Home | History | Annotate | Line # | Download | only in broadcom
      1 /*	$NetBSD: bcm53xx_board.c,v 1.27 2024/02/16 16:28:49 skrll Exp $	*/
      2 /*-
      3  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas of 3am Software Foundry.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 #include "opt_arm_debug.h"
     32 #include "opt_broadcom.h"
     33 #include "arml2cc.h"
     34 
     35 #define	_ARM32_BUS_DMA_PRIVATE
     36 
     37 #include <sys/cdefs.h>
     38 
     39 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.27 2024/02/16 16:28:49 skrll Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/bus.h>
     43 #include <sys/cpu.h>
     44 #include <sys/device.h>
     45 
     46 #include <prop/proplib.h>
     47 
     48 #include <net/if.h>
     49 #include <net/if_ether.h>
     50 
     51 #define CCA_PRIVATE
     52 #define CRU_PRIVATE
     53 #define DDR_PRIVATE
     54 #define DMU_PRIVATE
     55 #define ARMCORE_PRIVATE
     56 #define SRAB_PRIVATE
     57 
     58 #include <arm/cortex/a9tmr_var.h>
     59 #include <arm/cortex/pl310_var.h>
     60 #include <arm/mainbus/mainbus.h>
     61 
     62 #include <arm/broadcom/bcm53xx_reg.h>
     63 #include <arm/broadcom/bcm53xx_var.h>
     64 
     65 bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
     66 bus_space_handle_t bcm53xx_ioreg_bsh;
     67 bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
     68 bus_space_handle_t bcm53xx_armcore_bsh;
     69 
     70 static struct cpu_softc cpu_softc;
     71 
     72 struct arm32_dma_range bcm53xx_dma_ranges[] = {
     73 #ifdef BCM5301X
     74 	[0] = {
     75 		.dr_sysbase = 0x80000000,
     76 		.dr_busbase = 0x80000000,
     77 		.dr_len = 0x10000000,
     78 	}, [1] = {
     79 		.dr_sysbase = 0x90000000,
     80 		.dr_busbase = 0x90000000,
     81 	},
     82 #elif defined(BCM563XX)
     83 	[0] = {
     84 		.dr_sysbase = 0x60000000,
     85 		.dr_busbase = 0x60000000,
     86 		.dr_len = 0x20000000,
     87 	}, [1] = {
     88 		.dr_sysbase = 0x80000000,
     89 		.dr_busbase = 0x80000000,
     90 	},
     91 #endif
     92 };
     93 
     94 struct arm32_bus_dma_tag bcm53xx_dma_tag = {
     95 	._ranges = bcm53xx_dma_ranges,
     96 	._nranges = __arraycount(bcm53xx_dma_ranges),
     97 	_BUS_DMAMAP_FUNCS,
     98 	_BUS_DMAMEM_FUNCS,
     99 	_BUS_DMATAG_FUNCS,
    100 };
    101 
    102 struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
    103 #ifdef BCM5301X
    104 	[0] = {
    105 		.dr_sysbase = 0x80000000,
    106 		.dr_busbase = 0x80000000,
    107 		.dr_len = 0x10000000,
    108 		.dr_flags = _BUS_DMAMAP_COHERENT,
    109 	}, [1] = {
    110 		.dr_sysbase = 0x90000000,
    111 		.dr_busbase = 0x90000000,
    112 	},
    113 #elif defined(BCM563XX)
    114 	[0] = {
    115 		.dr_sysbase = 0x60000000,
    116 		.dr_busbase = 0x60000000,
    117 		.dr_len = 0x20000000,
    118 		.dr_flags = _BUS_DMAMAP_COHERENT,
    119 	}, [1] = {
    120 		.dr_sysbase = 0x80000000,
    121 		.dr_busbase = 0x80000000,
    122 	},
    123 #endif
    124 };
    125 
    126 struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
    127 	._ranges = bcm53xx_coherent_dma_ranges,
    128 	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
    129 	_BUS_DMAMAP_FUNCS,
    130 	_BUS_DMAMEM_FUNCS,
    131 	_BUS_DMATAG_FUNCS,
    132 };
    133 
    134 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    135 struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
    136 	._ranges = bcm53xx_coherent_dma_ranges,
    137 	._nranges = 1,
    138 	_BUS_DMAMAP_FUNCS,
    139 	_BUS_DMAMEM_FUNCS,
    140 	_BUS_DMATAG_FUNCS,
    141 };
    142 #endif
    143 
    144 psize_t
    145 bcm53xx_memprobe(void)
    146 {
    147 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    148 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    149 
    150 	/*
    151 	 * First, let's read the magic DDR registers!
    152 	 */
    153 	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
    154 	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
    155 	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
    156 	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
    157 
    158 	/*
    159 	 * Calculate chip parameters
    160 	 * */
    161 	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
    162 	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
    163 	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
    164 	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
    165 	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
    166 
    167 	/*
    168 	 * For each chip select, increase the chip count if if is enabled.
    169 	 */
    170 	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
    171 	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
    172 	u_int chips = 0;
    173 
    174 	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
    175 		chips += (cs_map & 1);
    176 	}
    177 
    178 	/* get log2(ddr width) */
    179 
    180 	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
    181 
    182 	/*
    183 	 * Let's add up all the things that contribute to the size of a chip.
    184 	 */
    185 	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
    186 
    187 	/*
    188 	 * Now our memory size is simply the number of chip shifted by the
    189 	 * log2(chip_size).
    190 	 */
    191 	return (psize_t) chips << chip_size_log2;
    192 }
    193 
    194 static inline uint32_t
    195 bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
    196 	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
    197 {
    198 	if (ndiv_frac == 0 && pdiv == 1)
    199 		return ndiv_int * clk->clk_ref;
    200 
    201 	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
    202 	freq64 *= clk->clk_ref;
    203 	if (pdiv > 1)
    204 		freq64 /= pdiv;
    205 	return (uint32_t) (freq64 >> 30);
    206 }
    207 
    208 static uint32_t
    209 bcm53xx_value_wrap(uint32_t value, uint32_t mask)
    210 {
    211 	/*
    212 	 * n is n except when n is 0 then n = mask + 1.
    213 	 */
    214 	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
    215 }
    216 
    217 static void
    218 bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
    219 	uint32_t control6, uint32_t control7)
    220 {
    221 	const uint32_t pdiv = bcm53xx_value_wrap(control6,
    222 	    GENPLL_CONTROL6_PDIV);
    223 	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
    224 	    GENPLL_CONTROL5_NDIV_INT);
    225 	const uint32_t ndiv_frac = __SHIFTOUT(control5,
    226 	    GENPLL_CONTROL5_NDIV_FRAC);
    227 
    228 	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    229 
    230 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
    231 	    GENPLL_CONTROL6_CH0_MDIV);
    232 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
    233 	    GENPLL_CONTROL6_CH1_MDIV);
    234 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
    235 	    GENPLL_CONTROL6_CH2_MDIV);
    236 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
    237 	    GENPLL_CONTROL7_CH3_MDIV);
    238 
    239 	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
    240 	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
    241 	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
    242 	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
    243 }
    244 
    245 static void
    246 bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
    247 	uint32_t control2)
    248 {
    249 	const uint32_t pdiv = bcm53xx_value_wrap(control1,
    250 	    LCPLL_CONTROL1_PDIV);
    251 	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
    252 	    LCPLL_CONTROL1_NDIV_INT);
    253 	const uint32_t ndiv_frac = __SHIFTOUT(control1,
    254 	    LCPLL_CONTROL1_NDIV_FRAC);
    255 
    256 	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    257 
    258 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
    259 	    LCPLL_CONTROL2_CH0_MDIV);
    260 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
    261 	    LCPLL_CONTROL2_CH1_MDIV);
    262 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
    263 	    LCPLL_CONTROL2_CH2_MDIV);
    264 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
    265 	    LCPLL_CONTROL2_CH3_MDIV);
    266 
    267 	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
    268 	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
    269 	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
    270 	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
    271 }
    272 
    273 static void
    274 bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
    275 {
    276 	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
    277 	    USB2_CONTROL_PDIV);
    278 	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
    279 	    USB2_CONTROL_NDIV_INT);
    280 
    281 	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
    282 	if (usb_ref != USB2_REF_CLK) {
    283 		/*
    284 		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
    285 		 * USB2_CONTROL to produce it.
    286 		 */
    287 		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
    288 		usb2_control &= ~USB2_CONTROL_NDIV_INT;
    289 		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
    290 
    291 		// Allow Clocks to be modified
    292 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    293 		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
    294 
    295 		// Update USB2 clock generator
    296 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    297 		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
    298 
    299 		// Prevent Clock modification
    300 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    301 		    CRU_BASE + CRU_CLKSET_KEY, 0);
    302 
    303 		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
    304 	}
    305 
    306 	clk->clk_usb_ref = usb_ref;
    307 }
    308 
    309 
    310 static void
    311 bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
    312 {
    313 	clk->clk_ref = BCM53XX_REF_CLK;
    314 	clk->clk_sys = 8*clk->clk_ref;
    315 }
    316 
    317 /*
    318  * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
    319  */
    320 static void
    321 bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
    322     uint32_t pll_dividers)
    323 {
    324 	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
    325 	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
    326 	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
    327 	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
    328 
    329 	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
    330 
    331 	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
    332 	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
    333 }
    334 
    335 /*
    336  * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
    337  */
    338 static void
    339 bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
    340 	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
    341 {
    342 	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
    343 
    344 	if (policy == CLK_POLICY_REF_CLK) {
    345 		clk->clk_cpu = clk->clk_ref;
    346 		clk->clk_apb = clk->clk_cpu;
    347 		return;
    348 	}
    349 
    350 	if (policy == CLK_POLICY_SYS_CLK) {
    351 		clk->clk_cpu = clk->clk_sys;
    352 		clk->clk_apb = clk->clk_cpu / 4;
    353 		return;
    354 	}
    355 
    356 	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
    357 	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
    358 	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
    359 	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
    360 
    361 	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
    362 
    363 	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
    364 	clk->clk_apb = clk->clk_cpu / 4;
    365 }
    366 
    367 struct bcm53xx_chip_state {
    368 	uint32_t bcs_lcpll_control1;
    369 	uint32_t bcs_lcpll_control2;
    370 
    371 	uint32_t bcs_genpll_control5;
    372 	uint32_t bcs_genpll_control6;
    373 	uint32_t bcs_genpll_control7;
    374 
    375 	uint32_t bcs_usb2_control;
    376 
    377 	uint32_t bcs_ddr_phy_ctl_pll_status;
    378 	uint32_t bcs_ddr_phy_ctl_pll_dividers;
    379 
    380 	uint32_t bcs_armcore_clk_policy;
    381 	uint32_t bcs_armcore_clk_pllarma;
    382 	uint32_t bcs_armcore_clk_pllarmb;
    383 };
    384 
    385 static void
    386 bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
    387 	bus_space_tag_t bst, bus_space_handle_t bsh)
    388 {
    389 	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
    390 	    DMU_BASE + DMU_LCPLL_CONTROL1);
    391 	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
    392 	    DMU_BASE + DMU_LCPLL_CONTROL2);
    393 
    394 	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
    395 	    CRU_BASE + CRU_GENPLL_CONTROL5);
    396 	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
    397 	    CRU_BASE + CRU_GENPLL_CONTROL6);
    398 	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
    399 	    CRU_BASE + CRU_GENPLL_CONTROL7);
    400 
    401 	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
    402 	    CRU_BASE + CRU_USB2_CONTROL);
    403 
    404 	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
    405 	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
    406 	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
    407 	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
    408 }
    409 
    410 static void
    411 bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
    412 	bus_space_tag_t bst, bus_space_handle_t bsh)
    413 {
    414 	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
    415 	    ARMCORE_CLK_POLICY_FREQ);
    416 	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
    417 	    ARMCORE_CLK_PLLARMA);
    418 	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
    419 	    ARMCORE_CLK_PLLARMB);
    420 }
    421 
    422 void
    423 bcm53xx_cpu_softc_init(struct cpu_info *ci)
    424 {
    425 	struct cpu_softc * const cpu = ci->ci_softc;
    426 
    427 	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
    428 	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
    429 
    430 	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
    431 	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
    432 
    433 	const uint32_t chipid = bus_space_read_4(cpu->cpu_ioreg_bst,
    434 	    cpu->cpu_ioreg_bsh, CCA_MISC_BASE + MISC_CHIPID);
    435 
    436 	cpu->cpu_chipid = __SHIFTOUT(chipid, CHIPID_ID);
    437 }
    438 
    439 void
    440 bcm53xx_print_clocks(void)
    441 {
    442 #if defined(VERBOSE_INIT_ARM)
    443 	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    444 	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
    445 	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
    446 	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
    447 	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
    448 	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
    449 	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
    450 	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
    451 	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
    452 	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
    453 	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
    454 	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
    455 	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
    456 	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
    457 	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
    458 	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
    459 	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
    460 	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
    461 #endif
    462 }
    463 
    464 void
    465 bcm53xx_bootstrap(vaddr_t iobase)
    466 {
    467 	struct bcm53xx_chip_state bcs;
    468 	int error;
    469 
    470 	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
    471 	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
    472 	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
    473 	if (error)
    474 		panic("%s: failed to map BCM53xx %s registers: %d",
    475 		    __func__, "io", error);
    476 
    477 	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
    478 	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
    479 	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
    480 	if (error)
    481 		panic("%s: failed to map BCM53xx %s registers: %d",
    482 		    __func__, "armcore", error);
    483 
    484 	curcpu()->ci_softc = &cpu_softc;
    485 
    486 	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
    487 	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
    488 
    489 	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    490 
    491 	bcm53xx_clock_init(clk);
    492 	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
    493 	    bcs.bcs_lcpll_control2);
    494 	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
    495 	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
    496 	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
    497 	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
    498 	    bcs.bcs_ddr_phy_ctl_pll_dividers);
    499 	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
    500 	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
    501 
    502 	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
    503 
    504 #if NARML2CC > 0
    505 	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh,
    506 	    ARMCORE_L2C_BASE);
    507 #endif
    508 }
    509 
    510 void
    511 bcm53xx_dma_bootstrap(psize_t memsize)
    512 {
    513 	if (memsize <= 256*1024*1024) {
    514 		bcm53xx_dma_ranges[0].dr_len = memsize;
    515 		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
    516 		bcm53xx_dma_tag._nranges = 1;
    517 		bcm53xx_coherent_dma_tag._nranges = 1;
    518 	} else {
    519 		/*
    520 		 * By setting up two ranges, bus_dmamem_alloc will always
    521 		 * try to allocate from range 0 first resulting in allocations
    522 		 * below 256MB which for PCI and GMAC are coherent.
    523 		 */
    524 		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
    525 		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
    526 	}
    527 	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
    528 	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    529 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    530 	KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    531 #endif
    532 }
    533 
    534 #ifdef MULTIPROCESSOR
    535 void
    536 bcm53xx_cpu_hatch(struct cpu_info *ci)
    537 {
    538 	a9tmr_init_cpu_clock(ci);
    539 }
    540 #endif
    541 
    542 void
    543 bcm53xx_device_register(device_t self, void *aux)
    544 {
    545 	prop_dictionary_t dict = device_properties(self);
    546 
    547 	if (device_is_a(self, "armperiph")
    548 	    && device_is_a(device_parent(self), "mainbus")) {
    549 		/*
    550 		 * XXX KLUDGE ALERT XXX
    551 		 * The iot mainbus supplies is completely wrong since it scales
    552 		 * addresses by 2.  The simplest remedy is to replace with our
    553 		 * bus space used for the armcore registers (which armperiph uses).
    554 		 */
    555 		struct mainbus_attach_args * const mb = aux;
    556 		mb->mb_iot = bcm53xx_armcore_bst;
    557 		return;
    558 	}
    559 
    560 	/*
    561 	 * We need to tell the A9 Global/Watchdog Timer
    562 	 * what frequency it runs at.
    563 	 */
    564 	if (device_is_a(self, "arma9tmr") || device_is_a(self, "a9wdt")) {
    565 		/*
    566 		 * This clock always runs at (arm_clk div 2) and only goes
    567 		 * to timers that are part of the A9 MP core subsystem.
    568 		 */
    569                 prop_dictionary_set_uint32(dict, "frequency",
    570 		    cpu_softc.cpu_clk.clk_cpu / 2);
    571 		return;
    572 	}
    573 
    574 	if (device_is_a(self, "bcmeth")) {
    575 		const struct bcmccb_attach_args * const ccbaa = aux;
    576 		const uint8_t enaddr[ETHER_ADDR_LEN] = {
    577 			0x00, 0x01, 0x02, 0x03, 0x04,
    578 			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
    579 		};
    580 		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
    581 		KASSERT(pd != NULL);
    582 		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
    583 			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
    584 		}
    585 		prop_object_release(pd);
    586 	}
    587 }
    588 
    589 #ifdef SRAB_BASE
    590 static kmutex_t srab_lock __cacheline_aligned;
    591 
    592 void
    593 bcm53xx_srab_init(void)
    594 {
    595 	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
    596 
    597 	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
    598 	for (u_int port = 0; port < 8; port++) {
    599 		/* per port control: no stp */
    600 		bcm53xx_srab_write_4(port, 0x00);
    601 	}
    602 	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
    603 	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
    604 	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
    605 	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
    606 	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
    607 	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
    608 	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
    609 }
    610 
    611 static inline void
    612 bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
    613 {
    614 	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
    615 		delay(10);
    616 	}
    617 }
    618 
    619 uint32_t
    620 bcm53xx_srab_read_4(u_int pageoffset)
    621 {
    622 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    623 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    624 	uint32_t rv;
    625 
    626 	mutex_spin_enter(&srab_lock);
    627 
    628 	bcm53xx_srab_busywait(bst, bsh);
    629 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    630 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    631 	bcm53xx_srab_busywait(bst, bsh);
    632 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    633 
    634 	mutex_spin_exit(&srab_lock);
    635 	return rv;
    636 }
    637 
    638 uint64_t
    639 bcm53xx_srab_read_8(u_int pageoffset)
    640 {
    641 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    642 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    643 	uint64_t rv;
    644 
    645 	mutex_spin_enter(&srab_lock);
    646 
    647 	bcm53xx_srab_busywait(bst, bsh);
    648 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    649 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    650 	bcm53xx_srab_busywait(bst, bsh);
    651 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
    652 	rv <<= 32;
    653 	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    654 
    655 	mutex_spin_exit(&srab_lock);
    656 	return rv;
    657 }
    658 
    659 void
    660 bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
    661 {
    662 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    663 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    664 
    665 	mutex_spin_enter(&srab_lock);
    666 
    667 	bcm53xx_srab_busywait(bst, bsh);
    668 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    669 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    670 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    671 	bcm53xx_srab_busywait(bst, bsh);
    672 
    673 	mutex_spin_exit(&srab_lock);
    674 }
    675 
    676 void
    677 bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
    678 {
    679 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    680 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    681 
    682 	mutex_spin_enter(&srab_lock);
    683 
    684 	bcm53xx_srab_busywait(bst, bsh);
    685 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    686 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
    687 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    688 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    689 	bcm53xx_srab_busywait(bst, bsh);
    690 	mutex_spin_exit(&srab_lock);
    691 }
    692 #endif
    693