Home | History | Annotate | Line # | Download | only in vr
      1 /*	$NetBSD: rtc.c,v 1.37 2025/09/07 21:45:13 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 Shin Takemura. All rights reserved.
      5  * Copyright (c) 1999 SATO Kazumi. All rights reserved.
      6  * Copyright (c) 1999 PocketBSD Project. All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by the PocketBSD project
     19  *	and its contributors.
     20  * 4. Neither the name of the project nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: rtc.c,v 1.37 2025/09/07 21:45:13 thorpej Exp $");
     40 
     41 #include "opt_vr41xx.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/timetc.h>
     46 #include <sys/device.h>
     47 #include <sys/cpu.h>
     48 
     49 #include <machine/sysconf.h>
     50 #include <machine/bus.h>
     51 
     52 #include <dev/clock_subr.h>
     53 
     54 #include <hpcmips/vr/vr.h>
     55 #include <hpcmips/vr/vrcpudef.h>
     56 #include <hpcmips/vr/vripif.h>
     57 #include <hpcmips/vr/vripreg.h>
     58 #include <hpcmips/vr/rtcreg.h>
     59 
     60 /*
     61  * for debugging definitions
     62  * 	VRRTCDEBUG	print rtc debugging information
     63  */
     64 #ifdef VRRTCDEBUG
     65 #ifndef VRRTCDEBUG_CONF
     66 #define VRRTCDEBUG_CONF 0
     67 #endif
     68 int vrrtc_debug = VRRTCDEBUG_CONF;
     69 #define DPRINTF(arg) if (vrrtc_debug) printf arg;
     70 #define DDUMP_REGS(arg) if (vrrtc_debug) vrrtc_dump_regs(arg);
     71 #else /* VRRTCDEBUG */
     72 #define DPRINTF(arg)
     73 #define DDUMP_REGS(arg)
     74 #endif /* VRRTCDEBUG */
     75 
     76 struct vrrtc_softc {
     77 	device_t sc_dev;
     78 	bus_space_tag_t sc_iot;
     79 	bus_space_handle_t sc_ioh;
     80 	void *sc_ih;
     81 #ifndef SINGLE_VRIP_BASE
     82 	int sc_rtcint_reg;
     83 	int sc_tclk_h_reg, sc_tclk_l_reg;
     84 	int sc_tclk_cnt_h_reg, sc_tclk_cnt_l_reg;
     85 #endif /* SINGLE_VRIP_BASE */
     86 	int64_t sc_epoch;
     87 	struct todr_chip_handle sc_todr;
     88 	struct timecounter sc_tc;
     89 };
     90 
     91 void	vrrtc_init(device_t);
     92 int	vrrtc_get(todr_chip_handle_t, struct timeval *);
     93 int	vrrtc_set(todr_chip_handle_t, struct timeval *);
     94 uint32_t vrrtc_get_timecount(struct timecounter *);
     95 
     96 struct platform_clock vr_clock = {
     97 #define CLOCK_RATE	128
     98 	CLOCK_RATE, vrrtc_init,
     99 };
    100 
    101 int	vrrtc_match(device_t, cfdata_t, void *);
    102 void	vrrtc_attach(device_t, device_t, void *);
    103 int	vrrtc_intr(void*, vaddr_t, uint32_t);
    104 void	vrrtc_dump_regs(struct vrrtc_softc *);
    105 
    106 CFATTACH_DECL_NEW(vrrtc, sizeof(struct vrrtc_softc),
    107     vrrtc_match, vrrtc_attach, NULL, NULL);
    108 
    109 int
    110 vrrtc_match(device_t parent, cfdata_t cf, void *aux)
    111 {
    112 
    113 	return 1;
    114 }
    115 
    116 #ifndef SINGLE_VRIP_BASE
    117 #define RTCINT_REG_W		(sc->sc_rtcint_reg)
    118 #define TCLK_H_REG_W		(sc->sc_tclk_h_reg)
    119 #define TCLK_L_REG_W		(sc->sc_tclk_l_reg)
    120 #define TCLK_CNT_H_REG_W	(sc->sc_tclk_cnt_h_reg)
    121 #define TCLK_CNT_L_REG_W	(sc->sc_tclk_cnt_l_reg)
    122 #endif /* SINGLE_VRIP_BASE */
    123 
    124 void
    125 vrrtc_attach(device_t parent, device_t self, void *aux)
    126 {
    127 	struct vrip_attach_args *va = aux;
    128 	struct vrrtc_softc *sc = device_private(self);
    129 	int year;
    130 
    131 #ifndef SINGLE_VRIP_BASE
    132 	if (va->va_addr == VR4102_RTC_ADDR) {
    133 		sc->sc_rtcint_reg = VR4102_RTCINT_REG_W;
    134 		sc->sc_tclk_h_reg = VR4102_TCLK_H_REG_W;
    135 		sc->sc_tclk_l_reg = VR4102_TCLK_L_REG_W;
    136 		sc->sc_tclk_cnt_h_reg = VR4102_TCLK_CNT_H_REG_W;
    137 		sc->sc_tclk_cnt_l_reg = VR4102_TCLK_CNT_L_REG_W;
    138 	} else if (va->va_addr == VR4122_RTC_ADDR) {
    139 		sc->sc_rtcint_reg = VR4122_RTCINT_REG_W;
    140 		sc->sc_tclk_h_reg = VR4122_TCLK_H_REG_W;
    141 		sc->sc_tclk_l_reg = VR4122_TCLK_L_REG_W;
    142 		sc->sc_tclk_cnt_h_reg = VR4122_TCLK_CNT_H_REG_W;
    143 		sc->sc_tclk_cnt_l_reg = VR4122_TCLK_CNT_L_REG_W;
    144 	} else if (va->va_addr == VR4181_RTC_ADDR) {
    145 		sc->sc_rtcint_reg = VR4181_RTCINT_REG_W;
    146 		sc->sc_tclk_h_reg = RTC_NO_REG_W;
    147 		sc->sc_tclk_l_reg = RTC_NO_REG_W;
    148 		sc->sc_tclk_cnt_h_reg = RTC_NO_REG_W;
    149 		sc->sc_tclk_cnt_l_reg = RTC_NO_REG_W;
    150 	} else {
    151 		panic("%s: unknown base address 0x%lx",
    152 		    device_xname(self), va->va_addr);
    153 	}
    154 #endif /* SINGLE_VRIP_BASE */
    155 
    156 	sc->sc_dev = self;
    157 	sc->sc_iot = va->va_iot;
    158 	if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
    159 	    0 /* no flags */, &sc->sc_ioh)) {
    160 		printf("vrrtc_attach: can't map i/o space\n");
    161 		return;
    162 	}
    163 	/* RTC interrupt handler is directly dispatched from CPU intr */
    164 	vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
    165 	/* But need to set level 1 interrupt mask register,
    166 	 * so register fake interrurpt handler
    167 	 */
    168 	if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_unit, 0,
    169 	    IPL_CLOCK, 0, 0))) {
    170 		printf (":can't map interrupt.\n");
    171 		return;
    172 	}
    173 	/*
    174 	 *  Rtc is attached to call this routine
    175 	 *  before cpu_initclock() calls clock_init().
    176 	 *  So we must disable all interrupt for now.
    177 	 */
    178 	/*
    179 	 * Disable all rtc interrupts
    180 	 */
    181 	/* Disable Elapse compare intr */
    182 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
    183 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
    184 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
    185 	/* Disable RTC Long1 intr */
    186 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
    187 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
    188 	/* Disable RTC Long2 intr */
    189 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
    190 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
    191 	/* Disable RTC TCLK intr */
    192 	if (TCLK_H_REG_W != RTC_NO_REG_W) {
    193 		bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
    194 		bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
    195 	}
    196 	/*
    197 	 * Clear all rtc interrupts.
    198 	 */
    199 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
    200 
    201 	/*
    202 	 * Figure out the epoch, which could be either forward or
    203 	 * backwards in time.  We assume that the start date will always
    204 	 * be on Jan 1.
    205 	 */
    206 	for (year = EPOCHYEAR; year < POSIX_BASE_YEAR; year++) {
    207 		sc->sc_epoch += days_per_year(year) * SECS_PER_DAY;
    208 	}
    209 	for (year = POSIX_BASE_YEAR; year < EPOCHYEAR; year++) {
    210 		sc->sc_epoch -= days_per_year(year) * SECS_PER_DAY;
    211 	}
    212 
    213 	/*
    214 	 * Initialize MI todr(9)
    215 	 */
    216 	sc->sc_todr.todr_settime = vrrtc_set;
    217 	sc->sc_todr.todr_gettime = vrrtc_get;
    218 	sc->sc_todr.todr_dev = self;
    219 	todr_attach(&sc->sc_todr);
    220 
    221 	platform_clock_attach(self, &vr_clock);
    222 }
    223 
    224 int
    225 vrrtc_intr(void *arg, vaddr_t pc, uint32_t status)
    226 {
    227 	struct vrrtc_softc *sc = arg;
    228 	struct clockframe cf;
    229 
    230 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
    231 	cf.pc = pc;
    232 	cf.sr = status;
    233 	cf.intr = (curcpu()->ci_idepth > 1);
    234 	hardclock(&cf);
    235 
    236 	return 0;
    237 }
    238 
    239 void
    240 vrrtc_init(device_t self)
    241 {
    242 	struct vrrtc_softc *sc = device_private(self);
    243 
    244 	DDUMP_REGS(sc);
    245 	/*
    246 	 * Set tick (CLOCK_RATE)
    247 	 */
    248 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
    249 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
    250 	    RTCL1_L_REG_W, RTCL1_L_HZ / CLOCK_RATE);
    251 
    252 	/*
    253 	 * Initialize timecounter.
    254 	 */
    255 	sc->sc_tc.tc_get_timecount = vrrtc_get_timecount;
    256 	sc->sc_tc.tc_name = "vrrtc";
    257 	sc->sc_tc.tc_counter_mask = 0xffff;
    258 	sc->sc_tc.tc_frequency = ETIME_L_HZ;
    259 	sc->sc_tc.tc_priv = sc;
    260 	sc->sc_tc.tc_quality = 100;
    261 	tc_init(&sc->sc_tc);
    262 }
    263 
    264 uint32_t
    265 vrrtc_get_timecount(struct timecounter *tc)
    266 {
    267 	struct vrrtc_softc *sc = (struct vrrtc_softc *)tc->tc_priv;
    268 	bus_space_tag_t iot = sc->sc_iot;
    269 	bus_space_handle_t ioh = sc->sc_ioh;
    270 
    271 	return bus_space_read_2(iot, ioh, ETIME_L_REG_W);
    272 }
    273 
    274 int
    275 vrrtc_get(todr_chip_handle_t tch, struct timeval *tvp)
    276 {
    277 	struct vrrtc_softc *sc = device_private(tch->todr_dev);
    278 	bus_space_tag_t iot = sc->sc_iot;
    279 	bus_space_handle_t ioh = sc->sc_ioh;
    280 	uint32_t timeh;		/* elapse time (2*timeh sec) */
    281 	uint32_t timel;		/* timel/32768 sec */
    282 	uint64_t sec, usec;
    283 
    284 	timeh = bus_space_read_2(iot, ioh, ETIME_H_REG_W);
    285 	timeh = (timeh << 16) | bus_space_read_2(iot, ioh, ETIME_M_REG_W);
    286 	timel = bus_space_read_2(iot, ioh, ETIME_L_REG_W);
    287 
    288 	DPRINTF(("clock_get: timeh %08x timel %08x\n", timeh, timel));
    289 
    290 	timeh -= EPOCHOFF;
    291 	sec = (uint64_t)timeh * 2;
    292 	sec -= sc->sc_epoch;
    293 	tvp->tv_sec = sec;
    294 	tvp->tv_sec += timel / ETIME_L_HZ;
    295 
    296 	/* scale from 32kHz to 1MHz */
    297 	usec = (timel % ETIME_L_HZ);
    298 	usec *= 1000000;
    299 	usec /= ETIME_L_HZ;
    300 	tvp->tv_usec = usec;
    301 
    302 	return 0;
    303 }
    304 
    305 int
    306 vrrtc_set(todr_chip_handle_t tch, struct timeval *tvp)
    307 {
    308 	struct vrrtc_softc *sc = device_private(tch->todr_dev);
    309 	bus_space_tag_t iot = sc->sc_iot;
    310 	bus_space_handle_t ioh = sc->sc_ioh;
    311 	uint32_t timeh;		/* elapse time (2*timeh sec) */
    312 	uint32_t timel;		/* timel/32768 sec */
    313 	int64_t sec, cnt;
    314 
    315 	sec = tvp->tv_sec + sc->sc_epoch;
    316 	sec += sc->sc_epoch;
    317 	timeh = EPOCHOFF + (sec / 2);
    318 	timel = sec % 2;
    319 
    320 	cnt = tvp->tv_usec;
    321 	/* scale from 1MHz to 32kHz */
    322 	cnt *= ETIME_L_HZ;
    323 	cnt /= 1000000;
    324 	timel += (uint32_t)cnt;
    325 
    326 	bus_space_write_2(iot, ioh, ETIME_H_REG_W, (timeh >> 16) & 0xffff);
    327 	bus_space_write_2(iot, ioh, ETIME_M_REG_W, timeh & 0xffff);
    328 	bus_space_write_2(iot, ioh, ETIME_L_REG_W, timel);
    329 
    330 	return 0;
    331 }
    332 
    333 void
    334 vrrtc_dump_regs(struct vrrtc_softc *sc)
    335 {
    336 	int timeh;
    337 	int timel;
    338 
    339 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
    340 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
    341 	timel = (timel << 16)
    342 	    | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
    343 	printf("clock_init()  Elapse Time %04x%04x\n", timeh, timel);
    344 
    345 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
    346 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
    347 	timel = (timel << 16)
    348 	    | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
    349 	printf("clock_init()  Elapse Compare %04x%04x\n", timeh, timel);
    350 
    351 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
    352 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
    353 	printf("clock_init()  LONG1 %04x%04x\n", timeh, timel);
    354 
    355 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
    356 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
    357 	printf("clock_init()  LONG1 CNTL %04x%04x\n", timeh, timel);
    358 
    359 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
    360 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
    361 	printf("clock_init()  LONG2 %04x%04x\n", timeh, timel);
    362 
    363 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
    364 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
    365 	printf("clock_init()  LONG2 CNTL %04x%04x\n", timeh, timel);
    366 
    367 	if (TCLK_H_REG_W != RTC_NO_REG_W) {
    368 		timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
    369 		timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
    370 		printf("clock_init()  TCLK %04x%04x\n", timeh, timel);
    371 
    372 		timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
    373 		    TCLK_CNT_H_REG_W);
    374 		timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
    375 		    TCLK_CNT_L_REG_W);
    376 		printf("clock_init()  TCLK CNTL %04x%04x\n", timeh, timel);
    377 	}
    378 }
    379