Home | History | Annotate | Line # | Download | only in usb
      1 /*	$NetBSD: vhci.c,v 1.27 2022/03/12 15:30:51 riastradh Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2019-2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: vhci.c,v 1.27 2022/03/12 15:30:51 riastradh Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_usb.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 
     41 #include <sys/bus.h>
     42 #include <sys/cpu.h>
     43 #include <sys/conf.h>
     44 #include <sys/device.h>
     45 #include <sys/kernel.h>
     46 #include <sys/kmem.h>
     47 #include <sys/mutex.h>
     48 #include <sys/proc.h>
     49 #include <sys/queue.h>
     50 #include <sys/systm.h>
     51 #include <sys/mman.h>
     52 #include <sys/file.h>
     53 #include <sys/filedesc.h>
     54 #include <sys/kcov.h>
     55 
     56 #include <machine/endian.h>
     57 
     58 #include "ioconf.h"
     59 
     60 #include <dev/usb/usb.h>
     61 #include <dev/usb/usbdi.h>
     62 #include <dev/usb/usbdivar.h>
     63 
     64 #include <dev/usb/usbroothub.h>
     65 #include <dev/usb/vhci.h>
     66 
     67 #ifdef VHCI_DEBUG
     68 #define DPRINTF(fmt, ...)	printf(fmt, __VA_ARGS__)
     69 #else
     70 #define DPRINTF(fmt, ...)	__nothing
     71 #endif
     72 
     73 static usbd_status vhci_open(struct usbd_pipe *);
     74 static void vhci_softintr(void *);
     75 
     76 static struct usbd_xfer *vhci_allocx(struct usbd_bus *, unsigned int);
     77 static void vhci_freex(struct usbd_bus *, struct usbd_xfer *);
     78 static void vhci_get_lock(struct usbd_bus *, kmutex_t **);
     79 static int vhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
     80     void *, int);
     81 
     82 static const struct usbd_bus_methods vhci_bus_methods = {
     83 	.ubm_open =	vhci_open,
     84 	.ubm_softint =	vhci_softintr,
     85 	.ubm_dopoll =	NULL,
     86 	.ubm_allocx =	vhci_allocx,
     87 	.ubm_freex =	vhci_freex,
     88 	.ubm_getlock =	vhci_get_lock,
     89 	.ubm_rhctrl =	vhci_roothub_ctrl,
     90 };
     91 
     92 static usbd_status vhci_device_ctrl_transfer(struct usbd_xfer *);
     93 static usbd_status vhci_device_ctrl_start(struct usbd_xfer *);
     94 static void vhci_device_ctrl_abort(struct usbd_xfer *);
     95 static void vhci_device_ctrl_close(struct usbd_pipe *);
     96 static void vhci_device_ctrl_cleartoggle(struct usbd_pipe *);
     97 static void vhci_device_ctrl_done(struct usbd_xfer *);
     98 
     99 static const struct usbd_pipe_methods vhci_device_ctrl_methods = {
    100 	.upm_init =		NULL,
    101 	.upm_fini =		NULL,
    102 	.upm_transfer =		vhci_device_ctrl_transfer,
    103 	.upm_start =		vhci_device_ctrl_start,
    104 	.upm_abort =		vhci_device_ctrl_abort,
    105 	.upm_close =		vhci_device_ctrl_close,
    106 	.upm_cleartoggle =	vhci_device_ctrl_cleartoggle,
    107 	.upm_done =		vhci_device_ctrl_done,
    108 };
    109 
    110 static usbd_status vhci_root_intr_transfer(struct usbd_xfer *);
    111 static usbd_status vhci_root_intr_start(struct usbd_xfer *);
    112 static void vhci_root_intr_abort(struct usbd_xfer *);
    113 static void vhci_root_intr_close(struct usbd_pipe *);
    114 static void vhci_root_intr_cleartoggle(struct usbd_pipe *);
    115 static void vhci_root_intr_done(struct usbd_xfer *);
    116 
    117 static const struct usbd_pipe_methods vhci_root_intr_methods = {
    118 	.upm_init =		NULL,
    119 	.upm_fini =		NULL,
    120 	.upm_transfer =		vhci_root_intr_transfer,
    121 	.upm_start =		vhci_root_intr_start,
    122 	.upm_abort =		vhci_root_intr_abort,
    123 	.upm_close =		vhci_root_intr_close,
    124 	.upm_cleartoggle =	vhci_root_intr_cleartoggle,
    125 	.upm_done =		vhci_root_intr_done,
    126 };
    127 
    128 /*
    129  * There are three structures to understand: vxfers, packets, and ports.
    130  *
    131  * Each xfer from the point of view of the USB stack is a vxfer from the point
    132  * of view of vHCI.
    133  *
    134  * A vxfer has a linked list containing a maximum of two packets: a request
    135  * packet and possibly a data packet. Packets basically contain data exchanged
    136  * between the Host and the virtual USB device. A packet is linked to both a
    137  * vxfer and a port.
    138  *
    139  * A port is an abstraction of an actual USB port. Each virtual USB device gets
    140  * connected to a port. A port has two lists:
    141  *  - The Usb-To-Host list, containing packets to be fetched from the USB
    142  *    device and provided to the host.
    143  *  - The Host-To-Usb list, containing packets to be sent from the Host to the
    144  *    USB device.
    145  * Request packets are always in the H->U direction. Data packets however can
    146  * be in both the H->U and U->H directions.
    147  *
    148  * With read() and write() operations on /dev/vhci, userland respectively
    149  * "fetches" and "sends" packets from or to the virtual USB device, which
    150  * respectively means reading/inserting packets in the H->U and U->H lists on
    151  * the port where the virtual USB device is connected.
    152  *
    153  *             +------------------------------------------------+
    154  *             |                 USB Stack                      |
    155  *             +---------------------^--------------------------+
    156  *                                   |
    157  *             +---------------------V--------------------------+
    158  *             | +----------------+    +-------------+          |
    159  *             | | Request Packet |    | Data Packet |     Xfer |
    160  *             | +-------|--------+    +----|---^----+          |
    161  *             +---------|------------------|---|---------------+
    162  *                       |                  |   |
    163  *                       |   +--------------+   |
    164  *                       |   |                  |
    165  *             +---------|---|------------------|---------------+
    166  *             |     +---V---V---+    +---------|-+             |
    167  *             |     | H->U List |    | U->H List |   vHCI Port |
    168  *             |     +-----|-----+    +-----^-----+             |
    169  *             +-----------|----------------|-------------------+
    170  *                         |                |
    171  *             +-----------|----------------|-------------------+
    172  *             |     +-----V-----+    +-----|-----+             |
    173  *             |     |   read()  |    |  write()  |     vHCI FD |
    174  *             |     +-----------+    +-----------+             |
    175  *             +------------------------------------------------+
    176  */
    177 
    178 struct vhci_xfer;
    179 
    180 typedef struct vhci_packet {
    181 	/* General. */
    182 	TAILQ_ENTRY(vhci_packet) portlist;
    183 	TAILQ_ENTRY(vhci_packet) xferlist;
    184 	struct vhci_xfer *vxfer;
    185 	bool utoh;
    186 	uint8_t addr;
    187 
    188 	/* Type. */
    189 	struct {
    190 		bool req:1;
    191 		bool res:1;
    192 		bool dat:1;
    193 	} type;
    194 
    195 	/* Exposed for FD operations. */
    196 	uint8_t *buf;
    197 	size_t size;
    198 	size_t cursor;
    199 } vhci_packet_t;
    200 
    201 typedef TAILQ_HEAD(, vhci_packet) vhci_packet_list_t;
    202 
    203 #define VHCI_NADDRS	16	/* maximum supported by USB */
    204 
    205 typedef struct {
    206 	kmutex_t lock;
    207 	int status;
    208 	int change;
    209 	struct {
    210 		vhci_packet_list_t usb_to_host;
    211 		vhci_packet_list_t host_to_usb;
    212 	} endpoints[VHCI_NADDRS];
    213 } vhci_port_t;
    214 
    215 typedef struct {
    216 	struct usbd_pipe pipe;
    217 } vhci_pipe_t;
    218 
    219 typedef struct vhci_xfer {
    220 	/* General. */
    221 	struct usbd_xfer xfer;
    222 
    223 	/* Port where the xfer occurs. */
    224 	vhci_port_t *port;
    225 
    226 	/* Packets in the xfer. */
    227 	size_t npkts;
    228 	vhci_packet_list_t pkts;
    229 
    230 	/* Header storage. */
    231 	vhci_request_t reqbuf;
    232 	vhci_response_t resbuf;
    233 
    234 	/* Used for G/C. */
    235 	TAILQ_ENTRY(vhci_xfer) freelist;
    236 } vhci_xfer_t;
    237 
    238 typedef TAILQ_HEAD(, vhci_xfer) vhci_xfer_list_t;
    239 
    240 #define VHCI_INDEX2PORT(idx)	(idx)
    241 #define VHCI_NPORTS		8	/* above 8, update TODO-bitmap */
    242 #define VHCI_NBUSES		8
    243 
    244 typedef struct {
    245 	device_t sc_dev;
    246 
    247 	struct usbd_bus sc_bus;
    248 	bool sc_dying;
    249 	kmutex_t sc_lock;
    250 
    251 	/*
    252 	 * Intr Root. Used to attach the devices.
    253 	 */
    254 	struct usbd_xfer *sc_intrxfer;
    255 
    256 	/*
    257 	 * The ports. Zero is for the roothub, one and beyond for the USB
    258 	 * devices.
    259 	 */
    260 	size_t sc_nports;
    261 	vhci_port_t sc_port[VHCI_NPORTS];
    262 
    263 	device_t sc_child; /* /dev/usb# device */
    264 } vhci_softc_t;
    265 
    266 typedef struct {
    267 	u_int port;
    268 	uint8_t addr;
    269 	vhci_softc_t *softc;
    270 } vhci_fd_t;
    271 
    272 extern struct cfdriver vhci_cd;
    273 
    274 /* -------------------------------------------------------------------------- */
    275 
    276 static void
    277 vhci_pkt_ctrl_create(vhci_port_t *port, struct usbd_xfer *xfer, bool utoh,
    278     uint8_t addr)
    279 {
    280 	vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
    281 	vhci_packet_list_t *reqlist, *reslist, *datlist = NULL;
    282 	vhci_packet_t *req, *res = NULL, *dat = NULL;
    283 	size_t npkts = 0;
    284 
    285 	/* Request packet. */
    286 	reqlist = &port->endpoints[addr].host_to_usb;
    287 	req = kmem_zalloc(sizeof(*req), KM_SLEEP);
    288 	req->vxfer = vxfer;
    289 	req->utoh = false;
    290 	req->addr = addr;
    291 	req->type.req = true;
    292 	req->buf = (uint8_t *)&vxfer->reqbuf;
    293 	req->size = sizeof(vxfer->reqbuf);
    294 	req->cursor = 0;
    295 	npkts++;
    296 
    297 	/* Init the request buffer. */
    298 	memset(&vxfer->reqbuf, 0, sizeof(vxfer->reqbuf));
    299 	vxfer->reqbuf.type = VHCI_REQ_CTRL;
    300 	memcpy(&vxfer->reqbuf.u.ctrl, &xfer->ux_request,
    301 	    sizeof(xfer->ux_request));
    302 
    303 	/* Response packet. */
    304 	if (utoh && (xfer->ux_length > 0)) {
    305 		reslist = &port->endpoints[addr].usb_to_host;
    306 		res = kmem_zalloc(sizeof(*res), KM_SLEEP);
    307 		res->vxfer = vxfer;
    308 		res->utoh = true;
    309 		res->addr = addr;
    310 		res->type.res = true;
    311 		res->buf = (uint8_t *)&vxfer->resbuf;
    312 		res->size = sizeof(vxfer->resbuf);
    313 		res->cursor = 0;
    314 		npkts++;
    315 	}
    316 
    317 	/* Data packet. */
    318 	if (xfer->ux_length > 0) {
    319 		if (utoh) {
    320 			datlist = &port->endpoints[addr].usb_to_host;
    321 		} else {
    322 			datlist = &port->endpoints[addr].host_to_usb;
    323 		}
    324 		dat = kmem_zalloc(sizeof(*dat), KM_SLEEP);
    325 		dat->vxfer = vxfer;
    326 		dat->utoh = utoh;
    327 		dat->addr = addr;
    328 		dat->type.dat = true;
    329 		dat->buf = xfer->ux_buf;
    330 		dat->size = xfer->ux_length;
    331 		dat->cursor = 0;
    332 		npkts++;
    333 	}
    334 
    335 	/* Insert in the xfer. */
    336 	vxfer->port = port;
    337 	vxfer->npkts = npkts;
    338 	TAILQ_INIT(&vxfer->pkts);
    339 	TAILQ_INSERT_TAIL(&vxfer->pkts, req, xferlist);
    340 	if (res != NULL)
    341 		TAILQ_INSERT_TAIL(&vxfer->pkts, res, xferlist);
    342 	if (dat != NULL)
    343 		TAILQ_INSERT_TAIL(&vxfer->pkts, dat, xferlist);
    344 
    345 	/* Insert in the port. */
    346 	KASSERT(mutex_owned(&port->lock));
    347 	TAILQ_INSERT_TAIL(reqlist, req, portlist);
    348 	if (res != NULL)
    349 		TAILQ_INSERT_TAIL(reslist, res, portlist);
    350 	if (dat != NULL)
    351 		TAILQ_INSERT_TAIL(datlist, dat, portlist);
    352 }
    353 
    354 static void
    355 vhci_pkt_destroy(vhci_softc_t *sc, vhci_packet_t *pkt)
    356 {
    357 	vhci_xfer_t *vxfer = pkt->vxfer;
    358 	vhci_port_t *port = vxfer->port;
    359 	vhci_packet_list_t *pktlist;
    360 
    361 	KASSERT(mutex_owned(&port->lock));
    362 
    363 	/* Remove from the port. */
    364 	if (pkt->utoh) {
    365 		pktlist = &port->endpoints[pkt->addr].usb_to_host;
    366 	} else {
    367 		pktlist = &port->endpoints[pkt->addr].host_to_usb;
    368 	}
    369 	TAILQ_REMOVE(pktlist, pkt, portlist);
    370 
    371 	/* Remove from the xfer. */
    372 	TAILQ_REMOVE(&vxfer->pkts, pkt, xferlist);
    373 	kmem_free(pkt, sizeof(*pkt));
    374 
    375 	/* Unref. */
    376 	KASSERT(vxfer->npkts > 0);
    377 	vxfer->npkts--;
    378 	if (vxfer->npkts > 0)
    379 		return;
    380 	KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
    381 }
    382 
    383 /* -------------------------------------------------------------------------- */
    384 
    385 static usbd_status
    386 vhci_open(struct usbd_pipe *pipe)
    387 {
    388 	struct usbd_device *dev = pipe->up_dev;
    389 	struct usbd_bus *bus = dev->ud_bus;
    390 	usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
    391 	vhci_softc_t *sc = bus->ub_hcpriv;
    392 	uint8_t addr = dev->ud_addr;
    393 
    394 	if (sc->sc_dying)
    395 		return USBD_IOERROR;
    396 
    397 	DPRINTF("%s: called, type=%d\n", __func__,
    398 	    UE_GET_XFERTYPE(ed->bmAttributes));
    399 
    400 	if (addr == bus->ub_rhaddr) {
    401 		switch (ed->bEndpointAddress) {
    402 		case USB_CONTROL_ENDPOINT:
    403 			DPRINTF("%s: roothub_ctrl\n", __func__);
    404 			pipe->up_methods = &roothub_ctrl_methods;
    405 			break;
    406 		case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
    407 			DPRINTF("%s: root_intr\n", __func__);
    408 			pipe->up_methods = &vhci_root_intr_methods;
    409 			break;
    410 		default:
    411 			DPRINTF("%s: inval\n", __func__);
    412 			return USBD_INVAL;
    413 		}
    414 	} else {
    415 		switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
    416 		case UE_CONTROL:
    417 			pipe->up_methods = &vhci_device_ctrl_methods;
    418 			break;
    419 		case UE_INTERRUPT:
    420 		case UE_BULK:
    421 		default:
    422 			goto bad;
    423 		}
    424 	}
    425 
    426 	return USBD_NORMAL_COMPLETION;
    427 
    428 bad:
    429 	return USBD_NOMEM;
    430 }
    431 
    432 static void
    433 vhci_softintr(void *v)
    434 {
    435 	DPRINTF("%s: called\n", __func__);
    436 }
    437 
    438 static struct usbd_xfer *
    439 vhci_allocx(struct usbd_bus *bus, unsigned int nframes)
    440 {
    441 	vhci_xfer_t *vxfer;
    442 
    443 	vxfer = kmem_zalloc(sizeof(*vxfer), KM_SLEEP);
    444 #ifdef DIAGNOSTIC
    445 	vxfer->xfer.ux_state = XFER_BUSY;
    446 #endif
    447 	return (struct usbd_xfer *)vxfer;
    448 }
    449 
    450 static void
    451 vhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
    452 {
    453 	vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
    454 
    455 	KASSERT(vxfer->npkts == 0);
    456 	KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
    457 
    458 #ifdef DIAGNOSTIC
    459 	vxfer->xfer.ux_state = XFER_FREE;
    460 #endif
    461 	kmem_free(vxfer, sizeof(*vxfer));
    462 }
    463 
    464 static void
    465 vhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
    466 {
    467 	vhci_softc_t *sc = bus->ub_hcpriv;
    468 
    469 	*lock = &sc->sc_lock;
    470 }
    471 
    472 static int
    473 vhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
    474     void *buf, int buflen)
    475 {
    476 	vhci_softc_t *sc = bus->ub_hcpriv;
    477 	vhci_port_t *port;
    478 	usb_hub_descriptor_t hubd;
    479 	uint16_t len, value, index;
    480 	int totlen = 0;
    481 
    482 	len = UGETW(req->wLength);
    483 	value = UGETW(req->wValue);
    484 	index = UGETW(req->wIndex);
    485 
    486 #define C(x,y) ((x) | ((y) << 8))
    487 	switch (C(req->bRequest, req->bmRequestType)) {
    488 	case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
    489 		switch (value) {
    490 		case C(0, UDESC_DEVICE): {
    491 			usb_device_descriptor_t devd;
    492 
    493 			totlen = uimin(buflen, sizeof(devd));
    494 			memcpy(&devd, buf, totlen);
    495 			USETW(devd.idVendor, 0);
    496 			USETW(devd.idProduct, 0);
    497 			memcpy(buf, &devd, totlen);
    498 			break;
    499 		}
    500 #define sd ((usb_string_descriptor_t *)buf)
    501 		case C(1, UDESC_STRING):
    502 			/* Vendor */
    503 			totlen = usb_makestrdesc(sd, len, "NetBSD");
    504 			break;
    505 		case C(2, UDESC_STRING):
    506 			/* Product */
    507 			totlen = usb_makestrdesc(sd, len, "VHCI root hub");
    508 			break;
    509 #undef sd
    510 		default:
    511 			/* default from usbroothub */
    512 			return buflen;
    513 		}
    514 		break;
    515 
    516 	case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
    517 		switch (value) {
    518 		case UHF_PORT_RESET:
    519 			if (index < 1 || index >= sc->sc_nports) {
    520 				return -1;
    521 			}
    522 			port = &sc->sc_port[VHCI_INDEX2PORT(index)];
    523 			port->status |= UPS_C_PORT_RESET;
    524 			break;
    525 		case UHF_PORT_POWER:
    526 			break;
    527 		default:
    528 			return -1;
    529 		}
    530 		break;
    531 
    532 	/* Hub requests. */
    533 	case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
    534 		break;
    535 	case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
    536 		if (index < 1 || index >= sc->sc_nports) {
    537 			return -1;
    538 		}
    539 		port = &sc->sc_port[VHCI_INDEX2PORT(index)];
    540 		switch (value) {
    541 		case UHF_PORT_ENABLE:
    542 			port->status &= ~UPS_PORT_ENABLED;
    543 			break;
    544 		case UHF_C_PORT_ENABLE:
    545 			port->change |= UPS_C_PORT_ENABLED;
    546 			break;
    547 		default:
    548 			return -1;
    549 		}
    550 		break;
    551 
    552 	case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
    553 		totlen = uimin(buflen, sizeof(hubd));
    554 		memcpy(&hubd, buf, totlen);
    555 		hubd.bNbrPorts = sc->sc_nports - 1;
    556 		hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE;
    557 		totlen = uimin(totlen, hubd.bDescLength);
    558 		memcpy(buf, &hubd, totlen);
    559 		break;
    560 
    561 	case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
    562 		/* XXX The other HCs do this */
    563 		memset(buf, 0, len);
    564 		totlen = len;
    565 		break;
    566 
    567 	case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
    568 		usb_port_status_t ps;
    569 
    570 		if (index < 1 || index >= sc->sc_nports) {
    571 			return -1;
    572 		}
    573 		port = &sc->sc_port[VHCI_INDEX2PORT(index)];
    574 		USETW(ps.wPortStatus, port->status);
    575 		USETW(ps.wPortChange, port->change);
    576 		totlen = uimin(len, sizeof(ps));
    577 		memcpy(buf, &ps, totlen);
    578 		break;
    579 	}
    580 	default:
    581 		/* default from usbroothub */
    582 		return buflen;
    583 	}
    584 
    585 	return totlen;
    586 }
    587 
    588 /* -------------------------------------------------------------------------- */
    589 
    590 static usbd_status
    591 vhci_device_ctrl_transfer(struct usbd_xfer *xfer)
    592 {
    593 
    594 	DPRINTF("%s: called\n", __func__);
    595 
    596 	/* Pipe isn't running, start first */
    597 	return vhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
    598 }
    599 
    600 static usbd_status
    601 vhci_device_ctrl_start(struct usbd_xfer *xfer)
    602 {
    603 	usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc;
    604 	usb_device_request_t *req = &xfer->ux_request;
    605 	struct usbd_device *dev = xfer->ux_pipe->up_dev;
    606 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    607 	vhci_port_t *port;
    608 	bool isread = (req->bmRequestType & UT_READ) != 0;
    609 	uint8_t addr = UE_GET_ADDR(ed->bEndpointAddress);
    610 	int portno, ret;
    611 
    612 	KASSERT(addr == 0);
    613 	KASSERT(xfer->ux_rqflags & URQ_REQUEST);
    614 	KASSERT(dev->ud_myhsport != NULL);
    615 	portno = dev->ud_myhsport->up_portno;
    616 
    617 	DPRINTF("%s: type=0x%02x, len=%d, isread=%d, portno=%d\n",
    618 	    __func__, req->bmRequestType, UGETW(req->wLength), isread, portno);
    619 
    620 	KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
    621 
    622 	if (sc->sc_dying)
    623 		return USBD_IOERROR;
    624 
    625 	port = &sc->sc_port[portno];
    626 
    627 	mutex_enter(&port->lock);
    628 	if (port->status & UPS_PORT_ENABLED) {
    629 		xfer->ux_status = USBD_IN_PROGRESS;
    630 		vhci_pkt_ctrl_create(port, xfer, isread, addr);
    631 		ret = USBD_IN_PROGRESS;
    632 	} else {
    633 		ret = USBD_IOERROR;
    634 	}
    635 	mutex_exit(&port->lock);
    636 
    637 	return ret;
    638 }
    639 
    640 static void
    641 vhci_device_ctrl_abort(struct usbd_xfer *xfer)
    642 {
    643 	vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
    644 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    645 	vhci_port_t *port = vxfer->port;
    646 	vhci_packet_t *pkt;
    647 
    648 	DPRINTF("%s: called\n", __func__);
    649 
    650 	KASSERT(mutex_owned(&sc->sc_lock));
    651 
    652 	callout_halt(&xfer->ux_callout, &sc->sc_lock);
    653 
    654 	/* If anyone else beat us, we're done.  */
    655 	KASSERT(xfer->ux_status != USBD_CANCELLED);
    656 	if (xfer->ux_status != USBD_IN_PROGRESS)
    657 		return;
    658 
    659 	mutex_enter(&port->lock);
    660 	while (vxfer->npkts > 0) {
    661 		pkt = TAILQ_FIRST(&vxfer->pkts);
    662 		KASSERT(pkt != NULL);
    663 		vhci_pkt_destroy(sc, pkt);
    664 	}
    665 	KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
    666 	mutex_exit(&port->lock);
    667 
    668 	xfer->ux_status = USBD_CANCELLED;
    669 	usb_transfer_complete(xfer);
    670 	KASSERT(mutex_owned(&sc->sc_lock));
    671 }
    672 
    673 static void
    674 vhci_device_ctrl_close(struct usbd_pipe *pipe)
    675 {
    676 	DPRINTF("%s: called\n", __func__);
    677 }
    678 
    679 static void
    680 vhci_device_ctrl_cleartoggle(struct usbd_pipe *pipe)
    681 {
    682 	DPRINTF("%s: called\n", __func__);
    683 }
    684 
    685 static void
    686 vhci_device_ctrl_done(struct usbd_xfer *xfer)
    687 {
    688 	DPRINTF("%s: called\n", __func__);
    689 }
    690 
    691 /* -------------------------------------------------------------------------- */
    692 
    693 static usbd_status
    694 vhci_root_intr_transfer(struct usbd_xfer *xfer)
    695 {
    696 
    697 	DPRINTF("%s: called\n", __func__);
    698 
    699 	/* Pipe isn't running, start first */
    700 	return vhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
    701 }
    702 
    703 static usbd_status
    704 vhci_root_intr_start(struct usbd_xfer *xfer)
    705 {
    706 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    707 
    708 	DPRINTF("%s: called, len=%zu\n", __func__, (size_t)xfer->ux_length);
    709 
    710 	KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
    711 
    712 	if (sc->sc_dying)
    713 		return USBD_IOERROR;
    714 
    715 	KASSERT(sc->sc_intrxfer == NULL);
    716 	sc->sc_intrxfer = xfer;
    717 	xfer->ux_status = USBD_IN_PROGRESS;
    718 
    719 	return USBD_IN_PROGRESS;
    720 }
    721 
    722 static void
    723 vhci_root_intr_abort(struct usbd_xfer *xfer)
    724 {
    725 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    726 
    727 	DPRINTF("%s: called\n", __func__);
    728 
    729 	KASSERT(mutex_owned(&sc->sc_lock));
    730 	KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
    731 
    732 	/* If xfer has already completed, nothing to do here.  */
    733 	if (sc->sc_intrxfer == NULL)
    734 		return;
    735 
    736 	/*
    737 	 * Otherwise, sc->sc_intrxfer had better be this transfer.
    738 	 * Cancel it.
    739 	 */
    740 	KASSERT(sc->sc_intrxfer == xfer);
    741 	KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
    742 	xfer->ux_status = USBD_CANCELLED;
    743 	usb_transfer_complete(xfer);
    744 }
    745 
    746 static void
    747 vhci_root_intr_close(struct usbd_pipe *pipe)
    748 {
    749 	vhci_softc_t *sc __diagused = pipe->up_dev->ud_bus->ub_hcpriv;
    750 
    751 	DPRINTF("%s: called\n", __func__);
    752 
    753 	KASSERT(mutex_owned(&sc->sc_lock));
    754 
    755 	/*
    756 	 * Caller must guarantee the xfer has completed first, by
    757 	 * closing the pipe only after normal completion or an abort.
    758 	 */
    759 	KASSERT(sc->sc_intrxfer == NULL);
    760 }
    761 
    762 static void
    763 vhci_root_intr_cleartoggle(struct usbd_pipe *pipe)
    764 {
    765 	DPRINTF("%s: called\n", __func__);
    766 }
    767 
    768 static void
    769 vhci_root_intr_done(struct usbd_xfer *xfer)
    770 {
    771 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    772 
    773 	KASSERT(mutex_owned(&sc->sc_lock));
    774 
    775 	/* Claim the xfer so it doesn't get completed again.  */
    776 	KASSERT(sc->sc_intrxfer == xfer);
    777 	KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
    778 	sc->sc_intrxfer = NULL;
    779 }
    780 
    781 /* -------------------------------------------------------------------------- */
    782 
    783 static void
    784 vhci_usb_attach(vhci_fd_t *vfd)
    785 {
    786 	vhci_softc_t *sc = vfd->softc;
    787 	vhci_port_t *port;
    788 	struct usbd_xfer *xfer;
    789 	u_char *p;
    790 
    791 	port = &sc->sc_port[vfd->port];
    792 
    793 	mutex_enter(&sc->sc_lock);
    794 
    795 	mutex_enter(&port->lock);
    796 	port->status = UPS_CURRENT_CONNECT_STATUS | UPS_PORT_ENABLED |
    797 	    UPS_PORT_POWER;
    798 	port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;
    799 	mutex_exit(&port->lock);
    800 
    801 	xfer = sc->sc_intrxfer;
    802 
    803 	if (xfer == NULL) {
    804 		goto done;
    805 	}
    806 	KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
    807 
    808 	/*
    809 	 * Mark our port has having changed state. Uhub will then fetch
    810 	 * status/change and see it needs to perform an attach.
    811 	 */
    812 	p = xfer->ux_buf;
    813 	memset(p, 0, xfer->ux_length);
    814 	p[0] = __BIT(vfd->port); /* TODO-bitmap */
    815 	xfer->ux_actlen = xfer->ux_length;
    816 	xfer->ux_status = USBD_NORMAL_COMPLETION;
    817 
    818 	usb_transfer_complete(xfer);
    819 
    820 done:
    821 	mutex_exit(&sc->sc_lock);
    822 }
    823 
    824 static void
    825 vhci_port_flush(vhci_softc_t *sc, vhci_port_t *port)
    826 {
    827 	vhci_packet_list_t *pktlist;
    828 	vhci_packet_t *pkt, *nxt;
    829 	vhci_xfer_list_t vxferlist;
    830 	vhci_xfer_t *vxfer;
    831 	uint8_t addr;
    832 
    833 	KASSERT(mutex_owned(&sc->sc_lock));
    834 	KASSERT(mutex_owned(&port->lock));
    835 
    836 	TAILQ_INIT(&vxferlist);
    837 
    838 	for (addr = 0; addr < VHCI_NADDRS; addr++) {
    839 		/* Drop all the packets in the H->U direction. */
    840 		pktlist = &port->endpoints[addr].host_to_usb;
    841 		TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
    842 			vxfer = pkt->vxfer;
    843 			KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
    844 			vhci_pkt_destroy(sc, pkt);
    845 			if (vxfer->npkts == 0)
    846 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
    847 		}
    848 		KASSERT(TAILQ_FIRST(pktlist) == NULL);
    849 
    850 		/* Drop all the packets in the U->H direction. */
    851 		pktlist = &port->endpoints[addr].usb_to_host;
    852 		TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
    853 			vxfer = pkt->vxfer;
    854 			KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
    855 			vhci_pkt_destroy(sc, pkt);
    856 			if (vxfer->npkts == 0)
    857 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
    858 		}
    859 		KASSERT(TAILQ_FIRST(pktlist) == NULL);
    860 
    861 		/* Terminate all the xfers collected. */
    862 		while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
    863 			struct usbd_xfer *xfer = &vxfer->xfer;
    864 			TAILQ_REMOVE(&vxferlist, vxfer, freelist);
    865 
    866 			xfer->ux_status = USBD_TIMEOUT;
    867 			usb_transfer_complete(xfer);
    868 		}
    869 	}
    870 }
    871 
    872 static void
    873 vhci_usb_detach(vhci_fd_t *vfd)
    874 {
    875 	vhci_softc_t *sc = vfd->softc;
    876 	vhci_port_t *port;
    877 	struct usbd_xfer *xfer;
    878 	u_char *p;
    879 
    880 	port = &sc->sc_port[vfd->port];
    881 
    882 	mutex_enter(&sc->sc_lock);
    883 
    884 	xfer = sc->sc_intrxfer;
    885 	if (xfer == NULL) {
    886 		goto done;
    887 	}
    888 	KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
    889 
    890 	mutex_enter(&port->lock);
    891 
    892 	port->status = 0;
    893 	port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;
    894 
    895 	/*
    896 	 * Mark our port has having changed state. Uhub will then fetch
    897 	 * status/change and see it needs to perform a detach.
    898 	 */
    899 	p = xfer->ux_buf;
    900 	memset(p, 0, xfer->ux_length);
    901 	p[0] = __BIT(vfd->port); /* TODO-bitmap */
    902 	xfer->ux_actlen = xfer->ux_length;
    903 	xfer->ux_status = USBD_NORMAL_COMPLETION;
    904 
    905 	usb_transfer_complete(xfer);
    906 	vhci_port_flush(sc, port);
    907 
    908 	mutex_exit(&port->lock);
    909 done:
    910 	mutex_exit(&sc->sc_lock);
    911 }
    912 
    913 static int
    914 vhci_get_info(vhci_fd_t *vfd, struct vhci_ioc_get_info *args)
    915 {
    916 	vhci_softc_t *sc = vfd->softc;
    917 	vhci_port_t *port;
    918 
    919 	port = &sc->sc_port[vfd->port];
    920 
    921 	args->nports = VHCI_NPORTS;
    922 	args->port = vfd->port;
    923 	mutex_enter(&port->lock);
    924 	args->status = port->status;
    925 	mutex_exit(&port->lock);
    926 	args->addr = vfd->addr;
    927 
    928 	return 0;
    929 }
    930 
    931 static int
    932 vhci_set_port(vhci_fd_t *vfd, struct vhci_ioc_set_port *args)
    933 {
    934 	vhci_softc_t *sc = vfd->softc;
    935 
    936 	if (args->port == 0 || args->port >= sc->sc_nports)
    937 		return EINVAL;
    938 
    939 	vfd->port = args->port;
    940 
    941 	return 0;
    942 }
    943 
    944 static int
    945 vhci_set_addr(vhci_fd_t *vfd, struct vhci_ioc_set_addr *args)
    946 {
    947 	if (args->addr >= VHCI_NADDRS)
    948 		return EINVAL;
    949 
    950 	vfd->addr = args->addr;
    951 
    952 	return 0;
    953 }
    954 
    955 /* -------------------------------------------------------------------------- */
    956 
    957 static dev_type_open(vhci_fd_open);
    958 
    959 const struct cdevsw vhci_cdevsw = {
    960 	.d_open = vhci_fd_open,
    961 	.d_close = noclose,
    962 	.d_read = noread,
    963 	.d_write = nowrite,
    964 	.d_ioctl = noioctl,
    965 	.d_stop = nostop,
    966 	.d_tty = notty,
    967 	.d_poll = nopoll,
    968 	.d_mmap = nommap,
    969 	.d_kqfilter = nokqfilter,
    970 	.d_discard = nodiscard,
    971 	.d_flag = D_OTHER | D_MPSAFE
    972 };
    973 
    974 static int vhci_fd_ioctl(file_t *, u_long, void *);
    975 static int vhci_fd_close(file_t *);
    976 static int vhci_fd_read(struct file *, off_t *, struct uio *, kauth_cred_t, int);
    977 static int vhci_fd_write(struct file *, off_t *, struct uio *, kauth_cred_t, int);
    978 
    979 const struct fileops vhci_fileops = {
    980 	.fo_read = vhci_fd_read,
    981 	.fo_write = vhci_fd_write,
    982 	.fo_ioctl = vhci_fd_ioctl,
    983 	.fo_fcntl = fnullop_fcntl,
    984 	.fo_poll = fnullop_poll,
    985 	.fo_stat = fbadop_stat,
    986 	.fo_close = vhci_fd_close,
    987 	.fo_kqfilter = fnullop_kqfilter,
    988 	.fo_restart = fnullop_restart,
    989 	.fo_mmap = NULL,
    990 };
    991 
    992 static int
    993 vhci_fd_open(dev_t dev, int flags, int type, struct lwp *l)
    994 {
    995 	vhci_softc_t *sc;
    996 	vhci_fd_t *vfd;
    997 	struct file *fp;
    998 	int error, fd;
    999 
   1000 	sc = device_lookup_private(&vhci_cd, minor(dev));
   1001 	if (sc == NULL)
   1002 		return EXDEV;
   1003 
   1004 	error = fd_allocfile(&fp, &fd);
   1005 	if (error)
   1006 		return error;
   1007 
   1008 	vfd = kmem_alloc(sizeof(*vfd), KM_SLEEP);
   1009 	vfd->port = 1;
   1010 	vfd->addr = 0;
   1011 	vfd->softc = sc;
   1012 
   1013 	return fd_clone(fp, fd, flags, &vhci_fileops, vfd);
   1014 }
   1015 
   1016 static int
   1017 vhci_fd_close(file_t *fp)
   1018 {
   1019 	vhci_fd_t *vfd = fp->f_data;
   1020 
   1021 	KASSERT(vfd != NULL);
   1022 	vhci_usb_detach(vfd);
   1023 
   1024 	kmem_free(vfd, sizeof(*vfd));
   1025 	fp->f_data = NULL;
   1026 
   1027 	return 0;
   1028 }
   1029 
   1030 static int
   1031 vhci_fd_read(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1032     int flags)
   1033 {
   1034 	vhci_fd_t *vfd = fp->f_data;
   1035 	vhci_softc_t *sc = vfd->softc;
   1036 	vhci_packet_list_t *pktlist;
   1037 	vhci_packet_t *pkt, *nxt;
   1038 	vhci_xfer_list_t vxferlist;
   1039 	vhci_xfer_t *vxfer;
   1040 	vhci_port_t *port;
   1041 	int error = 0;
   1042 	uint8_t *buf;
   1043 	size_t size;
   1044 
   1045 	if (uio->uio_resid == 0)
   1046 		return 0;
   1047 	port = &sc->sc_port[vfd->port];
   1048 	pktlist = &port->endpoints[vfd->addr].host_to_usb;
   1049 
   1050 	TAILQ_INIT(&vxferlist);
   1051 
   1052 	mutex_enter(&port->lock);
   1053 
   1054 	if (!(port->status & UPS_PORT_ENABLED)) {
   1055 		error = ENOBUFS;
   1056 		goto out;
   1057 	}
   1058 
   1059 	TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
   1060 		vxfer = pkt->vxfer;
   1061 		buf = pkt->buf + pkt->cursor;
   1062 
   1063 		KASSERT(pkt->size >= pkt->cursor);
   1064 		size = uimin(uio->uio_resid, pkt->size - pkt->cursor);
   1065 
   1066 		KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
   1067 
   1068 		error = uiomove(buf, size, uio);
   1069 		if (error) {
   1070 			DPRINTF("%s: error = %d\n", __func__, error);
   1071 			goto out;
   1072 		}
   1073 
   1074 		pkt->cursor += size;
   1075 
   1076 		if (pkt->cursor == pkt->size) {
   1077 			vhci_pkt_destroy(sc, pkt);
   1078 			if (vxfer->npkts == 0) {
   1079 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
   1080 			}
   1081 		}
   1082 		if (uio->uio_resid == 0) {
   1083 			break;
   1084 		}
   1085 	}
   1086 
   1087 out:
   1088 	mutex_exit(&port->lock);
   1089 
   1090 	while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
   1091 		struct usbd_xfer *xfer = &vxfer->xfer;
   1092 		TAILQ_REMOVE(&vxferlist, vxfer, freelist);
   1093 
   1094 		mutex_enter(&sc->sc_lock);
   1095 		xfer->ux_actlen = xfer->ux_length;
   1096 		xfer->ux_status = USBD_NORMAL_COMPLETION;
   1097 		usb_transfer_complete(xfer);
   1098 		mutex_exit(&sc->sc_lock);
   1099 	}
   1100 
   1101 	return error;
   1102 }
   1103 
   1104 static int
   1105 vhci_fd_write(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1106     int flags)
   1107 {
   1108 	vhci_fd_t *vfd = fp->f_data;
   1109 	vhci_softc_t *sc = vfd->softc;
   1110 	vhci_packet_list_t *pktlist;
   1111 	vhci_packet_t *pkt, *nxt;
   1112 	vhci_xfer_list_t vxferlist;
   1113 	vhci_xfer_t *vxfer;
   1114 	vhci_port_t *port;
   1115 	int error = 0;
   1116 	uint8_t *buf;
   1117 	size_t pktsize, size;
   1118 
   1119 	if (uio->uio_resid == 0)
   1120 		return 0;
   1121 	port = &sc->sc_port[vfd->port];
   1122 	pktlist = &port->endpoints[vfd->addr].usb_to_host;
   1123 
   1124 	TAILQ_INIT(&vxferlist);
   1125 
   1126 	mutex_enter(&port->lock);
   1127 
   1128 	if (!(port->status & UPS_PORT_ENABLED)) {
   1129 		error = ENOBUFS;
   1130 		goto out;
   1131 	}
   1132 
   1133 	TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
   1134 		vxfer = pkt->vxfer;
   1135 		buf = pkt->buf + pkt->cursor;
   1136 
   1137 		pktsize = pkt->size;
   1138 		if (pkt->type.dat)
   1139 			pktsize = ulmin(vxfer->resbuf.size, pktsize);
   1140 
   1141 		KASSERT(pktsize >= pkt->cursor);
   1142 		size = uimin(uio->uio_resid, pktsize - pkt->cursor);
   1143 
   1144 		KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
   1145 
   1146 		error = uiomove(buf, size, uio);
   1147 		if (error) {
   1148 			DPRINTF("%s: error = %d\n", __func__, error);
   1149 			goto out;
   1150 		}
   1151 
   1152 		pkt->cursor += size;
   1153 
   1154 		if (pkt->cursor == pktsize) {
   1155 			vhci_pkt_destroy(sc, pkt);
   1156 			if (vxfer->npkts == 0) {
   1157 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
   1158 			}
   1159 		}
   1160 		if (uio->uio_resid == 0) {
   1161 			break;
   1162 		}
   1163 	}
   1164 
   1165 out:
   1166 	mutex_exit(&port->lock);
   1167 
   1168 	while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
   1169 		struct usbd_xfer *xfer = &vxfer->xfer;
   1170 		TAILQ_REMOVE(&vxferlist, vxfer, freelist);
   1171 
   1172 		mutex_enter(&sc->sc_lock);
   1173 		xfer->ux_actlen = ulmin(vxfer->resbuf.size, xfer->ux_length);
   1174 		xfer->ux_status = USBD_NORMAL_COMPLETION;
   1175 		usb_transfer_complete(xfer);
   1176 		mutex_exit(&sc->sc_lock);
   1177 	}
   1178 
   1179 	return error;
   1180 }
   1181 
   1182 static int
   1183 vhci_fd_ioctl(file_t *fp, u_long cmd, void *data)
   1184 {
   1185 	vhci_fd_t *vfd = fp->f_data;
   1186 
   1187 	KASSERT(vfd != NULL);
   1188 
   1189 	switch (cmd) {
   1190 	case VHCI_IOC_GET_INFO:
   1191 		return vhci_get_info(vfd, data);
   1192 	case VHCI_IOC_SET_PORT:
   1193 		return vhci_set_port(vfd, data);
   1194 	case VHCI_IOC_SET_ADDR:
   1195 		return vhci_set_addr(vfd, data);
   1196 	case VHCI_IOC_USB_ATTACH:
   1197 		vhci_usb_attach(vfd);
   1198 		return 0;
   1199 	case VHCI_IOC_USB_DETACH:
   1200 		vhci_usb_detach(vfd);
   1201 		return 0;
   1202 	default:
   1203 		return EINVAL;
   1204 	}
   1205 }
   1206 
   1207 /* -------------------------------------------------------------------------- */
   1208 
   1209 static int vhci_match(device_t, cfdata_t, void *);
   1210 static void vhci_attach(device_t, device_t, void *);
   1211 static int vhci_activate(device_t, enum devact);
   1212 
   1213 CFATTACH_DECL_NEW(vhci, sizeof(vhci_softc_t), vhci_match, vhci_attach,
   1214     NULL, vhci_activate);
   1215 
   1216 void
   1217 vhciattach(int nunits)
   1218 {
   1219 	struct cfdata *cf;
   1220 	int error;
   1221 	size_t i;
   1222 
   1223 	error = config_cfattach_attach(vhci_cd.cd_name, &vhci_ca);
   1224 	if (error) {
   1225 		aprint_error("%s: unable to register cfattach\n",
   1226 		    vhci_cd.cd_name);
   1227 		(void)config_cfdriver_detach(&vhci_cd);
   1228 		return;
   1229 	}
   1230 
   1231 	for (i = 0; i < VHCI_NBUSES; i++) {
   1232 		cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
   1233 		cf->cf_name = vhci_cd.cd_name;
   1234 		cf->cf_atname = vhci_cd.cd_name;
   1235 		cf->cf_unit = i;
   1236 		cf->cf_fstate = FSTATE_STAR;
   1237 		config_attach_pseudo(cf);
   1238 	}
   1239 }
   1240 
   1241 static int
   1242 vhci_activate(device_t self, enum devact act)
   1243 {
   1244 	vhci_softc_t *sc = device_private(self);
   1245 
   1246 	switch (act) {
   1247 	case DVACT_DEACTIVATE:
   1248 		sc->sc_dying = 1;
   1249 		return 0;
   1250 	default:
   1251 		return EOPNOTSUPP;
   1252 	}
   1253 }
   1254 
   1255 static int
   1256 vhci_match(device_t parent, cfdata_t match, void *aux)
   1257 {
   1258 	return 1;
   1259 }
   1260 
   1261 static void
   1262 vhci_attach(device_t parent, device_t self, void *aux)
   1263 {
   1264 	vhci_softc_t *sc = device_private(self);
   1265 	vhci_port_t *port;
   1266 	uint8_t addr;
   1267 	size_t i;
   1268 
   1269 	sc->sc_dev = self;
   1270 	sc->sc_bus.ub_revision = USBREV_2_0;
   1271 	sc->sc_bus.ub_hctype = USBHCTYPE_VHCI;
   1272 	sc->sc_bus.ub_busnum = device_unit(self);
   1273 	sc->sc_bus.ub_usedma = false;
   1274 	sc->sc_bus.ub_methods = &vhci_bus_methods;
   1275 	sc->sc_bus.ub_pipesize = sizeof(vhci_pipe_t);
   1276 	sc->sc_bus.ub_hcpriv = sc;
   1277 	sc->sc_dying = false;
   1278 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
   1279 
   1280 	sc->sc_nports = VHCI_NPORTS;
   1281 	for (i = 0; i < sc->sc_nports; i++) {
   1282 		port = &sc->sc_port[i];
   1283 		mutex_init(&port->lock, MUTEX_DEFAULT, IPL_SOFTUSB);
   1284 		for (addr = 0; addr < VHCI_NADDRS; addr++) {
   1285 			TAILQ_INIT(&port->endpoints[addr].usb_to_host);
   1286 			TAILQ_INIT(&port->endpoints[addr].host_to_usb);
   1287 		}
   1288 		kcov_remote_register(KCOV_REMOTE_VHCI,
   1289 		    KCOV_REMOTE_VHCI_ID(sc->sc_bus.ub_busnum, i));
   1290 	}
   1291 
   1292 	sc->sc_child = config_found(self, &sc->sc_bus, usbctlprint, CFARGS_NONE);
   1293 }
   1294