Home | History | Annotate | Line # | Download | only in rtl
      1 //===-- tsan_interceptors.cc ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of ThreadSanitizer (TSan), a race detector.
     11 //
     12 // FIXME: move as many interceptors as possible into
     13 // sanitizer_common/sanitizer_common_interceptors.inc
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "sanitizer_common/sanitizer_atomic.h"
     17 #include "sanitizer_common/sanitizer_errno.h"
     18 #include "sanitizer_common/sanitizer_libc.h"
     19 #include "sanitizer_common/sanitizer_linux.h"
     20 #include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
     21 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
     22 #include "sanitizer_common/sanitizer_placement_new.h"
     23 #include "sanitizer_common/sanitizer_posix.h"
     24 #include "sanitizer_common/sanitizer_stacktrace.h"
     25 #include "sanitizer_common/sanitizer_tls_get_addr.h"
     26 #include "interception/interception.h"
     27 #include "tsan_interceptors.h"
     28 #include "tsan_interface.h"
     29 #include "tsan_platform.h"
     30 #include "tsan_suppressions.h"
     31 #include "tsan_rtl.h"
     32 #include "tsan_mman.h"
     33 #include "tsan_fd.h"
     34 
     35 
     36 using namespace __tsan;  // NOLINT
     37 
     38 #if SANITIZER_FREEBSD || SANITIZER_MAC
     39 #define stdout __stdoutp
     40 #define stderr __stderrp
     41 #endif
     42 
     43 #if SANITIZER_NETBSD
     44 #define dirfd(dirp) (*(int *)(dirp))
     45 #define fileno_unlocked fileno
     46 
     47 #if _LP64
     48 #define __sF_size 152
     49 #else
     50 #define __sF_size 88
     51 #endif
     52 
     53 #define stdout ((char*)&__sF + (__sF_size * 1))
     54 #define stderr ((char*)&__sF + (__sF_size * 2))
     55 
     56 #define nanosleep __nanosleep50
     57 #define vfork __vfork14
     58 #endif
     59 
     60 #if SANITIZER_ANDROID
     61 #define mallopt(a, b)
     62 #endif
     63 
     64 #ifdef __mips__
     65 const int kSigCount = 129;
     66 #else
     67 const int kSigCount = 65;
     68 #endif
     69 
     70 #ifdef __mips__
     71 struct ucontext_t {
     72   u64 opaque[768 / sizeof(u64) + 1];
     73 };
     74 #else
     75 struct ucontext_t {
     76   // The size is determined by looking at sizeof of real ucontext_t on linux.
     77   u64 opaque[936 / sizeof(u64) + 1];
     78 };
     79 #endif
     80 
     81 #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1
     82 #define PTHREAD_ABI_BASE  "GLIBC_2.3.2"
     83 #elif defined(__aarch64__) || SANITIZER_PPC64V2
     84 #define PTHREAD_ABI_BASE  "GLIBC_2.17"
     85 #endif
     86 
     87 extern "C" int pthread_attr_init(void *attr);
     88 extern "C" int pthread_attr_destroy(void *attr);
     89 DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
     90 extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
     91 extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
     92 extern "C" int pthread_setspecific(unsigned key, const void *v);
     93 DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
     94 DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
     95 DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
     96 DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
     97 extern "C" void *pthread_self();
     98 extern "C" void _exit(int status);
     99 extern "C" int fileno_unlocked(void *stream);
    100 #if !SANITIZER_NETBSD
    101 extern "C" int dirfd(void *dirp);
    102 #endif
    103 #if !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_NETBSD
    104 extern "C" int mallopt(int param, int value);
    105 #endif
    106 #if SANITIZER_NETBSD
    107 extern __sanitizer_FILE __sF[];
    108 #else
    109 extern __sanitizer_FILE *stdout, *stderr;
    110 #endif
    111 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
    112 const int PTHREAD_MUTEX_RECURSIVE = 1;
    113 const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
    114 #else
    115 const int PTHREAD_MUTEX_RECURSIVE = 2;
    116 const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
    117 #endif
    118 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
    119 const int EPOLL_CTL_ADD = 1;
    120 #endif
    121 const int SIGILL = 4;
    122 const int SIGABRT = 6;
    123 const int SIGFPE = 8;
    124 const int SIGSEGV = 11;
    125 const int SIGPIPE = 13;
    126 const int SIGTERM = 15;
    127 #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
    128 const int SIGBUS = 10;
    129 const int SIGSYS = 12;
    130 #else
    131 const int SIGBUS = 7;
    132 const int SIGSYS = 31;
    133 #endif
    134 void *const MAP_FAILED = (void*)-1;
    135 #if SANITIZER_NETBSD
    136 const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567;
    137 #elif !SANITIZER_MAC
    138 const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
    139 #endif
    140 const int MAP_FIXED = 0x10;
    141 typedef long long_t;  // NOLINT
    142 
    143 // From /usr/include/unistd.h
    144 # define F_ULOCK 0      /* Unlock a previously locked region.  */
    145 # define F_LOCK  1      /* Lock a region for exclusive use.  */
    146 # define F_TLOCK 2      /* Test and lock a region for exclusive use.  */
    147 # define F_TEST  3      /* Test a region for other processes locks.  */
    148 
    149 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
    150 const int SA_SIGINFO = 0x40;
    151 const int SIG_SETMASK = 3;
    152 #elif defined(__mips__)
    153 const int SA_SIGINFO = 8;
    154 const int SIG_SETMASK = 3;
    155 #else
    156 const int SA_SIGINFO = 4;
    157 const int SIG_SETMASK = 2;
    158 #endif
    159 
    160 #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
    161   (!cur_thread()->is_inited)
    162 
    163 namespace __tsan {
    164 struct SignalDesc {
    165   bool armed;
    166   bool sigaction;
    167   __sanitizer_siginfo siginfo;
    168   ucontext_t ctx;
    169 };
    170 
    171 struct ThreadSignalContext {
    172   int int_signal_send;
    173   atomic_uintptr_t in_blocking_func;
    174   atomic_uintptr_t have_pending_signals;
    175   SignalDesc pending_signals[kSigCount];
    176   // emptyset and oldset are too big for stack.
    177   __sanitizer_sigset_t emptyset;
    178   __sanitizer_sigset_t oldset;
    179 };
    180 
    181 // The sole reason tsan wraps atexit callbacks is to establish synchronization
    182 // between callback setup and callback execution.
    183 struct AtExitCtx {
    184   void (*f)();
    185   void *arg;
    186 };
    187 
    188 // InterceptorContext holds all global data required for interceptors.
    189 // It's explicitly constructed in InitializeInterceptors with placement new
    190 // and is never destroyed. This allows usage of members with non-trivial
    191 // constructors and destructors.
    192 struct InterceptorContext {
    193   // The object is 64-byte aligned, because we want hot data to be located
    194   // in a single cache line if possible (it's accessed in every interceptor).
    195   ALIGNED(64) LibIgnore libignore;
    196   __sanitizer_sigaction sigactions[kSigCount];
    197 #if !SANITIZER_MAC && !SANITIZER_NETBSD
    198   unsigned finalize_key;
    199 #endif
    200 
    201   BlockingMutex atexit_mu;
    202   Vector<struct AtExitCtx *> AtExitStack;
    203 
    204   InterceptorContext()
    205       : libignore(LINKER_INITIALIZED), AtExitStack() {
    206   }
    207 };
    208 
    209 static ALIGNED(64) char interceptor_placeholder[sizeof(InterceptorContext)];
    210 InterceptorContext *interceptor_ctx() {
    211   return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]);
    212 }
    213 
    214 LibIgnore *libignore() {
    215   return &interceptor_ctx()->libignore;
    216 }
    217 
    218 void InitializeLibIgnore() {
    219   const SuppressionContext &supp = *Suppressions();
    220   const uptr n = supp.SuppressionCount();
    221   for (uptr i = 0; i < n; i++) {
    222     const Suppression *s = supp.SuppressionAt(i);
    223     if (0 == internal_strcmp(s->type, kSuppressionLib))
    224       libignore()->AddIgnoredLibrary(s->templ);
    225   }
    226   if (flags()->ignore_noninstrumented_modules)
    227     libignore()->IgnoreNoninstrumentedModules(true);
    228   libignore()->OnLibraryLoaded(0);
    229 }
    230 
    231 // The following two hooks can be used by for cooperative scheduling when
    232 // locking.
    233 #ifdef TSAN_EXTERNAL_HOOKS
    234 void OnPotentiallyBlockingRegionBegin();
    235 void OnPotentiallyBlockingRegionEnd();
    236 #else
    237 SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionBegin() {}
    238 SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionEnd() {}
    239 #endif
    240 
    241 }  // namespace __tsan
    242 
    243 static ThreadSignalContext *SigCtx(ThreadState *thr) {
    244   ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
    245   if (ctx == 0 && !thr->is_dead) {
    246     ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
    247     MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
    248     thr->signal_ctx = ctx;
    249   }
    250   return ctx;
    251 }
    252 
    253 ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
    254                                      uptr pc)
    255     : thr_(thr), pc_(pc), in_ignored_lib_(false), ignoring_(false) {
    256   Initialize(thr);
    257   if (!thr_->is_inited) return;
    258   if (!thr_->ignore_interceptors) FuncEntry(thr, pc);
    259   DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
    260   ignoring_ =
    261       !thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses ||
    262                                 libignore()->IsIgnored(pc, &in_ignored_lib_));
    263   EnableIgnores();
    264 }
    265 
    266 ScopedInterceptor::~ScopedInterceptor() {
    267   if (!thr_->is_inited) return;
    268   DisableIgnores();
    269   if (!thr_->ignore_interceptors) {
    270     ProcessPendingSignals(thr_);
    271     FuncExit(thr_);
    272     CheckNoLocks(thr_);
    273   }
    274 }
    275 
    276 void ScopedInterceptor::EnableIgnores() {
    277   if (ignoring_) {
    278     ThreadIgnoreBegin(thr_, pc_, /*save_stack=*/false);
    279     if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports++;
    280     if (in_ignored_lib_) {
    281       DCHECK(!thr_->in_ignored_lib);
    282       thr_->in_ignored_lib = true;
    283     }
    284   }
    285 }
    286 
    287 void ScopedInterceptor::DisableIgnores() {
    288   if (ignoring_) {
    289     ThreadIgnoreEnd(thr_, pc_);
    290     if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports--;
    291     if (in_ignored_lib_) {
    292       DCHECK(thr_->in_ignored_lib);
    293       thr_->in_ignored_lib = false;
    294     }
    295   }
    296 }
    297 
    298 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
    299 #if SANITIZER_FREEBSD
    300 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
    301 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
    302 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
    303 #elif SANITIZER_NETBSD
    304 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
    305 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
    306          INTERCEPT_FUNCTION(__libc_##func)
    307 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
    308          INTERCEPT_FUNCTION(__libc_thr_##func)
    309 #else
    310 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
    311 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
    312 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
    313 #endif
    314 
    315 #define READ_STRING_OF_LEN(thr, pc, s, len, n)                 \
    316   MemoryAccessRange((thr), (pc), (uptr)(s),                         \
    317     common_flags()->strict_string_checks ? (len) + 1 : (n), false)
    318 
    319 #define READ_STRING(thr, pc, s, n)                             \
    320     READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
    321 
    322 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
    323 
    324 struct BlockingCall {
    325   explicit BlockingCall(ThreadState *thr)
    326       : thr(thr)
    327       , ctx(SigCtx(thr)) {
    328     for (;;) {
    329       atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
    330       if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
    331         break;
    332       atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
    333       ProcessPendingSignals(thr);
    334     }
    335     // When we are in a "blocking call", we process signals asynchronously
    336     // (right when they arrive). In this context we do not expect to be
    337     // executing any user/runtime code. The known interceptor sequence when
    338     // this is not true is: pthread_join -> munmap(stack). It's fine
    339     // to ignore munmap in this case -- we handle stack shadow separately.
    340     thr->ignore_interceptors++;
    341   }
    342 
    343   ~BlockingCall() {
    344     thr->ignore_interceptors--;
    345     atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
    346   }
    347 
    348   ThreadState *thr;
    349   ThreadSignalContext *ctx;
    350 };
    351 
    352 TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
    353   SCOPED_TSAN_INTERCEPTOR(sleep, sec);
    354   unsigned res = BLOCK_REAL(sleep)(sec);
    355   AfterSleep(thr, pc);
    356   return res;
    357 }
    358 
    359 TSAN_INTERCEPTOR(int, usleep, long_t usec) {
    360   SCOPED_TSAN_INTERCEPTOR(usleep, usec);
    361   int res = BLOCK_REAL(usleep)(usec);
    362   AfterSleep(thr, pc);
    363   return res;
    364 }
    365 
    366 TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
    367   SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
    368   int res = BLOCK_REAL(nanosleep)(req, rem);
    369   AfterSleep(thr, pc);
    370   return res;
    371 }
    372 
    373 TSAN_INTERCEPTOR(int, pause, int fake) {
    374   SCOPED_TSAN_INTERCEPTOR(pause, fake);
    375   return BLOCK_REAL(pause)(fake);
    376 }
    377 
    378 static void at_exit_wrapper() {
    379   AtExitCtx *ctx;
    380   {
    381     // Ensure thread-safety.
    382     BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
    383 
    384     // Pop AtExitCtx from the top of the stack of callback functions
    385     uptr element = interceptor_ctx()->AtExitStack.Size() - 1;
    386     ctx = interceptor_ctx()->AtExitStack[element];
    387     interceptor_ctx()->AtExitStack.PopBack();
    388   }
    389 
    390   Acquire(cur_thread(), (uptr)0, (uptr)ctx);
    391   ((void(*)())ctx->f)();
    392   InternalFree(ctx);
    393 }
    394 
    395 static void cxa_at_exit_wrapper(void *arg) {
    396   Acquire(cur_thread(), 0, (uptr)arg);
    397   AtExitCtx *ctx = (AtExitCtx*)arg;
    398   ((void(*)(void *arg))ctx->f)(ctx->arg);
    399   InternalFree(ctx);
    400 }
    401 
    402 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
    403       void *arg, void *dso);
    404 
    405 #if !SANITIZER_ANDROID
    406 TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
    407   if (UNLIKELY(cur_thread()->in_symbolizer))
    408     return 0;
    409   // We want to setup the atexit callback even if we are in ignored lib
    410   // or after fork.
    411   SCOPED_INTERCEPTOR_RAW(atexit, f);
    412   return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
    413 }
    414 #endif
    415 
    416 TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
    417   if (UNLIKELY(cur_thread()->in_symbolizer))
    418     return 0;
    419   SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
    420   return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
    421 }
    422 
    423 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
    424       void *arg, void *dso) {
    425   AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
    426   ctx->f = f;
    427   ctx->arg = arg;
    428   Release(thr, pc, (uptr)ctx);
    429   // Memory allocation in __cxa_atexit will race with free during exit,
    430   // because we do not see synchronization around atexit callback list.
    431   ThreadIgnoreBegin(thr, pc);
    432   int res;
    433   if (!dso) {
    434     // NetBSD does not preserve the 2nd argument if dso is equal to 0
    435     // Store ctx in a local stack-like structure
    436 
    437     // Ensure thread-safety.
    438     BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
    439 
    440     res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_wrapper, 0, 0);
    441     // Push AtExitCtx on the top of the stack of callback functions
    442     if (!res) {
    443       interceptor_ctx()->AtExitStack.PushBack(ctx);
    444     }
    445   } else {
    446     res = REAL(__cxa_atexit)(cxa_at_exit_wrapper, ctx, dso);
    447   }
    448   ThreadIgnoreEnd(thr, pc);
    449   return res;
    450 }
    451 
    452 #if !SANITIZER_MAC && !SANITIZER_NETBSD
    453 static void on_exit_wrapper(int status, void *arg) {
    454   ThreadState *thr = cur_thread();
    455   uptr pc = 0;
    456   Acquire(thr, pc, (uptr)arg);
    457   AtExitCtx *ctx = (AtExitCtx*)arg;
    458   ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
    459   InternalFree(ctx);
    460 }
    461 
    462 TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
    463   if (UNLIKELY(cur_thread()->in_symbolizer))
    464     return 0;
    465   SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
    466   AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
    467   ctx->f = (void(*)())f;
    468   ctx->arg = arg;
    469   Release(thr, pc, (uptr)ctx);
    470   // Memory allocation in __cxa_atexit will race with free during exit,
    471   // because we do not see synchronization around atexit callback list.
    472   ThreadIgnoreBegin(thr, pc);
    473   int res = REAL(on_exit)(on_exit_wrapper, ctx);
    474   ThreadIgnoreEnd(thr, pc);
    475   return res;
    476 }
    477 #define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
    478 #else
    479 #define TSAN_MAYBE_INTERCEPT_ON_EXIT
    480 #endif
    481 
    482 // Cleanup old bufs.
    483 static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
    484   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
    485     JmpBuf *buf = &thr->jmp_bufs[i];
    486     if (buf->sp <= sp) {
    487       uptr sz = thr->jmp_bufs.Size();
    488       internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
    489       thr->jmp_bufs.PopBack();
    490       i--;
    491     }
    492   }
    493 }
    494 
    495 static void SetJmp(ThreadState *thr, uptr sp, uptr mangled_sp) {
    496   if (!thr->is_inited)  // called from libc guts during bootstrap
    497     return;
    498   // Cleanup old bufs.
    499   JmpBufGarbageCollect(thr, sp);
    500   // Remember the buf.
    501   JmpBuf *buf = thr->jmp_bufs.PushBack();
    502   buf->sp = sp;
    503   buf->mangled_sp = mangled_sp;
    504   buf->shadow_stack_pos = thr->shadow_stack_pos;
    505   ThreadSignalContext *sctx = SigCtx(thr);
    506   buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
    507   buf->in_blocking_func = sctx ?
    508       atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
    509       false;
    510   buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
    511       memory_order_relaxed);
    512 }
    513 
    514 static void LongJmp(ThreadState *thr, uptr *env) {
    515 #ifdef __powerpc__
    516   uptr mangled_sp = env[0];
    517 #elif SANITIZER_FREEBSD
    518   uptr mangled_sp = env[2];
    519 #elif SANITIZER_NETBSD
    520   uptr mangled_sp = env[6];
    521 #elif SANITIZER_MAC
    522 # ifdef __aarch64__
    523   uptr mangled_sp =
    524       (GetMacosVersion() >= MACOS_VERSION_MOJAVE) ? env[12] : env[13];
    525 # else
    526     uptr mangled_sp = env[2];
    527 # endif
    528 #elif SANITIZER_LINUX
    529 # ifdef __aarch64__
    530   uptr mangled_sp = env[13];
    531 # elif defined(__mips64)
    532   uptr mangled_sp = env[1];
    533 # else
    534   uptr mangled_sp = env[6];
    535 # endif
    536 #endif
    537   // Find the saved buf by mangled_sp.
    538   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
    539     JmpBuf *buf = &thr->jmp_bufs[i];
    540     if (buf->mangled_sp == mangled_sp) {
    541       CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
    542       // Unwind the stack.
    543       while (thr->shadow_stack_pos > buf->shadow_stack_pos)
    544         FuncExit(thr);
    545       ThreadSignalContext *sctx = SigCtx(thr);
    546       if (sctx) {
    547         sctx->int_signal_send = buf->int_signal_send;
    548         atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
    549             memory_order_relaxed);
    550       }
    551       atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
    552           memory_order_relaxed);
    553       JmpBufGarbageCollect(thr, buf->sp - 1);  // do not collect buf->sp
    554       return;
    555     }
    556   }
    557   Printf("ThreadSanitizer: can't find longjmp buf\n");
    558   CHECK(0);
    559 }
    560 
    561 // FIXME: put everything below into a common extern "C" block?
    562 extern "C" void __tsan_setjmp(uptr sp, uptr mangled_sp) {
    563   SetJmp(cur_thread(), sp, mangled_sp);
    564 }
    565 
    566 #if SANITIZER_MAC
    567 TSAN_INTERCEPTOR(int, setjmp, void *env);
    568 TSAN_INTERCEPTOR(int, _setjmp, void *env);
    569 TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
    570 #else  // SANITIZER_MAC
    571 
    572 #if SANITIZER_NETBSD
    573 #define setjmp_symname __setjmp14
    574 #define sigsetjmp_symname __sigsetjmp14
    575 #else
    576 #define setjmp_symname setjmp
    577 #define sigsetjmp_symname sigsetjmp
    578 #endif
    579 
    580 #define TSAN_INTERCEPTOR_SETJMP_(x) __interceptor_ ## x
    581 #define TSAN_INTERCEPTOR_SETJMP__(x) TSAN_INTERCEPTOR_SETJMP_(x)
    582 #define TSAN_INTERCEPTOR_SETJMP TSAN_INTERCEPTOR_SETJMP__(setjmp_symname)
    583 #define TSAN_INTERCEPTOR_SIGSETJMP TSAN_INTERCEPTOR_SETJMP__(sigsetjmp_symname)
    584 
    585 #define TSAN_STRING_SETJMP SANITIZER_STRINGIFY(setjmp_symname)
    586 #define TSAN_STRING_SIGSETJMP SANITIZER_STRINGIFY(sigsetjmp_symname)
    587 
    588 // Not called.  Merely to satisfy TSAN_INTERCEPT().
    589 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    590 int TSAN_INTERCEPTOR_SETJMP(void *env);
    591 extern "C" int TSAN_INTERCEPTOR_SETJMP(void *env) {
    592   CHECK(0);
    593   return 0;
    594 }
    595 
    596 // FIXME: any reason to have a separate declaration?
    597 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    598 int __interceptor__setjmp(void *env);
    599 extern "C" int __interceptor__setjmp(void *env) {
    600   CHECK(0);
    601   return 0;
    602 }
    603 
    604 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    605 int TSAN_INTERCEPTOR_SIGSETJMP(void *env);
    606 extern "C" int TSAN_INTERCEPTOR_SIGSETJMP(void *env) {
    607   CHECK(0);
    608   return 0;
    609 }
    610 
    611 #if !SANITIZER_NETBSD
    612 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
    613 int __interceptor___sigsetjmp(void *env);
    614 extern "C" int __interceptor___sigsetjmp(void *env) {
    615   CHECK(0);
    616   return 0;
    617 }
    618 #endif
    619 
    620 extern "C" int setjmp_symname(void *env);
    621 extern "C" int _setjmp(void *env);
    622 extern "C" int sigsetjmp_symname(void *env);
    623 #if !SANITIZER_NETBSD
    624 extern "C" int __sigsetjmp(void *env);
    625 #endif
    626 DEFINE_REAL(int, setjmp_symname, void *env)
    627 DEFINE_REAL(int, _setjmp, void *env)
    628 DEFINE_REAL(int, sigsetjmp_symname, void *env)
    629 #if !SANITIZER_NETBSD
    630 DEFINE_REAL(int, __sigsetjmp, void *env)
    631 #endif
    632 #endif  // SANITIZER_MAC
    633 
    634 #if SANITIZER_NETBSD
    635 #define longjmp_symname __longjmp14
    636 #define siglongjmp_symname __siglongjmp14
    637 #else
    638 #define longjmp_symname longjmp
    639 #define siglongjmp_symname siglongjmp
    640 #endif
    641 
    642 TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) {
    643   // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
    644   // bad things will happen. We will jump over ScopedInterceptor dtor and can
    645   // leave thr->in_ignored_lib set.
    646   {
    647     SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val);
    648   }
    649   LongJmp(cur_thread(), env);
    650   REAL(longjmp_symname)(env, val);
    651 }
    652 
    653 TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) {
    654   {
    655     SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val);
    656   }
    657   LongJmp(cur_thread(), env);
    658   REAL(siglongjmp_symname)(env, val);
    659 }
    660 
    661 #if SANITIZER_NETBSD
    662 TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) {
    663   {
    664     SCOPED_INTERCEPTOR_RAW(_longjmp, env, val);
    665   }
    666   LongJmp(cur_thread(), env);
    667   REAL(_longjmp)(env, val);
    668 }
    669 #endif
    670 
    671 #if !SANITIZER_MAC
    672 TSAN_INTERCEPTOR(void*, malloc, uptr size) {
    673   if (UNLIKELY(cur_thread()->in_symbolizer))
    674     return InternalAlloc(size);
    675   void *p = 0;
    676   {
    677     SCOPED_INTERCEPTOR_RAW(malloc, size);
    678     p = user_alloc(thr, pc, size);
    679   }
    680   invoke_malloc_hook(p, size);
    681   return p;
    682 }
    683 
    684 TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
    685   SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
    686   return user_memalign(thr, pc, align, sz);
    687 }
    688 
    689 TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
    690   if (UNLIKELY(cur_thread()->in_symbolizer))
    691     return InternalCalloc(size, n);
    692   void *p = 0;
    693   {
    694     SCOPED_INTERCEPTOR_RAW(calloc, size, n);
    695     p = user_calloc(thr, pc, size, n);
    696   }
    697   invoke_malloc_hook(p, n * size);
    698   return p;
    699 }
    700 
    701 TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
    702   if (UNLIKELY(cur_thread()->in_symbolizer))
    703     return InternalRealloc(p, size);
    704   if (p)
    705     invoke_free_hook(p);
    706   {
    707     SCOPED_INTERCEPTOR_RAW(realloc, p, size);
    708     p = user_realloc(thr, pc, p, size);
    709   }
    710   invoke_malloc_hook(p, size);
    711   return p;
    712 }
    713 
    714 TSAN_INTERCEPTOR(void, free, void *p) {
    715   if (p == 0)
    716     return;
    717   if (UNLIKELY(cur_thread()->in_symbolizer))
    718     return InternalFree(p);
    719   invoke_free_hook(p);
    720   SCOPED_INTERCEPTOR_RAW(free, p);
    721   user_free(thr, pc, p);
    722 }
    723 
    724 TSAN_INTERCEPTOR(void, cfree, void *p) {
    725   if (p == 0)
    726     return;
    727   if (UNLIKELY(cur_thread()->in_symbolizer))
    728     return InternalFree(p);
    729   invoke_free_hook(p);
    730   SCOPED_INTERCEPTOR_RAW(cfree, p);
    731   user_free(thr, pc, p);
    732 }
    733 
    734 TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
    735   SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
    736   return user_alloc_usable_size(p);
    737 }
    738 #endif
    739 
    740 TSAN_INTERCEPTOR(char*, strcpy, char *dst, const char *src) {  // NOLINT
    741   SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);  // NOLINT
    742   uptr srclen = internal_strlen(src);
    743   MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
    744   MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
    745   return REAL(strcpy)(dst, src);  // NOLINT
    746 }
    747 
    748 TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
    749   SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
    750   uptr srclen = internal_strnlen(src, n);
    751   MemoryAccessRange(thr, pc, (uptr)dst, n, true);
    752   MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
    753   return REAL(strncpy)(dst, src, n);
    754 }
    755 
    756 TSAN_INTERCEPTOR(char*, strdup, const char *str) {
    757   SCOPED_TSAN_INTERCEPTOR(strdup, str);
    758   // strdup will call malloc, so no instrumentation is required here.
    759   return REAL(strdup)(str);
    760 }
    761 
    762 static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
    763   if (*addr) {
    764     if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
    765       if (flags & MAP_FIXED) {
    766         errno = errno_EINVAL;
    767         return false;
    768       } else {
    769         *addr = 0;
    770       }
    771     }
    772   }
    773   return true;
    774 }
    775 
    776 template <class Mmap>
    777 static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap,
    778                               void *addr, SIZE_T sz, int prot, int flags,
    779                               int fd, OFF64_T off) {
    780   if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED;
    781   void *res = real_mmap(addr, sz, prot, flags, fd, off);
    782   if (res != MAP_FAILED) {
    783     if (fd > 0) FdAccess(thr, pc, fd);
    784     if (thr->ignore_reads_and_writes == 0)
    785       MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
    786     else
    787       MemoryResetRange(thr, pc, (uptr)res, sz);
    788   }
    789   return res;
    790 }
    791 
    792 TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
    793   SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
    794   if (sz != 0) {
    795     // If sz == 0, munmap will return EINVAL and don't unmap any memory.
    796     DontNeedShadowFor((uptr)addr, sz);
    797     ScopedGlobalProcessor sgp;
    798     ctx->metamap.ResetRange(thr->proc(), (uptr)addr, (uptr)sz);
    799   }
    800   int res = REAL(munmap)(addr, sz);
    801   return res;
    802 }
    803 
    804 #if SANITIZER_LINUX
    805 TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
    806   SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
    807   return user_memalign(thr, pc, align, sz);
    808 }
    809 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
    810 #else
    811 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
    812 #endif
    813 
    814 #if !SANITIZER_MAC
    815 TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
    816   if (UNLIKELY(cur_thread()->in_symbolizer))
    817     return InternalAlloc(sz, nullptr, align);
    818   SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz);
    819   return user_aligned_alloc(thr, pc, align, sz);
    820 }
    821 
    822 TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
    823   if (UNLIKELY(cur_thread()->in_symbolizer))
    824     return InternalAlloc(sz, nullptr, GetPageSizeCached());
    825   SCOPED_INTERCEPTOR_RAW(valloc, sz);
    826   return user_valloc(thr, pc, sz);
    827 }
    828 #endif
    829 
    830 #if SANITIZER_LINUX
    831 TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
    832   if (UNLIKELY(cur_thread()->in_symbolizer)) {
    833     uptr PageSize = GetPageSizeCached();
    834     sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
    835     return InternalAlloc(sz, nullptr, PageSize);
    836   }
    837   SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
    838   return user_pvalloc(thr, pc, sz);
    839 }
    840 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
    841 #else
    842 #define TSAN_MAYBE_INTERCEPT_PVALLOC
    843 #endif
    844 
    845 #if !SANITIZER_MAC
    846 TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
    847   if (UNLIKELY(cur_thread()->in_symbolizer)) {
    848     void *p = InternalAlloc(sz, nullptr, align);
    849     if (!p)
    850       return errno_ENOMEM;
    851     *memptr = p;
    852     return 0;
    853   }
    854   SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
    855   return user_posix_memalign(thr, pc, memptr, align, sz);
    856 }
    857 #endif
    858 
    859 // __cxa_guard_acquire and friends need to be intercepted in a special way -
    860 // regular interceptors will break statically-linked libstdc++. Linux
    861 // interceptors are especially defined as weak functions (so that they don't
    862 // cause link errors when user defines them as well). So they silently
    863 // auto-disable themselves when such symbol is already present in the binary. If
    864 // we link libstdc++ statically, it will bring own __cxa_guard_acquire which
    865 // will silently replace our interceptor.  That's why on Linux we simply export
    866 // these interceptors with INTERFACE_ATTRIBUTE.
    867 // On OS X, we don't support statically linking, so we just use a regular
    868 // interceptor.
    869 #if SANITIZER_MAC
    870 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
    871 #else
    872 #define STDCXX_INTERCEPTOR(rettype, name, ...) \
    873   extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
    874 #endif
    875 
    876 // Used in thread-safe function static initialization.
    877 STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
    878   SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
    879   OnPotentiallyBlockingRegionBegin();
    880   auto on_exit = at_scope_exit(&OnPotentiallyBlockingRegionEnd);
    881   for (;;) {
    882     u32 cmp = atomic_load(g, memory_order_acquire);
    883     if (cmp == 0) {
    884       if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
    885         return 1;
    886     } else if (cmp == 1) {
    887       Acquire(thr, pc, (uptr)g);
    888       return 0;
    889     } else {
    890       internal_sched_yield();
    891     }
    892   }
    893 }
    894 
    895 STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
    896   SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
    897   Release(thr, pc, (uptr)g);
    898   atomic_store(g, 1, memory_order_release);
    899 }
    900 
    901 STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
    902   SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
    903   atomic_store(g, 0, memory_order_relaxed);
    904 }
    905 
    906 namespace __tsan {
    907 void DestroyThreadState() {
    908   ThreadState *thr = cur_thread();
    909   Processor *proc = thr->proc();
    910   ThreadFinish(thr);
    911   ProcUnwire(proc, thr);
    912   ProcDestroy(proc);
    913   ThreadSignalContext *sctx = thr->signal_ctx;
    914   if (sctx) {
    915     thr->signal_ctx = 0;
    916     UnmapOrDie(sctx, sizeof(*sctx));
    917   }
    918   DTLS_Destroy();
    919   cur_thread_finalize();
    920 }
    921 }  // namespace __tsan
    922 
    923 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
    924 static void thread_finalize(void *v) {
    925   uptr iter = (uptr)v;
    926   if (iter > 1) {
    927     if (pthread_setspecific(interceptor_ctx()->finalize_key,
    928         (void*)(iter - 1))) {
    929       Printf("ThreadSanitizer: failed to set thread key\n");
    930       Die();
    931     }
    932     return;
    933   }
    934   DestroyThreadState();
    935 }
    936 #endif
    937 
    938 
    939 struct ThreadParam {
    940   void* (*callback)(void *arg);
    941   void *param;
    942   atomic_uintptr_t tid;
    943 };
    944 
    945 extern "C" void *__tsan_thread_start_func(void *arg) {
    946   ThreadParam *p = (ThreadParam*)arg;
    947   void* (*callback)(void *arg) = p->callback;
    948   void *param = p->param;
    949   int tid = 0;
    950   {
    951     ThreadState *thr = cur_thread();
    952     // Thread-local state is not initialized yet.
    953     ScopedIgnoreInterceptors ignore;
    954 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
    955     ThreadIgnoreBegin(thr, 0);
    956     if (pthread_setspecific(interceptor_ctx()->finalize_key,
    957                             (void *)GetPthreadDestructorIterations())) {
    958       Printf("ThreadSanitizer: failed to set thread key\n");
    959       Die();
    960     }
    961     ThreadIgnoreEnd(thr, 0);
    962 #endif
    963     while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
    964       internal_sched_yield();
    965     Processor *proc = ProcCreate();
    966     ProcWire(proc, thr);
    967     ThreadStart(thr, tid, GetTid(), /*workerthread*/ false);
    968     atomic_store(&p->tid, 0, memory_order_release);
    969   }
    970   void *res = callback(param);
    971   // Prevent the callback from being tail called,
    972   // it mixes up stack traces.
    973   volatile int foo = 42;
    974   foo++;
    975   return res;
    976 }
    977 
    978 TSAN_INTERCEPTOR(int, pthread_create,
    979     void *th, void *attr, void *(*callback)(void*), void * param) {
    980   SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
    981 
    982   MaybeSpawnBackgroundThread();
    983 
    984   if (ctx->after_multithreaded_fork) {
    985     if (flags()->die_after_fork) {
    986       Report("ThreadSanitizer: starting new threads after multi-threaded "
    987           "fork is not supported. Dying (set die_after_fork=0 to override)\n");
    988       Die();
    989     } else {
    990       VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
    991           "fork is not supported (pid %d). Continuing because of "
    992           "die_after_fork=0, but you are on your own\n", internal_getpid());
    993     }
    994   }
    995   __sanitizer_pthread_attr_t myattr;
    996   if (attr == 0) {
    997     pthread_attr_init(&myattr);
    998     attr = &myattr;
    999   }
   1000   int detached = 0;
   1001   REAL(pthread_attr_getdetachstate)(attr, &detached);
   1002   AdjustStackSize(attr);
   1003 
   1004   ThreadParam p;
   1005   p.callback = callback;
   1006   p.param = param;
   1007   atomic_store(&p.tid, 0, memory_order_relaxed);
   1008   int res = -1;
   1009   {
   1010     // Otherwise we see false positives in pthread stack manipulation.
   1011     ScopedIgnoreInterceptors ignore;
   1012     ThreadIgnoreBegin(thr, pc);
   1013     res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
   1014     ThreadIgnoreEnd(thr, pc);
   1015   }
   1016   if (res == 0) {
   1017     int tid = ThreadCreate(thr, pc, *(uptr*)th, IsStateDetached(detached));
   1018     CHECK_NE(tid, 0);
   1019     // Synchronization on p.tid serves two purposes:
   1020     // 1. ThreadCreate must finish before the new thread starts.
   1021     //    Otherwise the new thread can call pthread_detach, but the pthread_t
   1022     //    identifier is not yet registered in ThreadRegistry by ThreadCreate.
   1023     // 2. ThreadStart must finish before this thread continues.
   1024     //    Otherwise, this thread can call pthread_detach and reset thr->sync
   1025     //    before the new thread got a chance to acquire from it in ThreadStart.
   1026     atomic_store(&p.tid, tid, memory_order_release);
   1027     while (atomic_load(&p.tid, memory_order_acquire) != 0)
   1028       internal_sched_yield();
   1029   }
   1030   if (attr == &myattr)
   1031     pthread_attr_destroy(&myattr);
   1032   return res;
   1033 }
   1034 
   1035 TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
   1036   SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
   1037   int tid = ThreadTid(thr, pc, (uptr)th);
   1038   ThreadIgnoreBegin(thr, pc);
   1039   int res = BLOCK_REAL(pthread_join)(th, ret);
   1040   ThreadIgnoreEnd(thr, pc);
   1041   if (res == 0) {
   1042     ThreadJoin(thr, pc, tid);
   1043   }
   1044   return res;
   1045 }
   1046 
   1047 DEFINE_REAL_PTHREAD_FUNCTIONS
   1048 
   1049 TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
   1050   SCOPED_TSAN_INTERCEPTOR(pthread_detach, th);
   1051   int tid = ThreadTid(thr, pc, (uptr)th);
   1052   int res = REAL(pthread_detach)(th);
   1053   if (res == 0) {
   1054     ThreadDetach(thr, pc, tid);
   1055   }
   1056   return res;
   1057 }
   1058 
   1059 #if SANITIZER_LINUX
   1060 TSAN_INTERCEPTOR(int, pthread_tryjoin_np, void *th, void **ret) {
   1061   SCOPED_TSAN_INTERCEPTOR(pthread_tryjoin_np, th, ret);
   1062   int tid = ThreadTid(thr, pc, (uptr)th);
   1063   ThreadIgnoreBegin(thr, pc);
   1064   int res = REAL(pthread_tryjoin_np)(th, ret);
   1065   ThreadIgnoreEnd(thr, pc);
   1066   if (res == 0)
   1067     ThreadJoin(thr, pc, tid);
   1068   else
   1069     ThreadNotJoined(thr, pc, tid, (uptr)th);
   1070   return res;
   1071 }
   1072 
   1073 TSAN_INTERCEPTOR(int, pthread_timedjoin_np, void *th, void **ret,
   1074                  const struct timespec *abstime) {
   1075   SCOPED_TSAN_INTERCEPTOR(pthread_timedjoin_np, th, ret, abstime);
   1076   int tid = ThreadTid(thr, pc, (uptr)th);
   1077   ThreadIgnoreBegin(thr, pc);
   1078   int res = BLOCK_REAL(pthread_timedjoin_np)(th, ret, abstime);
   1079   ThreadIgnoreEnd(thr, pc);
   1080   if (res == 0)
   1081     ThreadJoin(thr, pc, tid);
   1082   else
   1083     ThreadNotJoined(thr, pc, tid, (uptr)th);
   1084   return res;
   1085 }
   1086 #endif
   1087 
   1088 // Problem:
   1089 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
   1090 // pthread_cond_t has different size in the different versions.
   1091 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
   1092 // after pthread_cond_t (old cond is smaller).
   1093 // If we call old REAL functions for new pthread_cond_t, we will lose  some
   1094 // functionality (e.g. old functions do not support waiting against
   1095 // CLOCK_REALTIME).
   1096 // Proper handling would require to have 2 versions of interceptors as well.
   1097 // But this is messy, in particular requires linker scripts when sanitizer
   1098 // runtime is linked into a shared library.
   1099 // Instead we assume we don't have dynamic libraries built against old
   1100 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
   1101 // that allows to work with old libraries (but this mode does not support
   1102 // some features, e.g. pthread_condattr_getpshared).
   1103 static void *init_cond(void *c, bool force = false) {
   1104   // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
   1105   // So we allocate additional memory on the side large enough to hold
   1106   // any pthread_cond_t object. Always call new REAL functions, but pass
   1107   // the aux object to them.
   1108   // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
   1109   // first word of pthread_cond_t to zero.
   1110   // It's all relevant only for linux.
   1111   if (!common_flags()->legacy_pthread_cond)
   1112     return c;
   1113   atomic_uintptr_t *p = (atomic_uintptr_t*)c;
   1114   uptr cond = atomic_load(p, memory_order_acquire);
   1115   if (!force && cond != 0)
   1116     return (void*)cond;
   1117   void *newcond = WRAP(malloc)(pthread_cond_t_sz);
   1118   internal_memset(newcond, 0, pthread_cond_t_sz);
   1119   if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
   1120       memory_order_acq_rel))
   1121     return newcond;
   1122   WRAP(free)(newcond);
   1123   return (void*)cond;
   1124 }
   1125 
   1126 struct CondMutexUnlockCtx {
   1127   ScopedInterceptor *si;
   1128   ThreadState *thr;
   1129   uptr pc;
   1130   void *m;
   1131 };
   1132 
   1133 static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
   1134   // pthread_cond_wait interceptor has enabled async signal delivery
   1135   // (see BlockingCall below). Disable async signals since we are running
   1136   // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
   1137   // since the thread is cancelled, so we have to manually execute them
   1138   // (the thread still can run some user code due to pthread_cleanup_push).
   1139   ThreadSignalContext *ctx = SigCtx(arg->thr);
   1140   CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
   1141   atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
   1142   MutexPostLock(arg->thr, arg->pc, (uptr)arg->m, MutexFlagDoPreLockOnPostLock);
   1143   // Undo BlockingCall ctor effects.
   1144   arg->thr->ignore_interceptors--;
   1145   arg->si->~ScopedInterceptor();
   1146 }
   1147 
   1148 INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
   1149   void *cond = init_cond(c, true);
   1150   SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
   1151   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
   1152   return REAL(pthread_cond_init)(cond, a);
   1153 }
   1154 
   1155 static int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si,
   1156                      int (*fn)(void *c, void *m, void *abstime), void *c,
   1157                      void *m, void *t) {
   1158   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
   1159   MutexUnlock(thr, pc, (uptr)m);
   1160   CondMutexUnlockCtx arg = {si, thr, pc, m};
   1161   int res = 0;
   1162   // This ensures that we handle mutex lock even in case of pthread_cancel.
   1163   // See test/tsan/cond_cancel.cc.
   1164   {
   1165     // Enable signal delivery while the thread is blocked.
   1166     BlockingCall bc(thr);
   1167     res = call_pthread_cancel_with_cleanup(
   1168         fn, c, m, t, (void (*)(void *arg))cond_mutex_unlock, &arg);
   1169   }
   1170   if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
   1171   MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
   1172   return res;
   1173 }
   1174 
   1175 INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
   1176   void *cond = init_cond(c);
   1177   SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
   1178   return cond_wait(thr, pc, &si, (int (*)(void *c, void *m, void *abstime))REAL(
   1179                                      pthread_cond_wait),
   1180                    cond, m, 0);
   1181 }
   1182 
   1183 INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
   1184   void *cond = init_cond(c);
   1185   SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
   1186   return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait), cond, m,
   1187                    abstime);
   1188 }
   1189 
   1190 #if SANITIZER_MAC
   1191 INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
   1192             void *reltime) {
   1193   void *cond = init_cond(c);
   1194   SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
   1195   return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait_relative_np), cond,
   1196                    m, reltime);
   1197 }
   1198 #endif
   1199 
   1200 INTERCEPTOR(int, pthread_cond_signal, void *c) {
   1201   void *cond = init_cond(c);
   1202   SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
   1203   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
   1204   return REAL(pthread_cond_signal)(cond);
   1205 }
   1206 
   1207 INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
   1208   void *cond = init_cond(c);
   1209   SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
   1210   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
   1211   return REAL(pthread_cond_broadcast)(cond);
   1212 }
   1213 
   1214 INTERCEPTOR(int, pthread_cond_destroy, void *c) {
   1215   void *cond = init_cond(c);
   1216   SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
   1217   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
   1218   int res = REAL(pthread_cond_destroy)(cond);
   1219   if (common_flags()->legacy_pthread_cond) {
   1220     // Free our aux cond and zero the pointer to not leave dangling pointers.
   1221     WRAP(free)(cond);
   1222     atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
   1223   }
   1224   return res;
   1225 }
   1226 
   1227 TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
   1228   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
   1229   int res = REAL(pthread_mutex_init)(m, a);
   1230   if (res == 0) {
   1231     u32 flagz = 0;
   1232     if (a) {
   1233       int type = 0;
   1234       if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
   1235         if (type == PTHREAD_MUTEX_RECURSIVE ||
   1236             type == PTHREAD_MUTEX_RECURSIVE_NP)
   1237           flagz |= MutexFlagWriteReentrant;
   1238     }
   1239     MutexCreate(thr, pc, (uptr)m, flagz);
   1240   }
   1241   return res;
   1242 }
   1243 
   1244 TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
   1245   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
   1246   int res = REAL(pthread_mutex_destroy)(m);
   1247   if (res == 0 || res == errno_EBUSY) {
   1248     MutexDestroy(thr, pc, (uptr)m);
   1249   }
   1250   return res;
   1251 }
   1252 
   1253 TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
   1254   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
   1255   int res = REAL(pthread_mutex_trylock)(m);
   1256   if (res == errno_EOWNERDEAD)
   1257     MutexRepair(thr, pc, (uptr)m);
   1258   if (res == 0 || res == errno_EOWNERDEAD)
   1259     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
   1260   return res;
   1261 }
   1262 
   1263 #if !SANITIZER_MAC
   1264 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
   1265   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
   1266   int res = REAL(pthread_mutex_timedlock)(m, abstime);
   1267   if (res == 0) {
   1268     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
   1269   }
   1270   return res;
   1271 }
   1272 #endif
   1273 
   1274 #if !SANITIZER_MAC
   1275 TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
   1276   SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
   1277   int res = REAL(pthread_spin_init)(m, pshared);
   1278   if (res == 0) {
   1279     MutexCreate(thr, pc, (uptr)m);
   1280   }
   1281   return res;
   1282 }
   1283 
   1284 TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
   1285   SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
   1286   int res = REAL(pthread_spin_destroy)(m);
   1287   if (res == 0) {
   1288     MutexDestroy(thr, pc, (uptr)m);
   1289   }
   1290   return res;
   1291 }
   1292 
   1293 TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
   1294   SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
   1295   MutexPreLock(thr, pc, (uptr)m);
   1296   int res = REAL(pthread_spin_lock)(m);
   1297   if (res == 0) {
   1298     MutexPostLock(thr, pc, (uptr)m);
   1299   }
   1300   return res;
   1301 }
   1302 
   1303 TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
   1304   SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
   1305   int res = REAL(pthread_spin_trylock)(m);
   1306   if (res == 0) {
   1307     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
   1308   }
   1309   return res;
   1310 }
   1311 
   1312 TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
   1313   SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
   1314   MutexUnlock(thr, pc, (uptr)m);
   1315   int res = REAL(pthread_spin_unlock)(m);
   1316   return res;
   1317 }
   1318 #endif
   1319 
   1320 TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
   1321   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
   1322   int res = REAL(pthread_rwlock_init)(m, a);
   1323   if (res == 0) {
   1324     MutexCreate(thr, pc, (uptr)m);
   1325   }
   1326   return res;
   1327 }
   1328 
   1329 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
   1330   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
   1331   int res = REAL(pthread_rwlock_destroy)(m);
   1332   if (res == 0) {
   1333     MutexDestroy(thr, pc, (uptr)m);
   1334   }
   1335   return res;
   1336 }
   1337 
   1338 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
   1339   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
   1340   MutexPreReadLock(thr, pc, (uptr)m);
   1341   int res = REAL(pthread_rwlock_rdlock)(m);
   1342   if (res == 0) {
   1343     MutexPostReadLock(thr, pc, (uptr)m);
   1344   }
   1345   return res;
   1346 }
   1347 
   1348 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
   1349   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
   1350   int res = REAL(pthread_rwlock_tryrdlock)(m);
   1351   if (res == 0) {
   1352     MutexPostReadLock(thr, pc, (uptr)m, MutexFlagTryLock);
   1353   }
   1354   return res;
   1355 }
   1356 
   1357 #if !SANITIZER_MAC
   1358 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
   1359   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
   1360   int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
   1361   if (res == 0) {
   1362     MutexPostReadLock(thr, pc, (uptr)m);
   1363   }
   1364   return res;
   1365 }
   1366 #endif
   1367 
   1368 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
   1369   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
   1370   MutexPreLock(thr, pc, (uptr)m);
   1371   int res = REAL(pthread_rwlock_wrlock)(m);
   1372   if (res == 0) {
   1373     MutexPostLock(thr, pc, (uptr)m);
   1374   }
   1375   return res;
   1376 }
   1377 
   1378 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
   1379   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
   1380   int res = REAL(pthread_rwlock_trywrlock)(m);
   1381   if (res == 0) {
   1382     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
   1383   }
   1384   return res;
   1385 }
   1386 
   1387 #if !SANITIZER_MAC
   1388 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
   1389   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
   1390   int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
   1391   if (res == 0) {
   1392     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
   1393   }
   1394   return res;
   1395 }
   1396 #endif
   1397 
   1398 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
   1399   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
   1400   MutexReadOrWriteUnlock(thr, pc, (uptr)m);
   1401   int res = REAL(pthread_rwlock_unlock)(m);
   1402   return res;
   1403 }
   1404 
   1405 #if !SANITIZER_MAC
   1406 TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
   1407   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
   1408   MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
   1409   int res = REAL(pthread_barrier_init)(b, a, count);
   1410   return res;
   1411 }
   1412 
   1413 TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
   1414   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
   1415   MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
   1416   int res = REAL(pthread_barrier_destroy)(b);
   1417   return res;
   1418 }
   1419 
   1420 TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
   1421   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
   1422   Release(thr, pc, (uptr)b);
   1423   MemoryRead(thr, pc, (uptr)b, kSizeLog1);
   1424   int res = REAL(pthread_barrier_wait)(b);
   1425   MemoryRead(thr, pc, (uptr)b, kSizeLog1);
   1426   if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
   1427     Acquire(thr, pc, (uptr)b);
   1428   }
   1429   return res;
   1430 }
   1431 #endif
   1432 
   1433 TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
   1434   SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
   1435   if (o == 0 || f == 0)
   1436     return errno_EINVAL;
   1437   atomic_uint32_t *a;
   1438 
   1439   if (SANITIZER_MAC)
   1440     a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
   1441   else if (SANITIZER_NETBSD)
   1442     a = static_cast<atomic_uint32_t*>
   1443           ((void *)((char *)o + __sanitizer::pthread_mutex_t_sz));
   1444   else
   1445     a = static_cast<atomic_uint32_t*>(o);
   1446 
   1447   u32 v = atomic_load(a, memory_order_acquire);
   1448   if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
   1449                                                memory_order_relaxed)) {
   1450     (*f)();
   1451     if (!thr->in_ignored_lib)
   1452       Release(thr, pc, (uptr)o);
   1453     atomic_store(a, 2, memory_order_release);
   1454   } else {
   1455     while (v != 2) {
   1456       internal_sched_yield();
   1457       v = atomic_load(a, memory_order_acquire);
   1458     }
   1459     if (!thr->in_ignored_lib)
   1460       Acquire(thr, pc, (uptr)o);
   1461   }
   1462   return 0;
   1463 }
   1464 
   1465 #if SANITIZER_LINUX && !SANITIZER_ANDROID
   1466 TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
   1467   SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
   1468   if (fd > 0)
   1469     FdAccess(thr, pc, fd);
   1470   return REAL(__fxstat)(version, fd, buf);
   1471 }
   1472 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
   1473 #else
   1474 #define TSAN_MAYBE_INTERCEPT___FXSTAT
   1475 #endif
   1476 
   1477 TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
   1478 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID || SANITIZER_NETBSD
   1479   SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
   1480   if (fd > 0)
   1481     FdAccess(thr, pc, fd);
   1482   return REAL(fstat)(fd, buf);
   1483 #else
   1484   SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
   1485   if (fd > 0)
   1486     FdAccess(thr, pc, fd);
   1487   return REAL(__fxstat)(0, fd, buf);
   1488 #endif
   1489 }
   1490 
   1491 #if SANITIZER_LINUX && !SANITIZER_ANDROID
   1492 TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
   1493   SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
   1494   if (fd > 0)
   1495     FdAccess(thr, pc, fd);
   1496   return REAL(__fxstat64)(version, fd, buf);
   1497 }
   1498 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
   1499 #else
   1500 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
   1501 #endif
   1502 
   1503 #if SANITIZER_LINUX && !SANITIZER_ANDROID
   1504 TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
   1505   SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
   1506   if (fd > 0)
   1507     FdAccess(thr, pc, fd);
   1508   return REAL(__fxstat64)(0, fd, buf);
   1509 }
   1510 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
   1511 #else
   1512 #define TSAN_MAYBE_INTERCEPT_FSTAT64
   1513 #endif
   1514 
   1515 TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
   1516   SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
   1517   READ_STRING(thr, pc, name, 0);
   1518   int fd = REAL(open)(name, flags, mode);
   1519   if (fd >= 0)
   1520     FdFileCreate(thr, pc, fd);
   1521   return fd;
   1522 }
   1523 
   1524 #if SANITIZER_LINUX
   1525 TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
   1526   SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
   1527   READ_STRING(thr, pc, name, 0);
   1528   int fd = REAL(open64)(name, flags, mode);
   1529   if (fd >= 0)
   1530     FdFileCreate(thr, pc, fd);
   1531   return fd;
   1532 }
   1533 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
   1534 #else
   1535 #define TSAN_MAYBE_INTERCEPT_OPEN64
   1536 #endif
   1537 
   1538 TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
   1539   SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
   1540   READ_STRING(thr, pc, name, 0);
   1541   int fd = REAL(creat)(name, mode);
   1542   if (fd >= 0)
   1543     FdFileCreate(thr, pc, fd);
   1544   return fd;
   1545 }
   1546 
   1547 #if SANITIZER_LINUX
   1548 TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
   1549   SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
   1550   READ_STRING(thr, pc, name, 0);
   1551   int fd = REAL(creat64)(name, mode);
   1552   if (fd >= 0)
   1553     FdFileCreate(thr, pc, fd);
   1554   return fd;
   1555 }
   1556 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
   1557 #else
   1558 #define TSAN_MAYBE_INTERCEPT_CREAT64
   1559 #endif
   1560 
   1561 TSAN_INTERCEPTOR(int, dup, int oldfd) {
   1562   SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
   1563   int newfd = REAL(dup)(oldfd);
   1564   if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
   1565     FdDup(thr, pc, oldfd, newfd, true);
   1566   return newfd;
   1567 }
   1568 
   1569 TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
   1570   SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
   1571   int newfd2 = REAL(dup2)(oldfd, newfd);
   1572   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
   1573     FdDup(thr, pc, oldfd, newfd2, false);
   1574   return newfd2;
   1575 }
   1576 
   1577 #if !SANITIZER_MAC
   1578 TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
   1579   SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
   1580   int newfd2 = REAL(dup3)(oldfd, newfd, flags);
   1581   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
   1582     FdDup(thr, pc, oldfd, newfd2, false);
   1583   return newfd2;
   1584 }
   1585 #endif
   1586 
   1587 #if SANITIZER_LINUX
   1588 TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
   1589   SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
   1590   int fd = REAL(eventfd)(initval, flags);
   1591   if (fd >= 0)
   1592     FdEventCreate(thr, pc, fd);
   1593   return fd;
   1594 }
   1595 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
   1596 #else
   1597 #define TSAN_MAYBE_INTERCEPT_EVENTFD
   1598 #endif
   1599 
   1600 #if SANITIZER_LINUX
   1601 TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
   1602   SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
   1603   if (fd >= 0)
   1604     FdClose(thr, pc, fd);
   1605   fd = REAL(signalfd)(fd, mask, flags);
   1606   if (fd >= 0)
   1607     FdSignalCreate(thr, pc, fd);
   1608   return fd;
   1609 }
   1610 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
   1611 #else
   1612 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
   1613 #endif
   1614 
   1615 #if SANITIZER_LINUX
   1616 TSAN_INTERCEPTOR(int, inotify_init, int fake) {
   1617   SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
   1618   int fd = REAL(inotify_init)(fake);
   1619   if (fd >= 0)
   1620     FdInotifyCreate(thr, pc, fd);
   1621   return fd;
   1622 }
   1623 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
   1624 #else
   1625 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
   1626 #endif
   1627 
   1628 #if SANITIZER_LINUX
   1629 TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
   1630   SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
   1631   int fd = REAL(inotify_init1)(flags);
   1632   if (fd >= 0)
   1633     FdInotifyCreate(thr, pc, fd);
   1634   return fd;
   1635 }
   1636 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
   1637 #else
   1638 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
   1639 #endif
   1640 
   1641 TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
   1642   SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
   1643   int fd = REAL(socket)(domain, type, protocol);
   1644   if (fd >= 0)
   1645     FdSocketCreate(thr, pc, fd);
   1646   return fd;
   1647 }
   1648 
   1649 TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
   1650   SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
   1651   int res = REAL(socketpair)(domain, type, protocol, fd);
   1652   if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
   1653     FdPipeCreate(thr, pc, fd[0], fd[1]);
   1654   return res;
   1655 }
   1656 
   1657 TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
   1658   SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
   1659   FdSocketConnecting(thr, pc, fd);
   1660   int res = REAL(connect)(fd, addr, addrlen);
   1661   if (res == 0 && fd >= 0)
   1662     FdSocketConnect(thr, pc, fd);
   1663   return res;
   1664 }
   1665 
   1666 TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
   1667   SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
   1668   int res = REAL(bind)(fd, addr, addrlen);
   1669   if (fd > 0 && res == 0)
   1670     FdAccess(thr, pc, fd);
   1671   return res;
   1672 }
   1673 
   1674 TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
   1675   SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
   1676   int res = REAL(listen)(fd, backlog);
   1677   if (fd > 0 && res == 0)
   1678     FdAccess(thr, pc, fd);
   1679   return res;
   1680 }
   1681 
   1682 TSAN_INTERCEPTOR(int, close, int fd) {
   1683   SCOPED_TSAN_INTERCEPTOR(close, fd);
   1684   if (fd >= 0)
   1685     FdClose(thr, pc, fd);
   1686   return REAL(close)(fd);
   1687 }
   1688 
   1689 #if SANITIZER_LINUX
   1690 TSAN_INTERCEPTOR(int, __close, int fd) {
   1691   SCOPED_TSAN_INTERCEPTOR(__close, fd);
   1692   if (fd >= 0)
   1693     FdClose(thr, pc, fd);
   1694   return REAL(__close)(fd);
   1695 }
   1696 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
   1697 #else
   1698 #define TSAN_MAYBE_INTERCEPT___CLOSE
   1699 #endif
   1700 
   1701 // glibc guts
   1702 #if SANITIZER_LINUX && !SANITIZER_ANDROID
   1703 TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
   1704   SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
   1705   int fds[64];
   1706   int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
   1707   for (int i = 0; i < cnt; i++) {
   1708     if (fds[i] > 0)
   1709       FdClose(thr, pc, fds[i]);
   1710   }
   1711   REAL(__res_iclose)(state, free_addr);
   1712 }
   1713 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
   1714 #else
   1715 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
   1716 #endif
   1717 
   1718 TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
   1719   SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
   1720   int res = REAL(pipe)(pipefd);
   1721   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
   1722     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
   1723   return res;
   1724 }
   1725 
   1726 #if !SANITIZER_MAC
   1727 TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
   1728   SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
   1729   int res = REAL(pipe2)(pipefd, flags);
   1730   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
   1731     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
   1732   return res;
   1733 }
   1734 #endif
   1735 
   1736 TSAN_INTERCEPTOR(int, unlink, char *path) {
   1737   SCOPED_TSAN_INTERCEPTOR(unlink, path);
   1738   Release(thr, pc, File2addr(path));
   1739   int res = REAL(unlink)(path);
   1740   return res;
   1741 }
   1742 
   1743 TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
   1744   SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
   1745   void *res = REAL(tmpfile)(fake);
   1746   if (res) {
   1747     int fd = fileno_unlocked(res);
   1748     if (fd >= 0)
   1749       FdFileCreate(thr, pc, fd);
   1750   }
   1751   return res;
   1752 }
   1753 
   1754 #if SANITIZER_LINUX
   1755 TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
   1756   SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
   1757   void *res = REAL(tmpfile64)(fake);
   1758   if (res) {
   1759     int fd = fileno_unlocked(res);
   1760     if (fd >= 0)
   1761       FdFileCreate(thr, pc, fd);
   1762   }
   1763   return res;
   1764 }
   1765 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
   1766 #else
   1767 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
   1768 #endif
   1769 
   1770 static void FlushStreams() {
   1771   // Flushing all the streams here may freeze the process if a child thread is
   1772   // performing file stream operations at the same time.
   1773   REAL(fflush)(stdout);
   1774   REAL(fflush)(stderr);
   1775 }
   1776 
   1777 TSAN_INTERCEPTOR(void, abort, int fake) {
   1778   SCOPED_TSAN_INTERCEPTOR(abort, fake);
   1779   FlushStreams();
   1780   REAL(abort)(fake);
   1781 }
   1782 
   1783 TSAN_INTERCEPTOR(int, rmdir, char *path) {
   1784   SCOPED_TSAN_INTERCEPTOR(rmdir, path);
   1785   Release(thr, pc, Dir2addr(path));
   1786   int res = REAL(rmdir)(path);
   1787   return res;
   1788 }
   1789 
   1790 TSAN_INTERCEPTOR(int, closedir, void *dirp) {
   1791   SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
   1792   if (dirp) {
   1793     int fd = dirfd(dirp);
   1794     FdClose(thr, pc, fd);
   1795   }
   1796   return REAL(closedir)(dirp);
   1797 }
   1798 
   1799 #if SANITIZER_LINUX
   1800 TSAN_INTERCEPTOR(int, epoll_create, int size) {
   1801   SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
   1802   int fd = REAL(epoll_create)(size);
   1803   if (fd >= 0)
   1804     FdPollCreate(thr, pc, fd);
   1805   return fd;
   1806 }
   1807 
   1808 TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
   1809   SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
   1810   int fd = REAL(epoll_create1)(flags);
   1811   if (fd >= 0)
   1812     FdPollCreate(thr, pc, fd);
   1813   return fd;
   1814 }
   1815 
   1816 TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
   1817   SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
   1818   if (epfd >= 0)
   1819     FdAccess(thr, pc, epfd);
   1820   if (epfd >= 0 && fd >= 0)
   1821     FdAccess(thr, pc, fd);
   1822   if (op == EPOLL_CTL_ADD && epfd >= 0)
   1823     FdRelease(thr, pc, epfd);
   1824   int res = REAL(epoll_ctl)(epfd, op, fd, ev);
   1825   return res;
   1826 }
   1827 
   1828 TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
   1829   SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
   1830   if (epfd >= 0)
   1831     FdAccess(thr, pc, epfd);
   1832   int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
   1833   if (res > 0 && epfd >= 0)
   1834     FdAcquire(thr, pc, epfd);
   1835   return res;
   1836 }
   1837 
   1838 TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
   1839                  void *sigmask) {
   1840   SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
   1841   if (epfd >= 0)
   1842     FdAccess(thr, pc, epfd);
   1843   int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
   1844   if (res > 0 && epfd >= 0)
   1845     FdAcquire(thr, pc, epfd);
   1846   return res;
   1847 }
   1848 
   1849 #define TSAN_MAYBE_INTERCEPT_EPOLL \
   1850     TSAN_INTERCEPT(epoll_create); \
   1851     TSAN_INTERCEPT(epoll_create1); \
   1852     TSAN_INTERCEPT(epoll_ctl); \
   1853     TSAN_INTERCEPT(epoll_wait); \
   1854     TSAN_INTERCEPT(epoll_pwait)
   1855 #else
   1856 #define TSAN_MAYBE_INTERCEPT_EPOLL
   1857 #endif
   1858 
   1859 // The following functions are intercepted merely to process pending signals.
   1860 // If program blocks signal X, we must deliver the signal before the function
   1861 // returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
   1862 // it's better to deliver the signal straight away.
   1863 TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
   1864   SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
   1865   return REAL(sigsuspend)(mask);
   1866 }
   1867 
   1868 TSAN_INTERCEPTOR(int, sigblock, int mask) {
   1869   SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
   1870   return REAL(sigblock)(mask);
   1871 }
   1872 
   1873 TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
   1874   SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
   1875   return REAL(sigsetmask)(mask);
   1876 }
   1877 
   1878 TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
   1879     __sanitizer_sigset_t *oldset) {
   1880   SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
   1881   return REAL(pthread_sigmask)(how, set, oldset);
   1882 }
   1883 
   1884 namespace __tsan {
   1885 
   1886 static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
   1887                                   bool sigact, int sig,
   1888                                   __sanitizer_siginfo *info, void *uctx) {
   1889   __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
   1890   if (acquire)
   1891     Acquire(thr, 0, (uptr)&sigactions[sig]);
   1892   // Signals are generally asynchronous, so if we receive a signals when
   1893   // ignores are enabled we should disable ignores. This is critical for sync
   1894   // and interceptors, because otherwise we can miss syncronization and report
   1895   // false races.
   1896   int ignore_reads_and_writes = thr->ignore_reads_and_writes;
   1897   int ignore_interceptors = thr->ignore_interceptors;
   1898   int ignore_sync = thr->ignore_sync;
   1899   if (!ctx->after_multithreaded_fork) {
   1900     thr->ignore_reads_and_writes = 0;
   1901     thr->fast_state.ClearIgnoreBit();
   1902     thr->ignore_interceptors = 0;
   1903     thr->ignore_sync = 0;
   1904   }
   1905   // Ensure that the handler does not spoil errno.
   1906   const int saved_errno = errno;
   1907   errno = 99;
   1908   // This code races with sigaction. Be careful to not read sa_sigaction twice.
   1909   // Also need to remember pc for reporting before the call,
   1910   // because the handler can reset it.
   1911   volatile uptr pc =
   1912       sigact ? (uptr)sigactions[sig].sigaction : (uptr)sigactions[sig].handler;
   1913   if (pc != sig_dfl && pc != sig_ign) {
   1914     if (sigact)
   1915       ((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx);
   1916     else
   1917       ((__sanitizer_sighandler_ptr)pc)(sig);
   1918   }
   1919   if (!ctx->after_multithreaded_fork) {
   1920     thr->ignore_reads_and_writes = ignore_reads_and_writes;
   1921     if (ignore_reads_and_writes)
   1922       thr->fast_state.SetIgnoreBit();
   1923     thr->ignore_interceptors = ignore_interceptors;
   1924     thr->ignore_sync = ignore_sync;
   1925   }
   1926   // We do not detect errno spoiling for SIGTERM,
   1927   // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
   1928   // tsan reports false positive in such case.
   1929   // It's difficult to properly detect this situation (reraise),
   1930   // because in async signal processing case (when handler is called directly
   1931   // from rtl_generic_sighandler) we have not yet received the reraised
   1932   // signal; and it looks too fragile to intercept all ways to reraise a signal.
   1933   if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
   1934     VarSizeStackTrace stack;
   1935     // StackTrace::GetNestInstructionPc(pc) is used because return address is
   1936     // expected, OutputReport() will undo this.
   1937     ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
   1938     ThreadRegistryLock l(ctx->thread_registry);
   1939     ScopedReport rep(ReportTypeErrnoInSignal);
   1940     if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
   1941       rep.AddStack(stack, true);
   1942       OutputReport(thr, rep);
   1943     }
   1944   }
   1945   errno = saved_errno;
   1946 }
   1947 
   1948 void ProcessPendingSignals(ThreadState *thr) {
   1949   ThreadSignalContext *sctx = SigCtx(thr);
   1950   if (sctx == 0 ||
   1951       atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
   1952     return;
   1953   atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
   1954   atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
   1955   internal_sigfillset(&sctx->emptyset);
   1956   int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset);
   1957   CHECK_EQ(res, 0);
   1958   for (int sig = 0; sig < kSigCount; sig++) {
   1959     SignalDesc *signal = &sctx->pending_signals[sig];
   1960     if (signal->armed) {
   1961       signal->armed = false;
   1962       CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
   1963           &signal->siginfo, &signal->ctx);
   1964     }
   1965   }
   1966   res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0);
   1967   CHECK_EQ(res, 0);
   1968   atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
   1969 }
   1970 
   1971 }  // namespace __tsan
   1972 
   1973 static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
   1974   return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
   1975       sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
   1976       // If we are sending signal to ourselves, we must process it now.
   1977       (sctx && sig == sctx->int_signal_send);
   1978 }
   1979 
   1980 void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
   1981                                           __sanitizer_siginfo *info,
   1982                                           void *ctx) {
   1983   ThreadState *thr = cur_thread();
   1984   ThreadSignalContext *sctx = SigCtx(thr);
   1985   if (sig < 0 || sig >= kSigCount) {
   1986     VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
   1987     return;
   1988   }
   1989   // Don't mess with synchronous signals.
   1990   const bool sync = is_sync_signal(sctx, sig);
   1991   if (sync ||
   1992       // If we are in blocking function, we can safely process it now
   1993       // (but check if we are in a recursive interceptor,
   1994       // i.e. pthread_join()->munmap()).
   1995       (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
   1996     atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
   1997     if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
   1998       atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
   1999       CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
   2000       atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
   2001     } else {
   2002       // Be very conservative with when we do acquire in this case.
   2003       // It's unsafe to do acquire in async handlers, because ThreadState
   2004       // can be in inconsistent state.
   2005       // SIGSYS looks relatively safe -- it's synchronous and can actually
   2006       // need some global state.
   2007       bool acq = (sig == SIGSYS);
   2008       CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
   2009     }
   2010     atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
   2011     return;
   2012   }
   2013 
   2014   if (sctx == 0)
   2015     return;
   2016   SignalDesc *signal = &sctx->pending_signals[sig];
   2017   if (signal->armed == false) {
   2018     signal->armed = true;
   2019     signal->sigaction = sigact;
   2020     if (info)
   2021       internal_memcpy(&signal->siginfo, info, sizeof(*info));
   2022     if (ctx)
   2023       internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
   2024     atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
   2025   }
   2026 }
   2027 
   2028 static void rtl_sighandler(int sig) {
   2029   rtl_generic_sighandler(false, sig, 0, 0);
   2030 }
   2031 
   2032 static void rtl_sigaction(int sig, __sanitizer_siginfo *info, void *ctx) {
   2033   rtl_generic_sighandler(true, sig, info, ctx);
   2034 }
   2035 
   2036 TSAN_INTERCEPTOR(int, raise, int sig) {
   2037   SCOPED_TSAN_INTERCEPTOR(raise, sig);
   2038   ThreadSignalContext *sctx = SigCtx(thr);
   2039   CHECK_NE(sctx, 0);
   2040   int prev = sctx->int_signal_send;
   2041   sctx->int_signal_send = sig;
   2042   int res = REAL(raise)(sig);
   2043   CHECK_EQ(sctx->int_signal_send, sig);
   2044   sctx->int_signal_send = prev;
   2045   return res;
   2046 }
   2047 
   2048 TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
   2049   SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
   2050   ThreadSignalContext *sctx = SigCtx(thr);
   2051   CHECK_NE(sctx, 0);
   2052   int prev = sctx->int_signal_send;
   2053   if (pid == (int)internal_getpid()) {
   2054     sctx->int_signal_send = sig;
   2055   }
   2056   int res = REAL(kill)(pid, sig);
   2057   if (pid == (int)internal_getpid()) {
   2058     CHECK_EQ(sctx->int_signal_send, sig);
   2059     sctx->int_signal_send = prev;
   2060   }
   2061   return res;
   2062 }
   2063 
   2064 TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
   2065   SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
   2066   ThreadSignalContext *sctx = SigCtx(thr);
   2067   CHECK_NE(sctx, 0);
   2068   int prev = sctx->int_signal_send;
   2069   if (tid == pthread_self()) {
   2070     sctx->int_signal_send = sig;
   2071   }
   2072   int res = REAL(pthread_kill)(tid, sig);
   2073   if (tid == pthread_self()) {
   2074     CHECK_EQ(sctx->int_signal_send, sig);
   2075     sctx->int_signal_send = prev;
   2076   }
   2077   return res;
   2078 }
   2079 
   2080 TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
   2081   SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
   2082   // It's intercepted merely to process pending signals.
   2083   return REAL(gettimeofday)(tv, tz);
   2084 }
   2085 
   2086 TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
   2087     void *hints, void *rv) {
   2088   SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
   2089   // We miss atomic synchronization in getaddrinfo,
   2090   // and can report false race between malloc and free
   2091   // inside of getaddrinfo. So ignore memory accesses.
   2092   ThreadIgnoreBegin(thr, pc);
   2093   int res = REAL(getaddrinfo)(node, service, hints, rv);
   2094   ThreadIgnoreEnd(thr, pc);
   2095   return res;
   2096 }
   2097 
   2098 TSAN_INTERCEPTOR(int, fork, int fake) {
   2099   if (UNLIKELY(cur_thread()->in_symbolizer))
   2100     return REAL(fork)(fake);
   2101   SCOPED_INTERCEPTOR_RAW(fork, fake);
   2102   ForkBefore(thr, pc);
   2103   int pid;
   2104   {
   2105     // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
   2106     // we'll assert in CheckNoLocks() unless we ignore interceptors.
   2107     ScopedIgnoreInterceptors ignore;
   2108     pid = REAL(fork)(fake);
   2109   }
   2110   if (pid == 0) {
   2111     // child
   2112     ForkChildAfter(thr, pc);
   2113     FdOnFork(thr, pc);
   2114   } else if (pid > 0) {
   2115     // parent
   2116     ForkParentAfter(thr, pc);
   2117   } else {
   2118     // error
   2119     ForkParentAfter(thr, pc);
   2120   }
   2121   return pid;
   2122 }
   2123 
   2124 TSAN_INTERCEPTOR(int, vfork, int fake) {
   2125   // Some programs (e.g. openjdk) call close for all file descriptors
   2126   // in the child process. Under tsan it leads to false positives, because
   2127   // address space is shared, so the parent process also thinks that
   2128   // the descriptors are closed (while they are actually not).
   2129   // This leads to false positives due to missed synchronization.
   2130   // Strictly saying this is undefined behavior, because vfork child is not
   2131   // allowed to call any functions other than exec/exit. But this is what
   2132   // openjdk does, so we want to handle it.
   2133   // We could disable interceptors in the child process. But it's not possible
   2134   // to simply intercept and wrap vfork, because vfork child is not allowed
   2135   // to return from the function that calls vfork, and that's exactly what
   2136   // we would do. So this would require some assembly trickery as well.
   2137   // Instead we simply turn vfork into fork.
   2138   return WRAP(fork)(fake);
   2139 }
   2140 
   2141 #if !SANITIZER_MAC && !SANITIZER_ANDROID
   2142 typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
   2143                                     void *data);
   2144 struct dl_iterate_phdr_data {
   2145   ThreadState *thr;
   2146   uptr pc;
   2147   dl_iterate_phdr_cb_t cb;
   2148   void *data;
   2149 };
   2150 
   2151 static bool IsAppNotRodata(uptr addr) {
   2152   return IsAppMem(addr) && *(u64*)MemToShadow(addr) != kShadowRodata;
   2153 }
   2154 
   2155 static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
   2156                               void *data) {
   2157   dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
   2158   // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
   2159   // accessible in dl_iterate_phdr callback. But we don't see synchronization
   2160   // inside of dynamic linker, so we "unpoison" it here in order to not
   2161   // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
   2162   // because some libc functions call __libc_dlopen.
   2163   if (info && IsAppNotRodata((uptr)info->dlpi_name))
   2164     MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
   2165                      internal_strlen(info->dlpi_name));
   2166   int res = cbdata->cb(info, size, cbdata->data);
   2167   // Perform the check one more time in case info->dlpi_name was overwritten
   2168   // by user callback.
   2169   if (info && IsAppNotRodata((uptr)info->dlpi_name))
   2170     MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
   2171                      internal_strlen(info->dlpi_name));
   2172   return res;
   2173 }
   2174 
   2175 TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
   2176   SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
   2177   dl_iterate_phdr_data cbdata;
   2178   cbdata.thr = thr;
   2179   cbdata.pc = pc;
   2180   cbdata.cb = cb;
   2181   cbdata.data = data;
   2182   int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
   2183   return res;
   2184 }
   2185 #endif
   2186 
   2187 static int OnExit(ThreadState *thr) {
   2188   int status = Finalize(thr);
   2189   FlushStreams();
   2190   return status;
   2191 }
   2192 
   2193 struct TsanInterceptorContext {
   2194   ThreadState *thr;
   2195   const uptr caller_pc;
   2196   const uptr pc;
   2197 };
   2198 
   2199 #if !SANITIZER_MAC
   2200 static void HandleRecvmsg(ThreadState *thr, uptr pc,
   2201     __sanitizer_msghdr *msg) {
   2202   int fds[64];
   2203   int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
   2204   for (int i = 0; i < cnt; i++)
   2205     FdEventCreate(thr, pc, fds[i]);
   2206 }
   2207 #endif
   2208 
   2209 #include "sanitizer_common/sanitizer_platform_interceptors.h"
   2210 // Causes interceptor recursion (getaddrinfo() and fopen())
   2211 #undef SANITIZER_INTERCEPT_GETADDRINFO
   2212 // There interceptors do not seem to be strictly necessary for tsan.
   2213 // But we see cases where the interceptors consume 70% of execution time.
   2214 // Memory blocks passed to fgetgrent_r are "written to" by tsan several times.
   2215 // First, there is some recursion (getgrnam_r calls fgetgrent_r), and each
   2216 // function "writes to" the buffer. Then, the same memory is "written to"
   2217 // twice, first as buf and then as pwbufp (both of them refer to the same
   2218 // addresses).
   2219 #undef SANITIZER_INTERCEPT_GETPWENT
   2220 #undef SANITIZER_INTERCEPT_GETPWENT_R
   2221 #undef SANITIZER_INTERCEPT_FGETPWENT
   2222 #undef SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS
   2223 #undef SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS
   2224 // We define our own.
   2225 #if SANITIZER_INTERCEPT_TLS_GET_ADDR
   2226 #define NEED_TLS_GET_ADDR
   2227 #endif
   2228 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
   2229 
   2230 #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
   2231 #define COMMON_INTERCEPT_FUNCTION_VER(name, ver)                          \
   2232   INTERCEPT_FUNCTION_VER(name, ver)
   2233 
   2234 #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size)                    \
   2235   MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr,                 \
   2236                     ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
   2237                     true)
   2238 
   2239 #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size)                       \
   2240   MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr,                  \
   2241                     ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
   2242                     false)
   2243 
   2244 #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...)      \
   2245   SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__);         \
   2246   TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
   2247   ctx = (void *)&_ctx;                                \
   2248   (void) ctx;
   2249 
   2250 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
   2251   SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__);              \
   2252   TsanInterceptorContext _ctx = {thr, caller_pc, pc};     \
   2253   ctx = (void *)&_ctx;                                    \
   2254   (void) ctx;
   2255 
   2256 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
   2257   if (path)                                           \
   2258     Acquire(thr, pc, File2addr(path));                \
   2259   if (file) {                                         \
   2260     int fd = fileno_unlocked(file);                   \
   2261     if (fd >= 0) FdFileCreate(thr, pc, fd);           \
   2262   }
   2263 
   2264 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
   2265   if (file) {                                    \
   2266     int fd = fileno_unlocked(file);              \
   2267     if (fd >= 0) FdClose(thr, pc, fd);           \
   2268   }
   2269 
   2270 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
   2271   libignore()->OnLibraryLoaded(filename)
   2272 
   2273 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
   2274   libignore()->OnLibraryUnloaded()
   2275 
   2276 #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
   2277   Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
   2278 
   2279 #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
   2280   Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
   2281 
   2282 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
   2283   Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
   2284 
   2285 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
   2286   FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
   2287 
   2288 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
   2289   FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
   2290 
   2291 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
   2292   FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
   2293 
   2294 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
   2295   FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
   2296 
   2297 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
   2298   ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
   2299 
   2300 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
   2301   __tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
   2302 
   2303 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
   2304 
   2305 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
   2306   OnExit(((TsanInterceptorContext *) ctx)->thr)
   2307 
   2308 #define COMMON_INTERCEPTOR_MUTEX_PRE_LOCK(ctx, m) \
   2309   MutexPreLock(((TsanInterceptorContext *)ctx)->thr, \
   2310             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
   2311 
   2312 #define COMMON_INTERCEPTOR_MUTEX_POST_LOCK(ctx, m) \
   2313   MutexPostLock(((TsanInterceptorContext *)ctx)->thr, \
   2314             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
   2315 
   2316 #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
   2317   MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
   2318             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
   2319 
   2320 #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
   2321   MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
   2322             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
   2323 
   2324 #define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) \
   2325   MutexInvalidAccess(((TsanInterceptorContext *)ctx)->thr, \
   2326                      ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
   2327 
   2328 #define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd,  \
   2329                                      off)                                   \
   2330   do {                                                                      \
   2331     return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
   2332                             off);                                           \
   2333   } while (false)
   2334 
   2335 #if !SANITIZER_MAC
   2336 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
   2337   HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
   2338       ((TsanInterceptorContext *)ctx)->pc, msg)
   2339 #endif
   2340 
   2341 #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end)                           \
   2342   if (TsanThread *t = GetCurrentThread()) {                                    \
   2343     *begin = t->tls_begin();                                                   \
   2344     *end = t->tls_end();                                                       \
   2345   } else {                                                                     \
   2346     *begin = *end = 0;                                                         \
   2347   }
   2348 
   2349 #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
   2350   SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
   2351 
   2352 #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
   2353   SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
   2354 
   2355 #include "sanitizer_common/sanitizer_common_interceptors.inc"
   2356 
   2357 static int sigaction_impl(int sig, const __sanitizer_sigaction *act,
   2358                           __sanitizer_sigaction *old);
   2359 static __sanitizer_sighandler_ptr signal_impl(int sig,
   2360                                               __sanitizer_sighandler_ptr h);
   2361 
   2362 #define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
   2363   { return sigaction_impl(signo, act, oldact); }
   2364 
   2365 #define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
   2366   { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }
   2367 
   2368 #include "sanitizer_common/sanitizer_signal_interceptors.inc"
   2369 
   2370 int sigaction_impl(int sig, const __sanitizer_sigaction *act,
   2371                    __sanitizer_sigaction *old) {
   2372   // Note: if we call REAL(sigaction) directly for any reason without proxying
   2373   // the signal handler through rtl_sigaction, very bad things will happen.
   2374   // The handler will run synchronously and corrupt tsan per-thread state.
   2375   SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
   2376   __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
   2377   __sanitizer_sigaction old_stored;
   2378   if (old) internal_memcpy(&old_stored, &sigactions[sig], sizeof(old_stored));
   2379   __sanitizer_sigaction newact;
   2380   if (act) {
   2381     // Copy act into sigactions[sig].
   2382     // Can't use struct copy, because compiler can emit call to memcpy.
   2383     // Can't use internal_memcpy, because it copies byte-by-byte,
   2384     // and signal handler reads the handler concurrently. It it can read
   2385     // some bytes from old value and some bytes from new value.
   2386     // Use volatile to prevent insertion of memcpy.
   2387     sigactions[sig].handler =
   2388         *(volatile __sanitizer_sighandler_ptr const *)&act->handler;
   2389     sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags;
   2390     internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
   2391                     sizeof(sigactions[sig].sa_mask));
   2392 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
   2393     sigactions[sig].sa_restorer = act->sa_restorer;
   2394 #endif
   2395     internal_memcpy(&newact, act, sizeof(newact));
   2396     internal_sigfillset(&newact.sa_mask);
   2397     if ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl) {
   2398       if (newact.sa_flags & SA_SIGINFO)
   2399         newact.sigaction = rtl_sigaction;
   2400       else
   2401         newact.handler = rtl_sighandler;
   2402     }
   2403     ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
   2404     act = &newact;
   2405   }
   2406   int res = REAL(sigaction)(sig, act, old);
   2407   if (res == 0 && old) {
   2408     uptr cb = (uptr)old->sigaction;
   2409     if (cb == (uptr)rtl_sigaction || cb == (uptr)rtl_sighandler) {
   2410       internal_memcpy(old, &old_stored, sizeof(*old));
   2411     }
   2412   }
   2413   return res;
   2414 }
   2415 
   2416 static __sanitizer_sighandler_ptr signal_impl(int sig,
   2417                                               __sanitizer_sighandler_ptr h) {
   2418   __sanitizer_sigaction act;
   2419   act.handler = h;
   2420   internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
   2421   act.sa_flags = 0;
   2422   __sanitizer_sigaction old;
   2423   int res = sigaction_symname(sig, &act, &old);
   2424   if (res) return (__sanitizer_sighandler_ptr)sig_err;
   2425   return old.handler;
   2426 }
   2427 
   2428 #define TSAN_SYSCALL() \
   2429   ThreadState *thr = cur_thread(); \
   2430   if (thr->ignore_interceptors) \
   2431     return; \
   2432   ScopedSyscall scoped_syscall(thr) \
   2433 /**/
   2434 
   2435 struct ScopedSyscall {
   2436   ThreadState *thr;
   2437 
   2438   explicit ScopedSyscall(ThreadState *thr)
   2439       : thr(thr) {
   2440     Initialize(thr);
   2441   }
   2442 
   2443   ~ScopedSyscall() {
   2444     ProcessPendingSignals(thr);
   2445   }
   2446 };
   2447 
   2448 #if !SANITIZER_FREEBSD && !SANITIZER_MAC
   2449 static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
   2450   TSAN_SYSCALL();
   2451   MemoryAccessRange(thr, pc, p, s, write);
   2452 }
   2453 
   2454 static void syscall_acquire(uptr pc, uptr addr) {
   2455   TSAN_SYSCALL();
   2456   Acquire(thr, pc, addr);
   2457   DPrintf("syscall_acquire(%p)\n", addr);
   2458 }
   2459 
   2460 static void syscall_release(uptr pc, uptr addr) {
   2461   TSAN_SYSCALL();
   2462   DPrintf("syscall_release(%p)\n", addr);
   2463   Release(thr, pc, addr);
   2464 }
   2465 
   2466 static void syscall_fd_close(uptr pc, int fd) {
   2467   TSAN_SYSCALL();
   2468   FdClose(thr, pc, fd);
   2469 }
   2470 
   2471 static USED void syscall_fd_acquire(uptr pc, int fd) {
   2472   TSAN_SYSCALL();
   2473   FdAcquire(thr, pc, fd);
   2474   DPrintf("syscall_fd_acquire(%p)\n", fd);
   2475 }
   2476 
   2477 static USED void syscall_fd_release(uptr pc, int fd) {
   2478   TSAN_SYSCALL();
   2479   DPrintf("syscall_fd_release(%p)\n", fd);
   2480   FdRelease(thr, pc, fd);
   2481 }
   2482 
   2483 static void syscall_pre_fork(uptr pc) {
   2484   TSAN_SYSCALL();
   2485   ForkBefore(thr, pc);
   2486 }
   2487 
   2488 static void syscall_post_fork(uptr pc, int pid) {
   2489   TSAN_SYSCALL();
   2490   if (pid == 0) {
   2491     // child
   2492     ForkChildAfter(thr, pc);
   2493     FdOnFork(thr, pc);
   2494   } else if (pid > 0) {
   2495     // parent
   2496     ForkParentAfter(thr, pc);
   2497   } else {
   2498     // error
   2499     ForkParentAfter(thr, pc);
   2500   }
   2501 }
   2502 #endif
   2503 
   2504 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
   2505   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
   2506 
   2507 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
   2508   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
   2509 
   2510 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
   2511   do {                                       \
   2512     (void)(p);                               \
   2513     (void)(s);                               \
   2514   } while (false)
   2515 
   2516 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
   2517   do {                                        \
   2518     (void)(p);                                \
   2519     (void)(s);                                \
   2520   } while (false)
   2521 
   2522 #define COMMON_SYSCALL_ACQUIRE(addr) \
   2523     syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
   2524 
   2525 #define COMMON_SYSCALL_RELEASE(addr) \
   2526     syscall_release(GET_CALLER_PC(), (uptr)(addr))
   2527 
   2528 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
   2529 
   2530 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
   2531 
   2532 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
   2533 
   2534 #define COMMON_SYSCALL_PRE_FORK() \
   2535   syscall_pre_fork(GET_CALLER_PC())
   2536 
   2537 #define COMMON_SYSCALL_POST_FORK(res) \
   2538   syscall_post_fork(GET_CALLER_PC(), res)
   2539 
   2540 #include "sanitizer_common/sanitizer_common_syscalls.inc"
   2541 #include "sanitizer_common/sanitizer_syscalls_netbsd.inc"
   2542 
   2543 #ifdef NEED_TLS_GET_ADDR
   2544 // Define own interceptor instead of sanitizer_common's for three reasons:
   2545 // 1. It must not process pending signals.
   2546 //    Signal handlers may contain MOVDQA instruction (see below).
   2547 // 2. It must be as simple as possible to not contain MOVDQA.
   2548 // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
   2549 //    is empty for tsan (meant only for msan).
   2550 // Note: __tls_get_addr can be called with mis-aligned stack due to:
   2551 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
   2552 // So the interceptor must work with mis-aligned stack, in particular, does not
   2553 // execute MOVDQA with stack addresses.
   2554 TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
   2555   void *res = REAL(__tls_get_addr)(arg);
   2556   ThreadState *thr = cur_thread();
   2557   if (!thr)
   2558     return res;
   2559   DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr,
   2560                                         thr->tls_addr + thr->tls_size);
   2561   if (!dtv)
   2562     return res;
   2563   // New DTLS block has been allocated.
   2564   MemoryResetRange(thr, 0, dtv->beg, dtv->size);
   2565   return res;
   2566 }
   2567 #endif
   2568 
   2569 #if SANITIZER_NETBSD
   2570 TSAN_INTERCEPTOR(void, _lwp_exit) {
   2571   SCOPED_TSAN_INTERCEPTOR(_lwp_exit);
   2572   DestroyThreadState();
   2573   REAL(_lwp_exit)();
   2574 }
   2575 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
   2576 #else
   2577 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT
   2578 #endif
   2579 
   2580 #if SANITIZER_FREEBSD
   2581 TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) {
   2582   SCOPED_TSAN_INTERCEPTOR(thr_exit, state);
   2583   DestroyThreadState();
   2584   REAL(thr_exit(state));
   2585 }
   2586 #define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
   2587 #else
   2588 #define TSAN_MAYBE_INTERCEPT_THR_EXIT
   2589 #endif
   2590 
   2591 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a)
   2592 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c)
   2593 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c)
   2594 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m)
   2595 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c)
   2596 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a)
   2597 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m)
   2598 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m)
   2599 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a)
   2600 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m)
   2601 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m)
   2602 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m)
   2603 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m)
   2604 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m)
   2605 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m)
   2606 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)())
   2607 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask, sigmask, int a, void *b,
   2608   void *c)
   2609 
   2610 namespace __tsan {
   2611 
   2612 static void finalize(void *arg) {
   2613   ThreadState *thr = cur_thread();
   2614   int status = Finalize(thr);
   2615   // Make sure the output is not lost.
   2616   FlushStreams();
   2617   if (status)
   2618     Die();
   2619 }
   2620 
   2621 #if !SANITIZER_MAC && !SANITIZER_ANDROID
   2622 static void unreachable() {
   2623   Report("FATAL: ThreadSanitizer: unreachable called\n");
   2624   Die();
   2625 }
   2626 #endif
   2627 
   2628 void InitializeInterceptors() {
   2629 #if !SANITIZER_MAC
   2630   // We need to setup it early, because functions like dlsym() can call it.
   2631   REAL(memset) = internal_memset;
   2632   REAL(memcpy) = internal_memcpy;
   2633 #endif
   2634 
   2635   // Instruct libc malloc to consume less memory.
   2636 #if SANITIZER_LINUX
   2637   mallopt(1, 0);  // M_MXFAST
   2638   mallopt(-3, 32*1024);  // M_MMAP_THRESHOLD
   2639 #endif
   2640 
   2641   new(interceptor_ctx()) InterceptorContext();
   2642 
   2643   InitializeCommonInterceptors();
   2644   InitializeSignalInterceptors();
   2645 
   2646 #if !SANITIZER_MAC
   2647   // We can not use TSAN_INTERCEPT to get setjmp addr,
   2648   // because it does &setjmp and setjmp is not present in some versions of libc.
   2649   using __interception::GetRealFunctionAddress;
   2650   GetRealFunctionAddress(TSAN_STRING_SETJMP,
   2651                          (uptr*)&REAL(setjmp_symname), 0, 0);
   2652   GetRealFunctionAddress("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
   2653   GetRealFunctionAddress(TSAN_STRING_SIGSETJMP,
   2654                          (uptr*)&REAL(sigsetjmp_symname), 0, 0);
   2655 #if !SANITIZER_NETBSD
   2656   GetRealFunctionAddress("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
   2657 #endif
   2658 #endif
   2659 
   2660   TSAN_INTERCEPT(longjmp_symname);
   2661   TSAN_INTERCEPT(siglongjmp_symname);
   2662 #if SANITIZER_NETBSD
   2663   TSAN_INTERCEPT(_longjmp);
   2664 #endif
   2665 
   2666   TSAN_INTERCEPT(malloc);
   2667   TSAN_INTERCEPT(__libc_memalign);
   2668   TSAN_INTERCEPT(calloc);
   2669   TSAN_INTERCEPT(realloc);
   2670   TSAN_INTERCEPT(free);
   2671   TSAN_INTERCEPT(cfree);
   2672   TSAN_INTERCEPT(munmap);
   2673   TSAN_MAYBE_INTERCEPT_MEMALIGN;
   2674   TSAN_INTERCEPT(valloc);
   2675   TSAN_MAYBE_INTERCEPT_PVALLOC;
   2676   TSAN_INTERCEPT(posix_memalign);
   2677 
   2678   TSAN_INTERCEPT(strcpy);  // NOLINT
   2679   TSAN_INTERCEPT(strncpy);
   2680   TSAN_INTERCEPT(strdup);
   2681 
   2682   TSAN_INTERCEPT(pthread_create);
   2683   TSAN_INTERCEPT(pthread_join);
   2684   TSAN_INTERCEPT(pthread_detach);
   2685   #if SANITIZER_LINUX
   2686   TSAN_INTERCEPT(pthread_tryjoin_np);
   2687   TSAN_INTERCEPT(pthread_timedjoin_np);
   2688   #endif
   2689 
   2690   TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
   2691   TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
   2692   TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
   2693   TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
   2694   TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
   2695   TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
   2696 
   2697   TSAN_INTERCEPT(pthread_mutex_init);
   2698   TSAN_INTERCEPT(pthread_mutex_destroy);
   2699   TSAN_INTERCEPT(pthread_mutex_trylock);
   2700   TSAN_INTERCEPT(pthread_mutex_timedlock);
   2701 
   2702   TSAN_INTERCEPT(pthread_spin_init);
   2703   TSAN_INTERCEPT(pthread_spin_destroy);
   2704   TSAN_INTERCEPT(pthread_spin_lock);
   2705   TSAN_INTERCEPT(pthread_spin_trylock);
   2706   TSAN_INTERCEPT(pthread_spin_unlock);
   2707 
   2708   TSAN_INTERCEPT(pthread_rwlock_init);
   2709   TSAN_INTERCEPT(pthread_rwlock_destroy);
   2710   TSAN_INTERCEPT(pthread_rwlock_rdlock);
   2711   TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
   2712   TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
   2713   TSAN_INTERCEPT(pthread_rwlock_wrlock);
   2714   TSAN_INTERCEPT(pthread_rwlock_trywrlock);
   2715   TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
   2716   TSAN_INTERCEPT(pthread_rwlock_unlock);
   2717 
   2718   TSAN_INTERCEPT(pthread_barrier_init);
   2719   TSAN_INTERCEPT(pthread_barrier_destroy);
   2720   TSAN_INTERCEPT(pthread_barrier_wait);
   2721 
   2722   TSAN_INTERCEPT(pthread_once);
   2723 
   2724   TSAN_INTERCEPT(fstat);
   2725   TSAN_MAYBE_INTERCEPT___FXSTAT;
   2726   TSAN_MAYBE_INTERCEPT_FSTAT64;
   2727   TSAN_MAYBE_INTERCEPT___FXSTAT64;
   2728   TSAN_INTERCEPT(open);
   2729   TSAN_MAYBE_INTERCEPT_OPEN64;
   2730   TSAN_INTERCEPT(creat);
   2731   TSAN_MAYBE_INTERCEPT_CREAT64;
   2732   TSAN_INTERCEPT(dup);
   2733   TSAN_INTERCEPT(dup2);
   2734   TSAN_INTERCEPT(dup3);
   2735   TSAN_MAYBE_INTERCEPT_EVENTFD;
   2736   TSAN_MAYBE_INTERCEPT_SIGNALFD;
   2737   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
   2738   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
   2739   TSAN_INTERCEPT(socket);
   2740   TSAN_INTERCEPT(socketpair);
   2741   TSAN_INTERCEPT(connect);
   2742   TSAN_INTERCEPT(bind);
   2743   TSAN_INTERCEPT(listen);
   2744   TSAN_MAYBE_INTERCEPT_EPOLL;
   2745   TSAN_INTERCEPT(close);
   2746   TSAN_MAYBE_INTERCEPT___CLOSE;
   2747   TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
   2748   TSAN_INTERCEPT(pipe);
   2749   TSAN_INTERCEPT(pipe2);
   2750 
   2751   TSAN_INTERCEPT(unlink);
   2752   TSAN_INTERCEPT(tmpfile);
   2753   TSAN_MAYBE_INTERCEPT_TMPFILE64;
   2754   TSAN_INTERCEPT(abort);
   2755   TSAN_INTERCEPT(rmdir);
   2756   TSAN_INTERCEPT(closedir);
   2757 
   2758   TSAN_INTERCEPT(sigsuspend);
   2759   TSAN_INTERCEPT(sigblock);
   2760   TSAN_INTERCEPT(sigsetmask);
   2761   TSAN_INTERCEPT(pthread_sigmask);
   2762   TSAN_INTERCEPT(raise);
   2763   TSAN_INTERCEPT(kill);
   2764   TSAN_INTERCEPT(pthread_kill);
   2765   TSAN_INTERCEPT(sleep);
   2766   TSAN_INTERCEPT(usleep);
   2767   TSAN_INTERCEPT(nanosleep);
   2768   TSAN_INTERCEPT(pause);
   2769   TSAN_INTERCEPT(gettimeofday);
   2770   TSAN_INTERCEPT(getaddrinfo);
   2771 
   2772   TSAN_INTERCEPT(fork);
   2773   TSAN_INTERCEPT(vfork);
   2774 #if !SANITIZER_ANDROID
   2775   TSAN_INTERCEPT(dl_iterate_phdr);
   2776 #endif
   2777   TSAN_MAYBE_INTERCEPT_ON_EXIT;
   2778   TSAN_INTERCEPT(__cxa_atexit);
   2779   TSAN_INTERCEPT(_exit);
   2780 
   2781 #ifdef NEED_TLS_GET_ADDR
   2782   TSAN_INTERCEPT(__tls_get_addr);
   2783 #endif
   2784 
   2785   TSAN_MAYBE_INTERCEPT__LWP_EXIT;
   2786   TSAN_MAYBE_INTERCEPT_THR_EXIT;
   2787 
   2788 #if !SANITIZER_MAC && !SANITIZER_ANDROID
   2789   // Need to setup it, because interceptors check that the function is resolved.
   2790   // But atexit is emitted directly into the module, so can't be resolved.
   2791   REAL(atexit) = (int(*)(void(*)()))unreachable;
   2792 #endif
   2793 
   2794   if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
   2795     Printf("ThreadSanitizer: failed to setup atexit callback\n");
   2796     Die();
   2797   }
   2798 
   2799 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
   2800   if (pthread_key_create(&interceptor_ctx()->finalize_key, &thread_finalize)) {
   2801     Printf("ThreadSanitizer: failed to create thread key\n");
   2802     Die();
   2803   }
   2804 #endif
   2805 
   2806   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init);
   2807   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal);
   2808   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast);
   2809   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait);
   2810   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy);
   2811   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init);
   2812   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy);
   2813   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock);
   2814   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init);
   2815   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy);
   2816   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock);
   2817   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock);
   2818   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock);
   2819   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock);
   2820   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock);
   2821   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once);
   2822   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask);
   2823 
   2824   FdInit();
   2825 }
   2826 
   2827 }  // namespace __tsan
   2828 
   2829 // Invisible barrier for tests.
   2830 // There were several unsuccessful iterations for this functionality:
   2831 // 1. Initially it was implemented in user code using
   2832 //    REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
   2833 //    MacOS. Futexes are linux-specific for this matter.
   2834 // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
   2835 //    "as-if synchronized via sleep" messages in reports which failed some
   2836 //    output tests.
   2837 // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
   2838 //    visible events, which lead to "failed to restore stack trace" failures.
   2839 // Note that no_sanitize_thread attribute does not turn off atomic interception
   2840 // so attaching it to the function defined in user code does not help.
   2841 // That's why we now have what we have.
   2842 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
   2843 void __tsan_testonly_barrier_init(u64 *barrier, u32 count) {
   2844   if (count >= (1 << 8)) {
   2845       Printf("barrier_init: count is too large (%d)\n", count);
   2846       Die();
   2847   }
   2848   // 8 lsb is thread count, the remaining are count of entered threads.
   2849   *barrier = count;
   2850 }
   2851 
   2852 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
   2853 void __tsan_testonly_barrier_wait(u64 *barrier) {
   2854   unsigned old = __atomic_fetch_add(barrier, 1 << 8, __ATOMIC_RELAXED);
   2855   unsigned old_epoch = (old >> 8) / (old & 0xff);
   2856   for (;;) {
   2857     unsigned cur = __atomic_load_n(barrier, __ATOMIC_RELAXED);
   2858     unsigned cur_epoch = (cur >> 8) / (cur & 0xff);
   2859     if (cur_epoch != old_epoch)
   2860       return;
   2861     internal_sched_yield();
   2862   }
   2863 }
   2864