Home | History | Annotate | Line # | Download | only in sociox
      1 /*	$NetBSD: if_scx.c,v 1.44 2024/06/29 11:27:12 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Tohru Nishimura.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #define NOT_MP_SAFE	0
     33 
     34 /*
     35  * Socionext SC2A11 SynQuacer NetSec GbE driver
     36  *
     37  * Multiple Tx and Rx queues exist inside and dedicated descriptor
     38  * fields specifies which queue is to use. Three internal micro-processors
     39  * to handle incoming frames, outgoing frames and packet data crypto
     40  * processing. uP programs are stored in an external flash memory and
     41  * have to be loaded by device driver.
     42  * NetSec uses Synopsys DesignWare Core EMAC.  DWC implementation
     43  * register (0x20) is known to have 0x10.36 and feature register (0x1058)
     44  * reports 0x11056f37.
     45  *  <24> alternative/enhanced desc format
     46  *  <18> receive IP type 2 checksum offload
     47  *  <16> transmit checksum offload
     48  *  <11> event counter (mac management counter, MMC)
     49  */
     50 
     51 #include <sys/cdefs.h>
     52 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.44 2024/06/29 11:27:12 riastradh Exp $");
     53 
     54 #include <sys/param.h>
     55 #include <sys/bus.h>
     56 #include <sys/intr.h>
     57 #include <sys/device.h>
     58 #include <sys/callout.h>
     59 #include <sys/mbuf.h>
     60 #include <sys/errno.h>
     61 #include <sys/rndsource.h>
     62 #include <sys/kernel.h>
     63 #include <sys/systm.h>
     64 
     65 #include <net/if.h>
     66 #include <net/if_media.h>
     67 #include <net/if_dl.h>
     68 #include <net/if_ether.h>
     69 #include <dev/mii/mii.h>
     70 #include <dev/mii/miivar.h>
     71 #include <net/bpf.h>
     72 
     73 #include <dev/fdt/fdtvar.h>
     74 #include <dev/acpi/acpireg.h>
     75 #include <dev/acpi/acpivar.h>
     76 #include <dev/acpi/acpi_intr.h>
     77 
     78 /* SC2A11 GbE has 64-bit paddr descriptor */
     79 struct tdes {
     80 	uint32_t t0, t1, t2, t3;
     81 };
     82 struct rdes {
     83 	uint32_t r0, r1, r2, r3;
     84 };
     85 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
     86 #define T0_LD		(1U<<30)	/* last descriptor in array */
     87 #define T0_DRID		(24)		/* 29:24 desc ring id */
     88 #define T0_PT		(1U<<21)	/* 23:21 "pass-through" */
     89 #define T0_TDRID	(16)		/* 20:16 target desc ring id: GMAC=15 */
     90 #define T0_CC		(1U<<15)	/* ??? */
     91 #define T0_FS		(1U<<9)		/* first segment of frame */
     92 #define T0_LS		(1U<<8)		/* last segment of frame */
     93 #define T0_CSUM		(1U<<7)		/* enable check sum offload */
     94 #define T0_TSO		(1U<<6)		/* enable TCP segment offload */
     95 #define T0_TRS		(1U<<4)		/* 5:4 "TRS" ??? */
     96 /* T1 frame segment address 63:32 */
     97 /* T2 frame segment address 31:0 */
     98 /* T3 31:16 TCP segment length, 15:0 frame segment length to transmit */
     99 #define R0_OWN		(1U<<31)	/* desc is empty */
    100 #define R0_LD		(1U<<30)	/* last descriptor in array */
    101 #define R0_SDRID	(24)		/* 29:24 source desc ring id */
    102 #define R0_FR		(1U<<23)	/* found fragmented */
    103 #define R0_ER		(1U<<21)	/* Rx error indication */
    104 #define R0_ERR		(3U<<16)	/* 18:16 receive error code */
    105 #define R0_TDRID	(12)		/* 15:12 target desc ring id */
    106 #define R0_FS		(1U<<9)		/* first segment of frame */
    107 #define R0_LS		(1U<<8)		/* last segment of frame */
    108 #define R0_CSUM		(3U<<6)		/* 7:6 checksum status, 0: undone */
    109 #define R0_CERR		(2U<<6)		/* 2: found bad */
    110 #define R0_COK		(1U<<6)		/* 1: found ok */
    111 /* R1 frame address 63:32 */
    112 /* R2 frame address 31:0 */
    113 /* R3 31:16 received frame length, 15:0 buffer length to receive */
    114 
    115 /*
    116  * SC2A11 registers. 0x100 - 1204
    117  */
    118 #define SWRESET		0x104
    119 #define  SRST_RUN	(1U<<31)	/* instruct start, 0 to stop */
    120 #define COMINIT		0x120
    121 #define  INIT_DB	(1U<<2)		/* ???; self clear when done */
    122 #define  INIT_CLS	(1U<<1)		/* ???; self clear when done */
    123 #define xINTSR		0x200		/* aggregated interrupt status */
    124 #define  IRQ_UCODE	(1U<<20)	/* ucode load completed; W1C */
    125 #define  IRQ_MAC	(1U<<19)	/* ??? */
    126 #define  IRQ_PKT	(1U<<18)	/* ??? */
    127 #define  IRQ_BOOTCODE	(1U<<5)		/* ??? */
    128 #define  IRQ_XDONE	(1U<<4)		/* ??? mode change completed */
    129 #define  IRQ_RX		(1U<<1)		/* top level Rx interrupt */
    130 #define  IRQ_TX		(1U<<0)		/* top level Tx interrupt */
    131 #define xINTAEN		0x204		/* INT_A enable */
    132 #define xINTAE_SET	0x234		/* bit to set */
    133 #define xINTAE_CLR	0x238		/* bit to clr */
    134 #define xINTBEN		0x23c		/* INT_B enable */
    135 #define xINTBE_SET	0x240		/* bit to set */
    136 #define xINTBE_CLR	0x244		/* bit to clr */
    137 #define TXISR		0x400		/* transmit status; W1C */
    138 #define TXIEN		0x404		/* tx interrupt enable */
    139 #define TXIE_SET	0x428		/* bit to set */
    140 #define TXIE_CLR	0x42c		/* bit to clr */
    141 #define  TXI_NTOWNR	(1U<<17)	/* ??? desc array got empty */
    142 #define  TXI_TR_ERR	(1U<<16)	/* xmit error detected */
    143 #define  TXI_TXDONE	(1U<<15)	/* xmit completed */
    144 #define  TXI_TMREXP	(1U<<14)	/* coalesce guard timer expired */
    145 #define RXISR		0x440		/* receive status; W1C */
    146 #define RXIEN		0x444		/* rx interrupt enable */
    147 #define RXIE_SET	0x468		/* bit to set */
    148 #define RXIE_CLR	0x46c		/* bit to clr */
    149 #define  RXI_RC_ERR	(1U<<16)	/* recv error detected */
    150 #define  RXI_PKTCNT	(1U<<15)	/* recv counter has new value */
    151 #define  RXI_TMREXP	(1U<<14)	/* coalesce guard timer expired */
    152 #define TDBA_LO		0x408		/* tdes array base addr 31:0 */
    153 #define TDBA_HI		0x434		/* tdes array base addr 63:32 */
    154 #define RDBA_LO		0x448		/* rdes array base addr 31:0 */
    155 #define RDBA_HI		0x474		/* rdes array base addr 63:32 */
    156 #define TXCONF		0x430		/* tdes config */
    157 #define RXCONF		0x470		/* rdes config */
    158 #define  DESCNF_UP	(1U<<31)	/* 'up-and-running' */
    159 #define  DESCNF_CHRST	(1U<<30)	/* channel reset */
    160 #define  DESCNF_TMR	(1U<<4)		/* coalesce timer unit select */
    161 #define  DESCNF_LE	(1)		/* little endian desc format */
    162 #define TXSUBMIT	0x410		/* submit frame(s) to transmit */
    163 #define TXCOALESC	0x418		/* tx intr coalesce upper bound */
    164 #define RXCOALESC	0x458		/* rx intr coalesce upper bound */
    165 #define TCLSCTIME	0x420		/* tintr guard time usec */
    166 #define RCLSCTIME	0x460		/* rintr guard time usec */
    167 #define TXDONECNT	0x414		/* tx completed count, auto-zero */
    168 #define RXAVAILCNT	0x454		/* rx available count, auto-zero */
    169 #define DMACTL_TMR	0x20c		/* DMA cycle tick value */
    170 #define PKTCTRL		0x140		/* pkt engine control */
    171 #define  MODENRM	(1U<<28)	/* set operational mode to 'normal' */
    172 #define  ENJUMBO	(1U<<27)	/* allow jumbo frame */
    173 #define  RPTCSUMERR	(1U<<3)		/* log Rx checksum error */
    174 #define  RPTHDCOMP	(1U<<2)		/* log header incomplete condition */
    175 #define  RPTHDERR	(1U<<1)		/* log header error */
    176 #define  DROPNOMATCH	(1U<<0)		/* drop no match frames */
    177 #define UCODE_PKT	0x0d0		/* packet engine ucode port */
    178 #define UCODE_H2M	0x210		/* host2media engine ucode port */
    179 #define UCODE_M2H	0x21c		/* media2host engine ucode port */
    180 #define CORESTAT	0x218		/* engine run state */
    181 #define  PKTSTOP	(1U<<2)		/* pkt engine stopped */
    182 #define  M2HSTOP	(1U<<1)		/* M2H engine stopped */
    183 #define  H2MSTOP	(1U<<0)		/* H2M engine stopped */
    184 #define DMACTL_H2M	0x214		/* host2media engine control */
    185 #define DMACTL_M2H	0x220		/* media2host engine control */
    186 #define  DMACTL_STOP	(1U<<0)		/* instruct stop; self-clear */
    187 #define  M2H_MODE_TRANS	(1U<<20)	/* initiate M2H mode change */
    188 #define MODE_TRANS	0x500		/* mode change completion status */
    189 #define  N2T_DONE	(1U<<20)	/* normal->taiki change completed */
    190 #define  T2N_DONE	(1U<<19)	/* taiki->normal change completed */
    191 #define CLKEN		0x100		/* clock distribution enable */
    192 #define  CLK_G		(1U<<5)		/* feed clk domain G */
    193 #define  CLK_C		(1U<<1)		/* feed clk domain C */
    194 #define  CLK_D		(1U<<0)		/* feed clk domain D */
    195 #define DESC_INIT	0x11fc		/* write 1 for desc init, SC */
    196 #define DESC_SRST	0x1204		/* write 1 for desc sw reset, SC */
    197 
    198 /* GMAC register indirect access. thru MACCMD/MACDATA operation */
    199 #define MACDATA		0x11c0		/* gmac register rd/wr data */
    200 #define MACCMD		0x11c4		/* gmac register operation */
    201 #define  CMD_IOWR	(1U<<28)	/* write op */
    202 #define  CMD_BUSY	(1U<<31)	/* busy bit */
    203 #define MACSTAT		0x1024		/* mac interrupt status (unused) */
    204 #define MACINTE		0x1028		/* mac interrupt enable (unused) */
    205 
    206 #define FLOWTHR		0x11cc		/* flow control threshold */
    207 /* 31:16 pause threshold, 15:0 resume threshold */
    208 #define INTF_SEL	0x11d4		/* phy interface type */
    209 #define  INTF_GMII	0
    210 #define  INTF_RGMII	1
    211 #define  INTF_RMII	4
    212 
    213 #define MCVER		0x22c		/* micro controller version */
    214 #define HWVER		0x230		/* hardware version */
    215 
    216 /*
    217  * GMAC registers are mostly identical to Synopsys DesignWare Core
    218  * Ethernet. These must be handled by indirect access.
    219  */
    220 #define GMACMCR		0x0000		/* MAC configuration */
    221 #define  MCR_IBN	(1U<<30)	/* watch in-band-signal */
    222 #define  MCR_CST	(1U<<25)	/* strip CRC */
    223 #define  MCR_TC		(1U<<24)	/* keep RGMII PHY notified */
    224 #define  MCR_WD		(1U<<23)	/* allow long >2048 tx frame */
    225 #define  MCR_JE		(1U<<20)	/* allow ~9018 tx jumbo frame */
    226 #define  MCR_IFG	(7U<<17)	/* 19:17 IFG value 0~7 */
    227 #define  MCR_DCRS	(1U<<16)	/* ignore (G)MII HDX Tx error */
    228 #define  MCR_PS		(1U<<15)	/* 1: MII 10/100, 0: GMII 1000 */
    229 #define  MCR_FES	(1U<<14)	/* force speed 100 */
    230 #define  MCR_DO		(1U<<13)	/* don't receive my own HDX Tx frames */
    231 #define  MCR_LOOP	(1U<<12)	/* run loop back */
    232 #define  MCR_USEFDX	(1U<<11)	/* force full duplex */
    233 #define  MCR_IPCEN	(1U<<10)	/* handle checksum */
    234 #define  MCR_DR		(1U<<9)		/* attempt no tx retry, send once */
    235 #define  MCR_LUD	(1U<<8)		/* link condition report when RGMII */
    236 #define  MCR_ACS	(1U<<7)		/* auto pad auto strip CRC */
    237 #define  MCR_DC		(1U<<4)		/* report excessive tx deferral */
    238 #define  MCR_TE		(1U<<3)		/* run Tx MAC engine, 0 to stop */
    239 #define  MCR_RE		(1U<<2)		/* run Rx MAC engine, 0 to stop */
    240 #define  MCR_PREA	(3U)		/* 1:0 preamble len. 0~2 */
    241 #define GMACAFR		0x0004		/* frame DA/SA address filter */
    242 #define  AFR_RA		(1U<<31)	/* accept all irrespective of filt. */
    243 #define  AFR_HPF	(1U<<10)	/* hash+perfect filter, or hash only */
    244 #define  AFR_SAF	(1U<<9)		/* source address filter */
    245 #define  AFR_SAIF	(1U<<8)		/* SA inverse filtering */
    246 #define  AFR_PCF	(2U<<6)		/* 7:6 accept pause frame 0~3 */
    247 #define  AFR_DBF	(1U<<5)		/* reject broadcast frame */
    248 #define  AFR_PM		(1U<<4)		/* accept all multicast frame */
    249 #define  AFR_DAIF	(1U<<3)		/* DA inverse filtering */
    250 #define  AFR_MHTE	(1U<<2)		/* use multicast hash table */
    251 #define  AFR_UHTE	(1U<<1)		/* use hash table for unicast */
    252 #define  AFR_PR		(1U<<0)		/* run promisc mode */
    253 #define GMACGAR		0x0010		/* MDIO operation */
    254 #define  GAR_PHY	(11)		/* 15:11 mii phy */
    255 #define  GAR_REG	(6)		/* 10:6 mii reg */
    256 #define  GAR_CLK	(2)		/* 5:2 mdio clock tick ratio */
    257 #define  GAR_IOWR	(1U<<1)		/* MDIO write op */
    258 #define  GAR_BUSY	(1U<<0)		/* busy bit */
    259 #define  GAR_MDIO_25_35MHZ	2
    260 #define  GAR_MDIO_35_60MHZ	3
    261 #define  GAR_MDIO_60_100MHZ	0
    262 #define  GAR_MDIO_100_150MHZ	1
    263 #define  GAR_MDIO_150_250MHZ	4
    264 #define  GAR_MDIO_250_300MHZ	5
    265 #define GMACGDR		0x0014		/* MDIO rd/wr data */
    266 #define GMACFCR		0x0018		/* 802.3x flowcontrol */
    267 /* 31:16 pause timer value, 5:4 pause timer threshold */
    268 #define  FCR_RFE	(1U<<2)		/* accept PAUSE to throttle Tx */
    269 #define  FCR_TFE	(1U<<1)		/* generate PAUSE to moderate Rx lvl */
    270 #define GMACIMPL	0x0020		/* implementation id */
    271 #define GMACISR		0x0038		/* interrupt status indication */
    272 #define GMACIMR		0x003c		/* interrupt mask to inhibit */
    273 #define  ISR_TS		(1U<<9)		/* time stamp operation detected */
    274 #define  ISR_CO		(1U<<7)		/* Rx checksum offload completed */
    275 #define  ISR_TX		(1U<<6)		/* Tx completed */
    276 #define  ISR_RX		(1U<<5)		/* Rx completed */
    277 #define  ISR_ANY	(1U<<4)		/* any of above 5-7 report */
    278 #define  ISR_LC		(1U<<0)		/* link status change detected */
    279 #define GMACMAH0	0x0040		/* my own MAC address 47:32 */
    280 #define GMACMAL0	0x0044		/* my own MAC address 31:0 */
    281 #define GMACMAH(i) 	((i)*8+0x40)	/* supplemental MAC addr 1-15 */
    282 #define GMACMAL(i) 	((i)*8+0x44)	/* 31:0 MAC address low part */
    283 /* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */
    284 #define GMACAMAH(i)	((i)*8+0x800)	/* supplemental MAC addr 16-31 */
    285 #define GMACAMAL(i)	((i)*8+0x804)	/* 31: MAC address low part */
    286 /* supplimental MAH bit-31: slot in use, no other bit is effective */
    287 #define GMACMHTH	0x0008		/* 64bit multicast hash table 63:32 */
    288 #define GMACMHTL	0x000c		/* 64bit multicast hash table 31:0 */
    289 #define GMACMHT(i)	((i)*4+0x500)	/* 256-bit alternative mcast hash 0-7 */
    290 #define GMACVTAG	0x001c		/* VLAN tag control */
    291 #define  VTAG_HASH	(1U<<19)	/* use VLAN tag hash table */
    292 #define  VTAG_SVLAN	(1U<<18)	/* handle type 0x88A8 SVLAN frame */
    293 #define  VTAG_INV	(1U<<17)	/* run inverse match logic */
    294 #define  VTAG_ETV	(1U<<16)	/* use only 12bit VID field to match */
    295 /* 15:0 concat of PRIO+CFI+VID */
    296 #define GMACVHT		0x0588		/* 16-bit VLAN tag hash */
    297 #define GMACMIISR	0x00d8		/* resolved RGMII/SGMII link status */
    298 #define  MIISR_LUP	(1U<<3)		/* link up(1)/down(0) report */
    299 #define  MIISR_SPD	(3U<<1)		/* 2:1 speed 10(0)/100(1)/1000(2) */
    300 #define  MIISR_FDX	(1U<<0)		/* fdx detected */
    301 
    302 #define GMACLPIS	0x0030		/* LPI control & status */
    303 #define  LPIS_TXA	(1U<<19)	/* complete Tx in progress and LPI */
    304 #define  LPIS_PLS	(1U<<17)
    305 #define  LPIS_EN	(1U<<16)	/* 1: enter LPI mode, 0: exit */
    306 #define  LPIS_TEN	(1U<<0)		/* Tx LPI report */
    307 #define GMACLPIC	0x0034		/* LPI timer control */
    308 #define  LPIC_LST	(5)		/* 16:5 ??? */
    309 #define  LPIC_TWT	(0)		/* 15:0 ??? */
    310 /* 0x700-764 Time Stamp control */
    311 
    312 #define GMACBMR		0x1000		/* DMA bus mode control */
    313 /* 24    8xPBL multiply by 8 for RPBL & PBL values
    314  * 23    USP 1 to use RPBL for Rx DMA burst, 0 to share PBL by Rx and Tx
    315  * 22:17 RPBL
    316  * 16    FB fixed burst
    317  * 15:14 priority between Rx and Tx
    318  *  3    rxtx ratio 41
    319  *  2    rxtx ratio 31
    320  *  1    rxtx ratio 21
    321  *  0    rxtx ratio 11
    322  * 13:8  PBL possible DMA burst length
    323  *  7    ATDS select 32-byte descriptor format for advanced features
    324  *  6:2	 DSL descriptor skip length, 0 for adjuscent, counted on bus width
    325  *  0    MAC reset op. self-clear
    326  */
    327 #define  BMR_RST	(1)		/* reset op. self clear when done */
    328 #define GMACTPD		0x1004		/* write any to resume tdes */
    329 #define GMACRPD		0x1008		/* write any to resume rdes */
    330 #define GMACRDLA	0x100c		/* rdes base address 32bit paddr */
    331 #define GMACTDLA	0x1010		/* tdes base address 32bit paddr */
    332 #define GMACDSR		0x1014		/* DMA status detail report; W1C */
    333 #define GMACDIE		0x101c		/* DMA interrupt enable */
    334 #define  DMAI_LPI	(1U<<30)	/* LPI interrupt */
    335 #define  DMAI_TTI	(1U<<29)	/* timestamp trigger interrupt */
    336 #define  DMAI_GMI	(1U<<27)	/* management counter interrupt */
    337 #define  DMAI_GLI	(1U<<26)	/* xMII link change detected */
    338 #define  DMAI_EB	(23)		/* 25:23 DMA bus error detected */
    339 #define  DMAI_TS	(20)		/* 22:20 Tx DMA state report */
    340 #define  DMAI_RS	(17)		/* 29:17 Rx DMA state report */
    341 #define  DMAI_NIS	(1U<<16)	/* normal interrupt summary; W1C */
    342 #define  DMAI_AIS	(1U<<15)	/* abnormal interrupt summary; W1C */
    343 #define  DMAI_ERI	(1U<<14)	/* the first Rx buffer is filled */
    344 #define  DMAI_FBI	(1U<<13)	/* DMA bus error detected */
    345 #define  DMAI_ETI	(1U<<10)	/* single frame Tx completed */
    346 #define  DMAI_RWT	(1U<<9)		/* longer than 2048 frame received */
    347 #define  DMAI_RPS	(1U<<8)		/* Rx process is now stopped */
    348 #define  DMAI_RU	(1U<<7)		/* Rx descriptor not available */
    349 #define  DMAI_RI	(1U<<6)		/* frame Rx completed by !R1_DIC */
    350 #define  DMAI_UNF	(1U<<5)		/* Tx underflow detected */
    351 #define  DMAI_OVF	(1U<<4)		/* receive buffer overflow detected */
    352 #define  DMAI_TJT	(1U<<3)		/* longer than 2048 frame sent */
    353 #define  DMAI_TU	(1U<<2)		/* Tx descriptor not available */
    354 #define  DMAI_TPS	(1U<<1)		/* transmission is stopped */
    355 #define  DMAI_TI	(1U<<0)		/* frame Tx completed by T0_IC */
    356 #define GMACOMR		0x1018		/* DMA operation mode */
    357 #define  OMR_DT		(1U<<26)	/* don't drop error frames */
    358 #define  OMR_RSF	(1U<<25)	/* 1: Rx store&forward, 0: immed. */
    359 #define  OMR_DFF	(1U<<24)	/* don't flush rx frames on shortage */
    360 #define  OMR_TSF	(1U<<21)	/* 1: Tx store&forward, 0: immed. */
    361 #define  OMR_FTF	(1U<<20)	/* initiate tx FIFO reset, SC */
    362 #define  OMR_TTC	(14)		/* 16:14 Tx threshold */
    363 #define  OMR_ST		(1U<<13)	/* run Tx DMA engine, 0 to stop */
    364 #define  OMR_RFD	(11)		/* 12:11 Rx FIFO fill level */
    365 #define  OMR_EFC	(1U<<8)		/* transmit PAUSE to throttle Rx lvl. */
    366 #define  OMR_FEF	(1U<<7)		/* allow to receive error frames */
    367 #define  OMR_SR		(1U<<1)		/* run Rx DMA engine, 0 to stop */
    368 #define GMACEVCS	0x1020		/* missed frame or ovf detected */
    369 #define GMACRWDT	0x1024		/* enable rx watchdog timer interrupt */
    370 #define GMACAXIB	0x1028		/* AXI bus mode control */
    371 #define GMACAXIS	0x102c		/* AXI status report */
    372 /* 0x1048 current tx desc address */
    373 /* 0x104c current rx desc address */
    374 /* 0x1050 current tx buffer address */
    375 /* 0x1054 current rx buffer address */
    376 #define HWFEA		0x1058		/* DWC feature report */
    377 #define  FEA_EXDESC	(1U<<24)	/* alternative/enhanced desc layout */
    378 #define  FEA_2COE	(1U<<18)	/* Rx type 2 IP checksum offload */
    379 #define  FEA_1COE	(1U<<17)	/* Rx type 1 IP checksum offload */
    380 #define  FEA_TXOE	(1U<<16)	/* Tx checksum offload */
    381 #define  FEA_MMC	(1U<<11)	/* RMON event counter */
    382 
    383 #define GMACEVCTL	0x0100		/* event counter control */
    384 #define  EVC_FHP	(1U<<5)		/* full-half preset */
    385 #define  EVC_CP		(1U<<4)		/* counter preset */
    386 #define  EVC_MCF	(1U<<3)		/* counter freeze */
    387 #define  EVC_ROR	(1U<<2)		/* auto-zero on counter read */
    388 #define  EVC_CSR	(1U<<1)		/* counter stop rollover */
    389 #define  EVC_CR		(1U<<0)		/* reset counters */
    390 #define GMACEVCNT(i)	((i)*4+0x114)	/* 80 event counters 0x114 - 0x284 */
    391 
    392 /* 0x400-4ac L3/L4 control */
    393 
    394 /*
    395  * flash memory layout
    396  * 0x00 - 07	48-bit MAC station address. 4 byte wise in BE order.
    397  * 0x08 - 0b	H->MAC xfer engine program start addr 63:32.
    398  * 0x0c - 0f	H2M program addr 31:0 (these are absolute addr, not offset)
    399  * 0x10 - 13	H2M program length in 4 byte count.
    400  * 0x14 - 0b	M->HOST xfer engine program start addr 63:32.
    401  * 0x18 - 0f	M2H program addr 31:0 (absolute addr, not relative)
    402  * 0x1c - 13	M2H program length in 4 byte count.
    403  * 0x20 - 23	packet engine program addr 31:0, (absolute addr, not offset)
    404  * 0x24 - 27	packet program length in 4 byte count.
    405  *
    406  * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0.
    407  */
    408 
    409 #define  _BMR		0x00412080	/* NetSec BMR value, magic spell */
    410 /* NetSec uses local RAM to handle GMAC desc arrays */
    411 #define  _RDLA		0x18000
    412 #define  _TDLA		0x1c000
    413 /* lower address region is used for intermediate frame data buffers */
    414 
    415 /*
    416  * all below are software construction.
    417  */
    418 #define MD_NTXDESC		128
    419 #define MD_NRXDESC		64
    420 
    421 #define MD_NTXSEGS		16
    422 #define MD_TXQUEUELEN		8
    423 #define MD_TXQUEUELEN_MASK	(MD_TXQUEUELEN - 1)
    424 #define MD_TXQUEUE_GC		(MD_TXQUEUELEN / 4)
    425 #define MD_NTXDESC_MASK	(MD_NTXDESC - 1)
    426 #define MD_NEXTTX(x)		(((x) + 1) & MD_NTXDESC_MASK)
    427 #define MD_NEXTTXS(x)		(((x) + 1) & MD_TXQUEUELEN_MASK)
    428 
    429 #define MD_NRXDESC_MASK	(MD_NRXDESC - 1)
    430 #define MD_NEXTRX(x)		(((x) + 1) & MD_NRXDESC_MASK)
    431 
    432 struct control_data {
    433 	struct tdes cd_txdescs[MD_NTXDESC];
    434 	struct rdes cd_rxdescs[MD_NRXDESC];
    435 };
    436 #define SCX_CDOFF(x)		offsetof(struct control_data, x)
    437 #define SCX_CDTXOFF(x)		SCX_CDOFF(cd_txdescs[(x)])
    438 #define SCX_CDRXOFF(x)		SCX_CDOFF(cd_rxdescs[(x)])
    439 
    440 struct scx_txsoft {
    441 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    442 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    443 	int txs_firstdesc;		/* first descriptor in packet */
    444 	int txs_lastdesc;		/* last descriptor in packet */
    445 	int txs_ndesc;			/* # of descriptors used */
    446 };
    447 
    448 struct scx_rxsoft {
    449 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    450 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    451 };
    452 
    453 struct scx_softc {
    454 	device_t sc_dev;		/* generic device information */
    455 	bus_space_tag_t sc_st;		/* bus space tag */
    456 	bus_space_handle_t sc_sh;	/* bus space handle */
    457 	bus_size_t sc_sz;		/* csr map size */
    458 	bus_space_handle_t sc_eesh;	/* eeprom section handle */
    459 	bus_size_t sc_eesz;		/* eeprom map size */
    460 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    461 	struct ethercom sc_ethercom;	/* Ethernet common data */
    462 	struct mii_data sc_mii;		/* MII */
    463 	callout_t sc_callout;		/* PHY monitor callout */
    464 	bus_dma_segment_t sc_seg;	/* descriptor store seg */
    465 	int sc_nseg;			/* descriptor store nseg */
    466 	void *sc_ih;			/* interrupt cookie */
    467 	int sc_phy_id;			/* PHY address */
    468 	int sc_flowflags;		/* 802.3x PAUSE flow control */
    469 	uint32_t sc_mdclk;		/* GAR 5:2 clock selection */
    470 	uint32_t sc_t0cotso;		/* T0_CSUM | T0_TSO to run */
    471 	int sc_miigmii;			/* 1: MII/GMII, 0: RGMII */
    472 	int sc_phandle;			/* fdt phandle */
    473 	uint64_t sc_freq;
    474 	uint32_t sc_maxsize;
    475 
    476 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    477 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    478 
    479 	struct control_data *sc_control_data;
    480 #define sc_txdescs	sc_control_data->cd_txdescs
    481 #define sc_rxdescs	sc_control_data->cd_rxdescs
    482 
    483 	struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
    484 	struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
    485 	int sc_txfree;			/* number of free Tx descriptors */
    486 	int sc_txnext;			/* next ready Tx descriptor */
    487 	int sc_txsfree;			/* number of free Tx jobs */
    488 	int sc_txsnext;			/* next ready Tx job */
    489 	int sc_txsdirty;		/* dirty Tx jobs */
    490 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
    491 
    492 	krndsource_t rnd_source;	/* random source */
    493 #ifdef GMAC_EVENT_COUNTERS
    494 	/* 80 event counters exist */
    495 #endif
    496 };
    497 
    498 #define SCX_CDTXADDR(sc, x)	((sc)->sc_cddma + SCX_CDTXOFF((x)))
    499 #define SCX_CDRXADDR(sc, x)	((sc)->sc_cddma + SCX_CDRXOFF((x)))
    500 
    501 #define SCX_CDTXSYNC(sc, x, n, ops)					\
    502 do {									\
    503 	int __x, __n;							\
    504 									\
    505 	__x = (x);							\
    506 	__n = (n);							\
    507 									\
    508 	/* If it will wrap around, sync to the end of the ring. */	\
    509 	if ((__x + __n) > MD_NTXDESC) {				\
    510 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    511 		    SCX_CDTXOFF(__x), sizeof(struct tdes) *		\
    512 		    (MD_NTXDESC - __x), (ops));			\
    513 		__n -= (MD_NTXDESC - __x);				\
    514 		__x = 0;						\
    515 	}								\
    516 									\
    517 	/* Now sync whatever is left. */				\
    518 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    519 	    SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
    520 } while (/*CONSTCOND*/0)
    521 
    522 #define SCX_CDRXSYNC(sc, x, ops)					\
    523 do {									\
    524 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    525 	    SCX_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
    526 } while (/*CONSTCOND*/0)
    527 
    528 #define SCX_INIT_RXDESC(sc, x)						\
    529 do {									\
    530 	struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    531 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
    532 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    533 	bus_addr_t __p = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
    534 	bus_size_t __z = __rxs->rxs_dmamap->dm_segs[0].ds_len;		\
    535 	__m->m_data = __m->m_ext.ext_buf;				\
    536 	__rxd->r3 = htole32(__z - 4);					\
    537 	__rxd->r2 = htole32(BUS_ADDR_LO32(__p));			\
    538 	__rxd->r1 = htole32(BUS_ADDR_HI32(__p));			\
    539 	__rxd->r0 &= htole32(R0_LD);					\
    540 	__rxd->r0 |= htole32(R0_OWN);					\
    541 } while (/*CONSTCOND*/0)
    542 
    543 /* memory mapped CSR register access */
    544 #define CSR_READ(sc,off) \
    545 	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
    546 #define CSR_WRITE(sc,off,val) \
    547 	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
    548 
    549 /* flash memory access */
    550 #define EE_READ(sc,off) \
    551 	    bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
    552 
    553 static int scx_fdt_match(device_t, cfdata_t, void *);
    554 static void scx_fdt_attach(device_t, device_t, void *);
    555 static int scx_acpi_match(device_t, cfdata_t, void *);
    556 static void scx_acpi_attach(device_t, device_t, void *);
    557 
    558 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
    559     scx_fdt_match, scx_fdt_attach, NULL, NULL);
    560 
    561 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
    562     scx_acpi_match, scx_acpi_attach, NULL, NULL);
    563 
    564 static void scx_attach_i(struct scx_softc *);
    565 static void scx_reset(struct scx_softc *);
    566 static void scx_stop(struct ifnet *, int);
    567 static int scx_init(struct ifnet *);
    568 static int scx_ioctl(struct ifnet *, u_long, void *);
    569 static void scx_set_rcvfilt(struct scx_softc *);
    570 static void scx_start(struct ifnet *);
    571 static void scx_watchdog(struct ifnet *);
    572 static int scx_intr(void *);
    573 static void txreap(struct scx_softc *);
    574 static void rxfill(struct scx_softc *);
    575 static int add_rxbuf(struct scx_softc *, int);
    576 static void rxdrain(struct scx_softc *sc);
    577 static void mii_statchg(struct ifnet *);
    578 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    579 static int mii_readreg(device_t, int, int, uint16_t *);
    580 static int mii_writereg(device_t, int, int, uint16_t);
    581 static void phy_tick(void *);
    582 static void dump_hwfeature(struct scx_softc *);
    583 
    584 static void resetuengine(struct scx_softc *);
    585 static void loaducode(struct scx_softc *);
    586 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
    587 static void forcephyloopback(struct scx_softc *);
    588 static void resetphytonormal(struct scx_softc *);
    589 
    590 static int get_mdioclk(uint32_t);
    591 
    592 #define WAIT_FOR_SET(sc, reg, set) \
    593 	wait_for_bits(sc, reg, set, ~0, 0)
    594 #define WAIT_FOR_CLR(sc, reg, clr) \
    595 	wait_for_bits(sc, reg, 0, clr, 0)
    596 
    597 static int
    598 wait_for_bits(struct scx_softc *sc, int reg,
    599     uint32_t set, uint32_t clr, uint32_t fail)
    600 {
    601 	uint32_t val;
    602 	int ntries;
    603 
    604 	for (ntries = 0; ntries < 1000; ntries++) {
    605 		val = CSR_READ(sc, reg);
    606 		if ((val & set) || !(val & clr))
    607 			return 0;
    608 		if (val & fail)
    609 			return 1;
    610 		DELAY(1);
    611 	}
    612 	return 1;
    613 }
    614 
    615 /* GMAC register indirect access */
    616 static int
    617 mac_read(struct scx_softc *sc, int reg)
    618 {
    619 
    620 	CSR_WRITE(sc, MACCMD, reg | CMD_BUSY);
    621 	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY);
    622 	return CSR_READ(sc, MACDATA);
    623 }
    624 
    625 static void
    626 mac_write(struct scx_softc *sc, int reg, int val)
    627 {
    628 
    629 	CSR_WRITE(sc, MACDATA, val);
    630 	CSR_WRITE(sc, MACCMD, reg | CMD_IOWR | CMD_BUSY);
    631 	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY);
    632 }
    633 
    634 /* dig and decode "clock-frequency" value for a given clkname */
    635 static int
    636 get_clk_freq(int phandle, const char *clkname)
    637 {
    638 	u_int index, n, cells;
    639 	const u_int *p;
    640 	int err, len, resid;
    641 	unsigned int freq = 0;
    642 
    643 	err = fdtbus_get_index(phandle, "clock-names", clkname, &index);
    644 	if (err == -1)
    645 		return -1;
    646 	p = fdtbus_get_prop(phandle, "clocks", &len);
    647 	if (p == NULL)
    648 		return -1;
    649 	for (n = 0, resid = len; resid > 0; n++) {
    650 		const int cc_phandle =
    651 		    fdtbus_get_phandle_from_native(be32toh(p[0]));
    652 		if (of_getprop_uint32(cc_phandle, "#clock-cells", &cells))
    653 			return -1;
    654 		if (n == index) {
    655 			if (of_getprop_uint32(cc_phandle,
    656 			    "clock-frequency", &freq))
    657 				return -1;
    658 			return freq;
    659 		}
    660 		resid -= (cells + 1) * 4;
    661 		p += (cells + 1) * 4;
    662 	}
    663 	return -1;
    664 }
    665 
    666 #define ATTACH_DEBUG 1
    667 
    668 static const struct device_compatible_entry compat_data[] = {
    669 	{ .compat = "socionext,synquacer-netsec" },
    670 	DEVICE_COMPAT_EOL
    671 };
    672 static const struct device_compatible_entry compatible[] = {
    673 	{ .compat = "SCX0001" },
    674 	DEVICE_COMPAT_EOL
    675 };
    676 
    677 static int
    678 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
    679 {
    680 	struct fdt_attach_args * const faa = aux;
    681 
    682 	return of_compatible_match(faa->faa_phandle, compat_data);
    683 }
    684 
    685 static void
    686 scx_fdt_attach(device_t parent, device_t self, void *aux)
    687 {
    688 	struct scx_softc * const sc = device_private(self);
    689 	struct fdt_attach_args * const faa = aux;
    690 	const int phandle = faa->faa_phandle;
    691 	bus_space_handle_t bsh;
    692 	bus_space_handle_t eebsh;
    693 	bus_addr_t addr[2];
    694 	bus_size_t size[2];
    695 	void *intrh;
    696 	char intrstr[128];
    697 	int phy_phandle;
    698 	const char *phy_mode;
    699 	bus_addr_t phy_id;
    700 	long ref_clk;
    701 
    702 	if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
    703 	    || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
    704 		aprint_error(": unable to map registers\n");
    705 		return;
    706 	}
    707 	if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
    708 	    || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
    709 		aprint_error(": unable to map device eeprom\n");
    710 		goto fail;
    711 	}
    712 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
    713 		aprint_error(": failed to decode interrupt\n");
    714 		goto fail;
    715 	}
    716 
    717 	phy_mode = fdtbus_get_string(phandle, "phy-mode");
    718 	if (phy_mode == NULL)
    719 		aprint_error(": missing 'phy-mode' property\n");
    720 	phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
    721 	if (phy_phandle == -1
    722 	    || fdtbus_get_reg(phy_phandle, 0, &phy_id, NULL) != 0)
    723 		phy_id = MII_PHY_ANY;
    724 	ref_clk = get_clk_freq(phandle, "phy_ref_clk");
    725 	if (ref_clk == -1)
    726 		ref_clk = 250 * 1000 * 1000;
    727 
    728 #if ATTACH_DEBUG == 1
    729 aprint_normal("\n");
    730 aprint_normal_dev(self,
    731     "[FDT] phy mode %s, phy id %d, freq %ld\n",
    732     phy_mode, (int)phy_id, ref_clk);
    733 aprint_normal("%s", device_xname(self));
    734 #endif
    735 
    736 	intrh = fdtbus_intr_establish(phandle, 0, IPL_NET,
    737 		NOT_MP_SAFE, scx_intr, sc);
    738 	if (intrh == NULL) {
    739 		aprint_error(": couldn't establish interrupt\n");
    740 		goto fail;
    741 	}
    742 	aprint_normal(" interrupt on %s", intrstr);
    743 
    744 	sc->sc_dev = self;
    745 	sc->sc_st = faa->faa_bst;
    746 	sc->sc_sh = bsh;
    747 	sc->sc_sz = size[0];
    748 	sc->sc_eesh = eebsh;
    749 	sc->sc_eesz = size[1];
    750 	sc->sc_ih = intrh;
    751 	sc->sc_dmat = faa->faa_dmat;
    752 	sc->sc_phandle = phandle;
    753 	sc->sc_phy_id = phy_id;
    754 	sc->sc_freq = ref_clk;
    755 
    756 	scx_attach_i(sc);
    757 
    758 	return;
    759  fail:
    760 	if (sc->sc_eesz)
    761 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
    762 	if (sc->sc_sz)
    763 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    764 	return;
    765 }
    766 
    767 static int
    768 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
    769 {
    770 	struct acpi_attach_args *aa = aux;
    771 
    772 	return acpi_compatible_match(aa, compatible);
    773 }
    774 
    775 #define HWFEA_DEBUG 1
    776 
    777 static void
    778 scx_acpi_attach(device_t parent, device_t self, void *aux)
    779 {
    780 	struct scx_softc * const sc = device_private(self);
    781 	struct acpi_attach_args * const aa = aux;
    782 	ACPI_HANDLE handle = aa->aa_node->ad_handle;
    783 	bus_space_handle_t bsh, eebsh;
    784 	struct acpi_resources res;
    785 	struct acpi_mem *mem, *mem1;
    786 	struct acpi_irq *irq;
    787 	ACPI_INTEGER max_spd, max_frame, phy_id, phy_freq;
    788 	ACPI_STATUS rv;
    789 	void *intrh;
    790 
    791 	rv = acpi_resource_parse(self, handle, "_CRS",
    792 	    &res, &acpi_resource_parse_ops_default);
    793 	if (ACPI_FAILURE(rv))
    794 		return;
    795 	mem = acpi_res_mem(&res, 0);
    796 	irq = acpi_res_irq(&res, 0);
    797 	if (mem == NULL || irq == NULL || mem->ar_length == 0) {
    798 		aprint_error(": incomplete crs resources\n");
    799 		goto done;
    800 	}
    801 	if (bus_space_map(aa->aa_memt, mem->ar_base, mem->ar_length, 0,
    802 	    &bsh) != 0) {
    803 		aprint_error(": unable to map registers\n");
    804 		goto done;
    805 	}
    806 	mem1 = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
    807 	if (mem1 == NULL || mem1->ar_length == 0) {
    808 		aprint_error(": incomplete eeprom resources\n");
    809 		goto fail_0;
    810 	}
    811 	if (bus_space_map(aa->aa_memt, mem1->ar_base, mem1->ar_length, 0,
    812 	    &eebsh)) {
    813 		aprint_error(": unable to map device eeprom\n");
    814 		goto fail_0;
    815 	}
    816 	rv = acpi_dsd_integer(handle, "max-speed", &max_spd);
    817 	if (ACPI_FAILURE(rv))
    818 		max_spd = 1000;
    819 	rv = acpi_dsd_integer(handle, "max-frame-size", &max_frame);
    820 	if (ACPI_FAILURE(rv))
    821 		max_frame = 2048;
    822 	rv = acpi_dsd_integer(handle, "phy-channel", &phy_id);
    823 	if (ACPI_FAILURE(rv))
    824 		phy_id = MII_PHY_ANY;
    825 	rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
    826 			&phy_freq);
    827 	if (ACPI_FAILURE(rv))
    828 		phy_freq = 250 * 1000 * 1000;
    829 
    830 #if ATTACH_DEBUG == 1
    831 aprint_normal_dev(self,
    832     "[ACPI] max-speed %d, phy id %d, freq %ld\n",
    833     (int)max_spd, (int)phy_id, phy_freq);
    834 aprint_normal("%s", device_xname(self));
    835 #endif
    836 
    837 	intrh = acpi_intr_establish(self, (uint64_t)(uintptr_t)handle,
    838 	    IPL_NET, NOT_MP_SAFE, scx_intr, sc, device_xname(self));
    839 	if (intrh == NULL) {
    840 		aprint_error(": couldn't establish interrupt\n");
    841 		goto fail_1;
    842 	}
    843 
    844 	sc->sc_dev = self;
    845 	sc->sc_st = aa->aa_memt;
    846 	sc->sc_sh = bsh;
    847 	sc->sc_sz = mem->ar_length;
    848 	sc->sc_eesh = eebsh;
    849 	sc->sc_eesz = mem1->ar_length;
    850 	sc->sc_ih = intrh;
    851 	sc->sc_dmat =
    852 	    BUS_DMA_TAG_VALID(aa->aa_dmat64) ? aa->aa_dmat64 : aa->aa_dmat;
    853 	sc->sc_phy_id = (int)phy_id;
    854 	sc->sc_freq = phy_freq;
    855 	sc->sc_maxsize = max_frame;
    856 
    857 	scx_attach_i(sc);
    858  done:
    859 	acpi_resource_cleanup(&res);
    860 	return;
    861  fail_1:
    862 	bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
    863  fail_0:
    864 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    865 	acpi_resource_cleanup(&res);
    866 	return;
    867 }
    868 
    869 static void
    870 scx_attach_i(struct scx_softc *sc)
    871 {
    872 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
    873 	struct mii_data * const mii = &sc->sc_mii;
    874 	struct ifmedia * const ifm = &mii->mii_media;
    875 	uint32_t which, dwimp, dwfea;
    876 	uint8_t enaddr[ETHER_ADDR_LEN];
    877 	bus_dma_segment_t seg;
    878 	paddr_t p, q;
    879 	uint32_t csr;
    880 	int i, nseg, error = 0;
    881 
    882 	which = CSR_READ(sc, HWVER);	/* Socionext version 5.xx */
    883 	dwimp = mac_read(sc, GMACIMPL);	/* DWC implementation XX.YY */
    884 	dwfea = mac_read(sc, HWFEA);	/* DWC feature bits */
    885 
    886 	aprint_naive("\n");
    887 	aprint_normal(": Socionext NetSec Gigabit Ethernet controller "
    888 	    "%x.%x\n", which >> 16, which & 0xffff);
    889 
    890 	aprint_normal_dev(sc->sc_dev,
    891 	    "DesignWare EMAC ver 0x%x (0x%x) hw feature %08x\n",
    892 	    dwimp & 0xff, dwimp >> 8, dwfea);
    893 	dump_hwfeature(sc);
    894 
    895 	/* detected PHY type */
    896 	sc->sc_miigmii = ((dwfea & __BITS(30,28) >> 28) == 0);
    897 
    898 	/* fetch MAC address in flash 0:7, stored in big endian order */
    899 	csr = EE_READ(sc, 0x00);
    900 	enaddr[0] = csr >> 24;
    901 	enaddr[1] = csr >> 16;
    902 	enaddr[2] = csr >> 8;
    903 	enaddr[3] = csr;
    904 	csr = EE_READ(sc, 0x04);
    905 	enaddr[4] = csr >> 24;
    906 	enaddr[5] = csr >> 16;
    907 	aprint_normal_dev(sc->sc_dev,
    908 	    "Ethernet address %s\n", ether_sprintf(enaddr));
    909 
    910 	sc->sc_mdclk = get_mdioclk(sc->sc_freq) << GAR_CLK; /* 5:2 clk ratio */
    911 
    912 	mii->mii_ifp = ifp;
    913 	mii->mii_readreg = mii_readreg;
    914 	mii->mii_writereg = mii_writereg;
    915 	mii->mii_statchg = mii_statchg;
    916 
    917 	sc->sc_ethercom.ec_mii = mii;
    918 	ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts);
    919 	mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
    920 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
    921 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    922 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
    923 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
    924 	} else
    925 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
    926 	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
    927 
    928 	/*
    929 	 * Allocate the control data structures, and create and load the
    930 	 * DMA map for it.
    931 	 */
    932 	error = bus_dmamem_alloc(sc->sc_dmat,
    933 	    sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
    934 	if (error != 0) {
    935 		aprint_error_dev(sc->sc_dev,
    936 		    "unable to allocate control data, error = %d\n", error);
    937 		goto fail_0;
    938 	}
    939 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    940 	    sizeof(struct control_data), (void **)&sc->sc_control_data,
    941 	    BUS_DMA_COHERENT);
    942 	if (error != 0) {
    943 		aprint_error_dev(sc->sc_dev,
    944 		    "unable to map control data, error = %d\n", error);
    945 		goto fail_1;
    946 	}
    947 	error = bus_dmamap_create(sc->sc_dmat,
    948 	    sizeof(struct control_data), 1,
    949 	    sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
    950 	if (error != 0) {
    951 		aprint_error_dev(sc->sc_dev,
    952 		    "unable to create control data DMA map, "
    953 		    "error = %d\n", error);
    954 		goto fail_2;
    955 	}
    956 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    957 	    sc->sc_control_data, sizeof(struct control_data), NULL, 0);
    958 	if (error != 0) {
    959 		aprint_error_dev(sc->sc_dev,
    960 		    "unable to load control data DMA map, error = %d\n",
    961 		    error);
    962 		goto fail_3;
    963 	}
    964 	for (i = 0; i < MD_TXQUEUELEN; i++) {
    965 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    966 		    MD_NTXSEGS, MCLBYTES, 0, 0,
    967 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    968 			aprint_error_dev(sc->sc_dev,
    969 			    "unable to create tx DMA map %d, error = %d\n",
    970 			    i, error);
    971 			goto fail_4;
    972 		}
    973 	}
    974 	for (i = 0; i < MD_NRXDESC; i++) {
    975 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    976 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    977 			aprint_error_dev(sc->sc_dev,
    978 			    "unable to create rx DMA map %d, error = %d\n",
    979 			    i, error);
    980 			goto fail_5;
    981 		}
    982 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    983 	}
    984 	sc->sc_seg = seg;
    985 	sc->sc_nseg = nseg;
    986 #if 0
    987 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
    988 #endif
    989 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    990 	ifp->if_softc = sc;
    991 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    992 	ifp->if_ioctl = scx_ioctl;
    993 	ifp->if_start = scx_start;
    994 	ifp->if_watchdog = scx_watchdog;
    995 	ifp->if_init = scx_init;
    996 	ifp->if_stop = scx_stop;
    997 	IFQ_SET_READY(&ifp->if_snd);
    998 
    999 	/* 802.1Q VLAN-sized frames, and 9000 jumbo frame are supported */
   1000 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
   1001 	/* sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; not yet */
   1002 
   1003 	sc->sc_flowflags = 0; /* track PAUSE flow caps */
   1004 
   1005 	if_attach(ifp);
   1006 	if_deferred_start_init(ifp, NULL);
   1007 	ether_ifattach(ifp, enaddr);
   1008 
   1009 	callout_init(&sc->sc_callout, 0);
   1010 	callout_setfunc(&sc->sc_callout, phy_tick, sc);
   1011 
   1012 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
   1013 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
   1014 
   1015 	resetuengine(sc);
   1016 	loaducode(sc);
   1017 
   1018 	/* feed NetSec descriptor array base addresses and timer value */
   1019 	p = SCX_CDTXADDR(sc, 0);		/* tdes array (ring#0) */
   1020 	q = SCX_CDRXADDR(sc, 0);		/* rdes array (ring#1) */
   1021 	CSR_WRITE(sc, TDBA_LO, BUS_ADDR_LO32(p));
   1022 	CSR_WRITE(sc, TDBA_HI, BUS_ADDR_HI32(p));
   1023 	CSR_WRITE(sc, RDBA_LO, BUS_ADDR_LO32(q));
   1024 	CSR_WRITE(sc, RDBA_HI, BUS_ADDR_HI32(q));
   1025 	CSR_WRITE(sc, TXCONF, DESCNF_LE);	/* little endian */
   1026 	CSR_WRITE(sc, RXCONF, DESCNF_LE);	/* little endian */
   1027 	CSR_WRITE(sc, DMACTL_TMR, sc->sc_freq / 1000000 - 1);
   1028 
   1029 	forcephyloopback(sc);/* make PHY loopback mode for uengine init */
   1030 
   1031 	CSR_WRITE(sc, xINTSR, IRQ_UCODE); /* pre-cautional W1C */
   1032 	CSR_WRITE(sc, CORESTAT, 0);	  /* start uengine to reprogram */
   1033 	error = WAIT_FOR_SET(sc, xINTSR, IRQ_UCODE);
   1034 	if (error) {
   1035 		aprint_error_dev(sc->sc_dev, "uengine start failed\n");
   1036 	}
   1037 	CSR_WRITE(sc, xINTSR, IRQ_UCODE); /* W1C load complete report */
   1038 
   1039 	resetphytonormal(sc); /* take back PHY to normal mode */
   1040 
   1041 	CSR_WRITE(sc, DMACTL_M2H, M2H_MODE_TRANS);
   1042 	CSR_WRITE(sc, PKTCTRL, MODENRM); /* change to use normal mode */
   1043 	error = WAIT_FOR_SET(sc, MODE_TRANS, T2N_DONE);
   1044 	if (error) {
   1045 		aprint_error_dev(sc->sc_dev, "uengine mode change failed\n");
   1046 	}
   1047 
   1048 	CSR_WRITE(sc, TXISR, ~0);	/* clear pending emtpry/error irq */
   1049 	CSR_WRITE(sc, xINTAE_CLR, ~0);	/* disable tx / rx interrupts */
   1050 
   1051 	return;
   1052 
   1053   fail_5:
   1054 	for (i = 0; i < MD_NRXDESC; i++) {
   1055 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1056 			bus_dmamap_destroy(sc->sc_dmat,
   1057 			    sc->sc_rxsoft[i].rxs_dmamap);
   1058 	}
   1059   fail_4:
   1060 	for (i = 0; i < MD_TXQUEUELEN; i++) {
   1061 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1062 			bus_dmamap_destroy(sc->sc_dmat,
   1063 			    sc->sc_txsoft[i].txs_dmamap);
   1064 	}
   1065 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1066   fail_3:
   1067 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1068   fail_2:
   1069 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   1070 	    sizeof(struct control_data));
   1071   fail_1:
   1072 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
   1073   fail_0:
   1074 	if (sc->sc_phandle)
   1075 		fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
   1076 	else
   1077 		acpi_intr_disestablish(sc->sc_ih);
   1078 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
   1079 	return;
   1080 }
   1081 
   1082 static void
   1083 scx_reset(struct scx_softc *sc)
   1084 {
   1085 	int loop = 0, busy;
   1086 
   1087 	mac_write(sc, GMACOMR, 0);
   1088 	mac_write(sc, GMACBMR, BMR_RST);
   1089 	do {
   1090 		DELAY(1);
   1091 		busy = mac_read(sc, GMACBMR) & BMR_RST;
   1092 	} while (++loop < 3000 && busy);
   1093 	mac_write(sc, GMACBMR, _BMR);
   1094 	mac_write(sc, GMACAFR, 0);
   1095 }
   1096 
   1097 static void
   1098 scx_stop(struct ifnet *ifp, int disable)
   1099 {
   1100 	struct scx_softc *sc = ifp->if_softc;
   1101 	uint32_t csr;
   1102 
   1103 	/* Stop the one second clock. */
   1104 	callout_stop(&sc->sc_callout);
   1105 
   1106 	/* Down the MII. */
   1107 	mii_down(&sc->sc_mii);
   1108 
   1109 	/* Mark the interface down and cancel the watchdog timer. */
   1110 	ifp->if_flags &= ~IFF_RUNNING;
   1111 	ifp->if_timer = 0;
   1112 
   1113 	CSR_WRITE(sc, RXIE_CLR, ~0);
   1114 	CSR_WRITE(sc, TXIE_CLR, ~0);
   1115 	CSR_WRITE(sc, xINTAE_CLR, ~0);
   1116 	CSR_WRITE(sc, TXISR, ~0);
   1117 	CSR_WRITE(sc, RXISR, ~0);
   1118 
   1119 	csr = mac_read(sc, GMACOMR);
   1120 	mac_write(sc, GMACOMR, csr &~ (OMR_SR | OMR_ST));
   1121 }
   1122 
   1123 static int
   1124 scx_init(struct ifnet *ifp)
   1125 {
   1126 	struct scx_softc *sc = ifp->if_softc;
   1127 	const uint8_t *ea = CLLADDR(ifp->if_sadl);
   1128 	uint32_t csr;
   1129 	int i, error;
   1130 
   1131 	/* Cancel pending I/O. */
   1132 	scx_stop(ifp, 0);
   1133 
   1134 	/* Reset the chip to a known state. */
   1135 	scx_reset(sc);
   1136 
   1137 	/* build sane Tx */
   1138 	memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
   1139 	sc->sc_txdescs[MD_NTXDESC - 1].t0 = htole32(T0_LD); /* tie off */
   1140 	SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
   1141 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1142 	sc->sc_txfree = MD_NTXDESC;
   1143 	sc->sc_txnext = 0;
   1144 	for (i = 0; i < MD_TXQUEUELEN; i++)
   1145 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1146 	sc->sc_txsfree = MD_TXQUEUELEN;
   1147 	sc->sc_txsnext = 0;
   1148 	sc->sc_txsdirty = 0;
   1149 
   1150 	/* load Rx descriptors with fresh mbuf */
   1151 	for (i = 0; i < MD_NRXDESC; i++) {
   1152 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
   1153 			if ((error = add_rxbuf(sc, i)) != 0) {
   1154 				aprint_error_dev(sc->sc_dev,
   1155 				    "unable to allocate or map rx "
   1156 				    "buffer %d, error = %d\n",
   1157 				    i, error);
   1158 				rxdrain(sc);
   1159 				goto out;
   1160 			}
   1161 		}
   1162 		else
   1163 			SCX_INIT_RXDESC(sc, i);
   1164 	}
   1165 	sc->sc_rxdescs[MD_NRXDESC - 1].r0 = htole32(R0_LD); /* tie off */
   1166 	sc->sc_rxptr = 0;
   1167 
   1168 	/* set my address in perfect match slot 0. little endian order */
   1169 	csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) |  ea[0];
   1170 	mac_write(sc, GMACMAL0, csr);
   1171 	csr = (ea[5] << 8) | ea[4];
   1172 	mac_write(sc, GMACMAH0, csr);
   1173 
   1174 	/* accept multicast frame or run promisc mode */
   1175 	scx_set_rcvfilt(sc);
   1176 
   1177 	/* set current media */
   1178 	if ((error = ether_mediachange(ifp)) != 0)
   1179 		goto out;
   1180 
   1181 	CSR_WRITE(sc, DESC_SRST, 01);
   1182 	WAIT_FOR_CLR(sc, DESC_SRST, 01);
   1183 
   1184 	CSR_WRITE(sc, DESC_INIT, 01);
   1185 	WAIT_FOR_CLR(sc, DESC_INIT, 01);
   1186 
   1187 	/* feed local memory descriptor array base addresses */
   1188 	mac_write(sc, GMACRDLA, _RDLA);		/* GMAC rdes store */
   1189 	mac_write(sc, GMACTDLA, _TDLA);		/* GMAC tdes store */
   1190 
   1191 	CSR_WRITE(sc, FLOWTHR, (48<<16) | 36);	/* pause|resume threshold */
   1192 	mac_write(sc, GMACFCR, 256 << 16);	/* 31:16 pause value */
   1193 
   1194 	CSR_WRITE(sc, INTF_SEL, sc->sc_miigmii ? INTF_GMII : INTF_RGMII);
   1195 
   1196 	CSR_WRITE(sc, RXCOALESC, 8);		/* Rx coalesce bound */
   1197 	CSR_WRITE(sc, TXCOALESC, 8);		/* Tx coalesce bound */
   1198 	CSR_WRITE(sc, RCLSCTIME, 500);		/* Rx co. guard time usec */
   1199 	CSR_WRITE(sc, TCLSCTIME, 500);		/* Tx co. guard time usec */
   1200 
   1201 	CSR_WRITE(sc, RXIE_SET, RXI_RC_ERR | RXI_PKTCNT | RXI_TMREXP);
   1202 	CSR_WRITE(sc, TXIE_SET, TXI_TR_ERR | TXI_TXDONE | TXI_TMREXP);
   1203 	CSR_WRITE(sc, xINTAE_SET, IRQ_RX | IRQ_TX);
   1204 #if 1
   1205 	/* clear event counters, auto-zero after every read */
   1206 	mac_write(sc, GMACEVCTL, EVC_CR | EVC_ROR);
   1207 #endif
   1208 	/* kick to start GMAC engine */
   1209 	csr = mac_read(sc, GMACOMR);
   1210 	mac_write(sc, GMACOMR, csr | OMR_SR | OMR_ST);
   1211 
   1212 	ifp->if_flags |= IFF_RUNNING;
   1213 
   1214 	/* start one second timer */
   1215 	callout_schedule(&sc->sc_callout, hz);
   1216  out:
   1217 	return error;
   1218 }
   1219 
   1220 static int
   1221 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1222 {
   1223 	struct scx_softc *sc = ifp->if_softc;
   1224 	struct ifreq *ifr = (struct ifreq *)data;
   1225 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
   1226 	int s, error;
   1227 
   1228 	s = splnet();
   1229 
   1230 	switch (cmd) {
   1231 	case SIOCSIFMEDIA:
   1232 		/* Flow control requires full-duplex mode. */
   1233 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   1234 		    (ifr->ifr_media & IFM_FDX) == 0)
   1235 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   1236 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   1237 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   1238 				/* We can do both TXPAUSE and RXPAUSE. */
   1239 				ifr->ifr_media |=
   1240 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   1241 			}
   1242 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   1243 		}
   1244 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
   1245 		break;
   1246 	default:
   1247 		error = ether_ioctl(ifp, cmd, data);
   1248 		if (error != ENETRESET)
   1249 			break;
   1250 		error = 0;
   1251 		if (cmd == SIOCSIFCAP)
   1252 			error = if_init(ifp);
   1253 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1254 			;
   1255 		else if (ifp->if_flags & IFF_RUNNING) {
   1256 			/*
   1257 			 * Multicast list has changed; set the hardware filter
   1258 			 * accordingly.
   1259 			 */
   1260 			scx_set_rcvfilt(sc);
   1261 		}
   1262 		break;
   1263 	}
   1264 
   1265 	splx(s);
   1266 	return error;
   1267 }
   1268 
   1269 static uint32_t
   1270 bit_reverse_32(uint32_t x)
   1271 {
   1272 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
   1273 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
   1274 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
   1275 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
   1276 	return (x >> 16) | (x << 16);
   1277 }
   1278 
   1279 #define MCAST_DEBUG 0
   1280 
   1281 static void
   1282 scx_set_rcvfilt(struct scx_softc *sc)
   1283 {
   1284 	struct ethercom * const ec = &sc->sc_ethercom;
   1285 	struct ifnet * const ifp = &ec->ec_if;
   1286 	struct ether_multistep step;
   1287 	struct ether_multi *enm;
   1288 	uint32_t mchash[2]; 	/* 2x 32 = 64 bit */
   1289 	uint32_t csr, crc;
   1290 	int i;
   1291 
   1292 	csr = mac_read(sc, GMACAFR);
   1293 	csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
   1294 	mac_write(sc, GMACAFR, csr);
   1295 
   1296 	/* clear 15 entry supplemental perfect match filter */
   1297 	for (i = 1; i < 16; i++)
   1298 		 mac_write(sc, GMACMAH(i), 0);
   1299 	/* build 64 bit multicast hash filter */
   1300 	crc = mchash[1] = mchash[0] = 0;
   1301 
   1302 	ETHER_LOCK(ec);
   1303 	if (ifp->if_flags & IFF_PROMISC) {
   1304 		ec->ec_flags |= ETHER_F_ALLMULTI;
   1305 		ETHER_UNLOCK(ec);
   1306 		/* run promisc. mode */
   1307 		csr |= AFR_PR;
   1308 		goto update;
   1309 	}
   1310 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
   1311 	ETHER_FIRST_MULTI(step, ec, enm);
   1312 	i = 1; /* slot 0 is occupied */
   1313 	while (enm != NULL) {
   1314 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1315 			/*
   1316 			 * We must listen to a range of multicast addresses.
   1317 			 * For now, just accept all multicasts, rather than
   1318 			 * trying to set only those filter bits needed to match
   1319 			 * the range.  (At this time, the only use of address
   1320 			 * ranges is for IP multicast routing, for which the
   1321 			 * range is big enough to require all bits set.)
   1322 			 */
   1323 			ec->ec_flags |= ETHER_F_ALLMULTI;
   1324 			ETHER_UNLOCK(ec);
   1325 			/* accept all multi */
   1326 			csr |= AFR_PM;
   1327 			goto update;
   1328 		}
   1329 #if MCAST_DEBUG == 1
   1330 aprint_normal_dev(sc->sc_dev, "[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
   1331 #endif
   1332 		if (i < 16) {
   1333 			/* use 15 entry perfect match filter */
   1334 			uint32_t addr;
   1335 			uint8_t *ep = enm->enm_addrlo;
   1336 			addr = (ep[3] << 24) | (ep[2] << 16)
   1337 			     | (ep[1] <<  8) |  ep[0];
   1338 			mac_write(sc, GMACMAL(i), addr);
   1339 			addr = (ep[5] << 8) | ep[4];
   1340 			mac_write(sc, GMACMAH(i), addr | 1U<<31);
   1341 		} else {
   1342 			/* use hash table when too many */
   1343 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1344 			crc = bit_reverse_32(~crc);
   1345 			/* 1(31) 5(30:26) bit sampling */
   1346 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
   1347 		}
   1348 		ETHER_NEXT_MULTI(step, enm);
   1349 		i++;
   1350 	}
   1351 	ETHER_UNLOCK(ec);
   1352 	if (crc)
   1353 		csr |= AFR_MHTE; /* use mchash[] */
   1354 	csr |= AFR_HPF; /* use perfect match as well */
   1355  update:
   1356 	mac_write(sc, GMACMHTH, mchash[1]);
   1357 	mac_write(sc, GMACMHTL, mchash[0]);
   1358 	mac_write(sc, GMACAFR, csr);
   1359 	return;
   1360 }
   1361 
   1362 static void
   1363 scx_start(struct ifnet *ifp)
   1364 {
   1365 	struct scx_softc *sc = ifp->if_softc;
   1366 	struct mbuf *m0;
   1367 	struct scx_txsoft *txs;
   1368 	bus_dmamap_t dmamap;
   1369 	int error, nexttx, lasttx, ofree, seg;
   1370 	uint32_t tdes0;
   1371 
   1372 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   1373 		return;
   1374 
   1375 	/* Remember the previous number of free descriptors. */
   1376 	ofree = sc->sc_txfree;
   1377 	/*
   1378 	 * Loop through the send queue, setting up transmit descriptors
   1379 	 * until we drain the queue, or use up all available transmit
   1380 	 * descriptors.
   1381 	 */
   1382 	for (;;) {
   1383 		IFQ_POLL(&ifp->if_snd, m0);
   1384 		if (m0 == NULL)
   1385 			break;
   1386 		if (sc->sc_txsfree < MD_TXQUEUE_GC) {
   1387 			txreap(sc);
   1388 			if (sc->sc_txsfree == 0)
   1389 				break;
   1390 		}
   1391 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1392 		dmamap = txs->txs_dmamap;
   1393 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1394 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1395 		if (error) {
   1396 			if (error == EFBIG) {
   1397 				aprint_error_dev(sc->sc_dev,
   1398 				    "Tx packet consumes too many "
   1399 				    "DMA segments, dropping...\n");
   1400 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1401 				m_freem(m0);
   1402 				if_statinc(ifp, if_oerrors);
   1403 				continue;
   1404 			}
   1405 			/* Short on resources, just stop for now. */
   1406 			break;
   1407 		}
   1408 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   1409 			/*
   1410 			 * Not enough free descriptors to transmit this
   1411 			 * packet.  We haven't committed anything yet,
   1412 			 * so just unload the DMA map, put the packet
   1413 			 * back on the queue, and punt.
   1414 			 */
   1415 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1416 			break;
   1417 		}
   1418 
   1419 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1420 		/*
   1421 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1422 		 */
   1423 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1424 		    BUS_DMASYNC_PREWRITE);
   1425 
   1426 		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
   1427 		lasttx = -1;
   1428 		for (nexttx = sc->sc_txnext, seg = 0;
   1429 		     seg < dmamap->dm_nsegs;
   1430 		     seg++, nexttx = MD_NEXTTX(nexttx)) {
   1431 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
   1432 			bus_addr_t p = dmamap->dm_segs[seg].ds_addr;
   1433 			bus_size_t z = dmamap->dm_segs[seg].ds_len;
   1434 			/*
   1435 			 * If this is the first descriptor we're
   1436 			 * enqueueing, don't set the OWN bit just
   1437 			 * yet.	 That could cause a race condition.
   1438 			 * We'll do it below.
   1439 			 */
   1440 			tdes->t3 = htole32(z);
   1441 			tdes->t2 = htole32(BUS_ADDR_LO32(p));
   1442 			tdes->t1 = htole32(BUS_ADDR_HI32(p));
   1443 			tdes->t0 &= htole32(T0_LD);
   1444 			tdes->t0 |= htole32(tdes0 |
   1445 					(15 << T0_TDRID) | T0_PT |
   1446 					sc->sc_t0cotso | T0_TRS);
   1447 			tdes0 = T0_OWN; /* 2nd and other segments */
   1448 			/* NB; t0 DRID field contains zero */
   1449 			lasttx = nexttx;
   1450 		}
   1451 
   1452 		/* HW lacks of per-frame xmit done interrupt control */
   1453 
   1454 		/* Write deferred 1st segment T0_OWN at the final stage */
   1455 		sc->sc_txdescs[lasttx].t0 |= htole32(T0_LS);
   1456 		sc->sc_txdescs[sc->sc_txnext].t0 |= htole32(T0_FS | T0_OWN);
   1457 		SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1458 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1459 
   1460 		/* submit one frame to xmit */
   1461 		CSR_WRITE(sc, TXSUBMIT, 1);
   1462 
   1463 		txs->txs_mbuf = m0;
   1464 		txs->txs_firstdesc = sc->sc_txnext;
   1465 		txs->txs_lastdesc = lasttx;
   1466 		txs->txs_ndesc = dmamap->dm_nsegs;
   1467 		sc->sc_txfree -= txs->txs_ndesc;
   1468 		sc->sc_txnext = nexttx;
   1469 		sc->sc_txsfree--;
   1470 		sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
   1471 		/*
   1472 		 * Pass the packet to any BPF listeners.
   1473 		 */
   1474 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1475 	}
   1476 	if (sc->sc_txfree != ofree) {
   1477 		/* Set a watchdog timer in case the chip flakes out. */
   1478 		ifp->if_timer = 5;
   1479 	}
   1480 }
   1481 
   1482 #define EVENT_DEBUG 1
   1483 
   1484 static void
   1485 scx_watchdog(struct ifnet *ifp)
   1486 {
   1487 	struct scx_softc *sc = ifp->if_softc;
   1488 
   1489 	/*
   1490 	 * Since we're not interrupting every packet, sweep
   1491 	 * up before we report an error.
   1492 	 */
   1493 	txreap(sc);
   1494 
   1495 	if (sc->sc_txfree != MD_NTXDESC) {
   1496 		aprint_error_dev(sc->sc_dev,
   1497 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
   1498 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
   1499 		if_statinc(ifp, if_oerrors);
   1500 #if EVENT_DEBUG == 1
   1501 aprint_error_dev(sc->sc_dev,
   1502     "tx frames %d, octects %d, bcast %d, mcast %d\n",
   1503     mac_read(sc, GMACEVCNT(1)),
   1504     mac_read(sc, GMACEVCNT(0)),
   1505     mac_read(sc, GMACEVCNT(2)),
   1506     mac_read(sc, GMACEVCNT(3)));
   1507 aprint_error_dev(sc->sc_dev,
   1508     "rx frames %d, octects %d, bcast %d, mcast %d\n",
   1509     mac_read(sc, GMACEVCNT(27)),
   1510     mac_read(sc, GMACEVCNT(28)),
   1511     mac_read(sc, GMACEVCNT(30)),
   1512     mac_read(sc, GMACEVCNT(31)));
   1513 aprint_error_dev(sc->sc_dev,
   1514     "current tdes addr %x, buf addr %x\n",
   1515     mac_read(sc, 0x1048), mac_read(sc, 0x1050));
   1516 aprint_error_dev(sc->sc_dev,
   1517     "current rdes addr %x, buf addr %x\n",
   1518     mac_read(sc, 0x104c), mac_read(sc, 0x1054));
   1519 #endif
   1520 		/* Reset the interface. */
   1521 		scx_init(ifp);
   1522 	}
   1523 
   1524 	scx_start(ifp);
   1525 }
   1526 
   1527 static int
   1528 scx_intr(void *arg)
   1529 {
   1530 	struct scx_softc *sc = arg;
   1531 	uint32_t enable, status;
   1532 
   1533 	status = CSR_READ(sc, xINTSR); /* not W1C */
   1534 	enable = CSR_READ(sc, xINTAEN);
   1535 	if ((status & enable) == 0)
   1536 		return 0;
   1537 	if (status & (IRQ_TX | IRQ_RX)) {
   1538 		CSR_WRITE(sc, xINTAE_CLR, (IRQ_TX | IRQ_RX));
   1539 
   1540 		status = CSR_READ(sc, RXISR);
   1541 		CSR_WRITE(sc, RXISR, status);
   1542 		if (status & RXI_RC_ERR)
   1543 			aprint_error_dev(sc->sc_dev, "Rx error\n");
   1544 		if (status & (RXI_PKTCNT | RXI_TMREXP)) {
   1545 			rxfill(sc);
   1546 			(void)CSR_READ(sc, RXAVAILCNT); /* clear IRQ_RX ? */
   1547 		}
   1548 
   1549 		status = CSR_READ(sc, TXISR);
   1550 		CSR_WRITE(sc, TXISR, status);
   1551 		if (status & TXI_TR_ERR)
   1552 			aprint_error_dev(sc->sc_dev, "Tx error\n");
   1553 		if (status & (TXI_TXDONE | TXI_TMREXP)) {
   1554 			txreap(sc);
   1555 			(void)CSR_READ(sc, TXDONECNT); /* clear IRQ_TX ? */
   1556 		}
   1557 
   1558 		CSR_WRITE(sc, xINTAE_SET, (IRQ_TX | IRQ_RX));
   1559 	}
   1560 	return 1;
   1561 }
   1562 
   1563 static void
   1564 txreap(struct scx_softc *sc)
   1565 {
   1566 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1567 	struct scx_txsoft *txs;
   1568 	uint32_t txstat;
   1569 	int i;
   1570 
   1571 	for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
   1572 	     i = MD_NEXTTXS(i), sc->sc_txsfree++) {
   1573 		txs = &sc->sc_txsoft[i];
   1574 
   1575 		SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
   1576 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1577 
   1578 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].t0);
   1579 		if (txstat & T0_OWN) /* desc is still in use */
   1580 			break;
   1581 
   1582 		/* There is no way to tell transmission status per frame */
   1583 
   1584 		if_statinc(ifp, if_opackets);
   1585 
   1586 		sc->sc_txfree += txs->txs_ndesc;
   1587 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1588 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1589 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1590 		m_freem(txs->txs_mbuf);
   1591 		txs->txs_mbuf = NULL;
   1592 	}
   1593 	sc->sc_txsdirty = i;
   1594 	if (sc->sc_txsfree == MD_TXQUEUELEN)
   1595 		ifp->if_timer = 0;
   1596 }
   1597 
   1598 static void
   1599 rxfill(struct scx_softc *sc)
   1600 {
   1601 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1602 	struct scx_rxsoft *rxs;
   1603 	struct mbuf *m;
   1604 	uint32_t rxstat, rlen;
   1605 	int i;
   1606 
   1607 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
   1608 		SCX_CDRXSYNC(sc, i,
   1609 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1610 
   1611 		rxstat = le32toh(sc->sc_rxdescs[i].r0);
   1612 		if (rxstat & R0_OWN) /* desc is left empty */
   1613 			break;
   1614 
   1615 		/* received frame length in R3 31:16 */
   1616 		rlen = le32toh(sc->sc_rxdescs[i].r3) >> 16;
   1617 
   1618 		/* R0_FS | R0_LS must have been marked for this desc */
   1619 		rxs = &sc->sc_rxsoft[i];
   1620 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1621 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1622 
   1623 		/* dispense new storage to receive frame */
   1624 		m = rxs->rxs_mbuf;
   1625 		if (add_rxbuf(sc, i) != 0) {
   1626 			if_statinc(ifp, if_ierrors);	/* resource shortage */
   1627 			SCX_INIT_RXDESC(sc, i);		/* then reuse */
   1628 			bus_dmamap_sync(sc->sc_dmat,
   1629 			    rxs->rxs_dmamap, 0,
   1630 			    rxs->rxs_dmamap->dm_mapsize,
   1631 			    BUS_DMASYNC_PREREAD);
   1632 			continue;
   1633 		}
   1634 		/* complete mbuf */
   1635 		m_set_rcvif(m, ifp);
   1636 		m->m_pkthdr.len = m->m_len = rlen;
   1637 		m->m_flags |= M_HASFCS;
   1638 		if (rxstat & R0_CSUM) {
   1639 			uint32_t csum = M_CSUM_IPv4;
   1640 			if (rxstat & R0_CERR)
   1641 				csum |= M_CSUM_IPv4_BAD;
   1642 			m->m_pkthdr.csum_flags |= csum;
   1643 		}
   1644 		/* and pass to upper layer */
   1645 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1646 	}
   1647 	sc->sc_rxptr = i;
   1648 }
   1649 
   1650 static int
   1651 add_rxbuf(struct scx_softc *sc, int i)
   1652 {
   1653 	struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
   1654 	struct mbuf *m;
   1655 	int error;
   1656 
   1657 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1658 	if (m == NULL)
   1659 		return ENOBUFS;
   1660 	MCLGET(m, M_DONTWAIT);
   1661 	if ((m->m_flags & M_EXT) == 0) {
   1662 		m_freem(m);
   1663 		return ENOBUFS;
   1664 	}
   1665 	if (rxs->rxs_mbuf != NULL)
   1666 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1667 	rxs->rxs_mbuf = m;
   1668 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1669 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1670 	if (error) {
   1671 		aprint_error_dev(sc->sc_dev,
   1672 		    "can't load rx DMA map %d, error = %d\n", i, error);
   1673 		panic("add_rxbuf");
   1674 	}
   1675 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1676 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1677 	SCX_INIT_RXDESC(sc, i);
   1678 
   1679 	return 0;
   1680 }
   1681 
   1682 static void
   1683 rxdrain(struct scx_softc *sc)
   1684 {
   1685 	struct scx_rxsoft *rxs;
   1686 	int i;
   1687 
   1688 	for (i = 0; i < MD_NRXDESC; i++) {
   1689 		rxs = &sc->sc_rxsoft[i];
   1690 		if (rxs->rxs_mbuf != NULL) {
   1691 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1692 			m_freem(rxs->rxs_mbuf);
   1693 			rxs->rxs_mbuf = NULL;
   1694 		}
   1695 	}
   1696 }
   1697 
   1698 #define LINK_DEBUG 0
   1699 
   1700 static void
   1701 mii_statchg(struct ifnet *ifp)
   1702 {
   1703 	struct scx_softc *sc = ifp->if_softc;
   1704 	struct mii_data *mii = &sc->sc_mii;
   1705 	const int Mbps[4] = { 10, 100, 1000, 0 };
   1706 	uint32_t miisr, mcr, fcr;
   1707 	int spd;
   1708 
   1709 	/* decode MIISR register value */
   1710 	miisr = mac_read(sc, GMACMIISR);
   1711 	spd = Mbps[(miisr & MIISR_SPD) >> 1];
   1712 #if LINK_DEBUG == 1
   1713 	static uint32_t oldmiisr = 0;
   1714 	if (miisr != oldmiisr) {
   1715 		printf("MII link status (0x%x) %s",
   1716 		    miisr, (miisr & MIISR_LUP) ? "up" : "down");
   1717 		if (miisr & MIISR_LUP) {
   1718 			printf(" spd%d", spd);
   1719 			if (miisr & MIISR_FDX)
   1720 				printf(",full-duplex");
   1721 		}
   1722 		printf("\n");
   1723 	}
   1724 #endif
   1725 	/* Get flow control negotiation result. */
   1726 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1727 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
   1728 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1729 
   1730 	/* Adjust speed 1000/100/10. */
   1731 	mcr = mac_read(sc, GMACMCR) &~ (MCR_PS | MCR_FES);
   1732 	if (sc->sc_miigmii) {
   1733 		if (spd != 1000)
   1734 			mcr |= MCR_PS;
   1735 	} else {
   1736 		if (spd == 100)
   1737 			mcr |= MCR_FES;
   1738 	}
   1739 	mcr |= MCR_CST | MCR_JE;
   1740 	if (sc->sc_miigmii == 0)
   1741 		mcr |= MCR_IBN;
   1742 
   1743 	/* Adjust duplexity and PAUSE flow control. */
   1744 	mcr &= ~MCR_USEFDX;
   1745 	fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
   1746 	if (miisr & MIISR_FDX) {
   1747 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
   1748 			fcr |= FCR_TFE;
   1749 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
   1750 			fcr |= FCR_RFE;
   1751 		mcr |= MCR_USEFDX;
   1752 	}
   1753 	mac_write(sc, GMACMCR, mcr);
   1754 	mac_write(sc, GMACFCR, fcr);
   1755 #if LINK_DEBUG == 1
   1756 	if (miisr != oldmiisr) {
   1757 		printf("%ctxfe, %crxfe\n",
   1758 		    (fcr & FCR_TFE) ? '+' : '-',
   1759 		    (fcr & FCR_RFE) ? '+' : '-');
   1760 	}
   1761 	oldmiisr = miisr;
   1762 #endif
   1763 }
   1764 
   1765 static void
   1766 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1767 {
   1768 	struct scx_softc *sc = ifp->if_softc;
   1769 	struct mii_data *mii = &sc->sc_mii;
   1770 
   1771 	mii_pollstat(mii);
   1772 	ifmr->ifm_status = mii->mii_media_status;
   1773 	ifmr->ifm_active = sc->sc_flowflags |
   1774 	    (mii->mii_media_active & ~IFM_ETH_FMASK);
   1775 }
   1776 
   1777 static int
   1778 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1779 {
   1780 	struct scx_softc *sc = device_private(self);
   1781 	uint32_t miia;
   1782 	int ntries;
   1783 
   1784 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
   1785 	mac_write(sc, GMACGAR, miia | GAR_BUSY);
   1786 	for (ntries = 0; ntries < 1000; ntries++) {
   1787 		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
   1788 			goto unbusy;
   1789 		DELAY(1);
   1790 	}
   1791 	return ETIMEDOUT;
   1792  unbusy:
   1793 	*val = mac_read(sc, GMACGDR);
   1794 	return 0;
   1795 }
   1796 
   1797 static int
   1798 mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1799 {
   1800 	struct scx_softc *sc = device_private(self);
   1801 	uint32_t miia;
   1802 	uint16_t dummy;
   1803 	int ntries;
   1804 
   1805 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
   1806 	mac_write(sc, GMACGDR, val);
   1807 	mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
   1808 	for (ntries = 0; ntries < 1000; ntries++) {
   1809 		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
   1810 			goto unbusy;
   1811 		DELAY(1);
   1812 	}
   1813 	return ETIMEDOUT;
   1814   unbusy:
   1815 	mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
   1816 	return 0;
   1817 }
   1818 
   1819 static void
   1820 phy_tick(void *arg)
   1821 {
   1822 	struct scx_softc *sc = arg;
   1823 	struct mii_data *mii = &sc->sc_mii;
   1824 	int s;
   1825 
   1826 	s = splnet();
   1827 	mii_tick(mii);
   1828 	splx(s);
   1829 #ifdef GMAC_EVENT_COUNTERS
   1830 	/* 80 event counters exist */
   1831 #endif
   1832 	callout_schedule(&sc->sc_callout, hz);
   1833 }
   1834 
   1835 static void
   1836 resetuengine(struct scx_softc *sc)
   1837 {
   1838 
   1839 	if (CSR_READ(sc, CORESTAT) == 0) {
   1840 		/* make sure to stop */
   1841 		CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP);
   1842 		CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP);
   1843 		WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP);
   1844 		WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP);
   1845 	}
   1846 	CSR_WRITE(sc, SWRESET, 0);		/* reset operation */
   1847 	CSR_WRITE(sc, SWRESET, SRST_RUN);	/* manifest run */
   1848 	CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
   1849 	WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS));
   1850 }
   1851 
   1852 #define UCODE_DEBUG 0
   1853 
   1854 /*
   1855  * 3 independent uengines exist to process host2media, media2host and
   1856  * packet data flows.
   1857  */
   1858 static void
   1859 loaducode(struct scx_softc *sc)
   1860 {
   1861 	uint32_t up, lo, sz;
   1862 	uint64_t addr;
   1863 
   1864 	up = EE_READ(sc, 0x08); /* H->M ucode addr high */
   1865 	lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
   1866 	sz = EE_READ(sc, 0x10); /* H->M ucode size */
   1867 	sz *= 4;
   1868 	addr = ((uint64_t)up << 32) | lo;
   1869 	injectucode(sc, UCODE_H2M, (bus_addr_t)addr, (bus_size_t)sz);
   1870 #if UCODE_DEBUG == 1
   1871 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
   1872 #endif
   1873 
   1874 	up = EE_READ(sc, 0x14); /* M->H ucode addr high */
   1875 	lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
   1876 	sz = EE_READ(sc, 0x1c); /* M->H ucode size */
   1877 	sz *= 4;
   1878 	addr = ((uint64_t)up << 32) | lo;
   1879 	injectucode(sc, UCODE_M2H, (bus_addr_t)addr, (bus_size_t)sz);
   1880 #if UCODE_DEBUG == 1
   1881 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
   1882 #endif
   1883 
   1884 	lo = EE_READ(sc, 0x20); /* PKT ucode addr */
   1885 	sz = EE_READ(sc, 0x24); /* PKT ucode size */
   1886 	sz *= 4;
   1887 	injectucode(sc, UCODE_PKT, (bus_addr_t)lo, (bus_size_t)sz);
   1888 #if UCODE_DEBUG == 1
   1889 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
   1890 #endif
   1891 }
   1892 
   1893 static void
   1894 injectucode(struct scx_softc *sc, int port,
   1895 	bus_addr_t addr, bus_size_t size)
   1896 {
   1897 	bus_space_handle_t bsh;
   1898 	bus_size_t off;
   1899 	uint32_t ucode;
   1900 
   1901 	if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
   1902 		aprint_error_dev(sc->sc_dev,
   1903 		    "eeprom map failure for ucode port 0x%x\n", port);
   1904 		return;
   1905 	}
   1906 	for (off = 0; off < size; off += 4) {
   1907 		ucode = bus_space_read_4(sc->sc_st, bsh, off);
   1908 		CSR_WRITE(sc, port, ucode);
   1909 	}
   1910 	bus_space_unmap(sc->sc_st, bsh, size);
   1911 }
   1912 
   1913 static void
   1914 forcephyloopback(struct scx_softc *sc)
   1915 {
   1916 	struct device *d = sc->sc_dev;
   1917 	uint16_t val;
   1918 	int loop, err;
   1919 
   1920 	err = mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
   1921 	if (err) {
   1922 		aprint_error_dev(d, "forcephyloopback() failed\n");
   1923 		return;
   1924 	}
   1925 	if (val & BMCR_PDOWN)
   1926 		val &=  ~BMCR_PDOWN;
   1927 	val |= BMCR_ISO;
   1928 	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val);
   1929 	loop = 100;
   1930 	do {
   1931 		(void)mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
   1932 	} while (loop-- > 0 && (val & (BMCR_PDOWN | BMCR_ISO)) != 0);
   1933 	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val | BMCR_LOOP);
   1934 	loop = 100;
   1935 	do {
   1936 		(void)mii_readreg(d, sc->sc_phy_id, MII_BMSR, &val);
   1937 	} while (loop-- > 0 && (val & BMSR_LINK) != 0);
   1938 }
   1939 
   1940 static void
   1941 resetphytonormal(struct scx_softc *sc)
   1942 {
   1943 	struct device *d = sc->sc_dev;
   1944 	uint16_t val;
   1945 	int loop, err;
   1946 
   1947 	err = mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
   1948 	if (err) {
   1949 		aprint_error_dev(d, "resetphytonormal() failed\n");
   1950 	}
   1951 	val &= ~BMCR_LOOP;
   1952 	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val);
   1953 	loop = 100;
   1954 	do {
   1955 		(void)mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
   1956 	} while (loop-- > 0 && (val & BMCR_LOOP) != 0);
   1957 	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val | BMCR_RESET);
   1958 	loop = 100;
   1959 	do {
   1960 		(void)mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
   1961 	} while (loop-- > 0 && (val & BMCR_RESET) != 0);
   1962 }
   1963 
   1964 /* GAR 5:2 MDIO frequency selection */
   1965 static int
   1966 get_mdioclk(uint32_t freq)
   1967 {
   1968 
   1969 	freq /= 1000 * 1000;
   1970 	if (freq < 35)
   1971 		return GAR_MDIO_25_35MHZ;
   1972 	if (freq < 60)
   1973 		return GAR_MDIO_35_60MHZ;
   1974 	if (freq < 100)
   1975 		return GAR_MDIO_60_100MHZ;
   1976 	if (freq < 150)
   1977 		return GAR_MDIO_100_150MHZ;
   1978 	if (freq < 250)
   1979 		return GAR_MDIO_150_250MHZ;
   1980 	return GAR_MDIO_250_300MHZ;
   1981 }
   1982 
   1983 #define HWFEA_DEBUG 1
   1984 
   1985 static void
   1986 dump_hwfeature(struct scx_softc *sc)
   1987 {
   1988 #if HWFEA_DEBUG == 1
   1989 	struct {
   1990 		uint32_t bit;
   1991 		const char *des;
   1992 	} field[] = {
   1993 		{ 27, "SA/VLAN insertion replacement enabled" },
   1994 		{ 26, "flexible PPS enabled" },
   1995 		{ 25, "time stamping with internal system enabled" },
   1996 		{ 24, "alternate/enhanced descriptor enabled" },
   1997 		{ 19, "rx FIFO >2048 enabled" },
   1998 		{ 18, "type 2 IP checksum offload enabled" },
   1999 		{ 17, "type 1 IP checksum offload enabled" },
   2000 		{ 16, "Tx checksum offload enabled" },
   2001 		{ 15, "AV feature enabled" },
   2002 		{ 14, "EEE energy save feature enabled" },
   2003 		{ 13, "1588-2008 version 2 advanced feature enabled" },
   2004 		{ 12, "only 1588-2002 version 1 feature enabled" },
   2005 		{ 11, "RMON event counter enabled" },
   2006 		{ 10, "PMT magic packet enabled" },
   2007 		{ 9,  "PMT remote wakeup enabled" },
   2008 		{ 8,  "MDIO enabled", },
   2009 		{ 7,  "L3/L4 filter enabled" },
   2010 		{ 6,  "TBI/SGMII/RTBI support enabled" },
   2011 		{ 5,  "supplimental MAC address enabled" },
   2012 		{ 4,  "receive hash filter enabled" },
   2013 		{ 3,  "hash size is expanded" },
   2014 		{ 2,  "Half Duplex enabled" },
   2015 		{ 1,  "1000 Mbps enabled" },
   2016 		{ 0,  "10/100 Mbps enabled" },
   2017 	};
   2018 	const char *nameofmii[] = {
   2019 		"GMII or MII",
   2020 		"RGMII",
   2021 		"SGMII",
   2022 		"TBI",
   2023 		"RMII",
   2024 		"RTBI",
   2025 		"SMII",
   2026 		"RevMII"
   2027 	};
   2028 	uint32_t hwfea, mtype, txchan, rxchan;
   2029 
   2030 	hwfea = CSR_READ(sc, HWFEA);
   2031 	mtype = (hwfea & __BITS(30,28)) >> 28;
   2032 	aprint_normal("HWFEA 0x%08x\n", hwfea);
   2033 	aprint_normal("%s <30:28>\n", nameofmii[mtype]);
   2034 	for (unsigned i = 0; i < __arraycount(field); i++) {
   2035 		if ((hwfea & (1U << field[i].bit)) == 0)
   2036 			continue;
   2037 		aprint_normal("%s <%d>\n", field[i].des, field[i].bit);
   2038 	}
   2039 	if ((txchan = (hwfea & __BITS(23,22)) >> 22) != 0)
   2040 		aprint_normal("+%d tx channel available <23,22>\n", txchan);
   2041 	if ((rxchan = (hwfea & __BITS(21,20)) >> 20) != 0)
   2042 		aprint_normal("+%d rx channel available <21:20>\n", rxchan);
   2043 	return;
   2044 #endif
   2045 }
   2046