Home | History | Annotate | Line # | Download | only in public
      1 /******************************************************************************
      2  * xen.h
      3  *
      4  * Guest OS interface to Xen.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a copy
      7  * of this software and associated documentation files (the "Software"), to
      8  * deal in the Software without restriction, including without limitation the
      9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
     10  * sell copies of the Software, and to permit persons to whom the Software is
     11  * furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     22  * DEALINGS IN THE SOFTWARE.
     23  *
     24  * Copyright (c) 2004, K A Fraser
     25  */
     26 
     27 #ifndef __XEN_PUBLIC_XEN_H__
     28 #define __XEN_PUBLIC_XEN_H__
     29 
     30 #include "xen-compat.h"
     31 
     32 #if defined(__i386__) || defined(__x86_64__)
     33 #include "arch-x86/xen.h"
     34 #elif defined(__arm__) || defined (__aarch64__)
     35 #include "arch-arm.h"
     36 #else
     37 #error "Unsupported architecture"
     38 #endif
     39 
     40 #ifndef __ASSEMBLY__
     41 /* Guest handles for primitive C types. */
     42 DEFINE_XEN_GUEST_HANDLE(char);
     43 __DEFINE_XEN_GUEST_HANDLE(uchar, unsigned char);
     44 DEFINE_XEN_GUEST_HANDLE(int);
     45 __DEFINE_XEN_GUEST_HANDLE(uint,  unsigned int);
     46 #if __XEN_INTERFACE_VERSION__ < 0x00040300
     47 DEFINE_XEN_GUEST_HANDLE(long);
     48 __DEFINE_XEN_GUEST_HANDLE(ulong, unsigned long);
     49 #endif
     50 DEFINE_XEN_GUEST_HANDLE(void);
     51 
     52 DEFINE_XEN_GUEST_HANDLE(uint64_t);
     53 DEFINE_XEN_GUEST_HANDLE(xen_pfn_t);
     54 DEFINE_XEN_GUEST_HANDLE(xen_ulong_t);
     55 
     56 /* Turn a plain number into a C unsigned (long (long)) constant. */
     57 #define __xen_mk_uint(x)  x ## U
     58 #define __xen_mk_ulong(x) x ## UL
     59 #ifndef __xen_mk_ullong
     60 # define __xen_mk_ullong(x) x ## ULL
     61 #endif
     62 #define xen_mk_uint(x)    __xen_mk_uint(x)
     63 #define xen_mk_ulong(x)   __xen_mk_ulong(x)
     64 #define xen_mk_ullong(x)  __xen_mk_ullong(x)
     65 
     66 #else
     67 
     68 /* In assembly code we cannot use C numeric constant suffixes. */
     69 #define xen_mk_uint(x)   x
     70 #define xen_mk_ulong(x)  x
     71 #define xen_mk_ullong(x) x
     72 
     73 #endif
     74 
     75 /*
     76  * HYPERCALLS
     77  */
     78 
     79 /* `incontents 100 hcalls List of hypercalls
     80  * ` enum hypercall_num { // __HYPERVISOR_* => HYPERVISOR_*()
     81  */
     82 
     83 #define __HYPERVISOR_set_trap_table        0
     84 #define __HYPERVISOR_mmu_update            1
     85 #define __HYPERVISOR_set_gdt               2
     86 #define __HYPERVISOR_stack_switch          3
     87 #define __HYPERVISOR_set_callbacks         4
     88 #define __HYPERVISOR_fpu_taskswitch        5
     89 #define __HYPERVISOR_sched_op_compat       6 /* compat since 0x00030101 */
     90 #define __HYPERVISOR_platform_op           7
     91 #define __HYPERVISOR_set_debugreg          8
     92 #define __HYPERVISOR_get_debugreg          9
     93 #define __HYPERVISOR_update_descriptor    10
     94 #define __HYPERVISOR_memory_op            12
     95 #define __HYPERVISOR_multicall            13
     96 #define __HYPERVISOR_update_va_mapping    14
     97 #define __HYPERVISOR_set_timer_op         15
     98 #define __HYPERVISOR_event_channel_op_compat 16 /* compat since 0x00030202 */
     99 #define __HYPERVISOR_xen_version          17
    100 #define __HYPERVISOR_console_io           18
    101 #define __HYPERVISOR_physdev_op_compat    19 /* compat since 0x00030202 */
    102 #define __HYPERVISOR_grant_table_op       20
    103 #define __HYPERVISOR_vm_assist            21
    104 #define __HYPERVISOR_update_va_mapping_otherdomain 22
    105 #define __HYPERVISOR_iret                 23 /* x86 only */
    106 #define __HYPERVISOR_vcpu_op              24
    107 #define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
    108 #define __HYPERVISOR_mmuext_op            26
    109 #define __HYPERVISOR_xsm_op               27
    110 #define __HYPERVISOR_nmi_op               28
    111 #define __HYPERVISOR_sched_op             29
    112 #define __HYPERVISOR_callback_op          30
    113 #define __HYPERVISOR_xenoprof_op          31
    114 #define __HYPERVISOR_event_channel_op     32
    115 #define __HYPERVISOR_physdev_op           33
    116 #define __HYPERVISOR_hvm_op               34
    117 #define __HYPERVISOR_sysctl               35
    118 #define __HYPERVISOR_domctl               36
    119 #define __HYPERVISOR_kexec_op             37
    120 #define __HYPERVISOR_tmem_op              38
    121 #define __HYPERVISOR_xc_reserved_op       39 /* reserved for XenClient */
    122 #define __HYPERVISOR_xenpmu_op            40
    123 #define __HYPERVISOR_dm_op                41
    124 
    125 /* Architecture-specific hypercall definitions. */
    126 #define __HYPERVISOR_arch_0               48
    127 #define __HYPERVISOR_arch_1               49
    128 #define __HYPERVISOR_arch_2               50
    129 #define __HYPERVISOR_arch_3               51
    130 #define __HYPERVISOR_arch_4               52
    131 #define __HYPERVISOR_arch_5               53
    132 #define __HYPERVISOR_arch_6               54
    133 #define __HYPERVISOR_arch_7               55
    134 
    135 /* ` } */
    136 
    137 /*
    138  * HYPERCALL COMPATIBILITY.
    139  */
    140 
    141 /* New sched_op hypercall introduced in 0x00030101. */
    142 #if __XEN_INTERFACE_VERSION__ < 0x00030101
    143 #undef __HYPERVISOR_sched_op
    144 #define __HYPERVISOR_sched_op __HYPERVISOR_sched_op_compat
    145 #endif
    146 
    147 /* New event-channel and physdev hypercalls introduced in 0x00030202. */
    148 #if __XEN_INTERFACE_VERSION__ < 0x00030202
    149 #undef __HYPERVISOR_event_channel_op
    150 #define __HYPERVISOR_event_channel_op __HYPERVISOR_event_channel_op_compat
    151 #undef __HYPERVISOR_physdev_op
    152 #define __HYPERVISOR_physdev_op __HYPERVISOR_physdev_op_compat
    153 #endif
    154 
    155 /* New platform_op hypercall introduced in 0x00030204. */
    156 #if __XEN_INTERFACE_VERSION__ < 0x00030204
    157 #define __HYPERVISOR_dom0_op __HYPERVISOR_platform_op
    158 #endif
    159 
    160 /*
    161  * VIRTUAL INTERRUPTS
    162  *
    163  * Virtual interrupts that a guest OS may receive from Xen.
    164  *
    165  * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
    166  * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
    167  * The latter can be allocated only once per guest: they must initially be
    168  * allocated to VCPU0 but can subsequently be re-bound.
    169  */
    170 /* ` enum virq { */
    171 #define VIRQ_TIMER      0  /* V. Timebase update, and/or requested timeout.  */
    172 #define VIRQ_DEBUG      1  /* V. Request guest to dump debug info.           */
    173 #define VIRQ_CONSOLE    2  /* G. (DOM0) Bytes received on emergency console. */
    174 #define VIRQ_DOM_EXC    3  /* G. (DOM0) Exceptional event for some domain.   */
    175 #define VIRQ_TBUF       4  /* G. (DOM0) Trace buffer has records available.  */
    176 #define VIRQ_DEBUGGER   6  /* G. (DOM0) A domain has paused for debugging.   */
    177 #define VIRQ_XENOPROF   7  /* V. XenOprofile interrupt: new sample available */
    178 #define VIRQ_CON_RING   8  /* G. (DOM0) Bytes received on console            */
    179 #define VIRQ_PCPU_STATE 9  /* G. (DOM0) PCPU state changed                   */
    180 #define VIRQ_MEM_EVENT  10 /* G. (DOM0) A memory event has occured           */
    181 #define VIRQ_XC_RESERVED 11 /* G. Reserved for XenClient                     */
    182 #define VIRQ_ENOMEM     12 /* G. (DOM0) Low on heap memory       */
    183 #define VIRQ_XENPMU     13 /* V.  PMC interrupt                              */
    184 
    185 /* Architecture-specific VIRQ definitions. */
    186 #define VIRQ_ARCH_0    16
    187 #define VIRQ_ARCH_1    17
    188 #define VIRQ_ARCH_2    18
    189 #define VIRQ_ARCH_3    19
    190 #define VIRQ_ARCH_4    20
    191 #define VIRQ_ARCH_5    21
    192 #define VIRQ_ARCH_6    22
    193 #define VIRQ_ARCH_7    23
    194 /* ` } */
    195 
    196 #define NR_VIRQS       24
    197 
    198 /*
    199  * ` enum neg_errnoval
    200  * ` HYPERVISOR_mmu_update(const struct mmu_update reqs[],
    201  * `                       unsigned count, unsigned *done_out,
    202  * `                       unsigned foreigndom)
    203  * `
    204  * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
    205  * @count is the length of the above array.
    206  * @pdone is an output parameter indicating number of completed operations
    207  * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
    208  *                    hypercall invocation. Can be DOMID_SELF.
    209  * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
    210  *                     in this hypercall invocation. The value of this field
    211  *                     (x) encodes the PFD as follows:
    212  *                     x == 0 => PFD == DOMID_SELF
    213  *                     x != 0 => PFD == x - 1
    214  *
    215  * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
    216  * -------------
    217  * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
    218  * Updates an entry in a page table belonging to PFD. If updating an L1 table,
    219  * and the new table entry is valid/present, the mapped frame must belong to
    220  * FD. If attempting to map an I/O page then the caller assumes the privilege
    221  * of the FD.
    222  * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
    223  * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
    224  * ptr[:2]  -- Machine address of the page-table entry to modify.
    225  * val      -- Value to write.
    226  *
    227  * There also certain implicit requirements when using this hypercall. The
    228  * pages that make up a pagetable must be mapped read-only in the guest.
    229  * This prevents uncontrolled guest updates to the pagetable. Xen strictly
    230  * enforces this, and will disallow any pagetable update which will end up
    231  * mapping pagetable page RW, and will disallow using any writable page as a
    232  * pagetable. In practice it means that when constructing a page table for a
    233  * process, thread, etc, we MUST be very dilligient in following these rules:
    234  *  1). Start with top-level page (PGD or in Xen language: L4). Fill out
    235  *      the entries.
    236  *  2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
    237  *      or L2).
    238  *  3). Start filling out the PTE table (L1) with the PTE entries. Once
    239  *  	done, make sure to set each of those entries to RO (so writeable bit
    240  *  	is unset). Once that has been completed, set the PMD (L2) for this
    241  *  	PTE table as RO.
    242  *  4). When completed with all of the PMD (L2) entries, and all of them have
    243  *  	been set to RO, make sure to set RO the PUD (L3). Do the same
    244  *  	operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
    245  *  5). Now before you can use those pages (so setting the cr3), you MUST also
    246  *      pin them so that the hypervisor can verify the entries. This is done
    247  *      via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
    248  *      number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
    249  *      MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
    250  *      issued.
    251  * For 32-bit guests, the L4 is not used (as there is less pagetables), so
    252  * instead use L3.
    253  * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
    254  * hypercall. Also if so desired the OS can also try to write to the PTE
    255  * and be trapped by the hypervisor (as the PTE entry is RO).
    256  *
    257  * To deallocate the pages, the operations are the reverse of the steps
    258  * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
    259  * pagetable MUST not be in use (meaning that the cr3 is not set to it).
    260  *
    261  * ptr[1:0] == MMU_MACHPHYS_UPDATE:
    262  * Updates an entry in the machine->pseudo-physical mapping table.
    263  * ptr[:2]  -- Machine address within the frame whose mapping to modify.
    264  *             The frame must belong to the FD, if one is specified.
    265  * val      -- Value to write into the mapping entry.
    266  *
    267  * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
    268  * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
    269  * with those in @val.
    270  *
    271  * ptr[1:0] == MMU_PT_UPDATE_NO_TRANSLATE:
    272  * As MMU_NORMAL_PT_UPDATE above, but @val is not translated though FD
    273  * page tables.
    274  *
    275  * @val is usually the machine frame number along with some attributes.
    276  * The attributes by default follow the architecture defined bits. Meaning that
    277  * if this is a X86_64 machine and four page table layout is used, the layout
    278  * of val is:
    279  *  - 63 if set means No execute (NX)
    280  *  - 46-13 the machine frame number
    281  *  - 12 available for guest
    282  *  - 11 available for guest
    283  *  - 10 available for guest
    284  *  - 9 available for guest
    285  *  - 8 global
    286  *  - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
    287  *  - 6 dirty
    288  *  - 5 accessed
    289  *  - 4 page cached disabled
    290  *  - 3 page write through
    291  *  - 2 userspace accessible
    292  *  - 1 writeable
    293  *  - 0 present
    294  *
    295  *  The one bits that does not fit with the default layout is the PAGE_PSE
    296  *  also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
    297  *  HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
    298  *  (or 2MB) instead of using the PAGE_PSE bit.
    299  *
    300  *  The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
    301  *  using it as the Page Attribute Table (PAT) bit - for details on it please
    302  *  refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
    303  *  pages instead of using MTRRs.
    304  *
    305  *  The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
    306  *                    PAT4                 PAT0
    307  *  +-----+-----+----+----+----+-----+----+----+
    308  *  | UC  | UC- | WC | WB | UC | UC- | WC | WB |  <= Linux
    309  *  +-----+-----+----+----+----+-----+----+----+
    310  *  | UC  | UC- | WT | WB | UC | UC- | WT | WB |  <= BIOS (default when machine boots)
    311  *  +-----+-----+----+----+----+-----+----+----+
    312  *  | rsv | rsv | WP | WC | UC | UC- | WT | WB |  <= Xen
    313  *  +-----+-----+----+----+----+-----+----+----+
    314  *
    315  *  The lookup of this index table translates to looking up
    316  *  Bit 7, Bit 4, and Bit 3 of val entry:
    317  *
    318  *  PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
    319  *
    320  *  If all bits are off, then we are using PAT0. If bit 3 turned on,
    321  *  then we are using PAT1, if bit 3 and bit 4, then PAT2..
    322  *
    323  *  As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
    324  *  that if a guest that follows Linux's PAT setup and would like to set Write
    325  *  Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
    326  *  set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
    327  *  caching as:
    328  *
    329  *   WB = none (so PAT0)
    330  *   WC = PWT (bit 3 on)
    331  *   UC = PWT | PCD (bit 3 and 4 are on).
    332  *
    333  * To make it work with Xen, it needs to translate the WC bit as so:
    334  *
    335  *  PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
    336  *
    337  * And to translate back it would:
    338  *
    339  * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
    340  */
    341 #define MMU_NORMAL_PT_UPDATE       0 /* checked '*ptr = val'. ptr is MA.      */
    342 #define MMU_MACHPHYS_UPDATE        1 /* ptr = MA of frame to modify entry for */
    343 #define MMU_PT_UPDATE_PRESERVE_AD  2 /* atomically: *ptr = val | (*ptr&(A|D)) */
    344 #define MMU_PT_UPDATE_NO_TRANSLATE 3 /* checked '*ptr = val'. ptr is MA.      */
    345                                      /* val never translated.                 */
    346 
    347 /*
    348  * MMU EXTENDED OPERATIONS
    349  *
    350  * ` enum neg_errnoval
    351  * ` HYPERVISOR_mmuext_op(mmuext_op_t uops[],
    352  * `                      unsigned int count,
    353  * `                      unsigned int *pdone,
    354  * `                      unsigned int foreigndom)
    355  */
    356 /* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
    357  * A foreigndom (FD) can be specified (or DOMID_SELF for none).
    358  * Where the FD has some effect, it is described below.
    359  *
    360  * cmd: MMUEXT_(UN)PIN_*_TABLE
    361  * mfn: Machine frame number to be (un)pinned as a p.t. page.
    362  *      The frame must belong to the FD, if one is specified.
    363  *
    364  * cmd: MMUEXT_NEW_BASEPTR
    365  * mfn: Machine frame number of new page-table base to install in MMU.
    366  *
    367  * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
    368  * mfn: Machine frame number of new page-table base to install in MMU
    369  *      when in user space.
    370  *
    371  * cmd: MMUEXT_TLB_FLUSH_LOCAL
    372  * No additional arguments. Flushes local TLB.
    373  *
    374  * cmd: MMUEXT_INVLPG_LOCAL
    375  * linear_addr: Linear address to be flushed from the local TLB.
    376  *
    377  * cmd: MMUEXT_TLB_FLUSH_MULTI
    378  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
    379  *
    380  * cmd: MMUEXT_INVLPG_MULTI
    381  * linear_addr: Linear address to be flushed.
    382  * vcpumask: Pointer to bitmap of VCPUs to be flushed.
    383  *
    384  * cmd: MMUEXT_TLB_FLUSH_ALL
    385  * No additional arguments. Flushes all VCPUs' TLBs.
    386  *
    387  * cmd: MMUEXT_INVLPG_ALL
    388  * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
    389  *
    390  * cmd: MMUEXT_FLUSH_CACHE
    391  * No additional arguments. Writes back and flushes cache contents.
    392  *
    393  * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
    394  * No additional arguments. Writes back and flushes cache contents
    395  * on all CPUs in the system.
    396  *
    397  * cmd: MMUEXT_SET_LDT
    398  * linear_addr: Linear address of LDT base (NB. must be page-aligned).
    399  * nr_ents: Number of entries in LDT.
    400  *
    401  * cmd: MMUEXT_CLEAR_PAGE
    402  * mfn: Machine frame number to be cleared.
    403  *
    404  * cmd: MMUEXT_COPY_PAGE
    405  * mfn: Machine frame number of the destination page.
    406  * src_mfn: Machine frame number of the source page.
    407  *
    408  * cmd: MMUEXT_[UN]MARK_SUPER
    409  * mfn: Machine frame number of head of superpage to be [un]marked.
    410  */
    411 /* ` enum mmuext_cmd { */
    412 #define MMUEXT_PIN_L1_TABLE      0
    413 #define MMUEXT_PIN_L2_TABLE      1
    414 #define MMUEXT_PIN_L3_TABLE      2
    415 #define MMUEXT_PIN_L4_TABLE      3
    416 #define MMUEXT_UNPIN_TABLE       4
    417 #define MMUEXT_NEW_BASEPTR       5
    418 #define MMUEXT_TLB_FLUSH_LOCAL   6
    419 #define MMUEXT_INVLPG_LOCAL      7
    420 #define MMUEXT_TLB_FLUSH_MULTI   8
    421 #define MMUEXT_INVLPG_MULTI      9
    422 #define MMUEXT_TLB_FLUSH_ALL    10
    423 #define MMUEXT_INVLPG_ALL       11
    424 #define MMUEXT_FLUSH_CACHE      12
    425 #define MMUEXT_SET_LDT          13
    426 #define MMUEXT_NEW_USER_BASEPTR 15
    427 #define MMUEXT_CLEAR_PAGE       16
    428 #define MMUEXT_COPY_PAGE        17
    429 #define MMUEXT_FLUSH_CACHE_GLOBAL 18
    430 #define MMUEXT_MARK_SUPER       19
    431 #define MMUEXT_UNMARK_SUPER     20
    432 /* ` } */
    433 
    434 #ifndef __ASSEMBLY__
    435 struct mmuext_op {
    436     unsigned int cmd; /* => enum mmuext_cmd */
    437     union {
    438         /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
    439          * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
    440         xen_pfn_t     mfn;
    441         /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
    442         unsigned long linear_addr;
    443     } arg1;
    444     union {
    445         /* SET_LDT */
    446         unsigned int nr_ents;
    447         /* TLB_FLUSH_MULTI, INVLPG_MULTI */
    448 #if __XEN_INTERFACE_VERSION__ >= 0x00030205
    449         XEN_GUEST_HANDLE(const_void) vcpumask;
    450 #else
    451         const void *vcpumask;
    452 #endif
    453         /* COPY_PAGE */
    454         xen_pfn_t src_mfn;
    455     } arg2;
    456 };
    457 typedef struct mmuext_op mmuext_op_t;
    458 DEFINE_XEN_GUEST_HANDLE(mmuext_op_t);
    459 #endif
    460 
    461 /*
    462  * ` enum neg_errnoval
    463  * ` HYPERVISOR_update_va_mapping(unsigned long va, u64 val,
    464  * `                              enum uvm_flags flags)
    465  * `
    466  * ` enum neg_errnoval
    467  * ` HYPERVISOR_update_va_mapping_otherdomain(unsigned long va, u64 val,
    468  * `                                          enum uvm_flags flags,
    469  * `                                          domid_t domid)
    470  * `
    471  * ` @va: The virtual address whose mapping we want to change
    472  * ` @val: The new page table entry, must contain a machine address
    473  * ` @flags: Control TLB flushes
    474  */
    475 /* These are passed as 'flags' to update_va_mapping. They can be ORed. */
    476 /* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
    477 /* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
    478 /* ` enum uvm_flags { */
    479 #define UVMF_NONE           (xen_mk_ulong(0)<<0) /* No flushing at all.   */
    480 #define UVMF_TLB_FLUSH      (xen_mk_ulong(1)<<0) /* Flush entire TLB(s).  */
    481 #define UVMF_INVLPG         (xen_mk_ulong(2)<<0) /* Flush only one entry. */
    482 #define UVMF_FLUSHTYPE_MASK (xen_mk_ulong(3)<<0)
    483 #define UVMF_MULTI          (xen_mk_ulong(0)<<2) /* Flush subset of TLBs. */
    484 #define UVMF_LOCAL          (xen_mk_ulong(0)<<2) /* Flush local TLB.      */
    485 #define UVMF_ALL            (xen_mk_ulong(1)<<2) /* Flush all TLBs.       */
    486 /* ` } */
    487 
    488 /*
    489  * Commands to HYPERVISOR_console_io().
    490  */
    491 #define CONSOLEIO_write         0
    492 #define CONSOLEIO_read          1
    493 
    494 /*
    495  * Commands to HYPERVISOR_vm_assist().
    496  */
    497 #define VMASST_CMD_enable                0
    498 #define VMASST_CMD_disable               1
    499 
    500 /* x86/32 guests: simulate full 4GB segment limits. */
    501 #define VMASST_TYPE_4gb_segments         0
    502 
    503 /* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
    504 #define VMASST_TYPE_4gb_segments_notify  1
    505 
    506 /*
    507  * x86 guests: support writes to bottom-level PTEs.
    508  * NB1. Page-directory entries cannot be written.
    509  * NB2. Guest must continue to remove all writable mappings of PTEs.
    510  */
    511 #define VMASST_TYPE_writable_pagetables  2
    512 
    513 /* x86/PAE guests: support PDPTs above 4GB. */
    514 #define VMASST_TYPE_pae_extended_cr3     3
    515 
    516 /*
    517  * x86 guests: Sane behaviour for virtual iopl
    518  *  - virtual iopl updated from do_iret() hypercalls.
    519  *  - virtual iopl reported in bounce frames.
    520  *  - guest kernels assumed to be level 0 for the purpose of iopl checks.
    521  */
    522 #define VMASST_TYPE_architectural_iopl   4
    523 
    524 /*
    525  * All guests: activate update indicator in vcpu_runstate_info
    526  * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
    527  * vcpu_runstate_info during updates of the runstate information.
    528  */
    529 #define VMASST_TYPE_runstate_update_flag 5
    530 
    531 /*
    532  * x86/64 guests: strictly hide M2P from user mode.
    533  * This allows the guest to control respective hypervisor behavior:
    534  * - when not set, L4 tables get created with the respective slot blank,
    535  *   and whenever the L4 table gets used as a kernel one the missing
    536  *   mapping gets inserted,
    537  * - when set, L4 tables get created with the respective slot initialized
    538  *   as before, and whenever the L4 table gets used as a user one the
    539  *   mapping gets zapped.
    540  */
    541 #define VMASST_TYPE_m2p_strict           32
    542 
    543 #if __XEN_INTERFACE_VERSION__ < 0x00040600
    544 #define MAX_VMASST_TYPE                  3
    545 #endif
    546 
    547 /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
    548 #define DOMID_FIRST_RESERVED xen_mk_uint(0x7FF0)
    549 
    550 /* DOMID_SELF is used in certain contexts to refer to oneself. */
    551 #define DOMID_SELF           xen_mk_uint(0x7FF0)
    552 
    553 /*
    554  * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
    555  * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
    556  * is useful to ensure that no mappings to the OS's own heap are accidentally
    557  * installed. (e.g., in Linux this could cause havoc as reference counts
    558  * aren't adjusted on the I/O-mapping code path).
    559  * This only makes sense as HYPERVISOR_mmu_update()'s and
    560  * HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument. For
    561  * HYPERVISOR_mmu_update() context it can be specified by any calling domain,
    562  * otherwise it's only permitted if the caller is privileged.
    563  */
    564 #define DOMID_IO             xen_mk_uint(0x7FF1)
    565 
    566 /*
    567  * DOMID_XEN is used to allow privileged domains to map restricted parts of
    568  * Xen's heap space (e.g., the machine_to_phys table).
    569  * This only makes sense as
    570  * - HYPERVISOR_mmu_update()'s, HYPERVISOR_mmuext_op()'s, or
    571  *   HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument,
    572  * - with XENMAPSPACE_gmfn_foreign,
    573  * and is only permitted if the caller is privileged.
    574  */
    575 #define DOMID_XEN            xen_mk_uint(0x7FF2)
    576 
    577 /*
    578  * DOMID_COW is used as the owner of sharable pages */
    579 #define DOMID_COW            xen_mk_uint(0x7FF3)
    580 
    581 /* DOMID_INVALID is used to identify pages with unknown owner. */
    582 #define DOMID_INVALID        xen_mk_uint(0x7FF4)
    583 
    584 /* Idle domain. */
    585 #define DOMID_IDLE           xen_mk_uint(0x7FFF)
    586 
    587 #ifndef __ASSEMBLY__
    588 
    589 typedef uint16_t domid_t;
    590 
    591 /*
    592  * Send an array of these to HYPERVISOR_mmu_update().
    593  * NB. The fields are natural pointer/address size for this architecture.
    594  */
    595 struct mmu_update {
    596     uint64_t ptr;       /* Machine address of PTE. */
    597     uint64_t val;       /* New contents of PTE.    */
    598 };
    599 typedef struct mmu_update mmu_update_t;
    600 DEFINE_XEN_GUEST_HANDLE(mmu_update_t);
    601 
    602 /*
    603  * ` enum neg_errnoval
    604  * ` HYPERVISOR_multicall(multicall_entry_t call_list[],
    605  * `                      uint32_t nr_calls);
    606  *
    607  * NB. The fields are logically the natural register size for this
    608  * architecture. In cases where xen_ulong_t is larger than this then
    609  * any unused bits in the upper portion must be zero.
    610  */
    611 struct multicall_entry {
    612     xen_ulong_t op, result;
    613     xen_ulong_t args[6];
    614 };
    615 typedef struct multicall_entry multicall_entry_t;
    616 DEFINE_XEN_GUEST_HANDLE(multicall_entry_t);
    617 
    618 #if __XEN_INTERFACE_VERSION__ < 0x00040400
    619 /*
    620  * Event channel endpoints per domain (when using the 2-level ABI):
    621  *  1024 if a long is 32 bits; 4096 if a long is 64 bits.
    622  */
    623 #define NR_EVENT_CHANNELS EVTCHN_2L_NR_CHANNELS
    624 #endif
    625 
    626 struct vcpu_time_info {
    627     /*
    628      * Updates to the following values are preceded and followed by an
    629      * increment of 'version'. The guest can therefore detect updates by
    630      * looking for changes to 'version'. If the least-significant bit of
    631      * the version number is set then an update is in progress and the guest
    632      * must wait to read a consistent set of values.
    633      * The correct way to interact with the version number is similar to
    634      * Linux's seqlock: see the implementations of read_seqbegin/read_seqretry.
    635      */
    636     uint32_t version;
    637     uint32_t pad0;
    638     uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
    639     uint64_t system_time;     /* Time, in nanosecs, since boot.    */
    640     /*
    641      * Current system time:
    642      *   system_time +
    643      *   ((((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul) >> 32)
    644      * CPU frequency (Hz):
    645      *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
    646      */
    647     uint32_t tsc_to_system_mul;
    648     int8_t   tsc_shift;
    649 #if __XEN_INTERFACE_VERSION__ > 0x040600
    650     uint8_t  flags;
    651     uint8_t  pad1[2];
    652 #else
    653     int8_t   pad1[3];
    654 #endif
    655 }; /* 32 bytes */
    656 typedef struct vcpu_time_info vcpu_time_info_t;
    657 
    658 #define XEN_PVCLOCK_TSC_STABLE_BIT     (1 << 0)
    659 #define XEN_PVCLOCK_GUEST_STOPPED      (1 << 1)
    660 
    661 struct vcpu_info {
    662     /*
    663      * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
    664      * a pending notification for a particular VCPU. It is then cleared
    665      * by the guest OS /before/ checking for pending work, thus avoiding
    666      * a set-and-check race. Note that the mask is only accessed by Xen
    667      * on the CPU that is currently hosting the VCPU. This means that the
    668      * pending and mask flags can be updated by the guest without special
    669      * synchronisation (i.e., no need for the x86 LOCK prefix).
    670      * This may seem suboptimal because if the pending flag is set by
    671      * a different CPU then an IPI may be scheduled even when the mask
    672      * is set. However, note:
    673      *  1. The task of 'interrupt holdoff' is covered by the per-event-
    674      *     channel mask bits. A 'noisy' event that is continually being
    675      *     triggered can be masked at source at this very precise
    676      *     granularity.
    677      *  2. The main purpose of the per-VCPU mask is therefore to restrict
    678      *     reentrant execution: whether for concurrency control, or to
    679      *     prevent unbounded stack usage. Whatever the purpose, we expect
    680      *     that the mask will be asserted only for short periods at a time,
    681      *     and so the likelihood of a 'spurious' IPI is suitably small.
    682      * The mask is read before making an event upcall to the guest: a
    683      * non-zero mask therefore guarantees that the VCPU will not receive
    684      * an upcall activation. The mask is cleared when the VCPU requests
    685      * to block: this avoids wakeup-waiting races.
    686      */
    687     uint8_t evtchn_upcall_pending;
    688 #ifdef XEN_HAVE_PV_UPCALL_MASK
    689     uint8_t evtchn_upcall_mask;
    690 #else /* XEN_HAVE_PV_UPCALL_MASK */
    691     uint8_t pad0;
    692 #endif /* XEN_HAVE_PV_UPCALL_MASK */
    693     xen_ulong_t evtchn_pending_sel;
    694     struct arch_vcpu_info arch;
    695     struct vcpu_time_info time;
    696 }; /* 64 bytes (x86) */
    697 #ifndef __XEN__
    698 typedef struct vcpu_info vcpu_info_t;
    699 #endif
    700 
    701 /*
    702  * `incontents 200 startofday_shared Start-of-day shared data structure
    703  * Xen/kernel shared data -- pointer provided in start_info.
    704  *
    705  * This structure is defined to be both smaller than a page, and the
    706  * only data on the shared page, but may vary in actual size even within
    707  * compatible Xen versions; guests should not rely on the size
    708  * of this structure remaining constant.
    709  */
    710 struct shared_info {
    711     struct vcpu_info vcpu_info[XEN_LEGACY_MAX_VCPUS];
    712 
    713     /*
    714      * A domain can create "event channels" on which it can send and receive
    715      * asynchronous event notifications. There are three classes of event that
    716      * are delivered by this mechanism:
    717      *  1. Bi-directional inter- and intra-domain connections. Domains must
    718      *     arrange out-of-band to set up a connection (usually by allocating
    719      *     an unbound 'listener' port and avertising that via a storage service
    720      *     such as xenstore).
    721      *  2. Physical interrupts. A domain with suitable hardware-access
    722      *     privileges can bind an event-channel port to a physical interrupt
    723      *     source.
    724      *  3. Virtual interrupts ('events'). A domain can bind an event-channel
    725      *     port to a virtual interrupt source, such as the virtual-timer
    726      *     device or the emergency console.
    727      *
    728      * Event channels are addressed by a "port index". Each channel is
    729      * associated with two bits of information:
    730      *  1. PENDING -- notifies the domain that there is a pending notification
    731      *     to be processed. This bit is cleared by the guest.
    732      *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
    733      *     will cause an asynchronous upcall to be scheduled. This bit is only
    734      *     updated by the guest. It is read-only within Xen. If a channel
    735      *     becomes pending while the channel is masked then the 'edge' is lost
    736      *     (i.e., when the channel is unmasked, the guest must manually handle
    737      *     pending notifications as no upcall will be scheduled by Xen).
    738      *
    739      * To expedite scanning of pending notifications, any 0->1 pending
    740      * transition on an unmasked channel causes a corresponding bit in a
    741      * per-vcpu selector word to be set. Each bit in the selector covers a
    742      * 'C long' in the PENDING bitfield array.
    743      */
    744     xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
    745     xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
    746 
    747     /*
    748      * Wallclock time: updated only by control software. Guests should base
    749      * their gettimeofday() syscall on this wallclock-base value.
    750      */
    751     uint32_t wc_version;      /* Version counter: see vcpu_time_info_t. */
    752     uint32_t wc_sec;          /* Secs  00:00:00 UTC, Jan 1, 1970.  */
    753     uint32_t wc_nsec;         /* Nsecs 00:00:00 UTC, Jan 1, 1970.  */
    754 #if !defined(__i386__)
    755     uint32_t wc_sec_hi;
    756 # define xen_wc_sec_hi wc_sec_hi
    757 #elif !defined(__XEN__) && !defined(__XEN_TOOLS__)
    758 # define xen_wc_sec_hi arch.wc_sec_hi
    759 #endif
    760 
    761     struct arch_shared_info arch;
    762 
    763 };
    764 #ifndef __XEN__
    765 typedef struct shared_info shared_info_t;
    766 #endif
    767 
    768 /*
    769  * `incontents 200 startofday Start-of-day memory layout
    770  *
    771  *  1. The domain is started within contiguous virtual-memory region.
    772  *  2. The contiguous region ends on an aligned 4MB boundary.
    773  *  3. This the order of bootstrap elements in the initial virtual region:
    774  *      a. relocated kernel image
    775  *      b. initial ram disk              [mod_start, mod_len]
    776  *         (may be omitted)
    777  *      c. list of allocated page frames [mfn_list, nr_pages]
    778  *         (unless relocated due to XEN_ELFNOTE_INIT_P2M)
    779  *      d. start_info_t structure        [register rSI (x86)]
    780  *         in case of dom0 this page contains the console info, too
    781  *      e. unless dom0: xenstore ring page
    782  *      f. unless dom0: console ring page
    783  *      g. bootstrap page tables         [pt_base and CR3 (x86)]
    784  *      h. bootstrap stack               [register ESP (x86)]
    785  *  4. Bootstrap elements are packed together, but each is 4kB-aligned.
    786  *  5. The list of page frames forms a contiguous 'pseudo-physical' memory
    787  *     layout for the domain. In particular, the bootstrap virtual-memory
    788  *     region is a 1:1 mapping to the first section of the pseudo-physical map.
    789  *  6. All bootstrap elements are mapped read-writable for the guest OS. The
    790  *     only exception is the bootstrap page table, which is mapped read-only.
    791  *  7. There is guaranteed to be at least 512kB padding after the final
    792  *     bootstrap element. If necessary, the bootstrap virtual region is
    793  *     extended by an extra 4MB to ensure this.
    794  *
    795  * Note: Prior to 25833:bb85bbccb1c9. ("x86/32-on-64 adjust Dom0 initial page
    796  * table layout") a bug caused the pt_base (3.g above) and cr3 to not point
    797  * to the start of the guest page tables (it was offset by two pages).
    798  * This only manifested itself on 32-on-64 dom0 kernels and not 32-on-64 domU
    799  * or 64-bit kernels of any colour. The page tables for a 32-on-64 dom0 got
    800  * allocated in the order: 'first L1','first L2', 'first L3', so the offset
    801  * to the page table base is by two pages back. The initial domain if it is
    802  * 32-bit and runs under a 64-bit hypervisor should _NOT_ use two of the
    803  * pages preceding pt_base and mark them as reserved/unused.
    804  */
    805 #ifdef XEN_HAVE_PV_GUEST_ENTRY
    806 struct start_info {
    807     /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
    808     char magic[32];             /* "xen-<version>-<platform>".            */
    809     unsigned long nr_pages;     /* Total pages allocated to this domain.  */
    810     unsigned long shared_info;  /* MACHINE address of shared info struct. */
    811     uint32_t flags;             /* SIF_xxx flags.                         */
    812     xen_pfn_t store_mfn;        /* MACHINE page number of shared page.    */
    813     uint32_t store_evtchn;      /* Event channel for store communication. */
    814     union {
    815         struct {
    816             xen_pfn_t mfn;      /* MACHINE page number of console page.   */
    817             uint32_t  evtchn;   /* Event channel for console page.        */
    818         } domU;
    819         struct {
    820             uint32_t info_off;  /* Offset of console_info struct.         */
    821             uint32_t info_size; /* Size of console_info struct from start.*/
    822         } dom0;
    823     } console;
    824     /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
    825     unsigned long pt_base;      /* VIRTUAL address of page directory.     */
    826     unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
    827     unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
    828     unsigned long mod_start;    /* VIRTUAL address of pre-loaded module   */
    829                                 /* (PFN of pre-loaded module if           */
    830                                 /*  SIF_MOD_START_PFN set in flags).      */
    831     unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
    832 #define MAX_GUEST_CMDLINE 1024
    833     int8_t cmd_line[MAX_GUEST_CMDLINE];
    834     /* The pfn range here covers both page table and p->m table frames.   */
    835     unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table.    */
    836     unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table.  */
    837 };
    838 typedef struct start_info start_info_t;
    839 
    840 /* New console union for dom0 introduced in 0x00030203. */
    841 #if __XEN_INTERFACE_VERSION__ < 0x00030203
    842 #define console_mfn    console.domU.mfn
    843 #define console_evtchn console.domU.evtchn
    844 #endif
    845 #endif /* XEN_HAVE_PV_GUEST_ENTRY */
    846 
    847 /* These flags are passed in the 'flags' field of start_info_t. */
    848 #define SIF_PRIVILEGED    (1<<0)  /* Is the domain privileged? */
    849 #define SIF_INITDOMAIN    (1<<1)  /* Is this the initial control domain? */
    850 #define SIF_MULTIBOOT_MOD (1<<2)  /* Is mod_start a multiboot module? */
    851 #define SIF_MOD_START_PFN (1<<3)  /* Is mod_start a PFN? */
    852 #define SIF_VIRT_P2M_4TOOLS (1<<4) /* Do Xen tools understand a virt. mapped */
    853                                    /* P->M making the 3 level tree obsolete? */
    854 #define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
    855 
    856 /*
    857  * A multiboot module is a package containing modules very similar to a
    858  * multiboot module array. The only differences are:
    859  * - the array of module descriptors is by convention simply at the beginning
    860  *   of the multiboot module,
    861  * - addresses in the module descriptors are based on the beginning of the
    862  *   multiboot module,
    863  * - the number of modules is determined by a termination descriptor that has
    864  *   mod_start == 0.
    865  *
    866  * This permits to both build it statically and reference it in a configuration
    867  * file, and let the PV guest easily rebase the addresses to virtual addresses
    868  * and at the same time count the number of modules.
    869  */
    870 struct xen_multiboot_mod_list
    871 {
    872     /* Address of first byte of the module */
    873     uint32_t mod_start;
    874     /* Address of last byte of the module (inclusive) */
    875     uint32_t mod_end;
    876     /* Address of zero-terminated command line */
    877     uint32_t cmdline;
    878     /* Unused, must be zero */
    879     uint32_t pad;
    880 };
    881 /*
    882  * `incontents 200 startofday_dom0_console Dom0_console
    883  *
    884  * The console structure in start_info.console.dom0
    885  *
    886  * This structure includes a variety of information required to
    887  * have a working VGA/VESA console.
    888  */
    889 typedef struct dom0_vga_console_info {
    890     uint8_t video_type; /* DOM0_VGA_CONSOLE_??? */
    891 #define XEN_VGATYPE_TEXT_MODE_3 0x03
    892 #define XEN_VGATYPE_VESA_LFB    0x23
    893 #define XEN_VGATYPE_EFI_LFB     0x70
    894 
    895     union {
    896         struct {
    897             /* Font height, in pixels. */
    898             uint16_t font_height;
    899             /* Cursor location (column, row). */
    900             uint16_t cursor_x, cursor_y;
    901             /* Number of rows and columns (dimensions in characters). */
    902             uint16_t rows, columns;
    903         } text_mode_3;
    904 
    905         struct {
    906             /* Width and height, in pixels. */
    907             uint16_t width, height;
    908             /* Bytes per scan line. */
    909             uint16_t bytes_per_line;
    910             /* Bits per pixel. */
    911             uint16_t bits_per_pixel;
    912             /* LFB physical address, and size (in units of 64kB). */
    913             uint32_t lfb_base;
    914             uint32_t lfb_size;
    915             /* RGB mask offsets and sizes, as defined by VBE 1.2+ */
    916             uint8_t  red_pos, red_size;
    917             uint8_t  green_pos, green_size;
    918             uint8_t  blue_pos, blue_size;
    919             uint8_t  rsvd_pos, rsvd_size;
    920 #if __XEN_INTERFACE_VERSION__ >= 0x00030206
    921             /* VESA capabilities (offset 0xa, VESA command 0x4f00). */
    922             uint32_t gbl_caps;
    923             /* Mode attributes (offset 0x0, VESA command 0x4f01). */
    924             uint16_t mode_attrs;
    925 	    /* high 32 bits of lfb_base */
    926 	    uint32_t ext_lfb_base;
    927 #endif
    928         } vesa_lfb;
    929     } u;
    930 } dom0_vga_console_info_t;
    931 #define xen_vga_console_info dom0_vga_console_info
    932 #define xen_vga_console_info_t dom0_vga_console_info_t
    933 
    934 typedef uint8_t xen_domain_handle_t[16];
    935 
    936 __DEFINE_XEN_GUEST_HANDLE(uint8,  uint8_t);
    937 __DEFINE_XEN_GUEST_HANDLE(uint16, uint16_t);
    938 __DEFINE_XEN_GUEST_HANDLE(uint32, uint32_t);
    939 __DEFINE_XEN_GUEST_HANDLE(uint64, uint64_t);
    940 
    941 typedef struct {
    942     uint8_t a[16];
    943 } xen_uuid_t;
    944 
    945 /*
    946  * XEN_DEFINE_UUID(0x00112233, 0x4455, 0x6677, 0x8899,
    947  *                 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff)
    948  * will construct UUID 00112233-4455-6677-8899-aabbccddeeff presented as
    949  * {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
    950  * 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
    951  *
    952  * NB: This is compatible with Linux kernel and with libuuid, but it is not
    953  * compatible with Microsoft, as they use mixed-endian encoding (some
    954  * components are little-endian, some are big-endian).
    955  */
    956 #define XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)            \
    957     {{((a) >> 24) & 0xFF, ((a) >> 16) & 0xFF,                           \
    958       ((a) >>  8) & 0xFF, ((a) >>  0) & 0xFF,                           \
    959       ((b) >>  8) & 0xFF, ((b) >>  0) & 0xFF,                           \
    960       ((c) >>  8) & 0xFF, ((c) >>  0) & 0xFF,                           \
    961       ((d) >>  8) & 0xFF, ((d) >>  0) & 0xFF,                           \
    962                 e1, e2, e3, e4, e5, e6}}
    963 
    964 #if defined(__STDC_VERSION__) ? __STDC_VERSION__ >= 199901L : defined(__GNUC__)
    965 #define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6)             \
    966     ((xen_uuid_t)XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6))
    967 #else
    968 #define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6)             \
    969     XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)
    970 #endif /* __STDC_VERSION__ / __GNUC__ */
    971 
    972 #endif /* !__ASSEMBLY__ */
    973 
    974 /* Default definitions for macros used by domctl/sysctl. */
    975 #if defined(__XEN__) || defined(__XEN_TOOLS__)
    976 
    977 #ifndef int64_aligned_t
    978 #define int64_aligned_t int64_t
    979 #endif
    980 #ifndef uint64_aligned_t
    981 #define uint64_aligned_t uint64_t
    982 #endif
    983 #ifndef XEN_GUEST_HANDLE_64
    984 #define XEN_GUEST_HANDLE_64(name) XEN_GUEST_HANDLE(name)
    985 #endif
    986 
    987 #ifndef __ASSEMBLY__
    988 struct xenctl_bitmap {
    989     XEN_GUEST_HANDLE_64(uint8) bitmap;
    990     uint32_t nr_bits;
    991 };
    992 #endif
    993 
    994 #endif /* defined(__XEN__) || defined(__XEN_TOOLS__) */
    995 
    996 #endif /* __XEN_PUBLIC_XEN_H__ */
    997 
    998 /*
    999  * Local variables:
   1000  * mode: C
   1001  * c-file-style: "BSD"
   1002  * c-basic-offset: 4
   1003  * tab-width: 4
   1004  * indent-tabs-mode: nil
   1005  * End:
   1006  */
   1007