Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: vfs_subr.c,v 1.502 2024/12/07 02:27:38 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 2004, 2005, 2007, 2008, 2019, 2020
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, by Andrew Doran,
     11  * by Marshall Kirk McKusick and Greg Ganger at the University of Michigan.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * Copyright (c) 1989, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)vfs_subr.c	8.13 (Berkeley) 4/18/94
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: vfs_subr.c,v 1.502 2024/12/07 02:27:38 riastradh Exp $");
     73 
     74 #ifdef _KERNEL_OPT
     75 #include "opt_compat_43.h"
     76 #include "opt_compat_netbsd.h"
     77 #include "opt_ddb.h"
     78 #endif
     79 
     80 #include <sys/param.h>
     81 #include <sys/types.h>
     82 
     83 #include <sys/buf.h>
     84 #include <sys/conf.h>
     85 #include <sys/dirent.h>
     86 #include <sys/errno.h>
     87 #include <sys/filedesc.h>
     88 #include <sys/fstrans.h>
     89 #include <sys/kauth.h>
     90 #include <sys/kernel.h>
     91 #include <sys/kmem.h>
     92 #include <sys/module.h>
     93 #include <sys/mount.h>
     94 #include <sys/namei.h>
     95 #include <sys/sdt.h>
     96 #include <sys/stat.h>
     97 #include <sys/syscallargs.h>
     98 #include <sys/sysctl.h>
     99 #include <sys/systm.h>
    100 #include <sys/vnode_impl.h>
    101 
    102 #include <miscfs/deadfs/deadfs.h>
    103 #include <miscfs/genfs/genfs.h>
    104 #include <miscfs/specfs/specdev.h>
    105 
    106 #include <uvm/uvm_ddb.h>
    107 
    108 SDT_PROBE_DEFINE3(vfs, syncer, worklist, vnode__add,
    109     "struct vnode *"/*vp*/,
    110     "int"/*delayx*/,
    111     "int"/*slot*/);
    112 SDT_PROBE_DEFINE4(vfs, syncer, worklist, vnode__update,
    113     "struct vnode *"/*vp*/,
    114     "int"/*delayx*/,
    115     "int"/*oslot*/,
    116     "int"/*nslot*/);
    117 SDT_PROBE_DEFINE1(vfs, syncer, worklist, vnode__remove,
    118     "struct vnode *"/*vp*/);
    119 
    120 SDT_PROBE_DEFINE3(vfs, syncer, worklist, mount__add,
    121     "struct mount *"/*mp*/,
    122     "int"/*vdelay*/,
    123     "int"/*slot*/);
    124 SDT_PROBE_DEFINE4(vfs, syncer, worklist, mount__update,
    125     "struct mount *"/*vp*/,
    126     "int"/*vdelay*/,
    127     "int"/*oslot*/,
    128     "int"/*nslot*/);
    129 SDT_PROBE_DEFINE1(vfs, syncer, worklist, mount__remove,
    130     "struct mount *"/*mp*/);
    131 
    132 SDT_PROBE_DEFINE1(vfs, syncer, sync, start,
    133     "int"/*starttime*/);
    134 SDT_PROBE_DEFINE1(vfs, syncer, sync, mount__start,
    135     "struct mount *"/*mp*/);
    136 SDT_PROBE_DEFINE2(vfs, syncer, sync, mount__done,
    137     "struct mount *"/*mp*/,
    138     "int"/*error*/);
    139 SDT_PROBE_DEFINE1(vfs, syncer, sync, mount__skip,
    140     "struct mount *"/*mp*/);
    141 SDT_PROBE_DEFINE1(vfs, syncer, sync, vnode__start,
    142     "struct vnode *"/*vp*/);
    143 SDT_PROBE_DEFINE2(vfs, syncer, sync, vnode__done,
    144     "struct vnode *"/*vp*/,
    145     "int"/*error*/);
    146 SDT_PROBE_DEFINE2(vfs, syncer, sync, vnode__fail__lock,
    147     "struct vnode *"/*vp*/,
    148     "int"/*error*/);
    149 SDT_PROBE_DEFINE2(vfs, syncer, sync, vnode__fail__vget,
    150     "struct vnode *"/*vp*/,
    151     "int"/*error*/);
    152 SDT_PROBE_DEFINE2(vfs, syncer, sync, done,
    153     "int"/*starttime*/,
    154     "int"/*endtime*/);
    155 
    156 const enum vtype iftovt_tab[16] = {
    157 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
    158 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
    159 };
    160 const int	vttoif_tab[9] = {
    161 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
    162 	S_IFSOCK, S_IFIFO, S_IFMT,
    163 };
    164 
    165 /*
    166  * Insq/Remq for the vnode usage lists.
    167  */
    168 #define	bufinsvn(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_vnbufs)
    169 #define	bufremvn(bp) {							\
    170 	LIST_REMOVE(bp, b_vnbufs);					\
    171 	(bp)->b_vnbufs.le_next = NOLIST;				\
    172 }
    173 
    174 int doforce = 1;		/* 1 => permit forcible unmounting */
    175 
    176 /*
    177  * Local declarations.
    178  */
    179 
    180 static void vn_initialize_syncerd(void);
    181 
    182 /*
    183  * Initialize the vnode management data structures.
    184  */
    185 void
    186 vntblinit(void)
    187 {
    188 
    189 	vn_initialize_syncerd();
    190 	vfs_mount_sysinit();
    191 	vfs_vnode_sysinit();
    192 }
    193 
    194 /*
    195  * Flush out and invalidate all buffers associated with a vnode.
    196  * Called with the underlying vnode locked, which should prevent new dirty
    197  * buffers from being queued.
    198  */
    199 int
    200 vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred, struct lwp *l,
    201     bool catch_p, int slptimeo)
    202 {
    203 	struct buf *bp, *nbp;
    204 	int error;
    205 	int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO |
    206 	    (flags & V_SAVE ? PGO_CLEANIT | PGO_RECLAIM : 0);
    207 
    208 	/* XXXUBC this doesn't look at flags or slp* */
    209 	rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
    210 	error = VOP_PUTPAGES(vp, 0, 0, flushflags);
    211 	if (error) {
    212 		return error;
    213 	}
    214 
    215 	if (flags & V_SAVE) {
    216 		error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0);
    217 		if (error)
    218 		        return error;
    219 		KASSERT(LIST_EMPTY(&vp->v_dirtyblkhd));
    220 	}
    221 
    222 	mutex_enter(&bufcache_lock);
    223 restart:
    224 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    225 		KASSERT(bp->b_vp == vp);
    226 		nbp = LIST_NEXT(bp, b_vnbufs);
    227 		error = bbusy(bp, catch_p, slptimeo, NULL);
    228 		if (error != 0) {
    229 			if (error == EPASSTHROUGH)
    230 				goto restart;
    231 			mutex_exit(&bufcache_lock);
    232 			return error;
    233 		}
    234 		brelsel(bp, BC_INVAL | BC_VFLUSH);
    235 	}
    236 
    237 	for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
    238 		KASSERT(bp->b_vp == vp);
    239 		nbp = LIST_NEXT(bp, b_vnbufs);
    240 		error = bbusy(bp, catch_p, slptimeo, NULL);
    241 		if (error != 0) {
    242 			if (error == EPASSTHROUGH)
    243 				goto restart;
    244 			mutex_exit(&bufcache_lock);
    245 			return error;
    246 		}
    247 		/*
    248 		 * XXX Since there are no node locks for NFS, I believe
    249 		 * there is a slight chance that a delayed write will
    250 		 * occur while sleeping just above, so check for it.
    251 		 */
    252 		if ((bp->b_oflags & BO_DELWRI) && (flags & V_SAVE)) {
    253 #ifdef DEBUG
    254 			printf("buffer still DELWRI\n");
    255 #endif
    256 			bp->b_cflags |= BC_BUSY | BC_VFLUSH;
    257 			mutex_exit(&bufcache_lock);
    258 			VOP_BWRITE(bp->b_vp, bp);
    259 			mutex_enter(&bufcache_lock);
    260 			goto restart;
    261 		}
    262 		brelsel(bp, BC_INVAL | BC_VFLUSH);
    263 	}
    264 
    265 #ifdef DIAGNOSTIC
    266 	if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd))
    267 		panic("vinvalbuf: flush failed, vp %p", vp);
    268 #endif
    269 
    270 	mutex_exit(&bufcache_lock);
    271 
    272 	return 0;
    273 }
    274 
    275 /*
    276  * Destroy any in core blocks past the truncation length.
    277  * Called with the underlying vnode locked, which should prevent new dirty
    278  * buffers from being queued.
    279  */
    280 int
    281 vtruncbuf(struct vnode *vp, daddr_t lbn, bool catch_p, int slptimeo)
    282 {
    283 	struct buf *bp, *nbp;
    284 	int error;
    285 	voff_t off;
    286 
    287 	off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift);
    288 	rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
    289 	error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO);
    290 	if (error) {
    291 		return error;
    292 	}
    293 
    294 	mutex_enter(&bufcache_lock);
    295 restart:
    296 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    297 		KASSERT(bp->b_vp == vp);
    298 		nbp = LIST_NEXT(bp, b_vnbufs);
    299 		if (bp->b_lblkno < lbn)
    300 			continue;
    301 		error = bbusy(bp, catch_p, slptimeo, NULL);
    302 		if (error != 0) {
    303 			if (error == EPASSTHROUGH)
    304 				goto restart;
    305 			mutex_exit(&bufcache_lock);
    306 			return error;
    307 		}
    308 		brelsel(bp, BC_INVAL | BC_VFLUSH);
    309 	}
    310 
    311 	for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
    312 		KASSERT(bp->b_vp == vp);
    313 		nbp = LIST_NEXT(bp, b_vnbufs);
    314 		if (bp->b_lblkno < lbn)
    315 			continue;
    316 		error = bbusy(bp, catch_p, slptimeo, NULL);
    317 		if (error != 0) {
    318 			if (error == EPASSTHROUGH)
    319 				goto restart;
    320 			mutex_exit(&bufcache_lock);
    321 			return error;
    322 		}
    323 		brelsel(bp, BC_INVAL | BC_VFLUSH);
    324 	}
    325 	mutex_exit(&bufcache_lock);
    326 
    327 	return 0;
    328 }
    329 
    330 /*
    331  * Flush all dirty buffers from a vnode.
    332  * Called with the underlying vnode locked, which should prevent new dirty
    333  * buffers from being queued.
    334  */
    335 int
    336 vflushbuf(struct vnode *vp, int flags)
    337 {
    338 	struct buf *bp, *nbp;
    339 	int error, pflags;
    340 	bool dirty, sync;
    341 
    342 	sync = (flags & FSYNC_WAIT) != 0;
    343 	pflags = PGO_CLEANIT | PGO_ALLPAGES |
    344 	    (sync ? PGO_SYNCIO : 0) |
    345 	    ((flags & FSYNC_LAZY) ? PGO_LAZY : 0);
    346 	rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
    347 	(void) VOP_PUTPAGES(vp, 0, 0, pflags);
    348 
    349 loop:
    350 	mutex_enter(&bufcache_lock);
    351 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    352 		KASSERT(bp->b_vp == vp);
    353 		nbp = LIST_NEXT(bp, b_vnbufs);
    354 		if ((bp->b_cflags & BC_BUSY))
    355 			continue;
    356 		if ((bp->b_oflags & BO_DELWRI) == 0)
    357 			panic("vflushbuf: not dirty, bp %p", bp);
    358 		bp->b_cflags |= BC_BUSY | BC_VFLUSH;
    359 		mutex_exit(&bufcache_lock);
    360 		/*
    361 		 * Wait for I/O associated with indirect blocks to complete,
    362 		 * since there is no way to quickly wait for them below.
    363 		 */
    364 		if (bp->b_vp == vp || !sync)
    365 			(void) bawrite(bp);
    366 		else {
    367 			error = bwrite(bp);
    368 			if (error)
    369 				return error;
    370 		}
    371 		goto loop;
    372 	}
    373 	mutex_exit(&bufcache_lock);
    374 
    375 	if (!sync)
    376 		return 0;
    377 
    378 	mutex_enter(vp->v_interlock);
    379 	while (vp->v_numoutput != 0)
    380 		cv_wait(&vp->v_cv, vp->v_interlock);
    381 	dirty = !LIST_EMPTY(&vp->v_dirtyblkhd);
    382 	mutex_exit(vp->v_interlock);
    383 
    384 	if (dirty) {
    385 		vprint("vflushbuf: dirty", vp);
    386 		goto loop;
    387 	}
    388 
    389 	return 0;
    390 }
    391 
    392 /*
    393  * Create a vnode for a block device.
    394  * Used for root filesystem and swap areas.
    395  * Also used for memory file system special devices.
    396  */
    397 int
    398 bdevvp(dev_t dev, vnode_t **vpp)
    399 {
    400 	struct vattr va;
    401 
    402 	vattr_null(&va);
    403 	va.va_type = VBLK;
    404 	va.va_rdev = dev;
    405 
    406 	return vcache_new(dead_rootmount, NULL, &va, NOCRED, NULL, vpp);
    407 }
    408 
    409 /*
    410  * Create a vnode for a character device.
    411  * Used for kernfs and some console handling.
    412  */
    413 int
    414 cdevvp(dev_t dev, vnode_t **vpp)
    415 {
    416 	struct vattr va;
    417 
    418 	vattr_null(&va);
    419 	va.va_type = VCHR;
    420 	va.va_rdev = dev;
    421 
    422 	return vcache_new(dead_rootmount, NULL, &va, NOCRED, NULL, vpp);
    423 }
    424 
    425 /*
    426  * Associate a buffer with a vnode.  There must already be a hold on
    427  * the vnode.
    428  */
    429 void
    430 bgetvp(struct vnode *vp, struct buf *bp)
    431 {
    432 
    433 	KASSERT(bp->b_vp == NULL);
    434 	KASSERT(bp->b_objlock == &buffer_lock);
    435 	KASSERT(mutex_owned(vp->v_interlock));
    436 	KASSERT(mutex_owned(&bufcache_lock));
    437 	KASSERT((bp->b_cflags & BC_BUSY) != 0);
    438 	KASSERT(!cv_has_waiters(&bp->b_done));
    439 
    440 	vholdl(vp);
    441 	bp->b_vp = vp;
    442 	if (vp->v_type == VBLK || vp->v_type == VCHR)
    443 		bp->b_dev = vp->v_rdev;
    444 	else
    445 		bp->b_dev = NODEV;
    446 
    447 	/*
    448 	 * Insert onto list for new vnode.
    449 	 */
    450 	bufinsvn(bp, &vp->v_cleanblkhd);
    451 	bp->b_objlock = vp->v_interlock;
    452 }
    453 
    454 /*
    455  * Disassociate a buffer from a vnode.
    456  */
    457 void
    458 brelvp(struct buf *bp)
    459 {
    460 	struct vnode *vp = bp->b_vp;
    461 
    462 	KASSERT(vp != NULL);
    463 	KASSERT(bp->b_objlock == vp->v_interlock);
    464 	KASSERT(mutex_owned(vp->v_interlock));
    465 	KASSERT(mutex_owned(&bufcache_lock));
    466 	KASSERT((bp->b_cflags & BC_BUSY) != 0);
    467 	KASSERT(!cv_has_waiters(&bp->b_done));
    468 
    469 	/*
    470 	 * Delete from old vnode list, if on one.
    471 	 */
    472 	if (LIST_NEXT(bp, b_vnbufs) != NOLIST)
    473 		bufremvn(bp);
    474 
    475 	if ((vp->v_iflag & (VI_ONWORKLST | VI_PAGES)) == VI_ONWORKLST &&
    476 	    LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    477 		vn_syncer_remove_from_worklist(vp);
    478 
    479 	bp->b_objlock = &buffer_lock;
    480 	bp->b_vp = NULL;
    481 	holdrelel(vp);
    482 }
    483 
    484 /*
    485  * Reassign a buffer from one vnode list to another.
    486  * The list reassignment must be within the same vnode.
    487  * Used to assign file specific control information
    488  * (indirect blocks) to the list to which they belong.
    489  */
    490 void
    491 reassignbuf(struct buf *bp, struct vnode *vp)
    492 {
    493 	struct buflists *listheadp;
    494 	int delayx;
    495 
    496 	KASSERT(mutex_owned(&bufcache_lock));
    497 	KASSERT(bp->b_objlock == vp->v_interlock);
    498 	KASSERT(mutex_owned(vp->v_interlock));
    499 	KASSERT((bp->b_cflags & BC_BUSY) != 0);
    500 
    501 	/*
    502 	 * Delete from old vnode list, if on one.
    503 	 */
    504 	if (LIST_NEXT(bp, b_vnbufs) != NOLIST)
    505 		bufremvn(bp);
    506 
    507 	/*
    508 	 * If dirty, put on list of dirty buffers;
    509 	 * otherwise insert onto list of clean buffers.
    510 	 */
    511 	if ((bp->b_oflags & BO_DELWRI) == 0) {
    512 		listheadp = &vp->v_cleanblkhd;
    513 		if ((vp->v_iflag & (VI_ONWORKLST | VI_PAGES)) ==
    514 		    VI_ONWORKLST &&
    515 		    LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    516 			vn_syncer_remove_from_worklist(vp);
    517 	} else {
    518 		listheadp = &vp->v_dirtyblkhd;
    519 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    520 			switch (vp->v_type) {
    521 			case VDIR:
    522 				delayx = dirdelay;
    523 				break;
    524 			case VBLK:
    525 				if (spec_node_getmountedfs(vp) != NULL) {
    526 					delayx = metadelay;
    527 					break;
    528 				}
    529 				/* fall through */
    530 			default:
    531 				delayx = filedelay;
    532 				break;
    533 			}
    534 			if (!vp->v_mount ||
    535 			    (vp->v_mount->mnt_flag & MNT_ASYNC) == 0)
    536 				vn_syncer_add_to_worklist(vp, delayx);
    537 		}
    538 	}
    539 	bufinsvn(bp, listheadp);
    540 }
    541 
    542 /*
    543  * Lookup a vnode by device number and return it referenced.
    544  */
    545 int
    546 vfinddev(dev_t dev, enum vtype type, vnode_t **vpp)
    547 {
    548 
    549 	return (spec_node_lookup_by_dev(type, dev, VDEAD_NOWAIT, vpp) == 0);
    550 }
    551 
    552 /*
    553  * Revoke all the vnodes corresponding to the specified minor number
    554  * range (endpoints inclusive) of the specified major.
    555  */
    556 void
    557 vdevgone(int maj, int minl, int minh, enum vtype type)
    558 {
    559 	vnode_t *vp;
    560 	dev_t dev;
    561 	int mn;
    562 
    563 	for (mn = minl; mn <= minh; mn++) {
    564 		dev = makedev(maj, mn);
    565 		/*
    566 		 * Notify anyone trying to get at this device that it
    567 		 * has been detached, and then revoke it.
    568 		 */
    569 		switch (type) {
    570 		case VBLK:
    571 			bdev_detached(dev);
    572 			break;
    573 		case VCHR:
    574 			cdev_detached(dev);
    575 			break;
    576 		default:
    577 			panic("invalid specnode type: %d", type);
    578 		}
    579 		/*
    580 		 * Passing 0 as flags, instead of VDEAD_NOWAIT, means
    581 		 * spec_node_lookup_by_dev will wait for vnodes it
    582 		 * finds concurrently being revoked before returning.
    583 		 */
    584 		while (spec_node_lookup_by_dev(type, dev, 0, &vp) == 0) {
    585 			VOP_REVOKE(vp, REVOKEALL);
    586 			vrele(vp);
    587 		}
    588 	}
    589 }
    590 
    591 /*
    592  * The filesystem synchronizer mechanism - syncer.
    593  *
    594  * It is useful to delay writes of file data and filesystem metadata for
    595  * a certain amount of time so that quickly created and deleted files need
    596  * not waste disk bandwidth being created and removed.  To implement this,
    597  * vnodes are appended to a "workitem" queue.
    598  *
    599  * Most pending metadata should not wait for more than ten seconds.  Thus,
    600  * mounted on block devices are delayed only about a half the time that file
    601  * data is delayed.  Similarly, directory updates are more critical, so are
    602  * only delayed about a third the time that file data is delayed.
    603  *
    604  * There are SYNCER_MAXDELAY queues that are processed in a round-robin
    605  * manner at a rate of one each second (driven off the filesystem syner
    606  * thread). The syncer_delayno variable indicates the next queue that is
    607  * to be processed.  Items that need to be processed soon are placed in
    608  * this queue:
    609  *
    610  *	syncer_workitem_pending[syncer_delayno]
    611  *
    612  * A delay of e.g. fifteen seconds is done by placing the request fifteen
    613  * entries later in the queue:
    614  *
    615  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
    616  *
    617  * Flag VI_ONWORKLST indicates that vnode is added into the queue.
    618  */
    619 
    620 #define SYNCER_MAXDELAY		32
    621 
    622 typedef TAILQ_HEAD(synclist, vnode_impl) synclist_t;
    623 
    624 static void	vn_syncer_add1(struct vnode *, int);
    625 static void	sysctl_vfs_syncfs_setup(struct sysctllog **);
    626 
    627 /*
    628  * Defines and variables for the syncer process.
    629  */
    630 int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
    631 time_t syncdelay = 30;			/* max time to delay syncing data */
    632 time_t filedelay = 30;			/* time to delay syncing files */
    633 time_t dirdelay  = 15;			/* time to delay syncing directories */
    634 time_t metadelay = 10;			/* time to delay syncing metadata */
    635 time_t lockdelay = 1;			/* time to delay if locking fails */
    636 
    637 static kmutex_t		syncer_data_lock; /* short term lock on data structs */
    638 
    639 static int		syncer_delayno = 0;
    640 static long		syncer_last;
    641 static synclist_t *	syncer_workitem_pending;
    642 
    643 static void
    644 vn_initialize_syncerd(void)
    645 {
    646 	int i;
    647 
    648 	syncer_last = SYNCER_MAXDELAY + 2;
    649 
    650 	sysctl_vfs_syncfs_setup(NULL);
    651 
    652 	syncer_workitem_pending =
    653 	    kmem_alloc(syncer_last * sizeof (struct synclist), KM_SLEEP);
    654 
    655 	for (i = 0; i < syncer_last; i++)
    656 		TAILQ_INIT(&syncer_workitem_pending[i]);
    657 
    658 	mutex_init(&syncer_data_lock, MUTEX_DEFAULT, IPL_NONE);
    659 }
    660 
    661 /*
    662  * Return delay factor appropriate for the given file system.   For
    663  * WAPBL we use the sync vnode to burst out metadata updates: sync
    664  * those file systems more frequently.
    665  */
    666 static inline int
    667 sync_delay(struct mount *mp)
    668 {
    669 
    670 	return mp->mnt_wapbl != NULL ? metadelay : syncdelay;
    671 }
    672 
    673 /*
    674  * Compute the next slot index from delay.
    675  */
    676 static inline int
    677 sync_delay_slot(int delayx)
    678 {
    679 
    680 	if (delayx > syncer_maxdelay - 2)
    681 		delayx = syncer_maxdelay - 2;
    682 	return (syncer_delayno + delayx) % syncer_last;
    683 }
    684 
    685 /*
    686  * Add an item to the syncer work queue.
    687  */
    688 static void
    689 vn_syncer_add1(struct vnode *vp, int delayx)
    690 {
    691 	synclist_t *slp;
    692 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    693 
    694 	KASSERT(mutex_owned(&syncer_data_lock));
    695 
    696 	if (vp->v_iflag & VI_ONWORKLST) {
    697 		/*
    698 		 * Remove in order to adjust the position of the vnode.
    699 		 * Note: called from sched_sync(), which will not hold
    700 		 * interlock, therefore we cannot modify v_iflag here.
    701 		 */
    702 		slp = &syncer_workitem_pending[vip->vi_synclist_slot];
    703 		TAILQ_REMOVE(slp, vip, vi_synclist);
    704 	} else {
    705 		KASSERT(mutex_owned(vp->v_interlock));
    706 		vp->v_iflag |= VI_ONWORKLST;
    707 	}
    708 
    709 	vip->vi_synclist_slot = sync_delay_slot(delayx);
    710 
    711 	slp = &syncer_workitem_pending[vip->vi_synclist_slot];
    712 	TAILQ_INSERT_TAIL(slp, vip, vi_synclist);
    713 }
    714 
    715 void
    716 vn_syncer_add_to_worklist(struct vnode *vp, int delayx)
    717 {
    718 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    719 
    720 	KASSERT(mutex_owned(vp->v_interlock));
    721 
    722 	mutex_enter(&syncer_data_lock);
    723 	vn_syncer_add1(vp, delayx);
    724 	SDT_PROBE3(vfs, syncer, worklist, vnode__add,
    725 	    vp, delayx, vip->vi_synclist_slot);
    726 	mutex_exit(&syncer_data_lock);
    727 }
    728 
    729 /*
    730  * Remove an item from the syncer work queue.
    731  */
    732 void
    733 vn_syncer_remove_from_worklist(struct vnode *vp)
    734 {
    735 	synclist_t *slp;
    736 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    737 
    738 	KASSERT(mutex_owned(vp->v_interlock));
    739 
    740 	if (vp->v_iflag & VI_ONWORKLST) {
    741 		mutex_enter(&syncer_data_lock);
    742 		SDT_PROBE1(vfs, syncer, worklist, vnode__remove,  vp);
    743 		vp->v_iflag &= ~VI_ONWORKLST;
    744 		slp = &syncer_workitem_pending[vip->vi_synclist_slot];
    745 		TAILQ_REMOVE(slp, vip, vi_synclist);
    746 		mutex_exit(&syncer_data_lock);
    747 	}
    748 }
    749 
    750 /*
    751  * Add this mount point to the syncer.
    752  */
    753 void
    754 vfs_syncer_add_to_worklist(struct mount *mp)
    755 {
    756 	static int start, incr, next;
    757 	int vdelay;
    758 
    759 	KASSERT(mutex_owned(mp->mnt_updating));
    760 	KASSERT((mp->mnt_iflag & IMNT_ONWORKLIST) == 0);
    761 
    762 	/*
    763 	 * We attempt to scatter the mount points on the list
    764 	 * so that they will go off at evenly distributed times
    765 	 * even if all the filesystems are mounted at once.
    766 	 */
    767 
    768 	next += incr;
    769 	if (next == 0 || next > syncer_maxdelay) {
    770 		start /= 2;
    771 		incr /= 2;
    772 		if (start == 0) {
    773 			start = syncer_maxdelay / 2;
    774 			incr = syncer_maxdelay;
    775 		}
    776 		next = start;
    777 	}
    778 	mp->mnt_iflag |= IMNT_ONWORKLIST;
    779 	vdelay = sync_delay(mp);
    780 	mp->mnt_synclist_slot = vdelay > 0 ? next % vdelay : 0;
    781 	SDT_PROBE3(vfs, syncer, worklist, mount__add,
    782 	    mp, vdelay, mp->mnt_synclist_slot);
    783 }
    784 
    785 /*
    786  * Remove the mount point from the syncer.
    787  */
    788 void
    789 vfs_syncer_remove_from_worklist(struct mount *mp)
    790 {
    791 
    792 	KASSERT(mutex_owned(mp->mnt_updating));
    793 	KASSERT((mp->mnt_iflag & IMNT_ONWORKLIST) != 0);
    794 
    795 	SDT_PROBE1(vfs, syncer, worklist, mount__remove,  mp);
    796 	mp->mnt_iflag &= ~IMNT_ONWORKLIST;
    797 }
    798 
    799 /*
    800  * Try lazy sync, return true on success.
    801  */
    802 static bool
    803 lazy_sync_vnode(struct vnode *vp)
    804 {
    805 	bool synced;
    806 	int error;
    807 
    808 	KASSERT(mutex_owned(&syncer_data_lock));
    809 
    810 	synced = false;
    811 	if ((error = vcache_tryvget(vp)) == 0) {
    812 		mutex_exit(&syncer_data_lock);
    813 		if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT)) == 0) {
    814 			synced = true;
    815 			SDT_PROBE1(vfs, syncer, sync, vnode__start,  vp);
    816 			error = VOP_FSYNC(vp, curlwp->l_cred,
    817 			    FSYNC_LAZY, 0, 0);
    818 			SDT_PROBE2(vfs, syncer, sync, vnode__done,  vp, error);
    819 			vput(vp);
    820 		} else {
    821 			SDT_PROBE2(vfs, syncer, sync, vnode__fail__lock,
    822 			    vp, error);
    823 			vrele(vp);
    824 		}
    825 		mutex_enter(&syncer_data_lock);
    826 	} else {
    827 		SDT_PROBE2(vfs, syncer, sync, vnode__fail__vget,  vp, error);
    828 	}
    829 	return synced;
    830 }
    831 
    832 /*
    833  * System filesystem synchronizer daemon.
    834  */
    835 void
    836 sched_sync(void *arg)
    837 {
    838 	mount_iterator_t *iter;
    839 	synclist_t *slp;
    840 	struct vnode_impl *vi;
    841 	struct vnode *vp;
    842 	struct mount *mp;
    843 	time_t starttime, endtime;
    844 	int vdelay, oslot, nslot, delayx;
    845 	bool synced;
    846 	int error;
    847 
    848 	for (;;) {
    849 		starttime = time_second;
    850 		SDT_PROBE1(vfs, syncer, sync, start,  starttime);
    851 
    852 		/*
    853 		 * Sync mounts whose dirty time has expired.
    854 		 */
    855 		mountlist_iterator_init(&iter);
    856 		while ((mp = mountlist_iterator_trynext(iter)) != NULL) {
    857 			if ((mp->mnt_iflag & IMNT_ONWORKLIST) == 0 ||
    858 			    mp->mnt_synclist_slot != syncer_delayno) {
    859 				SDT_PROBE1(vfs, syncer, sync, mount__skip,
    860 				    mp);
    861 				continue;
    862 			}
    863 
    864 			vdelay = sync_delay(mp);
    865 			oslot = mp->mnt_synclist_slot;
    866 			nslot = sync_delay_slot(vdelay);
    867 			mp->mnt_synclist_slot = nslot;
    868 			SDT_PROBE4(vfs, syncer, worklist, mount__update,
    869 			    mp, vdelay, oslot, nslot);
    870 
    871 			SDT_PROBE1(vfs, syncer, sync, mount__start,  mp);
    872 			error = VFS_SYNC(mp, MNT_LAZY, curlwp->l_cred);
    873 			SDT_PROBE2(vfs, syncer, sync, mount__done,
    874 			    mp, error);
    875 		}
    876 		mountlist_iterator_destroy(iter);
    877 
    878 		mutex_enter(&syncer_data_lock);
    879 
    880 		/*
    881 		 * Push files whose dirty time has expired.
    882 		 */
    883 		slp = &syncer_workitem_pending[syncer_delayno];
    884 		syncer_delayno += 1;
    885 		if (syncer_delayno >= syncer_last)
    886 			syncer_delayno = 0;
    887 
    888 		while ((vi = TAILQ_FIRST(slp)) != NULL) {
    889 			vp = VIMPL_TO_VNODE(vi);
    890 			synced = lazy_sync_vnode(vp);
    891 
    892 			/*
    893 			 * XXX The vnode may have been recycled, in which
    894 			 * case it may have a new identity.
    895 			 */
    896 			vi = TAILQ_FIRST(slp);
    897 			if (vi != NULL && VIMPL_TO_VNODE(vi) == vp) {
    898 				/*
    899 				 * Put us back on the worklist.  The worklist
    900 				 * routine will remove us from our current
    901 				 * position and then add us back in at a later
    902 				 * position.
    903 				 *
    904 				 * Try again sooner rather than later if
    905 				 * we were unable to lock the vnode.  Lock
    906 				 * failure should not prevent us from doing
    907 				 * the sync "soon".
    908 				 *
    909 				 * If we locked it yet arrive here, it's
    910 				 * likely that lazy sync is in progress and
    911 				 * so the vnode still has dirty metadata.
    912 				 * syncdelay is mainly to get this vnode out
    913 				 * of the way so we do not consider it again
    914 				 * "soon" in this loop, so the delay time is
    915 				 * not critical as long as it is not "soon".
    916 				 * While write-back strategy is the file
    917 				 * system's domain, we expect write-back to
    918 				 * occur no later than syncdelay seconds
    919 				 * into the future.
    920 				 */
    921 				delayx = synced ? syncdelay : lockdelay;
    922 				oslot = vi->vi_synclist_slot;
    923 				vn_syncer_add1(vp, delayx);
    924 				nslot = vi->vi_synclist_slot;
    925 				SDT_PROBE4(vfs, syncer, worklist,
    926 				    vnode__update,
    927 				    vp, delayx, oslot, nslot);
    928 			}
    929 		}
    930 
    931 		endtime = time_second;
    932 
    933 		SDT_PROBE2(vfs, syncer, sync, done,  starttime, endtime);
    934 
    935 		/*
    936 		 * If it has taken us less than a second to process the
    937 		 * current work, then wait.  Otherwise start right over
    938 		 * again.  We can still lose time if any single round
    939 		 * takes more than two seconds, but it does not really
    940 		 * matter as we are just trying to generally pace the
    941 		 * filesystem activity.
    942 		 */
    943 		if (endtime == starttime) {
    944 			kpause("syncer", false, hz, &syncer_data_lock);
    945 		}
    946 		mutex_exit(&syncer_data_lock);
    947 	}
    948 }
    949 
    950 static void
    951 sysctl_vfs_syncfs_setup(struct sysctllog **clog)
    952 {
    953 	const struct sysctlnode *rnode, *cnode;
    954 
    955 	sysctl_createv(clog, 0, NULL, &rnode,
    956 	    CTLFLAG_PERMANENT,
    957 	    CTLTYPE_NODE, "sync",
    958 	    SYSCTL_DESCR("syncer options"),
    959 	    NULL, 0, NULL, 0,
    960 	    CTL_VFS, CTL_CREATE, CTL_EOL);
    961 
    962 	sysctl_createv(clog, 0, &rnode, &cnode,
    963 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    964 	    CTLTYPE_QUAD, "delay",
    965 	    SYSCTL_DESCR("max time to delay syncing data"),
    966 	    NULL, 0, &syncdelay, 0,
    967 	    CTL_CREATE, CTL_EOL);
    968 
    969 	sysctl_createv(clog, 0, &rnode, &cnode,
    970 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    971 	    CTLTYPE_QUAD, "filedelay",
    972 	    SYSCTL_DESCR("time to delay syncing files"),
    973 	    NULL, 0, &filedelay, 0,
    974 	    CTL_CREATE, CTL_EOL);
    975 
    976 	sysctl_createv(clog, 0, &rnode, &cnode,
    977 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    978 	    CTLTYPE_QUAD, "dirdelay",
    979 	    SYSCTL_DESCR("time to delay syncing directories"),
    980 	    NULL, 0, &dirdelay, 0,
    981 	    CTL_CREATE, CTL_EOL);
    982 
    983 	sysctl_createv(clog, 0, &rnode, &cnode,
    984 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    985 	    CTLTYPE_QUAD, "metadelay",
    986 	    SYSCTL_DESCR("time to delay syncing metadata"),
    987 	    NULL, 0, &metadelay, 0,
    988 	    CTL_CREATE, CTL_EOL);
    989 }
    990 
    991 /*
    992  * sysctl helper routine to return list of supported fstypes
    993  */
    994 int
    995 sysctl_vfs_generic_fstypes(SYSCTLFN_ARGS)
    996 {
    997 	char bf[sizeof(((struct statvfs *)NULL)->f_fstypename)];
    998 	char *where = oldp;
    999 	struct vfsops *v;
   1000 	size_t needed, left, slen;
   1001 	int error, first;
   1002 
   1003 	if (newp != NULL)
   1004 		return SET_ERROR(EPERM);
   1005 	if (namelen != 0)
   1006 		return SET_ERROR(EINVAL);
   1007 
   1008 	first = 1;
   1009 	error = 0;
   1010 	needed = 0;
   1011 	left = *oldlenp;
   1012 
   1013 	sysctl_unlock();
   1014 	mutex_enter(&vfs_list_lock);
   1015 	LIST_FOREACH(v, &vfs_list, vfs_list) {
   1016 		if (where == NULL)
   1017 			needed += strlen(v->vfs_name) + 1;
   1018 		else {
   1019 			memset(bf, 0, sizeof(bf));
   1020 			if (first) {
   1021 				strncpy(bf, v->vfs_name, sizeof(bf));
   1022 				first = 0;
   1023 			} else {
   1024 				bf[0] = ' ';
   1025 				strncpy(bf + 1, v->vfs_name, sizeof(bf) - 1);
   1026 			}
   1027 			bf[sizeof(bf)-1] = '\0';
   1028 			slen = strlen(bf);
   1029 			if (left < slen + 1)
   1030 				break;
   1031 			v->vfs_refcount++;
   1032 			mutex_exit(&vfs_list_lock);
   1033 			/* +1 to copy out the trailing NUL byte */
   1034 			error = copyout(bf, where, slen + 1);
   1035 			mutex_enter(&vfs_list_lock);
   1036 			v->vfs_refcount--;
   1037 			if (error)
   1038 				break;
   1039 			where += slen;
   1040 			needed += slen;
   1041 			left -= slen;
   1042 		}
   1043 	}
   1044 	mutex_exit(&vfs_list_lock);
   1045 	sysctl_relock();
   1046 	*oldlenp = needed;
   1047 	return error;
   1048 }
   1049 
   1050 int kinfo_vdebug = 1;
   1051 int kinfo_vgetfailed;
   1052 
   1053 #define KINFO_VNODESLOP	10
   1054 
   1055 /*
   1056  * Dump vnode list (via sysctl).
   1057  * Copyout address of vnode followed by vnode.
   1058  */
   1059 int
   1060 sysctl_kern_vnode(SYSCTLFN_ARGS)
   1061 {
   1062 	char *where = oldp;
   1063 	size_t *sizep = oldlenp;
   1064 	struct mount *mp;
   1065 	vnode_t *vp, vbuf;
   1066 	mount_iterator_t *iter;
   1067 	struct vnode_iterator *marker;
   1068 	char *bp = where;
   1069 	char *ewhere;
   1070 	int error;
   1071 
   1072 	if (namelen != 0)
   1073 		return SET_ERROR(EOPNOTSUPP);
   1074 	if (newp != NULL)
   1075 		return SET_ERROR(EPERM);
   1076 
   1077 #define VPTRSZ	sizeof(vnode_t *)
   1078 #define VNODESZ	sizeof(vnode_t)
   1079 	if (where == NULL) {
   1080 		*sizep = (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ);
   1081 		return 0;
   1082 	}
   1083 	ewhere = where + *sizep;
   1084 
   1085 	sysctl_unlock();
   1086 	mountlist_iterator_init(&iter);
   1087 	while ((mp = mountlist_iterator_next(iter)) != NULL) {
   1088 		vfs_vnode_iterator_init(mp, &marker);
   1089 		while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) {
   1090 			if (bp + VPTRSZ + VNODESZ > ewhere) {
   1091 				vrele(vp);
   1092 				vfs_vnode_iterator_destroy(marker);
   1093 				mountlist_iterator_destroy(iter);
   1094 				sysctl_relock();
   1095 				*sizep = bp - where;
   1096 				return SET_ERROR(ENOMEM);
   1097 			}
   1098 			memcpy(&vbuf, vp, VNODESZ);
   1099 			if ((error = copyout(&vp, bp, VPTRSZ)) ||
   1100 			    (error = copyout(&vbuf, bp + VPTRSZ, VNODESZ))) {
   1101 				vrele(vp);
   1102 				vfs_vnode_iterator_destroy(marker);
   1103 				mountlist_iterator_destroy(iter);
   1104 				sysctl_relock();
   1105 				return error;
   1106 			}
   1107 			vrele(vp);
   1108 			bp += VPTRSZ + VNODESZ;
   1109 		}
   1110 		vfs_vnode_iterator_destroy(marker);
   1111 	}
   1112 	mountlist_iterator_destroy(iter);
   1113 	sysctl_relock();
   1114 
   1115 	*sizep = bp - where;
   1116 	return 0;
   1117 }
   1118 
   1119 /*
   1120  * Set vnode attributes to VNOVAL
   1121  */
   1122 void
   1123 vattr_null(struct vattr *vap)
   1124 {
   1125 
   1126 	memset(vap, 0, sizeof(*vap));
   1127 
   1128 	vap->va_type = VNON;
   1129 
   1130 	/*
   1131 	 * Assign individually so that it is safe even if size and
   1132 	 * sign of each member are varied.
   1133 	 */
   1134 	vap->va_mode = VNOVAL;
   1135 	vap->va_nlink = VNOVAL;
   1136 	vap->va_uid = VNOVAL;
   1137 	vap->va_gid = VNOVAL;
   1138 	vap->va_fsid = VNOVAL;
   1139 	vap->va_fileid = VNOVAL;
   1140 	vap->va_size = VNOVAL;
   1141 	vap->va_blocksize = VNOVAL;
   1142 	vap->va_atime.tv_sec =
   1143 	    vap->va_mtime.tv_sec =
   1144 	    vap->va_ctime.tv_sec =
   1145 	    vap->va_birthtime.tv_sec = VNOVAL;
   1146 	vap->va_atime.tv_nsec =
   1147 	    vap->va_mtime.tv_nsec =
   1148 	    vap->va_ctime.tv_nsec =
   1149 	    vap->va_birthtime.tv_nsec = VNOVAL;
   1150 	vap->va_gen = VNOVAL;
   1151 	vap->va_flags = VNOVAL;
   1152 	vap->va_rdev = VNOVAL;
   1153 	vap->va_bytes = VNOVAL;
   1154 }
   1155 
   1156 /*
   1157  * Vnode state to string.
   1158  */
   1159 const char *
   1160 vstate_name(enum vnode_state state)
   1161 {
   1162 
   1163 	switch (state) {
   1164 	case VS_ACTIVE:
   1165 		return "ACTIVE";
   1166 	case VS_MARKER:
   1167 		return "MARKER";
   1168 	case VS_LOADING:
   1169 		return "LOADING";
   1170 	case VS_LOADED:
   1171 		return "LOADED";
   1172 	case VS_BLOCKED:
   1173 		return "BLOCKED";
   1174 	case VS_RECLAIMING:
   1175 		return "RECLAIMING";
   1176 	case VS_RECLAIMED:
   1177 		return "RECLAIMED";
   1178 	default:
   1179 		return "ILLEGAL";
   1180 	}
   1181 }
   1182 
   1183 /*
   1184  * Print a description of a vnode (common part).
   1185  */
   1186 static void
   1187 vprint_common(struct vnode *vp, const char *prefix,
   1188     void (*pr)(const char *, ...) __printflike(1, 2))
   1189 {
   1190 	int n;
   1191 	char bf[96];
   1192 	const uint8_t *cp;
   1193 	vnode_impl_t *vip;
   1194 	const char * const vnode_tags[] = { VNODE_TAGS };
   1195 	const char * const vnode_types[] = { VNODE_TYPES };
   1196 	const char vnode_flagbits[] = VNODE_FLAGBITS;
   1197 
   1198 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0]))
   1199 #define ARRAY_PRINT(idx, arr) \
   1200     ((unsigned int)(idx) < ARRAY_SIZE(arr) ? (arr)[(idx)] : "UNKNOWN")
   1201 
   1202 	vip = VNODE_TO_VIMPL(vp);
   1203 
   1204 	snprintb(bf, sizeof(bf),
   1205 	    vnode_flagbits, vp->v_iflag | vp->v_vflag | vp->v_uflag);
   1206 
   1207 	(*pr)("vnode %p flags %s\n", vp, bf);
   1208 	(*pr)("%stag %s(%d) type %s(%d) mount %p typedata %p\n", prefix,
   1209 	    ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag,
   1210 	    ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type,
   1211 	    vp->v_mount, vp->v_mountedhere);
   1212 	(*pr)("%susecount %d writecount %d holdcount %d\n", prefix,
   1213 	    vrefcnt(vp), vp->v_writecount, vp->v_holdcnt);
   1214 	(*pr)("%ssize %" PRIx64 " writesize %" PRIx64 " numoutput %d\n",
   1215 	    prefix, vp->v_size, vp->v_writesize, vp->v_numoutput);
   1216 	(*pr)("%sdata %p lock %p\n", prefix, vp->v_data, &vip->vi_lock);
   1217 
   1218 	(*pr)("%sstate %s key(%p %zd)", prefix, vstate_name(vip->vi_state),
   1219 	    vip->vi_key.vk_mount, vip->vi_key.vk_key_len);
   1220 	n = vip->vi_key.vk_key_len;
   1221 	cp = vip->vi_key.vk_key;
   1222 	while (n-- > 0)
   1223 		(*pr)(" %02x", *cp++);
   1224 	(*pr)("\n");
   1225 	(*pr)("%slrulisthd %p\n", prefix, vip->vi_lrulisthd);
   1226 
   1227 #undef ARRAY_PRINT
   1228 #undef ARRAY_SIZE
   1229 }
   1230 
   1231 /*
   1232  * Print out a description of a vnode.
   1233  */
   1234 void
   1235 vprint(const char *label, struct vnode *vp)
   1236 {
   1237 
   1238 	if (label != NULL)
   1239 		printf("%s: ", label);
   1240 	vprint_common(vp, "\t", printf);
   1241 	if (vp->v_data != NULL) {
   1242 		printf("\t");
   1243 		VOP_PRINT(vp);
   1244 	}
   1245 }
   1246 
   1247 /*
   1248  * Given a file system name, look up the vfsops for that
   1249  * file system, or return NULL if file system isn't present
   1250  * in the kernel.
   1251  */
   1252 struct vfsops *
   1253 vfs_getopsbyname(const char *name)
   1254 {
   1255 	struct vfsops *v;
   1256 
   1257 	mutex_enter(&vfs_list_lock);
   1258 	LIST_FOREACH(v, &vfs_list, vfs_list) {
   1259 		if (strcmp(v->vfs_name, name) == 0)
   1260 			break;
   1261 	}
   1262 	if (v != NULL)
   1263 		v->vfs_refcount++;
   1264 	mutex_exit(&vfs_list_lock);
   1265 
   1266 	return v;
   1267 }
   1268 
   1269 void
   1270 copy_statvfs_info(struct statvfs *sbp, const struct mount *mp)
   1271 {
   1272 	const struct statvfs *mbp;
   1273 
   1274 	if (sbp == (mbp = &mp->mnt_stat))
   1275 		return;
   1276 
   1277 	(void)memcpy(&sbp->f_fsidx, &mbp->f_fsidx, sizeof(sbp->f_fsidx));
   1278 	sbp->f_fsid = mbp->f_fsid;
   1279 	sbp->f_owner = mbp->f_owner;
   1280 	sbp->f_flag = mbp->f_flag;
   1281 	sbp->f_syncwrites = mbp->f_syncwrites;
   1282 	sbp->f_asyncwrites = mbp->f_asyncwrites;
   1283 	sbp->f_syncreads = mbp->f_syncreads;
   1284 	sbp->f_asyncreads = mbp->f_asyncreads;
   1285 	(void)memcpy(sbp->f_spare, mbp->f_spare, sizeof(mbp->f_spare));
   1286 	(void)memcpy(sbp->f_fstypename, mbp->f_fstypename,
   1287 	    sizeof(sbp->f_fstypename));
   1288 	(void)memcpy(sbp->f_mntonname, mbp->f_mntonname,
   1289 	    sizeof(sbp->f_mntonname));
   1290 	(void)memcpy(sbp->f_mntfromname, mp->mnt_stat.f_mntfromname,
   1291 	    sizeof(sbp->f_mntfromname));
   1292 	(void)memcpy(sbp->f_mntfromlabel, mp->mnt_stat.f_mntfromlabel,
   1293 	    sizeof(sbp->f_mntfromlabel));
   1294 	sbp->f_namemax = mbp->f_namemax;
   1295 }
   1296 
   1297 int
   1298 set_statvfs_info(const char *onp, int ukon, const char *fromp, int ukfrom,
   1299     const char *vfsname, struct mount *mp, struct lwp *l)
   1300 {
   1301 	int error;
   1302 	size_t size;
   1303 	struct statvfs *sfs = &mp->mnt_stat;
   1304 	int (*fun)(const void *, void *, size_t, size_t *);
   1305 
   1306 	(void)strlcpy(mp->mnt_stat.f_fstypename, vfsname,
   1307 	    sizeof(mp->mnt_stat.f_fstypename));
   1308 
   1309 	if (onp) {
   1310 		struct cwdinfo *cwdi = l->l_proc->p_cwdi;
   1311 		fun = (ukon == UIO_SYSSPACE) ? copystr : copyinstr;
   1312 		if (cwdi->cwdi_rdir != NULL) {
   1313 			size_t len;
   1314 			char *bp;
   1315 			char *path = PNBUF_GET();
   1316 
   1317 			bp = path + MAXPATHLEN;
   1318 			*--bp = '\0';
   1319 			rw_enter(&cwdi->cwdi_lock, RW_READER);
   1320 			error = getcwd_common(cwdi->cwdi_rdir, rootvnode, &bp,
   1321 			    path, MAXPATHLEN / 2, 0, l);
   1322 			rw_exit(&cwdi->cwdi_lock);
   1323 			if (error) {
   1324 				PNBUF_PUT(path);
   1325 				return error;
   1326 			}
   1327 
   1328 			len = strlen(bp);
   1329 			if (len > sizeof(sfs->f_mntonname) - 1)
   1330 				len = sizeof(sfs->f_mntonname) - 1;
   1331 			(void)strncpy(sfs->f_mntonname, bp, len);
   1332 			PNBUF_PUT(path);
   1333 
   1334 			if (len < sizeof(sfs->f_mntonname) - 1) {
   1335 				error = (*fun)(onp, &sfs->f_mntonname[len],
   1336 				    sizeof(sfs->f_mntonname) - len - 1, &size);
   1337 				if (error)
   1338 					return error;
   1339 				size += len;
   1340 			} else {
   1341 				size = len;
   1342 			}
   1343 		} else {
   1344 			error = (*fun)(onp, &sfs->f_mntonname,
   1345 			    sizeof(sfs->f_mntonname) - 1, &size);
   1346 			if (error)
   1347 				return error;
   1348 		}
   1349 		(void)memset(sfs->f_mntonname + size, 0,
   1350 		    sizeof(sfs->f_mntonname) - size);
   1351 	}
   1352 
   1353 	if (fromp) {
   1354 		fun = (ukfrom == UIO_SYSSPACE) ? copystr : copyinstr;
   1355 		error = (*fun)(fromp, sfs->f_mntfromname,
   1356 		    sizeof(sfs->f_mntfromname) - 1, &size);
   1357 		if (error)
   1358 			return error;
   1359 		(void)memset(sfs->f_mntfromname + size, 0,
   1360 		    sizeof(sfs->f_mntfromname) - size);
   1361 	}
   1362 	return 0;
   1363 }
   1364 
   1365 /*
   1366  * Knob to control the precision of file timestamps:
   1367  *
   1368  *   0 = seconds only; nanoseconds zeroed.
   1369  *   1 = seconds and nanoseconds, accurate within 1/HZ.
   1370  *   2 = seconds and nanoseconds, truncated to microseconds.
   1371  * >=3 = seconds and nanoseconds, maximum precision.
   1372  */
   1373 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
   1374 
   1375 int vfs_timestamp_precision __read_mostly = TSP_NSEC;
   1376 
   1377 void
   1378 vfs_timestamp(struct timespec *tsp)
   1379 {
   1380 	struct timeval tv;
   1381 
   1382 	switch (vfs_timestamp_precision) {
   1383 	case TSP_SEC:
   1384 		tsp->tv_sec = time_second;
   1385 		tsp->tv_nsec = 0;
   1386 		break;
   1387 	case TSP_HZ:
   1388 		getnanotime(tsp);
   1389 		break;
   1390 	case TSP_USEC:
   1391 		microtime(&tv);
   1392 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
   1393 		break;
   1394 	case TSP_NSEC:
   1395 	default:
   1396 		nanotime(tsp);
   1397 		break;
   1398 	}
   1399 }
   1400 
   1401 /*
   1402  * The purpose of this routine is to remove granularity from accmode_t,
   1403  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
   1404  * VADMIN and VAPPEND.
   1405  *
   1406  * If it returns 0, the caller is supposed to continue with the usual
   1407  * access checks using 'accmode' as modified by this routine.  If it
   1408  * returns nonzero value, the caller is supposed to return that value
   1409  * as errno.
   1410  *
   1411  * Note that after this routine runs, accmode may be zero.
   1412  */
   1413 int
   1414 vfs_unixify_accmode(accmode_t *accmode)
   1415 {
   1416 
   1417 	/*
   1418 	 * There is no way to specify explicit "deny" rule using
   1419 	 * file mode or POSIX.1e ACLs.
   1420 	 */
   1421 	if (*accmode & VEXPLICIT_DENY) {
   1422 		*accmode = 0;
   1423 		return 0;
   1424 	}
   1425 
   1426 	/*
   1427 	 * None of these can be translated into usual access bits.
   1428 	 * Also, the common case for NFSv4 ACLs is to not contain
   1429 	 * either of these bits. Caller should check for VWRITE
   1430 	 * on the containing directory instead.
   1431 	 */
   1432 	if (*accmode & (VDELETE_CHILD | VDELETE))
   1433 		return SET_ERROR(EPERM);
   1434 
   1435 	if (*accmode & VADMIN_PERMS) {
   1436 		*accmode &= ~VADMIN_PERMS;
   1437 		*accmode |= VADMIN;
   1438 	}
   1439 
   1440 	/*
   1441 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
   1442 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
   1443 	 */
   1444 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
   1445 
   1446 	return 0;
   1447 }
   1448 
   1449 time_t	rootfstime;			/* recorded root fs time, if known */
   1450 void
   1451 setrootfstime(time_t t)
   1452 {
   1453 
   1454 	rootfstime = t;
   1455 }
   1456 
   1457 static const uint8_t vttodt_tab[] = {
   1458 	[VNON]	=	DT_UNKNOWN,
   1459 	[VREG]	=	DT_REG,
   1460 	[VDIR]	=	DT_DIR,
   1461 	[VBLK]	=	DT_BLK,
   1462 	[VCHR]	=	DT_CHR,
   1463 	[VLNK]	=	DT_LNK,
   1464 	[VSOCK]	=	DT_SOCK,
   1465 	[VFIFO]	=	DT_FIFO,
   1466 	[VBAD]	=	DT_UNKNOWN
   1467 };
   1468 
   1469 uint8_t
   1470 vtype2dt(enum vtype vt)
   1471 {
   1472 
   1473 	CTASSERT(VBAD == __arraycount(vttodt_tab) - 1);
   1474 	return vttodt_tab[vt];
   1475 }
   1476 
   1477 int
   1478 VFS_MOUNT(struct mount *mp, const char *a, void *b, size_t *c)
   1479 {
   1480 	int mpsafe = mp->mnt_iflag & IMNT_MPSAFE;
   1481 	int error;
   1482 
   1483 	/*
   1484 	 * Note: The first time through, the vfs_mount function may set
   1485 	 * IMNT_MPSAFE, so we have to cache it on entry in order to
   1486 	 * avoid leaking a kernel lock.
   1487 	 *
   1488 	 * XXX Maybe the MPSAFE bit should be set in struct vfsops and
   1489 	 * not in struct mount.
   1490 	 */
   1491 	if (mpsafe) {
   1492 		KERNEL_LOCK(1, NULL);
   1493 	}
   1494 	error = (*(mp->mnt_op->vfs_mount))(mp, a, b, c);
   1495 	if (mpsafe) {
   1496 		KERNEL_UNLOCK_ONE(NULL);
   1497 	}
   1498 
   1499 	return error;
   1500 }
   1501 
   1502 int
   1503 VFS_START(struct mount *mp, int a)
   1504 {
   1505 	int error;
   1506 
   1507 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1508 		KERNEL_LOCK(1, NULL);
   1509 	}
   1510 	error = (*(mp->mnt_op->vfs_start))(mp, a);
   1511 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1512 		KERNEL_UNLOCK_ONE(NULL);
   1513 	}
   1514 
   1515 	return error;
   1516 }
   1517 
   1518 int
   1519 VFS_UNMOUNT(struct mount *mp, int a)
   1520 {
   1521 	int error;
   1522 
   1523 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1524 		KERNEL_LOCK(1, NULL);
   1525 	}
   1526 	error = (*(mp->mnt_op->vfs_unmount))(mp, a);
   1527 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1528 		KERNEL_UNLOCK_ONE(NULL);
   1529 	}
   1530 
   1531 	return error;
   1532 }
   1533 
   1534 int
   1535 VFS_ROOT(struct mount *mp, int lktype, struct vnode **a)
   1536 {
   1537 	int error;
   1538 
   1539 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1540 		KERNEL_LOCK(1, NULL);
   1541 	}
   1542 	error = (*(mp->mnt_op->vfs_root))(mp, lktype, a);
   1543 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1544 		KERNEL_UNLOCK_ONE(NULL);
   1545 	}
   1546 
   1547 	return error;
   1548 }
   1549 
   1550 int
   1551 VFS_QUOTACTL(struct mount *mp, struct quotactl_args *args)
   1552 {
   1553 	int error;
   1554 
   1555 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1556 		KERNEL_LOCK(1, NULL);
   1557 	}
   1558 	error = (*(mp->mnt_op->vfs_quotactl))(mp, args);
   1559 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1560 		KERNEL_UNLOCK_ONE(NULL);
   1561 	}
   1562 
   1563 	return error;
   1564 }
   1565 
   1566 int
   1567 VFS_STATVFS(struct mount *mp, struct statvfs *a)
   1568 {
   1569 	int error;
   1570 
   1571 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1572 		KERNEL_LOCK(1, NULL);
   1573 	}
   1574 	error = (*(mp->mnt_op->vfs_statvfs))(mp, a);
   1575 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1576 		KERNEL_UNLOCK_ONE(NULL);
   1577 	}
   1578 
   1579 	return error;
   1580 }
   1581 
   1582 int
   1583 VFS_SYNC(struct mount *mp, int a, struct kauth_cred *b)
   1584 {
   1585 	int error;
   1586 
   1587 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1588 		KERNEL_LOCK(1, NULL);
   1589 	}
   1590 	error = (*(mp->mnt_op->vfs_sync))(mp, a, b);
   1591 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1592 		KERNEL_UNLOCK_ONE(NULL);
   1593 	}
   1594 
   1595 	return error;
   1596 }
   1597 
   1598 int
   1599 VFS_FHTOVP(struct mount *mp, struct fid *a, int b, struct vnode **c)
   1600 {
   1601 	int error;
   1602 
   1603 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1604 		KERNEL_LOCK(1, NULL);
   1605 	}
   1606 	error = (*(mp->mnt_op->vfs_fhtovp))(mp, a, b, c);
   1607 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1608 		KERNEL_UNLOCK_ONE(NULL);
   1609 	}
   1610 
   1611 	return error;
   1612 }
   1613 
   1614 int
   1615 VFS_VPTOFH(struct vnode *vp, struct fid *a, size_t *b)
   1616 {
   1617 	int error;
   1618 
   1619 	if ((vp->v_vflag & VV_MPSAFE) == 0) {
   1620 		KERNEL_LOCK(1, NULL);
   1621 	}
   1622 	error = (*(vp->v_mount->mnt_op->vfs_vptofh))(vp, a, b);
   1623 	if ((vp->v_vflag & VV_MPSAFE) == 0) {
   1624 		KERNEL_UNLOCK_ONE(NULL);
   1625 	}
   1626 
   1627 	return error;
   1628 }
   1629 
   1630 int
   1631 VFS_SNAPSHOT(struct mount *mp, struct vnode *a, struct timespec *b)
   1632 {
   1633 	int error;
   1634 
   1635 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1636 		KERNEL_LOCK(1, NULL);
   1637 	}
   1638 	error = (*(mp->mnt_op->vfs_snapshot))(mp, a, b);
   1639 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1640 		KERNEL_UNLOCK_ONE(NULL);
   1641 	}
   1642 
   1643 	return error;
   1644 }
   1645 
   1646 int
   1647 VFS_EXTATTRCTL(struct mount *mp, int a, struct vnode *b, int c, const char *d)
   1648 {
   1649 	int error;
   1650 
   1651 	KERNEL_LOCK(1, NULL);		/* XXXSMP check ffs */
   1652 	error = (*(mp->mnt_op->vfs_extattrctl))(mp, a, b, c, d);
   1653 	KERNEL_UNLOCK_ONE(NULL);	/* XXX */
   1654 
   1655 	return error;
   1656 }
   1657 
   1658 int
   1659 VFS_SUSPENDCTL(struct mount *mp, int a)
   1660 {
   1661 	int error;
   1662 
   1663 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1664 		KERNEL_LOCK(1, NULL);
   1665 	}
   1666 	error = (*(mp->mnt_op->vfs_suspendctl))(mp, a);
   1667 	if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
   1668 		KERNEL_UNLOCK_ONE(NULL);
   1669 	}
   1670 
   1671 	return error;
   1672 }
   1673 
   1674 #if defined(DDB) || defined(DEBUGPRINT)
   1675 static const char buf_flagbits[] = BUF_FLAGBITS;
   1676 
   1677 void
   1678 vfs_buf_print(struct buf *bp, int full, void (*pr)(const char *, ...))
   1679 {
   1680 	char bf[1024];
   1681 
   1682 	(*pr)("  vp %p lblkno 0x%"PRIx64" blkno 0x%"PRIx64" rawblkno 0x%"
   1683 	    PRIx64 " dev 0x%x\n",
   1684 	    bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_rawblkno, bp->b_dev);
   1685 
   1686 	snprintb(bf, sizeof(bf),
   1687 	    buf_flagbits, bp->b_flags | bp->b_oflags | bp->b_cflags);
   1688 	(*pr)("  error %d flags %s\n", bp->b_error, bf);
   1689 
   1690 	(*pr)("  bufsize 0x%lx bcount 0x%lx resid 0x%lx\n",
   1691 	    bp->b_bufsize, bp->b_bcount, bp->b_resid);
   1692 	(*pr)("  data %p saveaddr %p\n",
   1693 	    bp->b_data, bp->b_saveaddr);
   1694 	(*pr)("  iodone %p objlock %p\n", bp->b_iodone, bp->b_objlock);
   1695 }
   1696 
   1697 void
   1698 vfs_vnode_print(struct vnode *vp, int full, void (*pr)(const char *, ...))
   1699 {
   1700 
   1701 	uvm_object_printit(&vp->v_uobj, full, pr);
   1702 	(*pr)("\n");
   1703 	vprint_common(vp, "", pr);
   1704 	if (full) {
   1705 		struct buf *bp;
   1706 
   1707 		(*pr)("clean bufs:\n");
   1708 		LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) {
   1709 			(*pr)(" bp %p\n", bp);
   1710 			vfs_buf_print(bp, full, pr);
   1711 		}
   1712 
   1713 		(*pr)("dirty bufs:\n");
   1714 		LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
   1715 			(*pr)(" bp %p\n", bp);
   1716 			vfs_buf_print(bp, full, pr);
   1717 		}
   1718 	}
   1719 }
   1720 
   1721 void
   1722 vfs_vnode_lock_print(void *vlock, int full, void (*pr)(const char *, ...))
   1723 {
   1724 	struct mount *mp;
   1725 	vnode_impl_t *vip;
   1726 
   1727 	for (mp = _mountlist_next(NULL); mp; mp = _mountlist_next(mp)) {
   1728 		TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) {
   1729 			if (&vip->vi_lock == vlock ||
   1730 			    VIMPL_TO_VNODE(vip)->v_interlock == vlock)
   1731 				vfs_vnode_print(VIMPL_TO_VNODE(vip), full, pr);
   1732 		}
   1733 	}
   1734 }
   1735 
   1736 void
   1737 vfs_mount_print_all(int full, void (*pr)(const char *, ...))
   1738 {
   1739 	struct mount *mp;
   1740 	for (mp = _mountlist_next(NULL); mp; mp = _mountlist_next(mp))
   1741 		vfs_mount_print(mp, full, pr);
   1742 }
   1743 
   1744 void
   1745 vfs_mount_print(struct mount *mp, int full, void (*pr)(const char *, ...))
   1746 {
   1747 	char sbuf[256];
   1748 
   1749 	(*pr)("vnodecovered = %p data = %p\n",
   1750 	    mp->mnt_vnodecovered, mp->mnt_data);
   1751 
   1752 	(*pr)("fs_bshift %d dev_bshift = %d\n",
   1753 	    mp->mnt_fs_bshift, mp->mnt_dev_bshift);
   1754 
   1755 	snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_flag);
   1756 	(*pr)("flag = %s\n", sbuf);
   1757 
   1758 	snprintb(sbuf, sizeof(sbuf), __IMNT_FLAG_BITS, mp->mnt_iflag);
   1759 	(*pr)("iflag = %s\n", sbuf);
   1760 
   1761 	(*pr)("refcnt = %d updating @ %p\n", mp->mnt_refcnt, mp->mnt_updating);
   1762 
   1763 	(*pr)("statvfs cache:\n");
   1764 	(*pr)("\tbsize = %lu\n", mp->mnt_stat.f_bsize);
   1765 	(*pr)("\tfrsize = %lu\n", mp->mnt_stat.f_frsize);
   1766 	(*pr)("\tiosize = %lu\n", mp->mnt_stat.f_iosize);
   1767 
   1768 	(*pr)("\tblocks = %"PRIu64"\n", mp->mnt_stat.f_blocks);
   1769 	(*pr)("\tbfree = %"PRIu64"\n", mp->mnt_stat.f_bfree);
   1770 	(*pr)("\tbavail = %"PRIu64"\n", mp->mnt_stat.f_bavail);
   1771 	(*pr)("\tbresvd = %"PRIu64"\n", mp->mnt_stat.f_bresvd);
   1772 
   1773 	(*pr)("\tfiles = %"PRIu64"\n", mp->mnt_stat.f_files);
   1774 	(*pr)("\tffree = %"PRIu64"\n", mp->mnt_stat.f_ffree);
   1775 	(*pr)("\tfavail = %"PRIu64"\n", mp->mnt_stat.f_favail);
   1776 	(*pr)("\tfresvd = %"PRIu64"\n", mp->mnt_stat.f_fresvd);
   1777 
   1778 	(*pr)("\tf_fsidx = { 0x%"PRIx32", 0x%"PRIx32" }\n",
   1779 	    mp->mnt_stat.f_fsidx.__fsid_val[0],
   1780 	    mp->mnt_stat.f_fsidx.__fsid_val[1]);
   1781 
   1782 	(*pr)("\towner = %"PRIu32"\n", mp->mnt_stat.f_owner);
   1783 	(*pr)("\tnamemax = %lu\n", mp->mnt_stat.f_namemax);
   1784 
   1785 	snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_stat.f_flag);
   1786 
   1787 	(*pr)("\tflag = %s\n", sbuf);
   1788 	(*pr)("\tsyncwrites = %" PRIu64 "\n", mp->mnt_stat.f_syncwrites);
   1789 	(*pr)("\tasyncwrites = %" PRIu64 "\n", mp->mnt_stat.f_asyncwrites);
   1790 	(*pr)("\tsyncreads = %" PRIu64 "\n", mp->mnt_stat.f_syncreads);
   1791 	(*pr)("\tasyncreads = %" PRIu64 "\n", mp->mnt_stat.f_asyncreads);
   1792 	(*pr)("\tfstypename = %s\n", mp->mnt_stat.f_fstypename);
   1793 	(*pr)("\tmntonname = %s\n", mp->mnt_stat.f_mntonname);
   1794 	(*pr)("\tmntfromname = %s\n", mp->mnt_stat.f_mntfromname);
   1795 
   1796 	{
   1797 		int cnt = 0;
   1798 		vnode_t *vp;
   1799 		vnode_impl_t *vip;
   1800 		(*pr)("locked vnodes =");
   1801 		TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) {
   1802 			vp = VIMPL_TO_VNODE(vip);
   1803 			if (VOP_ISLOCKED(vp)) {
   1804 				if ((++cnt % 6) == 0) {
   1805 					(*pr)(" %p,\n\t", vp);
   1806 				} else {
   1807 					(*pr)(" %p,", vp);
   1808 				}
   1809 			}
   1810 		}
   1811 		(*pr)("\n");
   1812 	}
   1813 
   1814 	if (full) {
   1815 		int cnt = 0;
   1816 		vnode_t *vp;
   1817 		vnode_impl_t *vip;
   1818 
   1819 		(*pr)("all vnodes =");
   1820 		TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) {
   1821 			vp = VIMPL_TO_VNODE(vip);
   1822 			if (!TAILQ_NEXT(vip, vi_mntvnodes)) {
   1823 				(*pr)(" %p", vp);
   1824 			} else if ((++cnt % 6) == 0) {
   1825 				(*pr)(" %p,\n\t", vp);
   1826 			} else {
   1827 				(*pr)(" %p,", vp);
   1828 			}
   1829 		}
   1830 		(*pr)("\n");
   1831 	}
   1832 }
   1833 
   1834 /*
   1835  * List all of the locked vnodes in the system.
   1836  */
   1837 void printlockedvnodes(void);
   1838 
   1839 void
   1840 printlockedvnodes(void)
   1841 {
   1842 	struct mount *mp;
   1843 	vnode_t *vp;
   1844 	vnode_impl_t *vip;
   1845 
   1846 	printf("Locked vnodes\n");
   1847 	for (mp = _mountlist_next(NULL); mp; mp = _mountlist_next(mp)) {
   1848 		TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) {
   1849 			vp = VIMPL_TO_VNODE(vip);
   1850 			if (VOP_ISLOCKED(vp))
   1851 				vprint(NULL, vp);
   1852 		}
   1853 	}
   1854 }
   1855 
   1856 #endif /* DDB || DEBUGPRINT */
   1857