Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: sys_eventfd.c,v 1.11 2023/11/19 17:16:00 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: sys_eventfd.c,v 1.11 2023/11/19 17:16:00 riastradh Exp $");
     34 
     35 /*
     36  * eventfd
     37  *
     38  * Eventfd objects present a simple counting object associated with a
     39  * file descriptor.  Writes and reads to this file descriptor increment
     40  * and decrement the count, respectively.  When the count is non-zero,
     41  * the descriptor is considered "readable", and when less than the max
     42  * value (EVENTFD_MAXVAL), is considered "writable".
     43  *
     44  * This implementation is API compatible with the Linux eventfd(2)
     45  * interface.
     46  */
     47 
     48 #include <sys/param.h>
     49 #include <sys/types.h>
     50 #include <sys/condvar.h>
     51 #include <sys/eventfd.h>
     52 #include <sys/file.h>
     53 #include <sys/filedesc.h>
     54 #include <sys/kauth.h>
     55 #include <sys/mutex.h>
     56 #include <sys/poll.h>
     57 #include <sys/proc.h>
     58 #include <sys/select.h>
     59 #include <sys/stat.h>
     60 #include <sys/syscallargs.h>
     61 #include <sys/uio.h>
     62 
     63 struct eventfd {
     64 	kmutex_t	efd_lock;
     65 	kcondvar_t	efd_read_wait;
     66 	kcondvar_t	efd_write_wait;
     67 	struct selinfo	efd_read_sel;
     68 	struct selinfo	efd_write_sel;
     69 	eventfd_t	efd_val;
     70 	int64_t		efd_nwaiters;
     71 	bool		efd_restarting;
     72 	bool		efd_is_semaphore;
     73 
     74 	/*
     75 	 * Information kept for stat(2).
     76 	 */
     77 	struct timespec efd_btime;	/* time created */
     78 	struct timespec	efd_mtime;	/* last write */
     79 	struct timespec	efd_atime;	/* last read */
     80 };
     81 
     82 #define	EVENTFD_MAXVAL	(UINT64_MAX - 1)
     83 
     84 /*
     85  * eventfd_create:
     86  *
     87  *	Create an eventfd object.
     88  */
     89 static struct eventfd *
     90 eventfd_create(unsigned int const val, int const flags)
     91 {
     92 	struct eventfd * const efd = kmem_zalloc(sizeof(*efd), KM_SLEEP);
     93 
     94 	mutex_init(&efd->efd_lock, MUTEX_DEFAULT, IPL_NONE);
     95 	cv_init(&efd->efd_read_wait, "efdread");
     96 	cv_init(&efd->efd_write_wait, "efdwrite");
     97 	selinit(&efd->efd_read_sel);
     98 	selinit(&efd->efd_write_sel);
     99 	efd->efd_val = val;
    100 	efd->efd_is_semaphore = !!(flags & EFD_SEMAPHORE);
    101 	getnanotime(&efd->efd_btime);
    102 
    103 	/* Caller deals with EFD_CLOEXEC and EFD_NONBLOCK. */
    104 
    105 	return efd;
    106 }
    107 
    108 /*
    109  * eventfd_destroy:
    110  *
    111  *	Destroy an eventfd object.
    112  */
    113 static void
    114 eventfd_destroy(struct eventfd * const efd)
    115 {
    116 
    117 	KASSERT(efd->efd_nwaiters == 0);
    118 
    119 	cv_destroy(&efd->efd_read_wait);
    120 	cv_destroy(&efd->efd_write_wait);
    121 
    122 	seldestroy(&efd->efd_read_sel);
    123 	seldestroy(&efd->efd_write_sel);
    124 
    125 	mutex_destroy(&efd->efd_lock);
    126 
    127 	kmem_free(efd, sizeof(*efd));
    128 }
    129 
    130 /*
    131  * eventfd_wait:
    132  *
    133  *	Block on an eventfd.  Handles non-blocking, as well as
    134  *	the restart cases.
    135  */
    136 static int
    137 eventfd_wait(struct eventfd * const efd, int const fflag, bool const is_write)
    138 {
    139 	kcondvar_t *waitcv;
    140 	int error;
    141 
    142 	if (fflag & FNONBLOCK) {
    143 		return EAGAIN;
    144 	}
    145 
    146 	/*
    147 	 * We're going to block.  Check if we need to return ERESTART.
    148 	 */
    149 	if (efd->efd_restarting) {
    150 		return ERESTART;
    151 	}
    152 
    153 	if (is_write) {
    154 		waitcv = &efd->efd_write_wait;
    155 	} else {
    156 		waitcv = &efd->efd_read_wait;
    157 	}
    158 
    159 	efd->efd_nwaiters++;
    160 	KASSERT(efd->efd_nwaiters > 0);
    161 	error = cv_wait_sig(waitcv, &efd->efd_lock);
    162 	efd->efd_nwaiters--;
    163 	KASSERT(efd->efd_nwaiters >= 0);
    164 
    165 	/*
    166 	 * If a restart was triggered while we were asleep, we need
    167 	 * to return ERESTART if no other error was returned.
    168 	 */
    169 	if (efd->efd_restarting) {
    170 		if (error == 0) {
    171 			error = ERESTART;
    172 		}
    173 	}
    174 
    175 	return error;
    176 }
    177 
    178 /*
    179  * eventfd_wake:
    180  *
    181  *	Wake LWPs block on an eventfd.
    182  */
    183 static void
    184 eventfd_wake(struct eventfd * const efd, bool const is_write)
    185 {
    186 	kcondvar_t *waitcv = NULL;
    187 	struct selinfo *sel;
    188 	int pollev;
    189 
    190 	if (is_write) {
    191 		waitcv = &efd->efd_read_wait;
    192 		sel = &efd->efd_read_sel;
    193 		pollev = POLLIN | POLLRDNORM;
    194 	} else {
    195 		waitcv = &efd->efd_write_wait;
    196 		sel = &efd->efd_write_sel;
    197 		pollev = POLLOUT | POLLWRNORM;
    198 	}
    199 	cv_broadcast(waitcv);
    200 	selnotify(sel, pollev, NOTE_SUBMIT);
    201 }
    202 
    203 /*
    204  * eventfd file operations
    205  */
    206 
    207 static int
    208 eventfd_fop_read(file_t * const fp, off_t * const offset,
    209     struct uio * const uio, kauth_cred_t const cred, int const flags)
    210 {
    211 	struct eventfd * const efd = fp->f_eventfd;
    212 	int const fflag = fp->f_flag;
    213 	eventfd_t return_value;
    214 	int error;
    215 
    216 	if (uio->uio_resid < sizeof(eventfd_t)) {
    217 		return EINVAL;
    218 	}
    219 
    220 	mutex_enter(&efd->efd_lock);
    221 
    222 	while (efd->efd_val == 0) {
    223 		if ((error = eventfd_wait(efd, fflag, false)) != 0) {
    224 			mutex_exit(&efd->efd_lock);
    225 			return error;
    226 		}
    227 	}
    228 
    229 	if (efd->efd_is_semaphore) {
    230 		return_value = 1;
    231 		efd->efd_val--;
    232 	} else {
    233 		return_value = efd->efd_val;
    234 		efd->efd_val = 0;
    235 	}
    236 
    237 	getnanotime(&efd->efd_atime);
    238 	eventfd_wake(efd, false);
    239 
    240 	mutex_exit(&efd->efd_lock);
    241 
    242 	error = uiomove(&return_value, sizeof(return_value), uio);
    243 
    244 	return error;
    245 }
    246 
    247 static int
    248 eventfd_fop_write(file_t * const fp, off_t * const offset,
    249     struct uio * const uio, kauth_cred_t const cred, int const flags)
    250 {
    251 	struct eventfd * const efd = fp->f_eventfd;
    252 	int const fflag = fp->f_flag;
    253 	eventfd_t write_value;
    254 	int error;
    255 
    256 	if (uio->uio_resid < sizeof(eventfd_t)) {
    257 		return EINVAL;
    258 	}
    259 
    260 	if ((error = uiomove(&write_value, sizeof(write_value), uio)) != 0) {
    261 		return error;
    262 	}
    263 
    264 	if (write_value > EVENTFD_MAXVAL) {
    265 		error = EINVAL;
    266 		goto out;
    267 	}
    268 
    269 	mutex_enter(&efd->efd_lock);
    270 
    271 	KASSERT(efd->efd_val <= EVENTFD_MAXVAL);
    272 	while ((EVENTFD_MAXVAL - efd->efd_val) < write_value) {
    273 		if ((error = eventfd_wait(efd, fflag, true)) != 0) {
    274 			mutex_exit(&efd->efd_lock);
    275 			goto out;
    276 		}
    277 	}
    278 
    279 	efd->efd_val += write_value;
    280 	KASSERT(efd->efd_val <= EVENTFD_MAXVAL);
    281 
    282 	getnanotime(&efd->efd_mtime);
    283 	eventfd_wake(efd, true);
    284 
    285 	mutex_exit(&efd->efd_lock);
    286 
    287  out:
    288 	if (error) {
    289 		/*
    290 		 * Undo the effect of uiomove() so that the error
    291 		 * gets reported correctly; see dofilewrite().
    292 		 */
    293 		uio->uio_resid += sizeof(write_value);
    294 	}
    295 	return error;
    296 }
    297 
    298 static int
    299 eventfd_ioctl(file_t * const fp, u_long const cmd, void * const data)
    300 {
    301 	struct eventfd * const efd = fp->f_eventfd;
    302 
    303 	switch (cmd) {
    304 	case FIONBIO:
    305 		return 0;
    306 
    307 	case FIONREAD:
    308 		mutex_enter(&efd->efd_lock);
    309 		*(int *)data = efd->efd_val != 0 ? sizeof(eventfd_t) : 0;
    310 		mutex_exit(&efd->efd_lock);
    311 		return 0;
    312 
    313 	case FIONWRITE:
    314 		*(int *)data = 0;
    315 		return 0;
    316 
    317 	case FIONSPACE:
    318 		/*
    319 		 * FIONSPACE doesn't really work for eventfd, because the
    320 		 * writability depends on the contents (value) being written.
    321 		 */
    322 		break;
    323 
    324 	default:
    325 		break;
    326 	}
    327 
    328 	return EPASSTHROUGH;
    329 }
    330 
    331 static int
    332 eventfd_fop_poll(file_t * const fp, int const events)
    333 {
    334 	struct eventfd * const efd = fp->f_eventfd;
    335 	int revents = 0;
    336 
    337 	/*
    338 	 * Note that Linux will return POLLERR if the eventfd count
    339 	 * overflows, but that is not possible in the normal read/write
    340 	 * API, only with Linux kernel-internal interfaces.  So, this
    341 	 * implementation never returns POLLERR.
    342 	 *
    343 	 * Also note that the Linux eventfd(2) man page does not
    344 	 * specifically discuss returning POLLRDNORM, but we check
    345 	 * for that event in addition to POLLIN.
    346 	 */
    347 
    348 	mutex_enter(&efd->efd_lock);
    349 
    350 	if (events & (POLLIN | POLLRDNORM)) {
    351 		if (efd->efd_val != 0) {
    352 			revents |= events & (POLLIN | POLLRDNORM);
    353 		} else {
    354 			selrecord(curlwp, &efd->efd_read_sel);
    355 		}
    356 	}
    357 
    358 	if (events & (POLLOUT | POLLWRNORM)) {
    359 		if (efd->efd_val < EVENTFD_MAXVAL) {
    360 			revents |= events & (POLLOUT | POLLWRNORM);
    361 		} else {
    362 			selrecord(curlwp, &efd->efd_write_sel);
    363 		}
    364 	}
    365 
    366 	mutex_exit(&efd->efd_lock);
    367 
    368 	return revents;
    369 }
    370 
    371 static int
    372 eventfd_fop_stat(file_t * const fp, struct stat * const st)
    373 {
    374 	struct eventfd * const efd = fp->f_eventfd;
    375 
    376 	memset(st, 0, sizeof(*st));
    377 
    378 	mutex_enter(&efd->efd_lock);
    379 	st->st_size = (off_t)efd->efd_val;
    380 	st->st_blksize = sizeof(eventfd_t);
    381 	st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
    382 	st->st_blocks = 1;
    383 	st->st_birthtimespec = st->st_ctimespec = efd->efd_btime;
    384 	st->st_atimespec = efd->efd_atime;
    385 	st->st_mtimespec = efd->efd_mtime;
    386 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    387 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    388 	mutex_exit(&efd->efd_lock);
    389 
    390 	return 0;
    391 }
    392 
    393 static int
    394 eventfd_fop_close(file_t * const fp)
    395 {
    396 	struct eventfd * const efd = fp->f_eventfd;
    397 
    398 	fp->f_eventfd = NULL;
    399 	eventfd_destroy(efd);
    400 
    401 	return 0;
    402 }
    403 
    404 static void
    405 eventfd_filt_read_detach(struct knote * const kn)
    406 {
    407 	struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
    408 
    409 	mutex_enter(&efd->efd_lock);
    410 	KASSERT(kn->kn_hook == efd);
    411 	selremove_knote(&efd->efd_read_sel, kn);
    412 	mutex_exit(&efd->efd_lock);
    413 }
    414 
    415 static int
    416 eventfd_filt_read(struct knote * const kn, long const hint)
    417 {
    418 	struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
    419 	int rv;
    420 
    421 	if (hint & NOTE_SUBMIT) {
    422 		KASSERT(mutex_owned(&efd->efd_lock));
    423 	} else {
    424 		mutex_enter(&efd->efd_lock);
    425 	}
    426 
    427 	kn->kn_data = (int64_t)efd->efd_val;
    428 	rv = (eventfd_t)kn->kn_data > 0;
    429 
    430 	if ((hint & NOTE_SUBMIT) == 0) {
    431 		mutex_exit(&efd->efd_lock);
    432 	}
    433 
    434 	return rv;
    435 }
    436 
    437 static const struct filterops eventfd_read_filterops = {
    438 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
    439 	.f_detach = eventfd_filt_read_detach,
    440 	.f_event = eventfd_filt_read,
    441 };
    442 
    443 static void
    444 eventfd_filt_write_detach(struct knote * const kn)
    445 {
    446 	struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
    447 
    448 	mutex_enter(&efd->efd_lock);
    449 	KASSERT(kn->kn_hook == efd);
    450 	selremove_knote(&efd->efd_write_sel, kn);
    451 	mutex_exit(&efd->efd_lock);
    452 }
    453 
    454 static int
    455 eventfd_filt_write(struct knote * const kn, long const hint)
    456 {
    457 	struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
    458 	int rv;
    459 
    460 	if (hint & NOTE_SUBMIT) {
    461 		KASSERT(mutex_owned(&efd->efd_lock));
    462 	} else {
    463 		mutex_enter(&efd->efd_lock);
    464 	}
    465 
    466 	kn->kn_data = (int64_t)efd->efd_val;
    467 	rv = (eventfd_t)kn->kn_data < EVENTFD_MAXVAL;
    468 
    469 	if ((hint & NOTE_SUBMIT) == 0) {
    470 		mutex_exit(&efd->efd_lock);
    471 	}
    472 
    473 	return rv;
    474 }
    475 
    476 static const struct filterops eventfd_write_filterops = {
    477 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
    478 	.f_detach = eventfd_filt_write_detach,
    479 	.f_event = eventfd_filt_write,
    480 };
    481 
    482 static int
    483 eventfd_fop_kqfilter(file_t * const fp, struct knote * const kn)
    484 {
    485 	struct eventfd * const efd = ((file_t *)kn->kn_obj)->f_eventfd;
    486 	struct selinfo *sel;
    487 
    488 	switch (kn->kn_filter) {
    489 	case EVFILT_READ:
    490 		sel = &efd->efd_read_sel;
    491 		kn->kn_fop = &eventfd_read_filterops;
    492 		break;
    493 
    494 	case EVFILT_WRITE:
    495 		sel = &efd->efd_write_sel;
    496 		kn->kn_fop = &eventfd_write_filterops;
    497 		break;
    498 
    499 	default:
    500 		return EINVAL;
    501 	}
    502 
    503 	kn->kn_hook = efd;
    504 
    505 	mutex_enter(&efd->efd_lock);
    506 	selrecord_knote(sel, kn);
    507 	mutex_exit(&efd->efd_lock);
    508 
    509 	return 0;
    510 }
    511 
    512 static void
    513 eventfd_fop_restart(file_t * const fp)
    514 {
    515 	struct eventfd * const efd = fp->f_eventfd;
    516 
    517 	/*
    518 	 * Unblock blocked reads/writes in order to allow close() to complete.
    519 	 * System calls return ERESTART so that the fd is revalidated.
    520 	 */
    521 
    522 	mutex_enter(&efd->efd_lock);
    523 
    524 	if (efd->efd_nwaiters != 0) {
    525 		efd->efd_restarting = true;
    526 		cv_broadcast(&efd->efd_read_wait);
    527 		cv_broadcast(&efd->efd_write_wait);
    528 	}
    529 
    530 	mutex_exit(&efd->efd_lock);
    531 }
    532 
    533 static const struct fileops eventfd_fileops = {
    534 	.fo_name = "eventfd",
    535 	.fo_read = eventfd_fop_read,
    536 	.fo_write = eventfd_fop_write,
    537 	.fo_ioctl = eventfd_ioctl,
    538 	.fo_fcntl = fnullop_fcntl,
    539 	.fo_poll = eventfd_fop_poll,
    540 	.fo_stat = eventfd_fop_stat,
    541 	.fo_close = eventfd_fop_close,
    542 	.fo_kqfilter = eventfd_fop_kqfilter,
    543 	.fo_restart = eventfd_fop_restart,
    544 };
    545 
    546 /*
    547  * eventfd(2) system call
    548  */
    549 int
    550 do_eventfd(struct lwp * const l, unsigned int const val, int const flags,
    551     register_t *retval)
    552 {
    553 	file_t *fp;
    554 	int fd, error;
    555 
    556 	if (flags & ~(EFD_CLOEXEC | EFD_NONBLOCK | EFD_SEMAPHORE)) {
    557 		return EINVAL;
    558 	}
    559 
    560 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    561 		return error;
    562 	}
    563 
    564 	fp->f_flag = FREAD | FWRITE;
    565 	if (flags & EFD_NONBLOCK) {
    566 		fp->f_flag |= FNONBLOCK;
    567 	}
    568 	fp->f_type = DTYPE_EVENTFD;
    569 	fp->f_ops = &eventfd_fileops;
    570 	fp->f_eventfd = eventfd_create(val, flags);
    571 	fd_set_exclose(l, fd, !!(flags & EFD_CLOEXEC));
    572 	fd_affix(curproc, fp, fd);
    573 
    574 	*retval = fd;
    575 	return 0;
    576 }
    577 
    578 int
    579 sys_eventfd(struct lwp *l, const struct sys_eventfd_args *uap,
    580     register_t *retval)
    581 {
    582 	/* {
    583 		syscallarg(unsigned int) val;
    584 		syscallarg(int) flags;
    585 	} */
    586 
    587 	return do_eventfd(l, SCARG(uap, val), SCARG(uap, flags), retval);
    588 }
    589