt_lookup(pa);
   6642 		if (ptep == NULL)
   6643 			panic("pmap_bootstrap: No PTP for va %#lx\n", va);
   6644 
   6645 		ptep += l2pte_index(va);
   6646 		const pt_entry_t opte = *ptep;
   6647 		if ((opte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) {
   6648 			const pt_entry_t npte = (opte & ~L2_S_CACHE_MASK)
   6649 			    | pte_l2_s_cache_mode_pt;
   6650 			l2pte_set(ptep, npte, opte);
   6651 			PTE_SYNC(ptep);
   6652 			cpu_dcache_wbinv_range((vaddr_t)ptep, sizeof(*ptep));
   6653 			rv = 1;
   6654 		}
   6655 		va += PAGE_SIZE;
   6656 	}
   6657 
   6658 	return rv;
   6659 #endif
   6660 }
   6661 
   6662 static void
   6663 pmap_alloc_specials(vaddr_t *availp, int pages, vaddr_t *vap, pt_entry_t **ptep)
   6664 {
   6665 	vaddr_t va = *availp;
   6666 	struct l2_bucket *l2b;
   6667 
   6668 	if (ptep) {
   6669 		l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   6670 		if (l2b == NULL)
   6671 			panic("pmap_alloc_specials: no l2b for 0x%lx", va);
   6672 
   6673 		*ptep = &l2b->l2b_kva[l2pte_index(va)];
   6674 	}
   6675 
   6676 	*vap = va;
   6677 	*availp = va + (PAGE_SIZE * pages);
   6678 }
   6679 
   6680 void
   6681 pmap_init(void)
   6682 {
   6683 
   6684 	/*
   6685 	 * Set the available memory vars - These do not map to real memory
   6686 	 * addresses and cannot as the physical memory is fragmented.
   6687 	 * They are used by ps for %mem calculations.
   6688 	 * One could argue whether this should be the entire memory or just
   6689 	 * the memory that is useable in a user process.
   6690 	 */
   6691 	avail_start = ptoa(uvm_physseg_get_avail_start(uvm_physseg_get_first()));
   6692 	avail_end = ptoa(uvm_physseg_get_avail_end(uvm_physseg_get_last()));
   6693 
   6694 	/*
   6695 	 * Now we need to free enough pv_entry structures to allow us to get
   6696 	 * the kmem_map/kmem_object allocated and inited (done after this
   6697 	 * function is finished).  to do this we allocate one bootstrap page out
   6698 	 * of kernel_map and use it to provide an initial pool of pv_entry
   6699 	 * structures.   we never free this page.
   6700 	 */
   6701 	pool_setlowat(&pmap_pv_pool, (PAGE_SIZE / sizeof(struct pv_entry)) * 2);
   6702 
   6703 #ifdef ARM_MMU_EXTENDED
   6704 	/*
   6705 	 * Initialise the L1 pool and cache.
   6706 	 */
   6707 
   6708 	pool_cache_bootstrap(&pmap_l1tt_cache, L1TT_SIZE, L1TT_SIZE,
   6709 	    0, 0, "l1ttpl", &pmap_l1tt_allocator, IPL_NONE, pmap_l1tt_ctor,
   6710 	     NULL, NULL);
   6711 
   6712 	int error __diagused = pmap_maxproc_set(maxproc);
   6713 	KASSERT(error == 0);
   6714 
   6715 	pmap_tlb_info_evcnt_attach(&pmap_tlb0_info);
   6716 #endif
   6717 
   6718 	pmap_initialized = true;
   6719 }
   6720 
   6721 static vaddr_t last_bootstrap_page = 0;
   6722 static void *free_bootstrap_pages = NULL;
   6723 
   6724 static void *
   6725 pmap_bootstrap_pv_page_alloc(struct pool *pp, int flags)
   6726 {
   6727 	extern void *pool_page_alloc(struct pool *, int);
   6728 	vaddr_t new_page;
   6729 	void *rv;
   6730 
   6731 	if (pmap_initialized)
   6732 		return pool_page_alloc(pp, flags);
   6733 
   6734 	if (free_bootstrap_pages) {
   6735 		rv = free_bootstrap_pages;
   6736 		free_bootstrap_pages = *((void **)rv);
   6737 		return rv;
   6738 	}
   6739 
   6740 	KASSERT(kernel_map != NULL);
   6741 	new_page = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   6742 	    UVM_KMF_WIRED | ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT));
   6743 
   6744 	KASSERT(new_page > last_bootstrap_page);
   6745 	last_bootstrap_page = new_page;
   6746 	return (void *)new_page;
   6747 }
   6748 
   6749 static void
   6750 pmap_bootstrap_pv_page_free(struct pool *pp, void *v)
   6751 {
   6752 	extern void pool_page_free(struct pool *, void *);
   6753 
   6754 	if ((vaddr_t)v <= last_bootstrap_page) {
   6755 		*((void **)v) = free_bootstrap_pages;
   6756 		free_bootstrap_pages = v;
   6757 		return;
   6758 	}
   6759 
   6760 	if (pmap_initialized) {
   6761 		pool_page_free(pp, v);
   6762 		return;
   6763 	}
   6764 }
   6765 
   6766 
   6767 #if defined(ARM_MMU_EXTENDED)
   6768 static void *
   6769 pmap_l1tt_alloc(struct pool *pp, int flags)
   6770 {
   6771 	struct pglist plist;
   6772 	vaddr_t va;
   6773 
   6774 	const int waitok = flags & PR_WAITOK;
   6775 
   6776 	int error = uvm_pglistalloc(L1TT_SIZE, 0, -1, L1TT_SIZE, 0, &plist, 1,
   6777 	    waitok);
   6778 	if (error)
   6779 		panic("Cannot allocate L1TT physical pages, %d", error);
   6780 
   6781 	struct vm_page *pg = TAILQ_FIRST(&plist);
   6782 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   6783 
   6784 	/* Allocate a L1 translation table VA */
   6785 	va = uvm_km_alloc(kernel_map, L1TT_SIZE, L1TT_SIZE, UVM_KMF_VAONLY);
   6786 	if (va == 0)
   6787 		panic("Cannot allocate L1TT KVA");
   6788 
   6789 	const vaddr_t eva = va + L1TT_SIZE;
   6790 	vaddr_t mva = va;
   6791 	while (pg && mva < eva) {
   6792 		paddr_t pa = VM_PAGE_TO_PHYS(pg);
   6793 
   6794 		pmap_kenter_pa(mva, pa,
   6795 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   6796 
   6797 		mva += PAGE_SIZE;
   6798 		pg = TAILQ_NEXT(pg, pageq.queue);
   6799 	}
   6800 	KASSERTMSG(pg == NULL && mva == eva, "pg %p mva %" PRIxVADDR
   6801 	    " eva %" PRIxVADDR, pg, mva, eva);
   6802 #else
   6803 	bool ok;
   6804 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   6805 	va = pmap_direct_mapped_phys(pa, &ok, 0);
   6806 	KASSERT(ok);
   6807 	KASSERT(va >= KERNEL_BASE);
   6808 #endif
   6809 
   6810 	return (void *)va;
   6811 }
   6812 
   6813 static void
   6814 pmap_l1tt_free(struct pool *pp, void *v)
   6815 {
   6816 	vaddr_t va = (vaddr_t)v;
   6817 
   6818 #if !defined( __HAVE_MM_MD_DIRECT_MAPPED_PHYS)
   6819 	uvm_km_free(kernel_map, va, L1TT_SIZE, UVM_KMF_WIRED);
   6820 #else
   6821 #if defined(KERNEL_BASE_VOFFSET)
   6822 	paddr_t pa = va - KERNEL_BASE_VOFFSET;
   6823 #else
   6824 	paddr_t pa = va - KERNEL_BASE + physical_start;
   6825 #endif
   6826 	const paddr_t epa = pa + L1TT_SIZE;
   6827 
   6828 	for (; pa < epa; pa += PAGE_SIZE) {
   6829 		struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
   6830 		uvm_pagefree(pg);
   6831 	}
   6832 #endif
   6833 }
   6834 #endif
   6835 
   6836 /*
   6837  * pmap_postinit()
   6838  *
   6839  * This routine is called after the vm and kmem subsystems have been
   6840  * initialised. This allows the pmap code to perform any initialisation
   6841  * that can only be done once the memory allocation is in place.
   6842  */
   6843 void
   6844 pmap_postinit(void)
   6845 {
   6846 #ifndef ARM_MMU_EXTENDED
   6847 	extern paddr_t physical_start, physical_end;
   6848 	struct l1_ttable *l1;
   6849 	struct pglist plist;
   6850 	struct vm_page *m;
   6851 	pd_entry_t *pdep;
   6852 	vaddr_t va, eva;
   6853 	u_int loop, needed;
   6854 	int error;
   6855 #endif
   6856 
   6857 	pool_cache_setlowat(&pmap_l2ptp_cache, (PAGE_SIZE / L2_TABLE_SIZE_REAL) * 4);
   6858 	pool_cache_setlowat(&pmap_l2dtable_cache,
   6859 	    (PAGE_SIZE / sizeof(struct l2_dtable)) * 2);
   6860 
   6861 #ifndef ARM_MMU_EXTENDED
   6862 	needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0);
   6863 	needed -= 1;
   6864 
   6865 	l1 = kmem_alloc(sizeof(*l1) * needed, KM_SLEEP);
   6866 
   6867 	for (loop = 0; loop < needed; loop++, l1++) {
   6868 		/* Allocate a L1 page table */
   6869 		va = uvm_km_alloc(kernel_map, L1_TABLE_SIZE, 0, UVM_KMF_VAONLY);
   6870 		if (va == 0)
   6871 			panic("Cannot allocate L1 KVM");
   6872 
   6873 		error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start,
   6874 		    physical_end, L1_TABLE_SIZE, 0, &plist, 1, 1);
   6875 		if (error)
   6876 			panic("Cannot allocate L1 physical pages");
   6877 
   6878 		m = TAILQ_FIRST(&plist);
   6879 		eva = va + L1_TABLE_SIZE;
   6880 		pdep = (pd_entry_t *)va;
   6881 
   6882 		while (m && va < eva) {
   6883 			paddr_t pa = VM_PAGE_TO_PHYS(m);
   6884 
   6885 			pmap_kenter_pa(va, pa,
   6886 			    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE|PMAP_PTE);
   6887 
   6888 			va += PAGE_SIZE;
   6889 			m = TAILQ_NEXT(m, pageq.queue);
   6890 		}
   6891 
   6892 #ifdef DIAGNOSTIC
   6893 		if (m)
   6894 			panic("pmap_alloc_l1pt: pglist not empty");
   6895 #endif	/* DIAGNOSTIC */
   6896 
   6897 		pmap_init_l1(l1, pdep);
   6898 	}
   6899 
   6900 #ifdef DEBUG
   6901 	printf("pmap_postinit: Allocated %d static L1 descriptor tables\n",
   6902 	    needed);
   6903 #endif
   6904 #endif /* !ARM_MMU_EXTENDED */
   6905 }
   6906 
   6907 /*
   6908  * Note that the following routines are used by board-specific initialisation
   6909  * code to configure the initial kernel page tables.
   6910  *
   6911  */
   6912 
   6913 /*
   6914  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   6915  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   6916  * find them as necessary.
   6917  *
   6918  * Note that the data on this list MUST remain valid after initarm() returns,
   6919  * as pmap_bootstrap() uses it to construct L2 table metadata.
   6920  */
   6921 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   6922 
   6923 static vaddr_t
   6924 kernel_pt_lookup(paddr_t pa)
   6925 {
   6926 	pv_addr_t *pv;
   6927 
   6928 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   6929 		if (pv->pv_pa == (pa & ~PGOFSET))
   6930 			return pv->pv_va | (pa & PGOFSET);
   6931 	}
   6932 	return 0;
   6933 }
   6934 
   6935 /*
   6936  * pmap_map_section:
   6937  *
   6938  *	Create a single section mapping.
   6939  */
   6940 void
   6941 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6942 {
   6943 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6944 	const size_t l1slot = l1pte_index(va);
   6945 	pd_entry_t fl;
   6946 
   6947 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   6948 
   6949 	switch (cache) {
   6950 	case PTE_NOCACHE:
   6951 		fl = pte_l1_s_nocache_mode;
   6952 		break;
   6953 
   6954 	case PTE_CACHE:
   6955 		fl = pte_l1_s_cache_mode;
   6956 		break;
   6957 
   6958 	case PTE_PAGETABLE:
   6959 		fl = pte_l1_s_cache_mode_pt;
   6960 		break;
   6961 
   6962 	case PTE_DEV:
   6963 	default:
   6964 		fl = 0;
   6965 		break;
   6966 	}
   6967 
   6968 	const pd_entry_t npde = L1_S_PROTO | pa |
   6969 	    L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   6970 	l1pte_setone(pdep + l1slot, npde);
   6971 	PDE_SYNC(pdep + l1slot);
   6972 }
   6973 
   6974 /*
   6975  * pmap_map_entry:
   6976  *
   6977  *	Create a single page mapping.
   6978  */
   6979 void
   6980 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   6981 {
   6982 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   6983 	const size_t l1slot = l1pte_index(va);
   6984 	pt_entry_t npte;
   6985 	pt_entry_t *ptep;
   6986 
   6987 	KASSERT(((va | pa) & PGOFSET) == 0);
   6988 
   6989 	switch (cache) {
   6990 	case PTE_NOCACHE:
   6991 		npte = pte_l2_s_nocache_mode;
   6992 		break;
   6993 
   6994 	case PTE_CACHE:
   6995 		npte = pte_l2_s_cache_mode;
   6996 		break;
   6997 
   6998 	case PTE_PAGETABLE:
   6999 		npte = pte_l2_s_cache_mode_pt;
   7000 		break;
   7001 
   7002 	default:
   7003 		npte = 0;
   7004 		break;
   7005 	}
   7006 
   7007 	if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   7008 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   7009 
   7010 	ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   7011 	if (ptep == NULL)
   7012 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   7013 
   7014 	npte |= L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot);
   7015 #ifdef ARM_MMU_EXTENDED
   7016 	if (prot & VM_PROT_EXECUTE) {
   7017 		npte &= ~L2_XS_XN;
   7018 	}
   7019 #endif
   7020 	ptep += l2pte_index(va);
   7021 	l2pte_set(ptep, npte, 0);
   7022 	PTE_SYNC(ptep);
   7023 }
   7024 
   7025 /*
   7026  * pmap_link_l2pt:
   7027  *
   7028  *	Link the L2 page table specified by "l2pv" into the L1
   7029  *	page table at the slot for "va".
   7030  */
   7031 void
   7032 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   7033 {
   7034 	pd_entry_t * const pdep = (pd_entry_t *) l1pt + l1pte_index(va);
   7035 
   7036 	KASSERT((va & ((L1_S_SIZE * (PAGE_SIZE / L2_T_SIZE)) - 1)) == 0);
   7037 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   7038 
   7039 	const pd_entry_t npde = L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO
   7040 	    | l2pv->pv_pa;
   7041 
   7042 	l1pte_set(pdep, npde);
   7043 	PDE_SYNC_RANGE(pdep, PAGE_SIZE / L2_T_SIZE);
   7044 
   7045 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   7046 }
   7047 
   7048 /*
   7049  * pmap_map_chunk:
   7050  *
   7051  *	Map a chunk of memory using the most efficient mappings
   7052  *	possible (section, large page, small page) into the
   7053  *	provided L1 and L2 tables at the specified virtual address.
   7054  */
   7055 vsize_t
   7056 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   7057     int prot, int cache)
   7058 {
   7059 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   7060 	pt_entry_t f1, f2s, f2l;
   7061 	vsize_t resid;
   7062 
   7063 	resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
   7064 
   7065 	if (l1pt == 0)
   7066 		panic("pmap_map_chunk: no L1 table provided");
   7067 
   7068 // 	VPRINTF("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   7069 // 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   7070 
   7071 	switch (cache) {
   7072 	case PTE_NOCACHE:
   7073 		f1 = pte_l1_s_nocache_mode;
   7074 		f2l = pte_l2_l_nocache_mode;
   7075 		f2s = pte_l2_s_nocache_mode;
   7076 		break;
   7077 
   7078 	case PTE_CACHE:
   7079 		f1 = pte_l1_s_cache_mode;
   7080 		f2l = pte_l2_l_cache_mode;
   7081 		f2s = pte_l2_s_cache_mode;
   7082 		break;
   7083 
   7084 	case PTE_PAGETABLE:
   7085 		f1 = pte_l1_s_cache_mode_pt;
   7086 		f2l = pte_l2_l_cache_mode_pt;
   7087 		f2s = pte_l2_s_cache_mode_pt;
   7088 		break;
   7089 
   7090 	case PTE_DEV:
   7091 	default:
   7092 		f1 = 0;
   7093 		f2l = 0;
   7094 		f2s = 0;
   7095 		break;
   7096 	}
   7097 
   7098 	size = resid;
   7099 
   7100 	while (resid > 0) {
   7101 		const size_t l1slot = l1pte_index(va);
   7102 #ifdef ARM_MMU_EXTENDED
   7103 		/* See if we can use a supersection mapping. */
   7104 		if (L1_SS_PROTO && L1_SS_MAPPABLE_P(va, pa, resid)) {
   7105 			/* Supersection are always domain 0 */
   7106 			const pd_entry_t npde = L1_SS_PROTO | pa
   7107 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   7108 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   7109 			    | L1_S_PROT(PTE_KERNEL, prot) | f1;
   7110 			VPRINTF("sS");
   7111 			l1pte_set(&pdep[l1slot], npde);
   7112 			PDE_SYNC_RANGE(&pdep[l1slot], L1_SS_SIZE / L1_S_SIZE);
   7113 //			VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
   7114 //			    "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
   7115 			va += L1_SS_SIZE;
   7116 			pa += L1_SS_SIZE;
   7117 			resid -= L1_SS_SIZE;
   7118 			continue;
   7119 		}
   7120 #endif
   7121 		/* See if we can use a section mapping. */
   7122 		if (L1_S_MAPPABLE_P(va, pa, resid)) {
   7123 			const pd_entry_t npde = L1_S_PROTO | pa
   7124 #ifdef ARM_MMU_EXTENDED
   7125 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L1_S_V6_XN)
   7126 			    | (va & 0x80000000 ? 0 : L1_S_V6_nG)
   7127 #endif
   7128 			    | L1_S_PROT(PTE_KERNEL, prot) | f1
   7129 			    | L1_S_DOM(PMAP_DOMAIN_KERNEL);
   7130 			VPRINTF("S");
   7131 			l1pte_set(&pdep[l1slot], npde);
   7132 			PDE_SYNC(&pdep[l1slot]);
   7133 //			VPRINTF("\npmap_map_chunk: pa=0x%lx va=0x%lx resid=0x%08lx "
   7134 //			    "npdep=%p pde=0x%x\n", pa, va, resid, &pdep[l1slot], npde);
   7135 			va += L1_S_SIZE;
   7136 			pa += L1_S_SIZE;
   7137 			resid -= L1_S_SIZE;
   7138 			continue;
   7139 		}
   7140 
   7141 		/*
   7142 		 * Ok, we're going to use an L2 table.  Make sure
   7143 		 * one is actually in the corresponding L1 slot
   7144 		 * for the current VA.
   7145 		 */
   7146 		if ((pdep[l1slot] & L1_TYPE_MASK) != L1_TYPE_C)
   7147 			panic("%s: no L2 table for VA %#lx", __func__, va);
   7148 
   7149 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pdep[l1slot]));
   7150 		if (ptep == NULL)
   7151 			panic("%s: can't find L2 table for VA %#lx", __func__,
   7152 			    va);
   7153 
   7154 		ptep += l2pte_index(va);
   7155 
   7156 		/* See if we can use a L2 large page mapping. */
   7157 		if (L2_L_MAPPABLE_P(va, pa, resid)) {
   7158 			const pt_entry_t npte = L2_L_PROTO | pa
   7159 #ifdef ARM_MMU_EXTENDED
   7160 			    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_L_XN)
   7161 			    | (va & 0x80000000 ? 0 : L2_XS_nG)
   7162 #endif
   7163 			    | L2_L_PROT(PTE_KERNEL, prot) | f2l;
   7164 			VPRINTF("L");
   7165 			l2pte_set(ptep, npte, 0);
   7166 			PTE_SYNC_RANGE(ptep, L2_L_SIZE / L2_S_SIZE);
   7167 			va += L2_L_SIZE;
   7168 			pa += L2_L_SIZE;
   7169 			resid -= L2_L_SIZE;
   7170 			continue;
   7171 		}
   7172 
   7173 		VPRINTF("P");
   7174 		/* Use a small page mapping. */
   7175 		pt_entry_t npte = L2_S_PROTO | pa
   7176 #ifdef ARM_MMU_EXTENDED
   7177 		    | ((prot & VM_PROT_EXECUTE) ? 0 : L2_XS_XN)
   7178 		    | (va & 0x80000000 ? 0 : L2_XS_nG)
   7179 #endif
   7180 		    | L2_S_PROT(PTE_KERNEL, prot) | f2s;
   7181 #ifdef ARM_MMU_EXTENDED
   7182 		npte &= ((prot & VM_PROT_EXECUTE) ? ~L2_XS_XN : ~0);
   7183 #endif
   7184 		l2pte_set(ptep, npte, 0);
   7185 		PTE_SYNC(ptep);
   7186 		va += PAGE_SIZE;
   7187 		pa += PAGE_SIZE;
   7188 		resid -= PAGE_SIZE;
   7189 	}
   7190 	VPRINTF("\n");
   7191 	return size;
   7192 }
   7193 
   7194 /*
   7195  * pmap_unmap_chunk:
   7196  *
   7197  *	Unmap a chunk of memory that was previously pmap_map_chunk
   7198  */
   7199 void
   7200 pmap_unmap_chunk(vaddr_t l1pt, vaddr_t va, vsize_t size)
   7201 {
   7202 	pd_entry_t * const pdep = (pd_entry_t *) l1pt;
   7203 	const size_t l1slot = l1pte_index(va);
   7204 
   7205 	KASSERT(size == L1_SS_SIZE || size == L1_S_SIZE);
   7206 
   7207 	l1pte_set(&pdep[l1slot], 0);
   7208 	PDE_SYNC_RANGE(&pdep[l1slot], size / L1_S_SIZE);
   7209 
   7210 	pmap_tlb_flush_SE(pmap_kernel(), va, PVF_REF);
   7211 }
   7212 
   7213 
   7214 vsize_t
   7215 pmap_kenter_range(vaddr_t va, paddr_t pa, vsize_t size, vm_prot_t prot,
   7216     u_int flags)
   7217 {
   7218 	const vaddr_t root = pmap_devmap_root();
   7219 
   7220 	int cache;
   7221 	switch (flags) {
   7222 	case PMAP_DEV:
   7223 		cache = PTE_DEV;
   7224 		break;
   7225 	case PMAP_NOCACHE:
   7226 		cache = PTE_NOCACHE;
   7227 		break;
   7228 	default:
   7229 		cache = PTE_CACHE;
   7230 		break;
   7231 	}
   7232 
   7233 	return pmap_map_chunk(root, va, pa, size, prot, cache);
   7234 }
   7235 
   7236 
   7237 /********************** PTE initialization routines **************************/
   7238 
   7239 /*
   7240  * These routines are called when the CPU type is identified to set up
   7241  * the PTE prototypes, cache modes, etc.
   7242  *
   7243  * The variables are always here, just in case modules need to reference
   7244  * them (though, they shouldn't).
   7245  */
   7246 
   7247 pt_entry_t	pte_l1_s_nocache_mode;
   7248 pt_entry_t	pte_l1_s_cache_mode;
   7249 pt_entry_t	pte_l1_s_wc_mode;
   7250 pt_entry_t	pte_l1_s_cache_mode_pt;
   7251 pt_entry_t	pte_l1_s_cache_mask;
   7252 
   7253 pt_entry_t	pte_l2_l_nocache_mode;
   7254 pt_entry_t	pte_l2_l_cache_mode;
   7255 pt_entry_t	pte_l2_l_wc_mode;
   7256 pt_entry_t	pte_l2_l_cache_mode_pt;
   7257 pt_entry_t	pte_l2_l_cache_mask;
   7258 
   7259 pt_entry_t	pte_l2_s_nocache_mode;
   7260 pt_entry_t	pte_l2_s_cache_mode;
   7261 pt_entry_t	pte_l2_s_wc_mode;
   7262 pt_entry_t	pte_l2_s_cache_mode_pt;
   7263 pt_entry_t	pte_l2_s_cache_mask;
   7264 
   7265 pt_entry_t	pte_l1_s_prot_u;
   7266 pt_entry_t	pte_l1_s_prot_w;
   7267 pt_entry_t	pte_l1_s_prot_ro;
   7268 pt_entry_t	pte_l1_s_prot_mask;
   7269 
   7270 pt_entry_t	pte_l2_s_prot_u;
   7271 pt_entry_t	pte_l2_s_prot_w;
   7272 pt_entry_t	pte_l2_s_prot_ro;
   7273 pt_entry_t	pte_l2_s_prot_mask;
   7274 
   7275 pt_entry_t	pte_l2_l_prot_u;
   7276 pt_entry_t	pte_l2_l_prot_w;
   7277 pt_entry_t	pte_l2_l_prot_ro;
   7278 pt_entry_t	pte_l2_l_prot_mask;
   7279 
   7280 pt_entry_t	pte_l1_ss_proto;
   7281 pt_entry_t	pte_l1_s_proto;
   7282 pt_entry_t	pte_l1_c_proto;
   7283 pt_entry_t	pte_l2_s_proto;
   7284 
   7285 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   7286 void		(*pmap_zero_page_func)(paddr_t);
   7287 
   7288 #if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6 + ARM_MMU_V7) != 0
   7289 void
   7290 pmap_pte_init_generic(void)
   7291 {
   7292 
   7293 	pte_l1_s_nocache_mode = 0;
   7294 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   7295 	pte_l1_s_wc_mode = L1_S_B;
   7296 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   7297 
   7298 	pte_l2_l_nocache_mode = 0;
   7299 	pte_l2_l_cache_mode = L2_B|L2_C;
   7300 	pte_l2_l_wc_mode = L2_B;
   7301 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   7302 
   7303 	pte_l2_s_nocache_mode = 0;
   7304 	pte_l2_s_cache_mode = L2_B|L2_C;
   7305 	pte_l2_s_wc_mode = L2_B;
   7306 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   7307 
   7308 	/*
   7309 	 * If we have a write-through cache, set B and C.  If
   7310 	 * we have a write-back cache, then we assume setting
   7311 	 * only C will make those pages write-through (except for those
   7312 	 * Cortex CPUs which can read the L1 caches).
   7313 	 */
   7314 	if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop
   7315 #if ARM_MMU_V7 > 0
   7316 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)
   7317 #endif
   7318 #if ARM_MMU_V6 > 0
   7319 	    || CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid) /* arm116 errata 399234 */
   7320 #endif
   7321 	    || false) {
   7322 		pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   7323 		pte_l2_l_cache_mode_pt = L2_B|L2_C;
   7324 		pte_l2_s_cache_mode_pt = L2_B|L2_C;
   7325 	} else {
   7326 		pte_l1_s_cache_mode_pt = L1_S_C;	/* write through */
   7327 		pte_l2_l_cache_mode_pt = L2_C;		/* write through */
   7328 		pte_l2_s_cache_mode_pt = L2_C;		/* write through */
   7329 	}
   7330 
   7331 	pte_l1_s_prot_u = L1_S_PROT_U_generic;
   7332 	pte_l1_s_prot_w = L1_S_PROT_W_generic;
   7333 	pte_l1_s_prot_ro = L1_S_PROT_RO_generic;
   7334 	pte_l1_s_prot_mask = L1_S_PROT_MASK_generic;
   7335 
   7336 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   7337 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   7338 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   7339 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   7340 
   7341 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   7342 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   7343 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   7344 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   7345 
   7346 	pte_l1_ss_proto = L1_SS_PROTO_generic;
   7347 	pte_l1_s_proto = L1_S_PROTO_generic;
   7348 	pte_l1_c_proto = L1_C_PROTO_generic;
   7349 	pte_l2_s_proto = L2_S_PROTO_generic;
   7350 
   7351 	pmap_copy_page_func = pmap_copy_page_generic;
   7352 	pmap_zero_page_func = pmap_zero_page_generic;
   7353 }
   7354 
   7355 #if defined(CPU_ARM8)
   7356 void
   7357 pmap_pte_init_arm8(void)
   7358 {
   7359 
   7360 	/*
   7361 	 * ARM8 is compatible with generic, but we need to use
   7362 	 * the page tables uncached.
   7363 	 */
   7364 	pmap_pte_init_generic();
   7365 
   7366 	pte_l1_s_cache_mode_pt = 0;
   7367 	pte_l2_l_cache_mode_pt = 0;
   7368 	pte_l2_s_cache_mode_pt = 0;
   7369 }
   7370 #endif /* CPU_ARM8 */
   7371 
   7372 #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH)
   7373 void
   7374 pmap_pte_init_arm9(void)
   7375 {
   7376 
   7377 	/*
   7378 	 * ARM9 is compatible with generic, but we want to use
   7379 	 * write-through caching for now.
   7380 	 */
   7381 	pmap_pte_init_generic();
   7382 
   7383 	pte_l1_s_cache_mode = L1_S_C;
   7384 	pte_l2_l_cache_mode = L2_C;
   7385 	pte_l2_s_cache_mode = L2_C;
   7386 
   7387 	pte_l1_s_wc_mode = L1_S_B;
   7388 	pte_l2_l_wc_mode = L2_B;
   7389 	pte_l2_s_wc_mode = L2_B;
   7390 
   7391 	pte_l1_s_cache_mode_pt = L1_S_C;
   7392 	pte_l2_l_cache_mode_pt = L2_C;
   7393 	pte_l2_s_cache_mode_pt = L2_C;
   7394 }
   7395 #endif /* CPU_ARM9 && ARM9_CACHE_WRITE_THROUGH */
   7396 #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V6) != 0 */
   7397 
   7398 #if defined(CPU_ARM10)
   7399 void
   7400 pmap_pte_init_arm10(void)
   7401 {
   7402 
   7403 	/*
   7404 	 * ARM10 is compatible with generic, but we want to use
   7405 	 * write-through caching for now.
   7406 	 */
   7407 	pmap_pte_init_generic();
   7408 
   7409 	pte_l1_s_cache_mode = L1_S_B | L1_S_C;
   7410 	pte_l2_l_cache_mode = L2_B | L2_C;
   7411 	pte_l2_s_cache_mode = L2_B | L2_C;
   7412 
   7413 	pte_l1_s_cache_mode = L1_S_B;
   7414 	pte_l2_l_cache_mode = L2_B;
   7415 	pte_l2_s_cache_mode = L2_B;
   7416 
   7417 	pte_l1_s_cache_mode_pt = L1_S_C;
   7418 	pte_l2_l_cache_mode_pt = L2_C;
   7419 	pte_l2_s_cache_mode_pt = L2_C;
   7420 
   7421 }
   7422 #endif /* CPU_ARM10 */
   7423 
   7424 #if defined(CPU_ARM11) && defined(ARM11_CACHE_WRITE_THROUGH)
   7425 void
   7426 pmap_pte_init_arm11(void)
   7427 {
   7428 
   7429 	/*
   7430 	 * ARM11 is compatible with generic, but we want to use
   7431 	 * write-through caching for now.
   7432 	 */
   7433 	pmap_pte_init_generic();
   7434 
   7435 	pte_l1_s_cache_mode = L1_S_C;
   7436 	pte_l2_l_cache_mode = L2_C;
   7437 	pte_l2_s_cache_mode = L2_C;
   7438 
   7439 	pte_l1_s_wc_mode = L1_S_B;
   7440 	pte_l2_l_wc_mode = L2_B;
   7441 	pte_l2_s_wc_mode = L2_B;
   7442 
   7443 	pte_l1_s_cache_mode_pt = L1_S_C;
   7444 	pte_l2_l_cache_mode_pt = L2_C;
   7445 	pte_l2_s_cache_mode_pt = L2_C;
   7446 }
   7447 #endif /* CPU_ARM11 && ARM11_CACHE_WRITE_THROUGH */
   7448 
   7449 #if ARM_MMU_SA1 == 1
   7450 void
   7451 pmap_pte_init_sa1(void)
   7452 {
   7453 
   7454 	/*
   7455 	 * The StrongARM SA-1 cache does not have a write-through
   7456 	 * mode.  So, do the generic initialization, then reset
   7457 	 * the page table cache mode to B=1,C=1, and note that
   7458 	 * the PTEs need to be sync'd.
   7459 	 */
   7460 	pmap_pte_init_generic();
   7461 
   7462 	pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C;
   7463 	pte_l2_l_cache_mode_pt = L2_B|L2_C;
   7464 	pte_l2_s_cache_mode_pt = L2_B|L2_C;
   7465 
   7466 	pmap_needs_pte_sync = 1;
   7467 }
   7468 #endif /* ARM_MMU_SA1 == 1*/
   7469 
   7470 #if ARM_MMU_XSCALE == 1
   7471 #if (ARM_NMMUS > 1)
   7472 static u_int xscale_use_minidata;
   7473 #endif
   7474 
   7475 void
   7476 pmap_pte_init_xscale(void)
   7477 {
   7478 	uint32_t auxctl;
   7479 	int write_through = 0;
   7480 
   7481 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   7482 	pte_l1_s_wc_mode = L1_S_B;
   7483 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   7484 
   7485 	pte_l2_l_cache_mode = L2_B|L2_C;
   7486 	pte_l2_l_wc_mode = L2_B;
   7487 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   7488 
   7489 	pte_l2_s_cache_mode = L2_B|L2_C;
   7490 	pte_l2_s_wc_mode = L2_B;
   7491 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   7492 
   7493 	pte_l1_s_cache_mode_pt = L1_S_C;
   7494 	pte_l2_l_cache_mode_pt = L2_C;
   7495 	pte_l2_s_cache_mode_pt = L2_C;
   7496 
   7497 #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE
   7498 	/*
   7499 	 * The XScale core has an enhanced mode where writes that
   7500 	 * miss the cache cause a cache line to be allocated.  This
   7501 	 * is significantly faster than the traditional, write-through
   7502 	 * behavior of this case.
   7503 	 */
   7504 	pte_l1_s_cache_mode |= L1_S_XS_TEX(TEX_XSCALE_X);
   7505 	pte_l2_l_cache_mode |= L2_XS_L_TEX(TEX_XSCALE_X);
   7506 	pte_l2_s_cache_mode |= L2_XS_T_TEX(TEX_XSCALE_X);
   7507 #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */
   7508 
   7509 #ifdef XSCALE_CACHE_WRITE_THROUGH
   7510 	/*
   7511 	 * Some versions of the XScale core have various bugs in
   7512 	 * their cache units, the work-around for which is to run
   7513 	 * the cache in write-through mode.  Unfortunately, this
   7514 	 * has a major (negative) impact on performance.  So, we
   7515 	 * go ahead and run fast-and-loose, in the hopes that we
   7516 	 * don't line up the planets in a way that will trip the
   7517 	 * bugs.
   7518 	 *
   7519 	 * However, we give you the option to be slow-but-correct.
   7520 	 */
   7521 	write_through = 1;
   7522 #elif defined(XSCALE_CACHE_WRITE_BACK)
   7523 	/* force write back cache mode */
   7524 	write_through = 0;
   7525 #elif defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
   7526 	/*
   7527 	 * Intel PXA2[15]0 processors are known to have a bug in
   7528 	 * write-back cache on revision 4 and earlier (stepping
   7529 	 * A[01] and B[012]).  Fixed for C0 and later.
   7530 	 */
   7531 	{
   7532 		uint32_t id, type;
   7533 
   7534 		id = cpufunc_id();
   7535 		type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK);
   7536 
   7537 		if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) {
   7538 			if ((id & CPU_ID_REVISION_MASK) < 5) {
   7539 				/* write through for stepping A0-1 and B0-2 */
   7540 				write_through = 1;
   7541 			}
   7542 		}
   7543 	}
   7544 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   7545 
   7546 	if (write_through) {
   7547 		pte_l1_s_cache_mode = L1_S_C;
   7548 		pte_l2_l_cache_mode = L2_C;
   7549 		pte_l2_s_cache_mode = L2_C;
   7550 	}
   7551 
   7552 #if (ARM_NMMUS > 1)
   7553 	xscale_use_minidata = 1;
   7554 #endif
   7555 
   7556 	pte_l1_s_prot_u = L1_S_PROT_U_xscale;
   7557 	pte_l1_s_prot_w = L1_S_PROT_W_xscale;
   7558 	pte_l1_s_prot_ro = L1_S_PROT_RO_xscale;
   7559 	pte_l1_s_prot_mask = L1_S_PROT_MASK_xscale;
   7560 
   7561 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   7562 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   7563 	pte_l2_s_prot_ro = L2_S_PROT_RO_xscale;
   7564 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   7565 
   7566 	pte_l2_l_prot_u = L2_L_PROT_U_xscale;
   7567 	pte_l2_l_prot_w = L2_L_PROT_W_xscale;
   7568 	pte_l2_l_prot_ro = L2_L_PROT_RO_xscale;
   7569 	pte_l2_l_prot_mask = L2_L_PROT_MASK_xscale;
   7570 
   7571 	pte_l1_ss_proto = L1_SS_PROTO_xscale;
   7572 	pte_l1_s_proto = L1_S_PROTO_xscale;
   7573 	pte_l1_c_proto = L1_C_PROTO_xscale;
   7574 	pte_l2_s_proto = L2_S_PROTO_xscale;
   7575 
   7576 	pmap_copy_page_func = pmap_copy_page_xscale;
   7577 	pmap_zero_page_func = pmap_zero_page_xscale;
   7578 
   7579 	/*
   7580 	 * Disable ECC protection of page table access, for now.
   7581 	 */
   7582 	auxctl = armreg_auxctl_read();
   7583 	auxctl &= ~XSCALE_AUXCTL_P;
   7584 	armreg_auxctl_write(auxctl);
   7585 }
   7586 
   7587 /*
   7588  * xscale_setup_minidata:
   7589  *
   7590  *	Set up the mini-data cache clean area.  We require the
   7591  *	caller to allocate the right amount of physically and
   7592  *	virtually contiguous space.
   7593  */
   7594 void
   7595 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   7596 {
   7597 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   7598 	vsize_t size;
   7599 	uint32_t auxctl;
   7600 
   7601 	xscale_minidata_clean_addr = va;
   7602 
   7603 	/* Round it to page size. */
   7604 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   7605 
   7606 	for (; size != 0;
   7607 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   7608 		const size_t l1slot = l1pte_index(va);
   7609 		pt_entry_t *ptep = (pt_entry_t *) kernel_pt_lookup(l1pte_pa(pde[l1slot]));
   7610 		if (ptep == NULL)
   7611 			panic("xscale_setup_minidata: can't find L2 table for "
   7612 			    "VA 0x%08lx", va);
   7613 
   7614 		ptep += l2pte_index(va);
   7615 		pt_entry_t opte = *ptep;
   7616 		l2pte_set(ptep,
   7617 		    L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ)
   7618 		    | L2_C | L2_XS_T_TEX(TEX_XSCALE_X), opte);
   7619 	}
   7620 
   7621 	/*
   7622 	 * Configure the mini-data cache for write-back with
   7623 	 * read/write-allocate.
   7624 	 *
   7625 	 * NOTE: In order to reconfigure the mini-data cache, we must
   7626 	 * make sure it contains no valid data!  In order to do that,
   7627 	 * we must issue a global data cache invalidate command!
   7628 	 *
   7629 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   7630 	 * THIS IS VERY IMPORTANT!
   7631 	 */
   7632 
   7633 	/* Invalidate data and mini-data. */
   7634 	__asm volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0));
   7635 	auxctl = armreg_auxctl_read();
   7636 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   7637 	armreg_auxctl_write(auxctl);
   7638 }
   7639 
   7640 /*
   7641  * Change the PTEs for the specified kernel mappings such that they
   7642  * will use the mini data cache instead of the main data cache.
   7643  */
   7644 void
   7645 pmap_uarea(vaddr_t va)
   7646 {
   7647 	vaddr_t next_bucket, eva;
   7648 
   7649 #if (ARM_NMMUS > 1)
   7650 	if (xscale_use_minidata == 0)
   7651 		return;
   7652 #endif
   7653 
   7654 	eva = va + USPACE;
   7655 
   7656 	while (va < eva) {
   7657 		next_bucket = L2_NEXT_BUCKET_VA(va);
   7658 		if (next_bucket > eva)
   7659 			next_bucket = eva;
   7660 
   7661 		struct l2_bucket *l2b = pmap_get_l2_bucket(pmap_kernel(), va);
   7662 		KDASSERT(l2b != NULL);
   7663 
   7664 		pt_entry_t * const sptep = &l2b->l2b_kva[l2pte_index(va)];
   7665 		pt_entry_t *ptep = sptep;
   7666 
   7667 		while (va < next_bucket) {
   7668 			const pt_entry_t opte = *ptep;
   7669 			if (!l2pte_minidata_p(opte)) {
   7670 				cpu_dcache_wbinv_range(va, PAGE_SIZE);
   7671 				cpu_tlb_flushD_SE(va);
   7672 				l2pte_set(ptep, opte & ~L2_B, opte);
   7673 			}
   7674 			ptep += PAGE_SIZE / L2_S_SIZE;
   7675 			va += PAGE_SIZE;
   7676 		}
   7677 		PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep));
   7678 	}
   7679 	cpu_cpwait();
   7680 }
   7681 #endif /* ARM_MMU_XSCALE == 1 */
   7682 
   7683 
   7684 #if defined(CPU_ARM11MPCORE)
   7685 void
   7686 pmap_pte_init_arm11mpcore(void)
   7687 {
   7688 
   7689 	/* cache mode is controlled by 5 bits (B, C, TEX[2:0]) */
   7690 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6;
   7691 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6;
   7692 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7693 	/* use extended small page (without APn, with TEX) */
   7694 	pte_l2_s_cache_mask = L2_XS_CACHE_MASK_armv6;
   7695 #else
   7696 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6c;
   7697 #endif
   7698 
   7699 	/* write-back, write-allocate */
   7700 	pte_l1_s_cache_mode = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7701 	pte_l2_l_cache_mode = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7702 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7703 	pte_l2_s_cache_mode = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7704 #else
   7705 	/* no TEX. read-allocate */
   7706 	pte_l2_s_cache_mode = L2_C | L2_B;
   7707 #endif
   7708 	/*
   7709 	 * write-back, write-allocate for page tables.
   7710 	 */
   7711 	pte_l1_s_cache_mode_pt = L1_S_C | L1_S_B | L1_S_V6_TEX(0x01);
   7712 	pte_l2_l_cache_mode_pt = L2_C | L2_B | L2_V6_L_TEX(0x01);
   7713 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7714 	pte_l2_s_cache_mode_pt = L2_C | L2_B | L2_V6_XS_TEX(0x01);
   7715 #else
   7716 	pte_l2_s_cache_mode_pt = L2_C | L2_B;
   7717 #endif
   7718 
   7719 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   7720 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   7721 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   7722 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   7723 
   7724 #if defined(ARM11MPCORE_COMPAT_MMU) || defined(ARMV6_EXTENDED_SMALL_PAGE)
   7725 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   7726 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   7727 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   7728 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   7729 
   7730 #else
   7731 	/* with AP[0..3] */
   7732 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   7733 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   7734 	pte_l2_s_prot_ro = L2_S_PROT_RO_generic;
   7735 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   7736 #endif
   7737 
   7738 #ifdef	ARM11MPCORE_COMPAT_MMU
   7739 	/* with AP[0..3] */
   7740 	pte_l2_l_prot_u = L2_L_PROT_U_generic;
   7741 	pte_l2_l_prot_w = L2_L_PROT_W_generic;
   7742 	pte_l2_l_prot_ro = L2_L_PROT_RO_generic;
   7743 	pte_l2_l_prot_mask = L2_L_PROT_MASK_generic;
   7744 
   7745 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7746 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7747 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7748 	pte_l2_s_proto = L2_S_PROTO_armv6c;
   7749 #else
   7750 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   7751 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   7752 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   7753 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   7754 
   7755 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7756 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7757 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7758 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   7759 #endif
   7760 
   7761 	pmap_copy_page_func = pmap_copy_page_generic;
   7762 	pmap_zero_page_func = pmap_zero_page_generic;
   7763 	pmap_needs_pte_sync = 1;
   7764 }
   7765 #endif	/* CPU_ARM11MPCORE */
   7766 
   7767 
   7768 #if ARM_MMU_V6 == 1
   7769 void
   7770 pmap_pte_init_armv6(void)
   7771 {
   7772 	/*
   7773 	 * The ARMv6-A MMU is mostly compatible with generic. If the
   7774 	 * AP field is zero, that now means "no access" rather than
   7775 	 * read-only. The prototypes are a little different because of
   7776 	 * the XN bit.
   7777 	 */
   7778 	pmap_pte_init_generic();
   7779 
   7780 	pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
   7781 	pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
   7782 	pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
   7783 
   7784 #ifdef ARM11_COMPAT_MMU
   7785 	/* with AP[0..3] */
   7786 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7787 #else
   7788 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv6n;
   7789 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv6n;
   7790 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv6n;
   7791 
   7792 	pte_l1_ss_proto = L1_SS_PROTO_armv6;
   7793 	pte_l1_s_proto = L1_S_PROTO_armv6;
   7794 	pte_l1_c_proto = L1_C_PROTO_armv6;
   7795 	pte_l2_s_proto = L2_S_PROTO_armv6n;
   7796 
   7797 	pte_l1_s_prot_u = L1_S_PROT_U_armv6;
   7798 	pte_l1_s_prot_w = L1_S_PROT_W_armv6;
   7799 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv6;
   7800 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv6;
   7801 
   7802 	pte_l2_l_prot_u = L2_L_PROT_U_armv6n;
   7803 	pte_l2_l_prot_w = L2_L_PROT_W_armv6n;
   7804 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv6n;
   7805 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv6n;
   7806 
   7807 	pte_l2_s_prot_u = L2_S_PROT_U_armv6n;
   7808 	pte_l2_s_prot_w = L2_S_PROT_W_armv6n;
   7809 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv6n;
   7810 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv6n;
   7811 
   7812 #endif
   7813 }
   7814 #endif /* ARM_MMU_V6 */
   7815 
   7816 #if ARM_MMU_V7 == 1
   7817 void
   7818 pmap_pte_init_armv7(void)
   7819 {
   7820 	/*
   7821 	 * The ARMv7-A MMU is mostly compatible with generic. If the
   7822 	 * AP field is zero, that now means "no access" rather than
   7823 	 * read-only. The prototypes are a little different because of
   7824 	 * the XN bit.
   7825 	 */
   7826 	pmap_pte_init_generic();
   7827 
   7828 	pmap_needs_pte_sync = 1;
   7829 
   7830 	pte_l1_s_nocache_mode = L1_S_XS_TEX(1);
   7831 	pte_l2_l_nocache_mode = L2_XS_L_TEX(1);
   7832 	pte_l2_s_nocache_mode = L2_XS_T_TEX(1);
   7833 
   7834 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_armv7;
   7835 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_armv7;
   7836 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_armv7;
   7837 
   7838 	/*
   7839 	 * If the core support coherent walk then updates to translation tables
   7840 	 * do not require a clean to the point of unification to ensure
   7841 	 * visibility by subsequent translation table walks.  That means we can
   7842 	 * map everything shareable and cached and the right thing will happen.
   7843 	 */
   7844         if (__SHIFTOUT(armreg_mmfr3_read(), __BITS(23,20))) {
   7845 		pmap_needs_pte_sync = 0;
   7846 
   7847 		/*
   7848 		 * write-back, no write-allocate, shareable for normal pages.
   7849 		 */
   7850 		pte_l1_s_cache_mode |= L1_S_V6_S;
   7851 		pte_l2_l_cache_mode |= L2_XS_S;
   7852 		pte_l2_s_cache_mode |= L2_XS_S;
   7853 	}
   7854 
   7855 	/*
   7856 	 * Page tables are just all other memory.  We can use write-back since
   7857 	 * pmap_needs_pte_sync is 1 (or the MMU can read out of cache).
   7858 	 */
   7859 	pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode;
   7860 	pte_l2_l_cache_mode_pt = pte_l2_l_cache_mode;
   7861 	pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode;
   7862 
   7863 	/*
   7864 	 * Check the Memory Model Features to see if this CPU supports
   7865 	 * the TLBIASID coproc op.
   7866 	 */
   7867 	if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(16,19)) >= 2) {
   7868 		arm_has_tlbiasid_p = true;
   7869 	} else if (__SHIFTOUT(armreg_mmfr2_read(), __BITS(12,15)) >= 2) {
   7870 		arm_has_tlbiasid_p = true;
   7871 	}
   7872 
   7873 	/*
   7874 	 * Check the MPIDR to see if this CPU supports MP extensions.
   7875 	 */
   7876 #ifdef MULTIPROCESSOR
   7877 	arm_has_mpext_p = (armreg_mpidr_read() & (MPIDR_MP|MPIDR_U)) == MPIDR_MP;
   7878 #else
   7879 	arm_has_mpext_p = false;
   7880 #endif
   7881 
   7882 	pte_l1_s_prot_u = L1_S_PROT_U_armv7;
   7883 	pte_l1_s_prot_w = L1_S_PROT_W_armv7;
   7884 	pte_l1_s_prot_ro = L1_S_PROT_RO_armv7;
   7885 	pte_l1_s_prot_mask = L1_S_PROT_MASK_armv7;
   7886 
   7887 	pte_l2_s_prot_u = L2_S_PROT_U_armv7;
   7888 	pte_l2_s_prot_w = L2_S_PROT_W_armv7;
   7889 	pte_l2_s_prot_ro = L2_S_PROT_RO_armv7;
   7890 	pte_l2_s_prot_mask = L2_S_PROT_MASK_armv7;
   7891 
   7892 	pte_l2_l_prot_u = L2_L_PROT_U_armv7;
   7893 	pte_l2_l_prot_w = L2_L_PROT_W_armv7;
   7894 	pte_l2_l_prot_ro = L2_L_PROT_RO_armv7;
   7895 	pte_l2_l_prot_mask = L2_L_PROT_MASK_armv7;
   7896 
   7897 	pte_l1_ss_proto = L1_SS_PROTO_armv7;
   7898 	pte_l1_s_proto = L1_S_PROTO_armv7;
   7899 	pte_l1_c_proto = L1_C_PROTO_armv7;
   7900 	pte_l2_s_proto = L2_S_PROTO_armv7;
   7901 
   7902 }
   7903 #endif /* ARM_MMU_V7 */
   7904 
   7905 /*
   7906  * return the PA of the current L1 table, for use when handling a crash dump
   7907  */
   7908 uint32_t
   7909 pmap_kernel_L1_addr(void)
   7910 {
   7911 #ifdef ARM_MMU_EXTENDED
   7912 	return pmap_kernel()->pm_l1_pa;
   7913 #else
   7914 	return pmap_kernel()->pm_l1->l1_physaddr;
   7915 #endif
   7916 }
   7917 
   7918 #if defined(DDB)
   7919 /*
   7920  * A couple of ddb-callable functions for dumping pmaps
   7921  */
   7922 void pmap_dump(pmap_t);
   7923 
   7924 static pt_entry_t ncptes[64];
   7925 static void pmap_dump_ncpg(pmap_t);
   7926 
   7927 void
   7928 pmap_dump(pmap_t pm)
   7929 {
   7930 	struct l2_dtable *l2;
   7931 	struct l2_bucket *l2b;
   7932 	pt_entry_t *ptep, pte;
   7933 	vaddr_t l2_va, l2b_va, va;
   7934 	int i, j, k, occ, rows = 0;
   7935 
   7936 	if (pm == pmap_kernel())
   7937 		printf("pmap_kernel (%p): ", pm);
   7938 	else
   7939 		printf("user pmap (%p): ", pm);
   7940 
   7941 #ifdef ARM_MMU_EXTENDED
   7942 	printf("l1 at %p\n", pmap_l1_kva(pm));
   7943 #else
   7944 	printf("domain %d, l1 at %p\n", pmap_domain(pm), pmap_l1_kva(pm));
   7945 #endif
   7946 
   7947 	l2_va = 0;
   7948 	for (i = 0; i < L2_SIZE; i++, l2_va += 0x01000000) {
   7949 		l2 = pm->pm_l2[i];
   7950 
   7951 		if (l2 == NULL || l2->l2_occupancy == 0)
   7952 			continue;
   7953 
   7954 		l2b_va = l2_va;
   7955 		for (j = 0; j < L2_BUCKET_SIZE; j++, l2b_va += 0x00100000) {
   7956 			l2b = &l2->l2_bucket[j];
   7957 
   7958 			if (l2b->l2b_occupancy == 0 || l2b->l2b_kva == NULL)
   7959 				continue;
   7960 
   7961 			ptep = l2b->l2b_kva;
   7962 
   7963 			for (k = 0; k < 256 && ptep[k] == 0; k++)
   7964 				;
   7965 
   7966 			k &= ~63;
   7967 			occ = l2b->l2b_occupancy;
   7968 			va = l2b_va + (k * 4096);
   7969 			for (; k < 256; k++, va += 0x1000) {
   7970 				char ch = ' ';
   7971 				if ((k % 64) == 0) {
   7972 					if ((rows % 8) == 0) {
   7973 						printf(
   7974 "          |0000   |8000   |10000  |18000  |20000  |28000  |30000  |38000\n");
   7975 					}
   7976 					printf("%08lx: ", va);
   7977 				}
   7978 
   7979 				ncptes[k & 63] = 0;
   7980 				pte = ptep[k];
   7981 				if (pte == 0) {
   7982 					ch = '.';
   7983 				} else {
   7984 					occ--;
   7985 					switch (pte & 0x4c) {
   7986 					case 0x00:
   7987 						ch = 'N'; /* No cache No buff */
   7988 						break;
   7989 					case 0x04:
   7990 						ch = 'B'; /* No cache buff */
   7991 						break;
   7992 					case 0x08:
   7993 						ch = 'C'; /* Cache No buff */
   7994 						break;
   7995 					case 0x0c:
   7996 						ch = 'F'; /* Cache Buff */
   7997 						break;
   7998 					case 0x40:
   7999 						ch = 'D';
   8000 						break;
   8001 					case 0x48:
   8002 						ch = 'm'; /* Xscale mini-data */
   8003 						break;
   8004 					default:
   8005 						ch = '?';
   8006 						break;
   8007 					}
   8008 
   8009 					if ((pte & L2_S_PROT_U) == L2_S_PROT_U)
   8010 						ch += 0x20;
   8011 
   8012 					if ((pte & 0xc) == 0)
   8013 						ncptes[k & 63] = pte;
   8014 				}
   8015 
   8016 				if ((k % 64) == 63) {
   8017 					rows++;
   8018 					printf("%c\n", ch);
   8019 					pmap_dump_ncpg(pm);
   8020 					if (occ == 0)
   8021 						break;
   8022 				} else
   8023 					printf("%c", ch);
   8024 			}
   8025 		}
   8026 	}
   8027 }
   8028 
   8029 static void
   8030 pmap_dump_ncpg(pmap_t pm)
   8031 {
   8032 	struct vm_page *pg;
   8033 	struct vm_page_md *md;
   8034 	struct pv_entry *pv;
   8035 	int i;
   8036 
   8037 	for (i = 0; i < 63; i++) {
   8038 		if (ncptes[i] == 0)
   8039 			continue;
   8040 
   8041 		pg = PHYS_TO_VM_PAGE(l2pte_pa(ncptes[i]));
   8042 		if (pg == NULL)
   8043 			continue;
   8044 		md = VM_PAGE_TO_MD(pg);
   8045 
   8046 		printf(" pa 0x%08lx: krw %d kro %d urw %d uro %d\n",
   8047 		    VM_PAGE_TO_PHYS(pg),
   8048 		    md->krw_mappings, md->kro_mappings,
   8049 		    md->urw_mappings, md->uro_mappings);
   8050 
   8051 		SLIST_FOREACH(pv, &md->pvh_list, pv_link) {
   8052 			printf("   %c va 0x%08lx, flags 0x%x\n",
   8053 			    (pm == pv->pv_pmap) ? '*' : ' ',
   8054 			    pv->pv_va, pv->pv_flags);
   8055 		}
   8056 	}
   8057 }
   8058 #endif
   8059 
   8060 #ifdef PMAP_STEAL_MEMORY
   8061 void
   8062 pmap_boot_pageadd(pv_addr_t *newpv)
   8063 {
   8064 	pv_addr_t *pv, *npv;
   8065 
   8066 	if ((pv = SLIST_FIRST(&pmap_boot_freeq)) != NULL) {
   8067 		if (newpv->pv_pa < pv->pv_va) {
   8068 			KASSERT(newpv->pv_pa + newpv->pv_size <= pv->pv_pa);
   8069 			if (newpv->pv_pa + newpv->pv_size == pv->pv_pa) {
   8070 				newpv->pv_size += pv->pv_size;
   8071 				SLIST_REMOVE_HEAD(&pmap_boot_freeq, pv_list);
   8072 			}
   8073 			pv = NULL;
   8074 		} else {
   8075 			for (; (npv = SLIST_NEXT(pv, pv_list)) != NULL;
   8076 			     pv = npv) {
   8077 				KASSERT(pv->pv_pa + pv->pv_size < npv->pv_pa);
   8078 				KASSERT(pv->pv_pa < newpv->pv_pa);
   8079 				if (newpv->pv_pa > npv->pv_pa)
   8080 					continue;
   8081 				if (pv->pv_pa + pv->pv_size == newpv->pv_pa) {
   8082 					pv->pv_size += newpv->pv_size;
   8083 					return;
   8084 				}
   8085 				if (newpv->pv_pa + newpv->pv_size < npv->pv_pa)
   8086 					break;
   8087 				newpv->pv_size += npv->pv_size;
   8088 				SLIST_INSERT_AFTER(pv, newpv, pv_list);
   8089 				SLIST_REMOVE_AFTER(newpv, pv_list);
   8090 				return;
   8091 			}
   8092 		}
   8093 	}
   8094 
   8095 	if (pv) {
   8096 		SLIST_INSERT_AFTER(pv, newpv, pv_list);
   8097 	} else {
   8098 		SLIST_INSERT_HEAD(&pmap_boot_freeq, newpv, pv_list);
   8099 	}
   8100 }
   8101 
   8102 void
   8103 pmap_boot_pagealloc(psize_t amount, psize_t mask, psize_t match,
   8104 	pv_addr_t *rpv)
   8105 {
   8106 	pv_addr_t *pv, **pvp;
   8107 
   8108 	KASSERT(amount & PGOFSET);
   8109 	KASSERT((mask & PGOFSET) == 0);
   8110 	KASSERT((match & PGOFSET) == 0);
   8111 	KASSERT(amount != 0);
   8112 
   8113 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   8114 	     (pv = *pvp) != NULL;
   8115 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   8116 		pv_addr_t *newpv;
   8117 		psize_t off;
   8118 		/*
   8119 		 * If this entry is too small to satisfy the request...
   8120 		 */
   8121 		KASSERT(pv->pv_size > 0);
   8122 		if (pv->pv_size < amount)
   8123 			continue;
   8124 
   8125 		for (off = 0; off <= mask; off += PAGE_SIZE) {
   8126 			if (((pv->pv_pa + off) & mask) == match
   8127 			    && off + amount <= pv->pv_size)
   8128 				break;
   8129 		}
   8130 		if (off > mask)
   8131 			continue;
   8132 
   8133 		rpv->pv_va = pv->pv_va + off;
   8134 		rpv->pv_pa = pv->pv_pa + off;
   8135 		rpv->pv_size = amount;
   8136 		pv->pv_size -= amount;
   8137 		if (pv->pv_size == 0) {
   8138 			KASSERT(off == 0);
   8139 			KASSERT((vaddr_t) pv == rpv->pv_va);
   8140 			*pvp = SLIST_NEXT(pv, pv_list);
   8141 		} else if (off == 0) {
   8142 			KASSERT((vaddr_t) pv == rpv->pv_va);
   8143 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   8144 			*newpv = *pv;
   8145 			newpv->pv_pa += amount;
   8146 			newpv->pv_va += amount;
   8147 			*pvp = newpv;
   8148 		} else if (off < pv->pv_size) {
   8149 			newpv = (pv_addr_t *) (rpv->pv_va + amount);
   8150 			*newpv = *pv;
   8151 			newpv->pv_size -= off;
   8152 			newpv->pv_pa += off + amount;
   8153 			newpv->pv_va += off + amount;
   8154 
   8155 			SLIST_NEXT(pv, pv_list) = newpv;
   8156 			pv->pv_size = off;
   8157 		} else {
   8158 			KASSERT((vaddr_t) pv != rpv->pv_va);
   8159 		}
   8160 		memset((void *)rpv->pv_va, 0, amount);
   8161 		return;
   8162 	}
   8163 
   8164 	if (!uvm_physseg_valid_p(uvm_physseg_get_first()))
   8165 		panic("pmap_boot_pagealloc: couldn't allocate memory");
   8166 
   8167 	for (pvp = &SLIST_FIRST(&pmap_boot_freeq);
   8168 	     (pv = *pvp) != NULL;
   8169 	     pvp = &SLIST_NEXT(pv, pv_list)) {
   8170 		if (SLIST_NEXT(pv, pv_list) == NULL)
   8171 			break;
   8172 	}
   8173 	KASSERT(mask == 0);
   8174 
   8175 	for (uvm_physseg_t ups = uvm_physseg_get_first();
   8176 	    uvm_physseg_valid_p(ups);
   8177 	    ups = uvm_physseg_get_next(ups)) {
   8178 
   8179 		paddr_t spn = uvm_physseg_get_start(ups);
   8180 		paddr_t epn = uvm_physseg_get_end(ups);
   8181 		if (spn == atop(pv->pv_pa + pv->pv_size)
   8182 		    && pv->pv_va + pv->pv_size <= ptoa(epn)) {
   8183 			rpv->pv_va = pv->pv_va;
   8184 			rpv->pv_pa = pv->pv_pa;
   8185 			rpv->pv_size = amount;
   8186 			*pvp = NULL;
   8187 			pmap_map_chunk(kernel_l1pt.pv_va,
   8188 			     ptoa(spn) + (pv->pv_va - pv->pv_pa),
   8189 			     ptoa(spn),
   8190 			     amount - pv->pv_size,
   8191 			     VM_PROT_READ|VM_PROT_WRITE,
   8192 			     PTE_CACHE);
   8193 
   8194 			uvm_physseg_unplug(spn, atop(amount - pv->pv_size));
   8195 			memset((void *)rpv->pv_va, 0, rpv->pv_size);
   8196 			return;
   8197 		}
   8198 	}
   8199 
   8200 	panic("pmap_boot_pagealloc: couldn't allocate memory");
   8201 }
   8202 
   8203 vaddr_t
   8204 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
   8205 {
   8206 	pv_addr_t pv;
   8207 
   8208 	pmap_boot_pagealloc(size, 0, 0, &pv);
   8209 
   8210 	return pv.pv_va;
   8211 }
   8212 #endif /* PMAP_STEAL_MEMORY */
   8213 
   8214 SYSCTL_SETUP(sysctl_machdep_pmap_setup, "sysctl machdep.kmpages setup")
   8215 {
   8216 	sysctl_createv(clog, 0, NULL, NULL,
   8217 			CTLFLAG_PERMANENT,
   8218 			CTLTYPE_NODE, "machdep", NULL,
   8219 			NULL, 0, NULL, 0,
   8220 			CTL_MACHDEP, CTL_EOL);
   8221 
   8222 	sysctl_createv(clog, 0, NULL, NULL,
   8223 			CTLFLAG_PERMANENT,
   8224 			CTLTYPE_INT, "kmpages",
   8225 			SYSCTL_DESCR("count of pages allocated to kernel memory allocators"),
   8226 			NULL, 0, &pmap_kmpages, 0,
   8227 			CTL_MACHDEP, CTL_CREATE, CTL_EOL);
   8228 }
   8229 
   8230 #ifdef PMAP_NEED_ALLOC_POOLPAGE
   8231 struct vm_page *
   8232 arm_pmap_alloc_poolpage(int flags)
   8233 {
   8234 	/*
   8235 	 * On some systems, only some pages may be "coherent" for dma and we
   8236 	 * want to prefer those for pool pages (think mbufs) but fallback to
   8237 	 * any page if none is available.
   8238 	 */
   8239 	if (arm_poolpage_vmfreelist != VM_FREELIST_DEFAULT) {
   8240 		return uvm_pagealloc_strat(NULL, 0, NULL, flags,
   8241 		    UVM_PGA_STRAT_FALLBACK, arm_poolpage_vmfreelist);
   8242 	}
   8243 
   8244 	return uvm_pagealloc(NULL, 0, NULL, flags);
   8245 }
   8246 #endif
   8247 
   8248 #if defined(ARM_MMU_EXTENDED) && defined(MULTIPROCESSOR)
   8249 void
   8250 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
   8251 {
   8252         /* nothing */
   8253 }
   8254 
   8255 int
   8256 pic_ipi_shootdown(void *arg)
   8257 {
   8258 #if PMAP_TLB_NEED_SHOOTDOWN
   8259 	pmap_tlb_shootdown_process();
   8260 #endif
   8261 	return 1;
   8262 }
   8263 #endif /* ARM_MMU_EXTENDED && MULTIPROCESSOR */
   8264 
   8265 
   8266 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
   8267 vaddr_t
   8268 pmap_direct_mapped_phys(paddr_t pa, bool *ok_p, vaddr_t va)
   8269 {
   8270 	bool ok = false;
   8271 	if (physical_start <= pa && pa < physical_end) {
   8272 #ifdef KERNEL_BASE_VOFFSET
   8273 		const vaddr_t newva = pa + KERNEL_BASE_VOFFSET;
   8274 #else
   8275 		const vaddr_t newva = KERNEL_BASE + pa - physical_start;
   8276 #endif
   8277 #ifdef ARM_MMU_EXTENDED
   8278 		if (newva >= KERNEL_BASE && newva < pmap_directlimit) {
   8279 #endif
   8280 			va = newva;
   8281 			ok = true;
   8282 #ifdef ARM_MMU_EXTENDED
   8283 		}
   8284 #endif
   8285 	}
   8286 	KASSERT(ok_p);
   8287 	*ok_p = ok;
   8288 	return va;
   8289 }
   8290 
   8291 vaddr_t
   8292 pmap_map_poolpage(paddr_t pa)
   8293 {
   8294 	bool ok __diagused;
   8295 	vaddr_t va = pmap_direct_mapped_phys(pa, &ok, 0);
   8296 	KASSERTMSG(ok, "pa %#lx not direct mappable", pa);
   8297 #if defined(PMAP_CACHE_VIPT) && !defined(ARM_MMU_EXTENDED)
   8298 	if (arm_cache_prefer_mask != 0) {
   8299 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   8300 		struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
   8301 		pmap_acquire_page_lock(md);
   8302 		pmap_vac_me_harder(md, pa, pmap_kernel(), va);
   8303 		pmap_release_page_lock(md);
   8304 	}
   8305 #endif
   8306 	return va;
   8307 }
   8308 
   8309 paddr_t
   8310 pmap_unmap_poolpage(vaddr_t va)
   8311 {
   8312 	KASSERT(va >= KERNEL_BASE);
   8313 #ifdef PMAP_CACHE_VIVT
   8314 	cpu_idcache_wbinv_range(va, PAGE_SIZE);
   8315 #endif
   8316 #if defined(KERNEL_BASE_VOFFSET)
   8317         return va - KERNEL_BASE_VOFFSET;
   8318 #else
   8319         return va - KERNEL_BASE + physical_start;
   8320 #endif
   8321 }
   8322 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
   8323