Home | History | Annotate | Line # | Download | only in drm
      1 /*	$NetBSD: drm_fourcc.h,v 1.2 2021/12/18 23:45:46 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2011 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
     21  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     22  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     23  * OTHER DEALINGS IN THE SOFTWARE.
     24  */
     25 
     26 #ifndef DRM_FOURCC_H
     27 #define DRM_FOURCC_H
     28 
     29 #include "drm.h"
     30 
     31 #if defined(__cplusplus)
     32 extern "C" {
     33 #endif
     34 
     35 /**
     36  * DOC: overview
     37  *
     38  * In the DRM subsystem, framebuffer pixel formats are described using the
     39  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
     40  * fourcc code, a Format Modifier may optionally be provided, in order to
     41  * further describe the buffer's format - for example tiling or compression.
     42  *
     43  * Format Modifiers
     44  * ----------------
     45  *
     46  * Format modifiers are used in conjunction with a fourcc code, forming a
     47  * unique fourcc:modifier pair. This format:modifier pair must fully define the
     48  * format and data layout of the buffer, and should be the only way to describe
     49  * that particular buffer.
     50  *
     51  * Having multiple fourcc:modifier pairs which describe the same layout should
     52  * be avoided, as such aliases run the risk of different drivers exposing
     53  * different names for the same data format, forcing userspace to understand
     54  * that they are aliases.
     55  *
     56  * Format modifiers may change any property of the buffer, including the number
     57  * of planes and/or the required allocation size. Format modifiers are
     58  * vendor-namespaced, and as such the relationship between a fourcc code and a
     59  * modifier is specific to the modifer being used. For example, some modifiers
     60  * may preserve meaning - such as number of planes - from the fourcc code,
     61  * whereas others may not.
     62  *
     63  * Vendors should document their modifier usage in as much detail as
     64  * possible, to ensure maximum compatibility across devices, drivers and
     65  * applications.
     66  *
     67  * The authoritative list of format modifier codes is found in
     68  * `include/uapi/drm/drm_fourcc.h`
     69  */
     70 
     71 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
     72 				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
     73 
     74 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
     75 
     76 /* Reserve 0 for the invalid format specifier */
     77 #define DRM_FORMAT_INVALID	0
     78 
     79 /* color index */
     80 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
     81 
     82 /* 8 bpp Red */
     83 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
     84 
     85 /* 16 bpp Red */
     86 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
     87 
     88 /* 16 bpp RG */
     89 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
     90 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
     91 
     92 /* 32 bpp RG */
     93 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
     94 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
     95 
     96 /* 8 bpp RGB */
     97 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
     98 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
     99 
    100 /* 16 bpp RGB */
    101 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
    102 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
    103 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
    104 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
    105 
    106 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
    107 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
    108 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
    109 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
    110 
    111 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
    112 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
    113 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
    114 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
    115 
    116 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
    117 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
    118 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
    119 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
    120 
    121 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
    122 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
    123 
    124 /* 24 bpp RGB */
    125 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
    126 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
    127 
    128 /* 32 bpp RGB */
    129 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
    130 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
    131 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
    132 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
    133 
    134 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
    135 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
    136 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
    137 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
    138 
    139 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
    140 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
    141 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
    142 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
    143 
    144 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
    145 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
    146 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
    147 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
    148 
    149 /*
    150  * Floating point 64bpp RGB
    151  * IEEE 754-2008 binary16 half-precision float
    152  * [15:0] sign:exponent:mantissa 1:5:10
    153  */
    154 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
    155 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
    156 
    157 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
    158 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
    159 
    160 /* packed YCbCr */
    161 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
    162 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
    163 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
    164 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
    165 
    166 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
    167 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
    168 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
    169 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
    170 
    171 /*
    172  * packed Y2xx indicate for each component, xx valid data occupy msb
    173  * 16-xx padding occupy lsb
    174  */
    175 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
    176 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
    177 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
    178 
    179 /*
    180  * packed Y4xx indicate for each component, xx valid data occupy msb
    181  * 16-xx padding occupy lsb except Y410
    182  */
    183 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
    184 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
    185 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
    186 
    187 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
    188 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
    189 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
    190 
    191 /*
    192  * packed YCbCr420 2x2 tiled formats
    193  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
    194  */
    195 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
    196 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
    197 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
    198 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
    199 
    200 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
    201 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
    202 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
    203 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
    204 
    205 /*
    206  * 1-plane YUV 4:2:0
    207  * In these formats, the component ordering is specified (Y, followed by U
    208  * then V), but the exact Linear layout is undefined.
    209  * These formats can only be used with a non-Linear modifier.
    210  */
    211 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
    212 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
    213 
    214 /*
    215  * 2 plane RGB + A
    216  * index 0 = RGB plane, same format as the corresponding non _A8 format has
    217  * index 1 = A plane, [7:0] A
    218  */
    219 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
    220 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
    221 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
    222 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
    223 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
    224 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
    225 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
    226 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
    227 
    228 /*
    229  * 2 plane YCbCr
    230  * index 0 = Y plane, [7:0] Y
    231  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
    232  * or
    233  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
    234  */
    235 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
    236 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
    237 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
    238 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
    239 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
    240 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
    241 
    242 /*
    243  * 2 plane YCbCr MSB aligned
    244  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
    245  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
    246  */
    247 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
    248 
    249 /*
    250  * 2 plane YCbCr MSB aligned
    251  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
    252  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
    253  */
    254 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
    255 
    256 /*
    257  * 2 plane YCbCr MSB aligned
    258  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
    259  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
    260  */
    261 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
    262 
    263 /*
    264  * 2 plane YCbCr MSB aligned
    265  * index 0 = Y plane, [15:0] Y little endian
    266  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
    267  */
    268 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
    269 
    270 /*
    271  * 3 plane YCbCr
    272  * index 0: Y plane, [7:0] Y
    273  * index 1: Cb plane, [7:0] Cb
    274  * index 2: Cr plane, [7:0] Cr
    275  * or
    276  * index 1: Cr plane, [7:0] Cr
    277  * index 2: Cb plane, [7:0] Cb
    278  */
    279 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
    280 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
    281 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
    282 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
    283 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
    284 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
    285 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
    286 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
    287 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
    288 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
    289 
    290 
    291 /*
    292  * Format Modifiers:
    293  *
    294  * Format modifiers describe, typically, a re-ordering or modification
    295  * of the data in a plane of an FB.  This can be used to express tiled/
    296  * swizzled formats, or compression, or a combination of the two.
    297  *
    298  * The upper 8 bits of the format modifier are a vendor-id as assigned
    299  * below.  The lower 56 bits are assigned as vendor sees fit.
    300  */
    301 
    302 /* Vendor Ids: */
    303 #define DRM_FORMAT_MOD_NONE           0
    304 #define DRM_FORMAT_MOD_VENDOR_NONE    0
    305 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
    306 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
    307 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
    308 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
    309 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
    310 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
    311 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
    312 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
    313 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
    314 
    315 /* add more to the end as needed */
    316 
    317 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
    318 
    319 #define fourcc_mod_code(vendor, val) \
    320 	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
    321 
    322 /*
    323  * Format Modifier tokens:
    324  *
    325  * When adding a new token please document the layout with a code comment,
    326  * similar to the fourcc codes above. drm_fourcc.h is considered the
    327  * authoritative source for all of these.
    328  */
    329 
    330 /*
    331  * Invalid Modifier
    332  *
    333  * This modifier can be used as a sentinel to terminate the format modifiers
    334  * list, or to initialize a variable with an invalid modifier. It might also be
    335  * used to report an error back to userspace for certain APIs.
    336  */
    337 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
    338 
    339 /*
    340  * Linear Layout
    341  *
    342  * Just plain linear layout. Note that this is different from no specifying any
    343  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
    344  * which tells the driver to also take driver-internal information into account
    345  * and so might actually result in a tiled framebuffer.
    346  */
    347 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
    348 
    349 /* Intel framebuffer modifiers */
    350 
    351 /*
    352  * Intel X-tiling layout
    353  *
    354  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
    355  * in row-major layout. Within the tile bytes are laid out row-major, with
    356  * a platform-dependent stride. On top of that the memory can apply
    357  * platform-depending swizzling of some higher address bits into bit6.
    358  *
    359  * This format is highly platforms specific and not useful for cross-driver
    360  * sharing. It exists since on a given platform it does uniquely identify the
    361  * layout in a simple way for i915-specific userspace.
    362  */
    363 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
    364 
    365 /*
    366  * Intel Y-tiling layout
    367  *
    368  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
    369  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
    370  * chunks column-major, with a platform-dependent height. On top of that the
    371  * memory can apply platform-depending swizzling of some higher address bits
    372  * into bit6.
    373  *
    374  * This format is highly platforms specific and not useful for cross-driver
    375  * sharing. It exists since on a given platform it does uniquely identify the
    376  * layout in a simple way for i915-specific userspace.
    377  */
    378 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
    379 
    380 /*
    381  * Intel Yf-tiling layout
    382  *
    383  * This is a tiled layout using 4Kb tiles in row-major layout.
    384  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
    385  * are arranged in four groups (two wide, two high) with column-major layout.
    386  * Each group therefore consits out of four 256 byte units, which are also laid
    387  * out as 2x2 column-major.
    388  * 256 byte units are made out of four 64 byte blocks of pixels, producing
    389  * either a square block or a 2:1 unit.
    390  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
    391  * in pixel depends on the pixel depth.
    392  */
    393 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
    394 
    395 /*
    396  * Intel color control surface (CCS) for render compression
    397  *
    398  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
    399  * The main surface will be plane index 0 and must be Y/Yf-tiled,
    400  * the CCS will be plane index 1.
    401  *
    402  * Each CCS tile matches a 1024x512 pixel area of the main surface.
    403  * To match certain aspects of the 3D hardware the CCS is
    404  * considered to be made up of normal 128Bx32 Y tiles, Thus
    405  * the CCS pitch must be specified in multiples of 128 bytes.
    406  *
    407  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
    408  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
    409  * But that fact is not relevant unless the memory is accessed
    410  * directly.
    411  */
    412 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
    413 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
    414 
    415 /*
    416  * Intel color control surfaces (CCS) for Gen-12 render compression.
    417  *
    418  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
    419  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
    420  * main surface. In other words, 4 bits in CCS map to a main surface cache
    421  * line pair. The main surface pitch is required to be a multiple of four
    422  * Y-tile widths.
    423  */
    424 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
    425 
    426 /*
    427  * Intel color control surfaces (CCS) for Gen-12 media compression
    428  *
    429  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
    430  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
    431  * main surface. In other words, 4 bits in CCS map to a main surface cache
    432  * line pair. The main surface pitch is required to be a multiple of four
    433  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
    434  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
    435  * planes 2 and 3 for the respective CCS.
    436  */
    437 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
    438 
    439 /*
    440  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
    441  *
    442  * Macroblocks are laid in a Z-shape, and each pixel data is following the
    443  * standard NV12 style.
    444  * As for NV12, an image is the result of two frame buffers: one for Y,
    445  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
    446  * Alignment requirements are (for each buffer):
    447  * - multiple of 128 pixels for the width
    448  * - multiple of  32 pixels for the height
    449  *
    450  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
    451  */
    452 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
    453 
    454 /*
    455  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
    456  *
    457  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
    458  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
    459  * they correspond to their 16x16 luma block.
    460  */
    461 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
    462 
    463 /*
    464  * Qualcomm Compressed Format
    465  *
    466  * Refers to a compressed variant of the base format that is compressed.
    467  * Implementation may be platform and base-format specific.
    468  *
    469  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
    470  * Pixel data pitch/stride is aligned with macrotile width.
    471  * Pixel data height is aligned with macrotile height.
    472  * Entire pixel data buffer is aligned with 4k(bytes).
    473  */
    474 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
    475 
    476 /* Vivante framebuffer modifiers */
    477 
    478 /*
    479  * Vivante 4x4 tiling layout
    480  *
    481  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
    482  * layout.
    483  */
    484 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
    485 
    486 /*
    487  * Vivante 64x64 super-tiling layout
    488  *
    489  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
    490  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
    491  * major layout.
    492  *
    493  * For more information: see
    494  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
    495  */
    496 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
    497 
    498 /*
    499  * Vivante 4x4 tiling layout for dual-pipe
    500  *
    501  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
    502  * different base address. Offsets from the base addresses are therefore halved
    503  * compared to the non-split tiled layout.
    504  */
    505 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
    506 
    507 /*
    508  * Vivante 64x64 super-tiling layout for dual-pipe
    509  *
    510  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
    511  * starts at a different base address. Offsets from the base addresses are
    512  * therefore halved compared to the non-split super-tiled layout.
    513  */
    514 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
    515 
    516 /* NVIDIA frame buffer modifiers */
    517 
    518 /*
    519  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
    520  *
    521  * Pixels are arranged in simple tiles of 16 x 16 bytes.
    522  */
    523 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
    524 
    525 /*
    526  * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later
    527  *
    528  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
    529  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
    530  *
    531  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
    532  *
    533  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
    534  * Valid values are:
    535  *
    536  * 0 == ONE_GOB
    537  * 1 == TWO_GOBS
    538  * 2 == FOUR_GOBS
    539  * 3 == EIGHT_GOBS
    540  * 4 == SIXTEEN_GOBS
    541  * 5 == THIRTYTWO_GOBS
    542  *
    543  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
    544  * in full detail.
    545  */
    546 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
    547 	fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf))
    548 
    549 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
    550 	fourcc_mod_code(NVIDIA, 0x10)
    551 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
    552 	fourcc_mod_code(NVIDIA, 0x11)
    553 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
    554 	fourcc_mod_code(NVIDIA, 0x12)
    555 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
    556 	fourcc_mod_code(NVIDIA, 0x13)
    557 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
    558 	fourcc_mod_code(NVIDIA, 0x14)
    559 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
    560 	fourcc_mod_code(NVIDIA, 0x15)
    561 
    562 /*
    563  * Some Broadcom modifiers take parameters, for example the number of
    564  * vertical lines in the image. Reserve the lower 32 bits for modifier
    565  * type, and the next 24 bits for parameters. Top 8 bits are the
    566  * vendor code.
    567  */
    568 #define __fourcc_mod_broadcom_param_shift 8
    569 #define __fourcc_mod_broadcom_param_bits 48
    570 #define fourcc_mod_broadcom_code(val, params) \
    571 	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
    572 #define fourcc_mod_broadcom_param(m) \
    573 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
    574 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
    575 #define fourcc_mod_broadcom_mod(m) \
    576 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
    577 		 __fourcc_mod_broadcom_param_shift))
    578 
    579 /*
    580  * Broadcom VC4 "T" format
    581  *
    582  * This is the primary layout that the V3D GPU can texture from (it
    583  * can't do linear).  The T format has:
    584  *
    585  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
    586  *   pixels at 32 bit depth.
    587  *
    588  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
    589  *   16x16 pixels).
    590  *
    591  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
    592  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
    593  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
    594  *
    595  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
    596  *   tiles) or right-to-left (odd rows of 4k tiles).
    597  */
    598 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
    599 
    600 /*
    601  * Broadcom SAND format
    602  *
    603  * This is the native format that the H.264 codec block uses.  For VC4
    604  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
    605  *
    606  * The image can be considered to be split into columns, and the
    607  * columns are placed consecutively into memory.  The width of those
    608  * columns can be either 32, 64, 128, or 256 pixels, but in practice
    609  * only 128 pixel columns are used.
    610  *
    611  * The pitch between the start of each column is set to optimally
    612  * switch between SDRAM banks. This is passed as the number of lines
    613  * of column width in the modifier (we can't use the stride value due
    614  * to various core checks that look at it , so you should set the
    615  * stride to width*cpp).
    616  *
    617  * Note that the column height for this format modifier is the same
    618  * for all of the planes, assuming that each column contains both Y
    619  * and UV.  Some SAND-using hardware stores UV in a separate tiled
    620  * image from Y to reduce the column height, which is not supported
    621  * with these modifiers.
    622  */
    623 
    624 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
    625 	fourcc_mod_broadcom_code(2, v)
    626 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
    627 	fourcc_mod_broadcom_code(3, v)
    628 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
    629 	fourcc_mod_broadcom_code(4, v)
    630 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
    631 	fourcc_mod_broadcom_code(5, v)
    632 
    633 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
    634 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
    635 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
    636 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
    637 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
    638 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
    639 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
    640 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
    641 
    642 /* Broadcom UIF format
    643  *
    644  * This is the common format for the current Broadcom multimedia
    645  * blocks, including V3D 3.x and newer, newer video codecs, and
    646  * displays.
    647  *
    648  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
    649  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
    650  * stored in columns, with padding between the columns to ensure that
    651  * moving from one column to the next doesn't hit the same SDRAM page
    652  * bank.
    653  *
    654  * To calculate the padding, it is assumed that each hardware block
    655  * and the software driving it knows the platform's SDRAM page size,
    656  * number of banks, and XOR address, and that it's identical between
    657  * all blocks using the format.  This tiling modifier will use XOR as
    658  * necessary to reduce the padding.  If a hardware block can't do XOR,
    659  * the assumption is that a no-XOR tiling modifier will be created.
    660  */
    661 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
    662 
    663 /*
    664  * Arm Framebuffer Compression (AFBC) modifiers
    665  *
    666  * AFBC is a proprietary lossless image compression protocol and format.
    667  * It provides fine-grained random access and minimizes the amount of data
    668  * transferred between IP blocks.
    669  *
    670  * AFBC has several features which may be supported and/or used, which are
    671  * represented using bits in the modifier. Not all combinations are valid,
    672  * and different devices or use-cases may support different combinations.
    673  *
    674  * Further information on the use of AFBC modifiers can be found in
    675  * Documentation/gpu/afbc.rst
    676  */
    677 
    678 /*
    679  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
    680  * modifiers) denote the category for modifiers. Currently we have only two
    681  * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
    682  * different categories.
    683  */
    684 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
    685 	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
    686 
    687 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
    688 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
    689 
    690 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
    691 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
    692 
    693 /*
    694  * AFBC superblock size
    695  *
    696  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
    697  * size (in pixels) must be aligned to a multiple of the superblock size.
    698  * Four lowest significant bits(LSBs) are reserved for block size.
    699  *
    700  * Where one superblock size is specified, it applies to all planes of the
    701  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
    702  * the first applies to the Luma plane and the second applies to the Chroma
    703  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
    704  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
    705  */
    706 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
    707 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
    708 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
    709 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
    710 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
    711 
    712 /*
    713  * AFBC lossless colorspace transform
    714  *
    715  * Indicates that the buffer makes use of the AFBC lossless colorspace
    716  * transform.
    717  */
    718 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
    719 
    720 /*
    721  * AFBC block-split
    722  *
    723  * Indicates that the payload of each superblock is split. The second
    724  * half of the payload is positioned at a predefined offset from the start
    725  * of the superblock payload.
    726  */
    727 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
    728 
    729 /*
    730  * AFBC sparse layout
    731  *
    732  * This flag indicates that the payload of each superblock must be stored at a
    733  * predefined position relative to the other superblocks in the same AFBC
    734  * buffer. This order is the same order used by the header buffer. In this mode
    735  * each superblock is given the same amount of space as an uncompressed
    736  * superblock of the particular format would require, rounding up to the next
    737  * multiple of 128 bytes in size.
    738  */
    739 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
    740 
    741 /*
    742  * AFBC copy-block restrict
    743  *
    744  * Buffers with this flag must obey the copy-block restriction. The restriction
    745  * is such that there are no copy-blocks referring across the border of 8x8
    746  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
    747  */
    748 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
    749 
    750 /*
    751  * AFBC tiled layout
    752  *
    753  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
    754  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
    755  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
    756  * larger bpp formats. The order between the tiles is scan line.
    757  * When the tiled layout is used, the buffer size (in pixels) must be aligned
    758  * to the tile size.
    759  */
    760 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
    761 
    762 /*
    763  * AFBC solid color blocks
    764  *
    765  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
    766  * can be reduced if a whole superblock is a single color.
    767  */
    768 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
    769 
    770 /*
    771  * AFBC double-buffer
    772  *
    773  * Indicates that the buffer is allocated in a layout safe for front-buffer
    774  * rendering.
    775  */
    776 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
    777 
    778 /*
    779  * AFBC buffer content hints
    780  *
    781  * Indicates that the buffer includes per-superblock content hints.
    782  */
    783 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
    784 
    785 /*
    786  * Arm 16x16 Block U-Interleaved modifier
    787  *
    788  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
    789  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
    790  * in the block are reordered.
    791  */
    792 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
    793 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
    794 
    795 /*
    796  * Allwinner tiled modifier
    797  *
    798  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
    799  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
    800  * planes.
    801  *
    802  * With this tiling, the luminance samples are disposed in tiles representing
    803  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
    804  * The pixel order in each tile is linear and the tiles are disposed linearly,
    805  * both in row-major order.
    806  */
    807 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
    808 
    809 #if defined(__cplusplus)
    810 }
    811 #endif
    812 
    813 #endif /* DRM_FOURCC_H */
    814