Home | History | Annotate | Line # | Download | only in lsan
      1 //=-- lsan_common.cc ------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of LeakSanitizer.
     11 // Implementation of common leak checking functionality.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "lsan_common.h"
     16 
     17 #include "sanitizer_common/sanitizer_common.h"
     18 #include "sanitizer_common/sanitizer_flag_parser.h"
     19 #include "sanitizer_common/sanitizer_flags.h"
     20 #include "sanitizer_common/sanitizer_placement_new.h"
     21 #include "sanitizer_common/sanitizer_procmaps.h"
     22 #include "sanitizer_common/sanitizer_report_decorator.h"
     23 #include "sanitizer_common/sanitizer_stackdepot.h"
     24 #include "sanitizer_common/sanitizer_stacktrace.h"
     25 #include "sanitizer_common/sanitizer_suppressions.h"
     26 #include "sanitizer_common/sanitizer_thread_registry.h"
     27 #include "sanitizer_common/sanitizer_tls_get_addr.h"
     28 
     29 #if CAN_SANITIZE_LEAKS
     30 namespace __lsan {
     31 
     32 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
     33 // also to protect the global list of root regions.
     34 BlockingMutex global_mutex(LINKER_INITIALIZED);
     35 
     36 Flags lsan_flags;
     37 
     38 void DisableCounterUnderflow() {
     39   if (common_flags()->detect_leaks) {
     40     Report("Unmatched call to __lsan_enable().\n");
     41     Die();
     42   }
     43 }
     44 
     45 void Flags::SetDefaults() {
     46 #define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
     47 #include "lsan_flags.inc"
     48 #undef LSAN_FLAG
     49 }
     50 
     51 void RegisterLsanFlags(FlagParser *parser, Flags *f) {
     52 #define LSAN_FLAG(Type, Name, DefaultValue, Description) \
     53   RegisterFlag(parser, #Name, Description, &f->Name);
     54 #include "lsan_flags.inc"
     55 #undef LSAN_FLAG
     56 }
     57 
     58 #define LOG_POINTERS(...)                           \
     59   do {                                              \
     60     if (flags()->log_pointers) Report(__VA_ARGS__); \
     61   } while (0)
     62 
     63 #define LOG_THREADS(...)                           \
     64   do {                                             \
     65     if (flags()->log_threads) Report(__VA_ARGS__); \
     66   } while (0)
     67 
     68 ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)];
     69 static SuppressionContext *suppression_ctx = nullptr;
     70 static const char kSuppressionLeak[] = "leak";
     71 static const char *kSuppressionTypes[] = { kSuppressionLeak };
     72 static const char kStdSuppressions[] =
     73 #if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
     74   // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
     75   // definition.
     76   "leak:*pthread_exit*\n"
     77 #endif  // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
     78 #if SANITIZER_MAC
     79   // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
     80   "leak:*_os_trace*\n"
     81 #endif
     82   // TLS leak in some glibc versions, described in
     83   // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
     84   "leak:*tls_get_addr*\n";
     85 
     86 void InitializeSuppressions() {
     87   CHECK_EQ(nullptr, suppression_ctx);
     88   suppression_ctx = new (suppression_placeholder) // NOLINT
     89       SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
     90   suppression_ctx->ParseFromFile(flags()->suppressions);
     91   if (&__lsan_default_suppressions)
     92     suppression_ctx->Parse(__lsan_default_suppressions());
     93   suppression_ctx->Parse(kStdSuppressions);
     94 }
     95 
     96 static SuppressionContext *GetSuppressionContext() {
     97   CHECK(suppression_ctx);
     98   return suppression_ctx;
     99 }
    100 
    101 static InternalMmapVector<RootRegion> *root_regions;
    102 
    103 InternalMmapVector<RootRegion> const *GetRootRegions() { return root_regions; }
    104 
    105 void InitializeRootRegions() {
    106   CHECK(!root_regions);
    107   ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
    108   root_regions = new (placeholder) InternalMmapVector<RootRegion>();  // NOLINT
    109 }
    110 
    111 const char *MaybeCallLsanDefaultOptions() {
    112   return (&__lsan_default_options) ? __lsan_default_options() : "";
    113 }
    114 
    115 void InitCommonLsan() {
    116   InitializeRootRegions();
    117   if (common_flags()->detect_leaks) {
    118     // Initialization which can fail or print warnings should only be done if
    119     // LSan is actually enabled.
    120     InitializeSuppressions();
    121     InitializePlatformSpecificModules();
    122   }
    123 }
    124 
    125 class Decorator: public __sanitizer::SanitizerCommonDecorator {
    126  public:
    127   Decorator() : SanitizerCommonDecorator() { }
    128   const char *Error() { return Red(); }
    129   const char *Leak() { return Blue(); }
    130 };
    131 
    132 static inline bool CanBeAHeapPointer(uptr p) {
    133   // Since our heap is located in mmap-ed memory, we can assume a sensible lower
    134   // bound on heap addresses.
    135   const uptr kMinAddress = 4 * 4096;
    136   if (p < kMinAddress) return false;
    137 #if defined(__x86_64__)
    138   // Accept only canonical form user-space addresses.
    139   return ((p >> 47) == 0);
    140 #elif defined(__mips64)
    141   return ((p >> 40) == 0);
    142 #elif defined(__aarch64__)
    143   unsigned runtimeVMA =
    144     (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
    145   return ((p >> runtimeVMA) == 0);
    146 #else
    147   return true;
    148 #endif
    149 }
    150 
    151 // Scans the memory range, looking for byte patterns that point into allocator
    152 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
    153 // There are two usage modes for this function: finding reachable chunks
    154 // (|tag| = kReachable) and finding indirectly leaked chunks
    155 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
    156 // so |frontier| = 0.
    157 void ScanRangeForPointers(uptr begin, uptr end,
    158                           Frontier *frontier,
    159                           const char *region_type, ChunkTag tag) {
    160   CHECK(tag == kReachable || tag == kIndirectlyLeaked);
    161   const uptr alignment = flags()->pointer_alignment();
    162   LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
    163   uptr pp = begin;
    164   if (pp % alignment)
    165     pp = pp + alignment - pp % alignment;
    166   for (; pp + sizeof(void *) <= end; pp += alignment) {  // NOLINT
    167     void *p = *reinterpret_cast<void **>(pp);
    168     if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
    169     uptr chunk = PointsIntoChunk(p);
    170     if (!chunk) continue;
    171     // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
    172     if (chunk == begin) continue;
    173     LsanMetadata m(chunk);
    174     if (m.tag() == kReachable || m.tag() == kIgnored) continue;
    175 
    176     // Do this check relatively late so we can log only the interesting cases.
    177     if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
    178       LOG_POINTERS(
    179           "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
    180           "%zu.\n",
    181           pp, p, chunk, chunk + m.requested_size(), m.requested_size());
    182       continue;
    183     }
    184 
    185     m.set_tag(tag);
    186     LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
    187                  chunk, chunk + m.requested_size(), m.requested_size());
    188     if (frontier)
    189       frontier->push_back(chunk);
    190   }
    191 }
    192 
    193 // Scans a global range for pointers
    194 void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
    195   uptr allocator_begin = 0, allocator_end = 0;
    196   GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
    197   if (begin <= allocator_begin && allocator_begin < end) {
    198     CHECK_LE(allocator_begin, allocator_end);
    199     CHECK_LE(allocator_end, end);
    200     if (begin < allocator_begin)
    201       ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
    202                            kReachable);
    203     if (allocator_end < end)
    204       ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
    205   } else {
    206     ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
    207   }
    208 }
    209 
    210 void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
    211   Frontier *frontier = reinterpret_cast<Frontier *>(arg);
    212   ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
    213 }
    214 
    215 // Scans thread data (stacks and TLS) for heap pointers.
    216 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
    217                            Frontier *frontier) {
    218   InternalMmapVector<uptr> registers(suspended_threads.RegisterCount());
    219   uptr registers_begin = reinterpret_cast<uptr>(registers.data());
    220   uptr registers_end =
    221       reinterpret_cast<uptr>(registers.data() + registers.size());
    222   for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
    223     tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i));
    224     LOG_THREADS("Processing thread %d.\n", os_id);
    225     uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
    226     DTLS *dtls;
    227     bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
    228                                               &tls_begin, &tls_end,
    229                                               &cache_begin, &cache_end, &dtls);
    230     if (!thread_found) {
    231       // If a thread can't be found in the thread registry, it's probably in the
    232       // process of destruction. Log this event and move on.
    233       LOG_THREADS("Thread %d not found in registry.\n", os_id);
    234       continue;
    235     }
    236     uptr sp;
    237     PtraceRegistersStatus have_registers =
    238         suspended_threads.GetRegistersAndSP(i, registers.data(), &sp);
    239     if (have_registers != REGISTERS_AVAILABLE) {
    240       Report("Unable to get registers from thread %d.\n", os_id);
    241       // If unable to get SP, consider the entire stack to be reachable unless
    242       // GetRegistersAndSP failed with ESRCH.
    243       if (have_registers == REGISTERS_UNAVAILABLE_FATAL) continue;
    244       sp = stack_begin;
    245     }
    246 
    247     if (flags()->use_registers && have_registers)
    248       ScanRangeForPointers(registers_begin, registers_end, frontier,
    249                            "REGISTERS", kReachable);
    250 
    251     if (flags()->use_stacks) {
    252       LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
    253       if (sp < stack_begin || sp >= stack_end) {
    254         // SP is outside the recorded stack range (e.g. the thread is running a
    255         // signal handler on alternate stack, or swapcontext was used).
    256         // Again, consider the entire stack range to be reachable.
    257         LOG_THREADS("WARNING: stack pointer not in stack range.\n");
    258         uptr page_size = GetPageSizeCached();
    259         int skipped = 0;
    260         while (stack_begin < stack_end &&
    261                !IsAccessibleMemoryRange(stack_begin, 1)) {
    262           skipped++;
    263           stack_begin += page_size;
    264         }
    265         LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
    266                     skipped, stack_begin, stack_end);
    267       } else {
    268         // Shrink the stack range to ignore out-of-scope values.
    269         stack_begin = sp;
    270       }
    271       ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
    272                            kReachable);
    273       ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
    274     }
    275 
    276     if (flags()->use_tls) {
    277       if (tls_begin) {
    278         LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
    279         // If the tls and cache ranges don't overlap, scan full tls range,
    280         // otherwise, only scan the non-overlapping portions
    281         if (cache_begin == cache_end || tls_end < cache_begin ||
    282             tls_begin > cache_end) {
    283           ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
    284         } else {
    285           if (tls_begin < cache_begin)
    286             ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
    287                                  kReachable);
    288           if (tls_end > cache_end)
    289             ScanRangeForPointers(cache_end, tls_end, frontier, "TLS",
    290                                  kReachable);
    291         }
    292       }
    293       if (dtls && !DTLSInDestruction(dtls)) {
    294         for (uptr j = 0; j < dtls->dtv_size; ++j) {
    295           uptr dtls_beg = dtls->dtv[j].beg;
    296           uptr dtls_end = dtls_beg + dtls->dtv[j].size;
    297           if (dtls_beg < dtls_end) {
    298             LOG_THREADS("DTLS %zu at %p-%p.\n", j, dtls_beg, dtls_end);
    299             ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
    300                                  kReachable);
    301           }
    302         }
    303       } else {
    304         // We are handling a thread with DTLS under destruction. Log about
    305         // this and continue.
    306         LOG_THREADS("Thread %d has DTLS under destruction.\n", os_id);
    307       }
    308     }
    309   }
    310 }
    311 
    312 void ScanRootRegion(Frontier *frontier, const RootRegion &root_region,
    313                     uptr region_begin, uptr region_end, bool is_readable) {
    314   uptr intersection_begin = Max(root_region.begin, region_begin);
    315   uptr intersection_end = Min(region_end, root_region.begin + root_region.size);
    316   if (intersection_begin >= intersection_end) return;
    317   LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
    318                root_region.begin, root_region.begin + root_region.size,
    319                region_begin, region_end,
    320                is_readable ? "readable" : "unreadable");
    321   if (is_readable)
    322     ScanRangeForPointers(intersection_begin, intersection_end, frontier, "ROOT",
    323                          kReachable);
    324 }
    325 
    326 static void ProcessRootRegion(Frontier *frontier,
    327                               const RootRegion &root_region) {
    328   MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
    329   MemoryMappedSegment segment;
    330   while (proc_maps.Next(&segment)) {
    331     ScanRootRegion(frontier, root_region, segment.start, segment.end,
    332                    segment.IsReadable());
    333   }
    334 }
    335 
    336 // Scans root regions for heap pointers.
    337 static void ProcessRootRegions(Frontier *frontier) {
    338   if (!flags()->use_root_regions) return;
    339   CHECK(root_regions);
    340   for (uptr i = 0; i < root_regions->size(); i++) {
    341     ProcessRootRegion(frontier, (*root_regions)[i]);
    342   }
    343 }
    344 
    345 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
    346   while (frontier->size()) {
    347     uptr next_chunk = frontier->back();
    348     frontier->pop_back();
    349     LsanMetadata m(next_chunk);
    350     ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
    351                          "HEAP", tag);
    352   }
    353 }
    354 
    355 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
    356 // which are reachable from it as indirectly leaked.
    357 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
    358   chunk = GetUserBegin(chunk);
    359   LsanMetadata m(chunk);
    360   if (m.allocated() && m.tag() != kReachable) {
    361     ScanRangeForPointers(chunk, chunk + m.requested_size(),
    362                          /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
    363   }
    364 }
    365 
    366 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
    367 // frontier.
    368 static void CollectIgnoredCb(uptr chunk, void *arg) {
    369   CHECK(arg);
    370   chunk = GetUserBegin(chunk);
    371   LsanMetadata m(chunk);
    372   if (m.allocated() && m.tag() == kIgnored) {
    373     LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n",
    374                  chunk, chunk + m.requested_size(), m.requested_size());
    375     reinterpret_cast<Frontier *>(arg)->push_back(chunk);
    376   }
    377 }
    378 
    379 static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) {
    380   CHECK(stack_id);
    381   StackTrace stack = map->Get(stack_id);
    382   // The top frame is our malloc/calloc/etc. The next frame is the caller.
    383   if (stack.size >= 2)
    384     return stack.trace[1];
    385   return 0;
    386 }
    387 
    388 struct InvalidPCParam {
    389   Frontier *frontier;
    390   StackDepotReverseMap *stack_depot_reverse_map;
    391   bool skip_linker_allocations;
    392 };
    393 
    394 // ForEachChunk callback. If the caller pc is invalid or is within the linker,
    395 // mark as reachable. Called by ProcessPlatformSpecificAllocations.
    396 static void MarkInvalidPCCb(uptr chunk, void *arg) {
    397   CHECK(arg);
    398   InvalidPCParam *param = reinterpret_cast<InvalidPCParam *>(arg);
    399   chunk = GetUserBegin(chunk);
    400   LsanMetadata m(chunk);
    401   if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) {
    402     u32 stack_id = m.stack_trace_id();
    403     uptr caller_pc = 0;
    404     if (stack_id > 0)
    405       caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map);
    406     // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
    407     // it as reachable, as we can't properly report its allocation stack anyway.
    408     if (caller_pc == 0 || (param->skip_linker_allocations &&
    409                            GetLinker()->containsAddress(caller_pc))) {
    410       m.set_tag(kReachable);
    411       param->frontier->push_back(chunk);
    412     }
    413   }
    414 }
    415 
    416 // On Linux, treats all chunks allocated from ld-linux.so as reachable, which
    417 // covers dynamically allocated TLS blocks, internal dynamic loader's loaded
    418 // modules accounting etc.
    419 // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
    420 // They are allocated with a __libc_memalign() call in allocate_and_init()
    421 // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
    422 // blocks, but we can make sure they come from our own allocator by intercepting
    423 // __libc_memalign(). On top of that, there is no easy way to reach them. Their
    424 // addresses are stored in a dynamically allocated array (the DTV) which is
    425 // referenced from the static TLS. Unfortunately, we can't just rely on the DTV
    426 // being reachable from the static TLS, and the dynamic TLS being reachable from
    427 // the DTV. This is because the initial DTV is allocated before our interception
    428 // mechanism kicks in, and thus we don't recognize it as allocated memory. We
    429 // can't special-case it either, since we don't know its size.
    430 // Our solution is to include in the root set all allocations made from
    431 // ld-linux.so (which is where allocate_and_init() is implemented). This is
    432 // guaranteed to include all dynamic TLS blocks (and possibly other allocations
    433 // which we don't care about).
    434 // On all other platforms, this simply checks to ensure that the caller pc is
    435 // valid before reporting chunks as leaked.
    436 void ProcessPC(Frontier *frontier) {
    437   StackDepotReverseMap stack_depot_reverse_map;
    438   InvalidPCParam arg;
    439   arg.frontier = frontier;
    440   arg.stack_depot_reverse_map = &stack_depot_reverse_map;
    441   arg.skip_linker_allocations =
    442       flags()->use_tls && flags()->use_ld_allocations && GetLinker() != nullptr;
    443   ForEachChunk(MarkInvalidPCCb, &arg);
    444 }
    445 
    446 // Sets the appropriate tag on each chunk.
    447 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
    448   // Holds the flood fill frontier.
    449   Frontier frontier;
    450 
    451   ForEachChunk(CollectIgnoredCb, &frontier);
    452   ProcessGlobalRegions(&frontier);
    453   ProcessThreads(suspended_threads, &frontier);
    454   ProcessRootRegions(&frontier);
    455   FloodFillTag(&frontier, kReachable);
    456 
    457   CHECK_EQ(0, frontier.size());
    458   ProcessPC(&frontier);
    459 
    460   // The check here is relatively expensive, so we do this in a separate flood
    461   // fill. That way we can skip the check for chunks that are reachable
    462   // otherwise.
    463   LOG_POINTERS("Processing platform-specific allocations.\n");
    464   ProcessPlatformSpecificAllocations(&frontier);
    465   FloodFillTag(&frontier, kReachable);
    466 
    467   // Iterate over leaked chunks and mark those that are reachable from other
    468   // leaked chunks.
    469   LOG_POINTERS("Scanning leaked chunks.\n");
    470   ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
    471 }
    472 
    473 // ForEachChunk callback. Resets the tags to pre-leak-check state.
    474 static void ResetTagsCb(uptr chunk, void *arg) {
    475   (void)arg;
    476   chunk = GetUserBegin(chunk);
    477   LsanMetadata m(chunk);
    478   if (m.allocated() && m.tag() != kIgnored)
    479     m.set_tag(kDirectlyLeaked);
    480 }
    481 
    482 static void PrintStackTraceById(u32 stack_trace_id) {
    483   CHECK(stack_trace_id);
    484   StackDepotGet(stack_trace_id).Print();
    485 }
    486 
    487 // ForEachChunk callback. Aggregates information about unreachable chunks into
    488 // a LeakReport.
    489 static void CollectLeaksCb(uptr chunk, void *arg) {
    490   CHECK(arg);
    491   LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
    492   chunk = GetUserBegin(chunk);
    493   LsanMetadata m(chunk);
    494   if (!m.allocated()) return;
    495   if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
    496     u32 resolution = flags()->resolution;
    497     u32 stack_trace_id = 0;
    498     if (resolution > 0) {
    499       StackTrace stack = StackDepotGet(m.stack_trace_id());
    500       stack.size = Min(stack.size, resolution);
    501       stack_trace_id = StackDepotPut(stack);
    502     } else {
    503       stack_trace_id = m.stack_trace_id();
    504     }
    505     leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
    506                                 m.tag());
    507   }
    508 }
    509 
    510 static void PrintMatchedSuppressions() {
    511   InternalMmapVector<Suppression *> matched;
    512   GetSuppressionContext()->GetMatched(&matched);
    513   if (!matched.size())
    514     return;
    515   const char *line = "-----------------------------------------------------";
    516   Printf("%s\n", line);
    517   Printf("Suppressions used:\n");
    518   Printf("  count      bytes template\n");
    519   for (uptr i = 0; i < matched.size(); i++)
    520     Printf("%7zu %10zu %s\n", static_cast<uptr>(atomic_load_relaxed(
    521         &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ);
    522   Printf("%s\n\n", line);
    523 }
    524 
    525 struct CheckForLeaksParam {
    526   bool success;
    527   LeakReport leak_report;
    528 };
    529 
    530 static void ReportIfNotSuspended(ThreadContextBase *tctx, void *arg) {
    531   const InternalMmapVector<tid_t> &suspended_threads =
    532       *(const InternalMmapVector<tid_t> *)arg;
    533   if (tctx->status == ThreadStatusRunning) {
    534     uptr i = InternalLowerBound(suspended_threads, 0, suspended_threads.size(),
    535                                 tctx->os_id, CompareLess<int>());
    536     if (i >= suspended_threads.size() || suspended_threads[i] != tctx->os_id)
    537       Report("Running thread %d was not suspended. False leaks are possible.\n",
    538              tctx->os_id);
    539   };
    540 }
    541 
    542 static void ReportUnsuspendedThreads(
    543     const SuspendedThreadsList &suspended_threads) {
    544   InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
    545   for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
    546     threads[i] = suspended_threads.GetThreadID(i);
    547 
    548   Sort(threads.data(), threads.size());
    549 
    550   GetThreadRegistryLocked()->RunCallbackForEachThreadLocked(
    551       &ReportIfNotSuspended, &threads);
    552 }
    553 
    554 static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
    555                                   void *arg) {
    556   CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
    557   CHECK(param);
    558   CHECK(!param->success);
    559   ReportUnsuspendedThreads(suspended_threads);
    560   ClassifyAllChunks(suspended_threads);
    561   ForEachChunk(CollectLeaksCb, &param->leak_report);
    562   // Clean up for subsequent leak checks. This assumes we did not overwrite any
    563   // kIgnored tags.
    564   ForEachChunk(ResetTagsCb, nullptr);
    565   param->success = true;
    566 }
    567 
    568 static bool CheckForLeaks() {
    569   if (&__lsan_is_turned_off && __lsan_is_turned_off())
    570       return false;
    571   EnsureMainThreadIDIsCorrect();
    572   CheckForLeaksParam param;
    573   param.success = false;
    574   LockThreadRegistry();
    575   LockAllocator();
    576   DoStopTheWorld(CheckForLeaksCallback, &param);
    577   UnlockAllocator();
    578   UnlockThreadRegistry();
    579 
    580   if (!param.success) {
    581     Report("LeakSanitizer has encountered a fatal error.\n");
    582     Report(
    583         "HINT: For debugging, try setting environment variable "
    584         "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
    585     Report(
    586         "HINT: LeakSanitizer does not work under ptrace (strace, gdb, etc)\n");
    587     Die();
    588   }
    589   param.leak_report.ApplySuppressions();
    590   uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
    591   if (unsuppressed_count > 0) {
    592     Decorator d;
    593     Printf("\n"
    594            "================================================================="
    595            "\n");
    596     Printf("%s", d.Error());
    597     Report("ERROR: LeakSanitizer: detected memory leaks\n");
    598     Printf("%s", d.Default());
    599     param.leak_report.ReportTopLeaks(flags()->max_leaks);
    600   }
    601   if (common_flags()->print_suppressions)
    602     PrintMatchedSuppressions();
    603   if (unsuppressed_count > 0) {
    604     param.leak_report.PrintSummary();
    605     return true;
    606   }
    607   return false;
    608 }
    609 
    610 static bool has_reported_leaks = false;
    611 bool HasReportedLeaks() { return has_reported_leaks; }
    612 
    613 void DoLeakCheck() {
    614   BlockingMutexLock l(&global_mutex);
    615   static bool already_done;
    616   if (already_done) return;
    617   already_done = true;
    618   has_reported_leaks = CheckForLeaks();
    619   if (has_reported_leaks) HandleLeaks();
    620 }
    621 
    622 static int DoRecoverableLeakCheck() {
    623   BlockingMutexLock l(&global_mutex);
    624   bool have_leaks = CheckForLeaks();
    625   return have_leaks ? 1 : 0;
    626 }
    627 
    628 void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
    629 
    630 static Suppression *GetSuppressionForAddr(uptr addr) {
    631   Suppression *s = nullptr;
    632 
    633   // Suppress by module name.
    634   SuppressionContext *suppressions = GetSuppressionContext();
    635   if (const char *module_name =
    636           Symbolizer::GetOrInit()->GetModuleNameForPc(addr))
    637     if (suppressions->Match(module_name, kSuppressionLeak, &s))
    638       return s;
    639 
    640   // Suppress by file or function name.
    641   SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
    642   for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
    643     if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) ||
    644         suppressions->Match(cur->info.file, kSuppressionLeak, &s)) {
    645       break;
    646     }
    647   }
    648   frames->ClearAll();
    649   return s;
    650 }
    651 
    652 static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
    653   StackTrace stack = StackDepotGet(stack_trace_id);
    654   for (uptr i = 0; i < stack.size; i++) {
    655     Suppression *s = GetSuppressionForAddr(
    656         StackTrace::GetPreviousInstructionPc(stack.trace[i]));
    657     if (s) return s;
    658   }
    659   return nullptr;
    660 }
    661 
    662 ///// LeakReport implementation. /////
    663 
    664 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
    665 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
    666 // in real-world applications.
    667 // FIXME: Get rid of this limit by changing the implementation of LeakReport to
    668 // use a hash table.
    669 const uptr kMaxLeaksConsidered = 5000;
    670 
    671 void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
    672                                 uptr leaked_size, ChunkTag tag) {
    673   CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
    674   bool is_directly_leaked = (tag == kDirectlyLeaked);
    675   uptr i;
    676   for (i = 0; i < leaks_.size(); i++) {
    677     if (leaks_[i].stack_trace_id == stack_trace_id &&
    678         leaks_[i].is_directly_leaked == is_directly_leaked) {
    679       leaks_[i].hit_count++;
    680       leaks_[i].total_size += leaked_size;
    681       break;
    682     }
    683   }
    684   if (i == leaks_.size()) {
    685     if (leaks_.size() == kMaxLeaksConsidered) return;
    686     Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
    687                   is_directly_leaked, /* is_suppressed */ false };
    688     leaks_.push_back(leak);
    689   }
    690   if (flags()->report_objects) {
    691     LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
    692     leaked_objects_.push_back(obj);
    693   }
    694 }
    695 
    696 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
    697   if (leak1.is_directly_leaked == leak2.is_directly_leaked)
    698     return leak1.total_size > leak2.total_size;
    699   else
    700     return leak1.is_directly_leaked;
    701 }
    702 
    703 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
    704   CHECK(leaks_.size() <= kMaxLeaksConsidered);
    705   Printf("\n");
    706   if (leaks_.size() == kMaxLeaksConsidered)
    707     Printf("Too many leaks! Only the first %zu leaks encountered will be "
    708            "reported.\n",
    709            kMaxLeaksConsidered);
    710 
    711   uptr unsuppressed_count = UnsuppressedLeakCount();
    712   if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
    713     Printf("The %zu top leak(s):\n", num_leaks_to_report);
    714   Sort(leaks_.data(), leaks_.size(), &LeakComparator);
    715   uptr leaks_reported = 0;
    716   for (uptr i = 0; i < leaks_.size(); i++) {
    717     if (leaks_[i].is_suppressed) continue;
    718     PrintReportForLeak(i);
    719     leaks_reported++;
    720     if (leaks_reported == num_leaks_to_report) break;
    721   }
    722   if (leaks_reported < unsuppressed_count) {
    723     uptr remaining = unsuppressed_count - leaks_reported;
    724     Printf("Omitting %zu more leak(s).\n", remaining);
    725   }
    726 }
    727 
    728 void LeakReport::PrintReportForLeak(uptr index) {
    729   Decorator d;
    730   Printf("%s", d.Leak());
    731   Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
    732          leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
    733          leaks_[index].total_size, leaks_[index].hit_count);
    734   Printf("%s", d.Default());
    735 
    736   PrintStackTraceById(leaks_[index].stack_trace_id);
    737 
    738   if (flags()->report_objects) {
    739     Printf("Objects leaked above:\n");
    740     PrintLeakedObjectsForLeak(index);
    741     Printf("\n");
    742   }
    743 }
    744 
    745 void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
    746   u32 leak_id = leaks_[index].id;
    747   for (uptr j = 0; j < leaked_objects_.size(); j++) {
    748     if (leaked_objects_[j].leak_id == leak_id)
    749       Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
    750              leaked_objects_[j].size);
    751   }
    752 }
    753 
    754 void LeakReport::PrintSummary() {
    755   CHECK(leaks_.size() <= kMaxLeaksConsidered);
    756   uptr bytes = 0, allocations = 0;
    757   for (uptr i = 0; i < leaks_.size(); i++) {
    758       if (leaks_[i].is_suppressed) continue;
    759       bytes += leaks_[i].total_size;
    760       allocations += leaks_[i].hit_count;
    761   }
    762   InternalScopedString summary(kMaxSummaryLength);
    763   summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
    764                  allocations);
    765   ReportErrorSummary(summary.data());
    766 }
    767 
    768 void LeakReport::ApplySuppressions() {
    769   for (uptr i = 0; i < leaks_.size(); i++) {
    770     Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
    771     if (s) {
    772       s->weight += leaks_[i].total_size;
    773       atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) +
    774           leaks_[i].hit_count);
    775       leaks_[i].is_suppressed = true;
    776     }
    777   }
    778 }
    779 
    780 uptr LeakReport::UnsuppressedLeakCount() {
    781   uptr result = 0;
    782   for (uptr i = 0; i < leaks_.size(); i++)
    783     if (!leaks_[i].is_suppressed) result++;
    784   return result;
    785 }
    786 
    787 } // namespace __lsan
    788 #else // CAN_SANITIZE_LEAKS
    789 namespace __lsan {
    790 void InitCommonLsan() { }
    791 void DoLeakCheck() { }
    792 void DoRecoverableLeakCheckVoid() { }
    793 void DisableInThisThread() { }
    794 void EnableInThisThread() { }
    795 }
    796 #endif // CAN_SANITIZE_LEAKS
    797 
    798 using namespace __lsan;  // NOLINT
    799 
    800 extern "C" {
    801 SANITIZER_INTERFACE_ATTRIBUTE
    802 void __lsan_ignore_object(const void *p) {
    803 #if CAN_SANITIZE_LEAKS
    804   if (!common_flags()->detect_leaks)
    805     return;
    806   // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
    807   // locked.
    808   BlockingMutexLock l(&global_mutex);
    809   IgnoreObjectResult res = IgnoreObjectLocked(p);
    810   if (res == kIgnoreObjectInvalid)
    811     VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
    812   if (res == kIgnoreObjectAlreadyIgnored)
    813     VReport(1, "__lsan_ignore_object(): "
    814            "heap object at %p is already being ignored\n", p);
    815   if (res == kIgnoreObjectSuccess)
    816     VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
    817 #endif // CAN_SANITIZE_LEAKS
    818 }
    819 
    820 SANITIZER_INTERFACE_ATTRIBUTE
    821 void __lsan_register_root_region(const void *begin, uptr size) {
    822 #if CAN_SANITIZE_LEAKS
    823   BlockingMutexLock l(&global_mutex);
    824   CHECK(root_regions);
    825   RootRegion region = {reinterpret_cast<uptr>(begin), size};
    826   root_regions->push_back(region);
    827   VReport(1, "Registered root region at %p of size %llu\n", begin, size);
    828 #endif // CAN_SANITIZE_LEAKS
    829 }
    830 
    831 SANITIZER_INTERFACE_ATTRIBUTE
    832 void __lsan_unregister_root_region(const void *begin, uptr size) {
    833 #if CAN_SANITIZE_LEAKS
    834   BlockingMutexLock l(&global_mutex);
    835   CHECK(root_regions);
    836   bool removed = false;
    837   for (uptr i = 0; i < root_regions->size(); i++) {
    838     RootRegion region = (*root_regions)[i];
    839     if (region.begin == reinterpret_cast<uptr>(begin) && region.size == size) {
    840       removed = true;
    841       uptr last_index = root_regions->size() - 1;
    842       (*root_regions)[i] = (*root_regions)[last_index];
    843       root_regions->pop_back();
    844       VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
    845       break;
    846     }
    847   }
    848   if (!removed) {
    849     Report(
    850         "__lsan_unregister_root_region(): region at %p of size %llu has not "
    851         "been registered.\n",
    852         begin, size);
    853     Die();
    854   }
    855 #endif // CAN_SANITIZE_LEAKS
    856 }
    857 
    858 SANITIZER_INTERFACE_ATTRIBUTE
    859 void __lsan_disable() {
    860 #if CAN_SANITIZE_LEAKS
    861   __lsan::DisableInThisThread();
    862 #endif
    863 }
    864 
    865 SANITIZER_INTERFACE_ATTRIBUTE
    866 void __lsan_enable() {
    867 #if CAN_SANITIZE_LEAKS
    868   __lsan::EnableInThisThread();
    869 #endif
    870 }
    871 
    872 SANITIZER_INTERFACE_ATTRIBUTE
    873 void __lsan_do_leak_check() {
    874 #if CAN_SANITIZE_LEAKS
    875   if (common_flags()->detect_leaks)
    876     __lsan::DoLeakCheck();
    877 #endif // CAN_SANITIZE_LEAKS
    878 }
    879 
    880 SANITIZER_INTERFACE_ATTRIBUTE
    881 int __lsan_do_recoverable_leak_check() {
    882 #if CAN_SANITIZE_LEAKS
    883   if (common_flags()->detect_leaks)
    884     return __lsan::DoRecoverableLeakCheck();
    885 #endif // CAN_SANITIZE_LEAKS
    886   return 0;
    887 }
    888 
    889 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
    890 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
    891 const char * __lsan_default_options() {
    892   return "";
    893 }
    894 
    895 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
    896 int __lsan_is_turned_off() {
    897   return 0;
    898 }
    899 
    900 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
    901 const char *__lsan_default_suppressions() {
    902   return "";
    903 }
    904 #endif
    905 } // extern "C"
    906