1 //===-- sanitizer_win.cc --------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is shared between AddressSanitizer and ThreadSanitizer 11 // run-time libraries and implements windows-specific functions from 12 // sanitizer_libc.h. 13 //===----------------------------------------------------------------------===// 14 15 #include "sanitizer_platform.h" 16 #if SANITIZER_WINDOWS 17 18 #define WIN32_LEAN_AND_MEAN 19 #define NOGDI 20 #include <windows.h> 21 #include <io.h> 22 #include <psapi.h> 23 #include <stdlib.h> 24 25 #include "sanitizer_common.h" 26 #include "sanitizer_file.h" 27 #include "sanitizer_libc.h" 28 #include "sanitizer_mutex.h" 29 #include "sanitizer_placement_new.h" 30 #include "sanitizer_win_defs.h" 31 32 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1 33 #pragma comment(lib, "psapi") 34 #endif 35 36 // A macro to tell the compiler that this part of the code cannot be reached, 37 // if the compiler supports this feature. Since we're using this in 38 // code that is called when terminating the process, the expansion of the 39 // macro should not terminate the process to avoid infinite recursion. 40 #if defined(__clang__) 41 # define BUILTIN_UNREACHABLE() __builtin_unreachable() 42 #elif defined(__GNUC__) && \ 43 (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)) 44 # define BUILTIN_UNREACHABLE() __builtin_unreachable() 45 #elif defined(_MSC_VER) 46 # define BUILTIN_UNREACHABLE() __assume(0) 47 #else 48 # define BUILTIN_UNREACHABLE() 49 #endif 50 51 namespace __sanitizer { 52 53 #include "sanitizer_syscall_generic.inc" 54 55 // --------------------- sanitizer_common.h 56 uptr GetPageSize() { 57 SYSTEM_INFO si; 58 GetSystemInfo(&si); 59 return si.dwPageSize; 60 } 61 62 uptr GetMmapGranularity() { 63 SYSTEM_INFO si; 64 GetSystemInfo(&si); 65 return si.dwAllocationGranularity; 66 } 67 68 uptr GetMaxUserVirtualAddress() { 69 SYSTEM_INFO si; 70 GetSystemInfo(&si); 71 return (uptr)si.lpMaximumApplicationAddress; 72 } 73 74 uptr GetMaxVirtualAddress() { 75 return GetMaxUserVirtualAddress(); 76 } 77 78 bool FileExists(const char *filename) { 79 return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES; 80 } 81 82 uptr internal_getpid() { 83 return GetProcessId(GetCurrentProcess()); 84 } 85 86 // In contrast to POSIX, on Windows GetCurrentThreadId() 87 // returns a system-unique identifier. 88 tid_t GetTid() { 89 return GetCurrentThreadId(); 90 } 91 92 uptr GetThreadSelf() { 93 return GetTid(); 94 } 95 96 #if !SANITIZER_GO 97 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, 98 uptr *stack_bottom) { 99 CHECK(stack_top); 100 CHECK(stack_bottom); 101 MEMORY_BASIC_INFORMATION mbi; 102 CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0); 103 // FIXME: is it possible for the stack to not be a single allocation? 104 // Are these values what ASan expects to get (reserved, not committed; 105 // including stack guard page) ? 106 *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize; 107 *stack_bottom = (uptr)mbi.AllocationBase; 108 } 109 #endif // #if !SANITIZER_GO 110 111 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { 112 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 113 if (rv == 0) 114 ReportMmapFailureAndDie(size, mem_type, "allocate", 115 GetLastError(), raw_report); 116 return rv; 117 } 118 119 void UnmapOrDie(void *addr, uptr size) { 120 if (!size || !addr) 121 return; 122 123 MEMORY_BASIC_INFORMATION mbi; 124 CHECK(VirtualQuery(addr, &mbi, sizeof(mbi))); 125 126 // MEM_RELEASE can only be used to unmap whole regions previously mapped with 127 // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that 128 // fails try MEM_DECOMMIT. 129 if (VirtualFree(addr, 0, MEM_RELEASE) == 0) { 130 if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) { 131 Report("ERROR: %s failed to " 132 "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n", 133 SanitizerToolName, size, size, addr, GetLastError()); 134 CHECK("unable to unmap" && 0); 135 } 136 } 137 } 138 139 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type, 140 const char *mmap_type) { 141 error_t last_error = GetLastError(); 142 if (last_error == ERROR_NOT_ENOUGH_MEMORY) 143 return nullptr; 144 ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error); 145 } 146 147 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) { 148 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 149 if (rv == 0) 150 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate"); 151 return rv; 152 } 153 154 // We want to map a chunk of address space aligned to 'alignment'. 155 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, 156 const char *mem_type) { 157 CHECK(IsPowerOfTwo(size)); 158 CHECK(IsPowerOfTwo(alignment)); 159 160 // Windows will align our allocations to at least 64K. 161 alignment = Max(alignment, GetMmapGranularity()); 162 163 uptr mapped_addr = 164 (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 165 if (!mapped_addr) 166 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned"); 167 168 // If we got it right on the first try, return. Otherwise, unmap it and go to 169 // the slow path. 170 if (IsAligned(mapped_addr, alignment)) 171 return (void*)mapped_addr; 172 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0) 173 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError()); 174 175 // If we didn't get an aligned address, overallocate, find an aligned address, 176 // unmap, and try to allocate at that aligned address. 177 int retries = 0; 178 const int kMaxRetries = 10; 179 for (; retries < kMaxRetries && 180 (mapped_addr == 0 || !IsAligned(mapped_addr, alignment)); 181 retries++) { 182 // Overallocate size + alignment bytes. 183 mapped_addr = 184 (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS); 185 if (!mapped_addr) 186 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned"); 187 188 // Find the aligned address. 189 uptr aligned_addr = RoundUpTo(mapped_addr, alignment); 190 191 // Free the overallocation. 192 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0) 193 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError()); 194 195 // Attempt to allocate exactly the number of bytes we need at the aligned 196 // address. This may fail for a number of reasons, in which case we continue 197 // the loop. 198 mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size, 199 MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 200 } 201 202 // Fail if we can't make this work quickly. 203 if (retries == kMaxRetries && mapped_addr == 0) 204 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned"); 205 206 return (void *)mapped_addr; 207 } 208 209 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) { 210 // FIXME: is this really "NoReserve"? On Win32 this does not matter much, 211 // but on Win64 it does. 212 (void)name; // unsupported 213 #if !SANITIZER_GO && SANITIZER_WINDOWS64 214 // On asan/Windows64, use MEM_COMMIT would result in error 215 // 1455:ERROR_COMMITMENT_LIMIT. 216 // Asan uses exception handler to commit page on demand. 217 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE); 218 #else 219 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT, 220 PAGE_READWRITE); 221 #endif 222 if (p == 0) { 223 Report("ERROR: %s failed to " 224 "allocate %p (%zd) bytes at %p (error code: %d)\n", 225 SanitizerToolName, size, size, fixed_addr, GetLastError()); 226 return false; 227 } 228 return true; 229 } 230 231 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by 232 // 'MmapFixedNoAccess'. 233 void *MmapFixedOrDie(uptr fixed_addr, uptr size) { 234 void *p = VirtualAlloc((LPVOID)fixed_addr, size, 235 MEM_COMMIT, PAGE_READWRITE); 236 if (p == 0) { 237 char mem_type[30]; 238 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx", 239 fixed_addr); 240 ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError()); 241 } 242 return p; 243 } 244 245 // Uses fixed_addr for now. 246 // Will use offset instead once we've implemented this function for real. 247 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size) { 248 return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size)); 249 } 250 251 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size) { 252 return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size)); 253 } 254 255 void ReservedAddressRange::Unmap(uptr addr, uptr size) { 256 // Only unmap if it covers the entire range. 257 CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_)); 258 // We unmap the whole range, just null out the base. 259 base_ = nullptr; 260 size_ = 0; 261 UnmapOrDie(reinterpret_cast<void*>(addr), size); 262 } 263 264 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size) { 265 void *p = VirtualAlloc((LPVOID)fixed_addr, size, 266 MEM_COMMIT, PAGE_READWRITE); 267 if (p == 0) { 268 char mem_type[30]; 269 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx", 270 fixed_addr); 271 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate"); 272 } 273 return p; 274 } 275 276 void *MmapNoReserveOrDie(uptr size, const char *mem_type) { 277 // FIXME: make this really NoReserve? 278 return MmapOrDie(size, mem_type); 279 } 280 281 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) { 282 base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size); 283 size_ = size; 284 name_ = name; 285 (void)os_handle_; // unsupported 286 return reinterpret_cast<uptr>(base_); 287 } 288 289 290 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { 291 (void)name; // unsupported 292 void *res = VirtualAlloc((LPVOID)fixed_addr, size, 293 MEM_RESERVE, PAGE_NOACCESS); 294 if (res == 0) 295 Report("WARNING: %s failed to " 296 "mprotect %p (%zd) bytes at %p (error code: %d)\n", 297 SanitizerToolName, size, size, fixed_addr, GetLastError()); 298 return res; 299 } 300 301 void *MmapNoAccess(uptr size) { 302 void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS); 303 if (res == 0) 304 Report("WARNING: %s failed to " 305 "mprotect %p (%zd) bytes (error code: %d)\n", 306 SanitizerToolName, size, size, GetLastError()); 307 return res; 308 } 309 310 bool MprotectNoAccess(uptr addr, uptr size) { 311 DWORD old_protection; 312 return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection); 313 } 314 315 void ReleaseMemoryPagesToOS(uptr beg, uptr end) { 316 // This is almost useless on 32-bits. 317 // FIXME: add madvise-analog when we move to 64-bits. 318 } 319 320 bool NoHugePagesInRegion(uptr addr, uptr size) { 321 // FIXME: probably similar to ReleaseMemoryToOS. 322 return true; 323 } 324 325 bool DontDumpShadowMemory(uptr addr, uptr length) { 326 // This is almost useless on 32-bits. 327 // FIXME: add madvise-analog when we move to 64-bits. 328 return true; 329 } 330 331 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, 332 uptr *largest_gap_found, 333 uptr *max_occupied_addr) { 334 uptr address = 0; 335 while (true) { 336 MEMORY_BASIC_INFORMATION info; 337 if (!::VirtualQuery((void*)address, &info, sizeof(info))) 338 return 0; 339 340 if (info.State == MEM_FREE) { 341 uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding, 342 alignment); 343 if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize) 344 return shadow_address; 345 } 346 347 // Move to the next region. 348 address = (uptr)info.BaseAddress + info.RegionSize; 349 } 350 return 0; 351 } 352 353 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) { 354 MEMORY_BASIC_INFORMATION mbi; 355 CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi))); 356 return mbi.Protect == PAGE_NOACCESS && 357 (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end; 358 } 359 360 void *MapFileToMemory(const char *file_name, uptr *buff_size) { 361 UNIMPLEMENTED(); 362 } 363 364 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) { 365 UNIMPLEMENTED(); 366 } 367 368 static const int kMaxEnvNameLength = 128; 369 static const DWORD kMaxEnvValueLength = 32767; 370 371 namespace { 372 373 struct EnvVariable { 374 char name[kMaxEnvNameLength]; 375 char value[kMaxEnvValueLength]; 376 }; 377 378 } // namespace 379 380 static const int kEnvVariables = 5; 381 static EnvVariable env_vars[kEnvVariables]; 382 static int num_env_vars; 383 384 const char *GetEnv(const char *name) { 385 // Note: this implementation caches the values of the environment variables 386 // and limits their quantity. 387 for (int i = 0; i < num_env_vars; i++) { 388 if (0 == internal_strcmp(name, env_vars[i].name)) 389 return env_vars[i].value; 390 } 391 CHECK_LT(num_env_vars, kEnvVariables); 392 DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value, 393 kMaxEnvValueLength); 394 if (rv > 0 && rv < kMaxEnvValueLength) { 395 CHECK_LT(internal_strlen(name), kMaxEnvNameLength); 396 internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength); 397 num_env_vars++; 398 return env_vars[num_env_vars - 1].value; 399 } 400 return 0; 401 } 402 403 const char *GetPwd() { 404 UNIMPLEMENTED(); 405 } 406 407 u32 GetUid() { 408 UNIMPLEMENTED(); 409 } 410 411 namespace { 412 struct ModuleInfo { 413 const char *filepath; 414 uptr base_address; 415 uptr end_address; 416 }; 417 418 #if !SANITIZER_GO 419 int CompareModulesBase(const void *pl, const void *pr) { 420 const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr; 421 if (l->base_address < r->base_address) 422 return -1; 423 return l->base_address > r->base_address; 424 } 425 #endif 426 } // namespace 427 428 #if !SANITIZER_GO 429 void DumpProcessMap() { 430 Report("Dumping process modules:\n"); 431 ListOfModules modules; 432 modules.init(); 433 uptr num_modules = modules.size(); 434 435 InternalMmapVector<ModuleInfo> module_infos(num_modules); 436 for (size_t i = 0; i < num_modules; ++i) { 437 module_infos[i].filepath = modules[i].full_name(); 438 module_infos[i].base_address = modules[i].ranges().front()->beg; 439 module_infos[i].end_address = modules[i].ranges().back()->end; 440 } 441 qsort(module_infos.data(), num_modules, sizeof(ModuleInfo), 442 CompareModulesBase); 443 444 for (size_t i = 0; i < num_modules; ++i) { 445 const ModuleInfo &mi = module_infos[i]; 446 if (mi.end_address != 0) { 447 Printf("\t%p-%p %s\n", mi.base_address, mi.end_address, 448 mi.filepath[0] ? mi.filepath : "[no name]"); 449 } else if (mi.filepath[0]) { 450 Printf("\t??\?-??? %s\n", mi.filepath); 451 } else { 452 Printf("\t???\n"); 453 } 454 } 455 } 456 #endif 457 458 void PrintModuleMap() { } 459 460 void DisableCoreDumperIfNecessary() { 461 // Do nothing. 462 } 463 464 void ReExec() { 465 UNIMPLEMENTED(); 466 } 467 468 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {} 469 470 bool StackSizeIsUnlimited() { 471 UNIMPLEMENTED(); 472 } 473 474 void SetStackSizeLimitInBytes(uptr limit) { 475 UNIMPLEMENTED(); 476 } 477 478 bool AddressSpaceIsUnlimited() { 479 UNIMPLEMENTED(); 480 } 481 482 void SetAddressSpaceUnlimited() { 483 UNIMPLEMENTED(); 484 } 485 486 bool IsPathSeparator(const char c) { 487 return c == '\\' || c == '/'; 488 } 489 490 bool IsAbsolutePath(const char *path) { 491 UNIMPLEMENTED(); 492 } 493 494 void SleepForSeconds(int seconds) { 495 Sleep(seconds * 1000); 496 } 497 498 void SleepForMillis(int millis) { 499 Sleep(millis); 500 } 501 502 u64 NanoTime() { 503 static LARGE_INTEGER frequency = {}; 504 LARGE_INTEGER counter; 505 if (UNLIKELY(frequency.QuadPart == 0)) { 506 QueryPerformanceFrequency(&frequency); 507 CHECK_NE(frequency.QuadPart, 0); 508 } 509 QueryPerformanceCounter(&counter); 510 counter.QuadPart *= 1000ULL * 1000000ULL; 511 counter.QuadPart /= frequency.QuadPart; 512 return counter.QuadPart; 513 } 514 515 u64 MonotonicNanoTime() { return NanoTime(); } 516 517 void Abort() { 518 internal__exit(3); 519 } 520 521 #if !SANITIZER_GO 522 // Read the file to extract the ImageBase field from the PE header. If ASLR is 523 // disabled and this virtual address is available, the loader will typically 524 // load the image at this address. Therefore, we call it the preferred base. Any 525 // addresses in the DWARF typically assume that the object has been loaded at 526 // this address. 527 static uptr GetPreferredBase(const char *modname) { 528 fd_t fd = OpenFile(modname, RdOnly, nullptr); 529 if (fd == kInvalidFd) 530 return 0; 531 FileCloser closer(fd); 532 533 // Read just the DOS header. 534 IMAGE_DOS_HEADER dos_header; 535 uptr bytes_read; 536 if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) || 537 bytes_read != sizeof(dos_header)) 538 return 0; 539 540 // The file should start with the right signature. 541 if (dos_header.e_magic != IMAGE_DOS_SIGNATURE) 542 return 0; 543 544 // The layout at e_lfanew is: 545 // "PE\0\0" 546 // IMAGE_FILE_HEADER 547 // IMAGE_OPTIONAL_HEADER 548 // Seek to e_lfanew and read all that data. 549 char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)]; 550 if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) == 551 INVALID_SET_FILE_POINTER) 552 return 0; 553 if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) || 554 bytes_read != sizeof(buf)) 555 return 0; 556 557 // Check for "PE\0\0" before the PE header. 558 char *pe_sig = &buf[0]; 559 if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0) 560 return 0; 561 562 // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted. 563 IMAGE_OPTIONAL_HEADER *pe_header = 564 (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER)); 565 566 // Check for more magic in the PE header. 567 if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC) 568 return 0; 569 570 // Finally, return the ImageBase. 571 return (uptr)pe_header->ImageBase; 572 } 573 574 void ListOfModules::init() { 575 clearOrInit(); 576 HANDLE cur_process = GetCurrentProcess(); 577 578 // Query the list of modules. Start by assuming there are no more than 256 579 // modules and retry if that's not sufficient. 580 HMODULE *hmodules = 0; 581 uptr modules_buffer_size = sizeof(HMODULE) * 256; 582 DWORD bytes_required; 583 while (!hmodules) { 584 hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__); 585 CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size, 586 &bytes_required)); 587 if (bytes_required > modules_buffer_size) { 588 // Either there turned out to be more than 256 hmodules, or new hmodules 589 // could have loaded since the last try. Retry. 590 UnmapOrDie(hmodules, modules_buffer_size); 591 hmodules = 0; 592 modules_buffer_size = bytes_required; 593 } 594 } 595 596 // |num_modules| is the number of modules actually present, 597 size_t num_modules = bytes_required / sizeof(HMODULE); 598 for (size_t i = 0; i < num_modules; ++i) { 599 HMODULE handle = hmodules[i]; 600 MODULEINFO mi; 601 if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi))) 602 continue; 603 604 // Get the UTF-16 path and convert to UTF-8. 605 wchar_t modname_utf16[kMaxPathLength]; 606 int modname_utf16_len = 607 GetModuleFileNameW(handle, modname_utf16, kMaxPathLength); 608 if (modname_utf16_len == 0) 609 modname_utf16[0] = '\0'; 610 char module_name[kMaxPathLength]; 611 int module_name_len = 612 ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1, 613 &module_name[0], kMaxPathLength, NULL, NULL); 614 module_name[module_name_len] = '\0'; 615 616 uptr base_address = (uptr)mi.lpBaseOfDll; 617 uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage; 618 619 // Adjust the base address of the module so that we get a VA instead of an 620 // RVA when computing the module offset. This helps llvm-symbolizer find the 621 // right DWARF CU. In the common case that the image is loaded at it's 622 // preferred address, we will now print normal virtual addresses. 623 uptr preferred_base = GetPreferredBase(&module_name[0]); 624 uptr adjusted_base = base_address - preferred_base; 625 626 LoadedModule cur_module; 627 cur_module.set(module_name, adjusted_base); 628 // We add the whole module as one single address range. 629 cur_module.addAddressRange(base_address, end_address, /*executable*/ true, 630 /*writable*/ true); 631 modules_.push_back(cur_module); 632 } 633 UnmapOrDie(hmodules, modules_buffer_size); 634 } 635 636 void ListOfModules::fallbackInit() { clear(); } 637 638 // We can't use atexit() directly at __asan_init time as the CRT is not fully 639 // initialized at this point. Place the functions into a vector and use 640 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers). 641 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions; 642 643 int Atexit(void (*function)(void)) { 644 atexit_functions.push_back(function); 645 return 0; 646 } 647 648 static int RunAtexit() { 649 int ret = 0; 650 for (uptr i = 0; i < atexit_functions.size(); ++i) { 651 ret |= atexit(atexit_functions[i]); 652 } 653 return ret; 654 } 655 656 #pragma section(".CRT$XID", long, read) // NOLINT 657 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit; 658 #endif 659 660 // ------------------ sanitizer_libc.h 661 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) { 662 // FIXME: Use the wide variants to handle Unicode filenames. 663 fd_t res; 664 if (mode == RdOnly) { 665 res = CreateFileA(filename, GENERIC_READ, 666 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, 667 nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); 668 } else if (mode == WrOnly) { 669 res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS, 670 FILE_ATTRIBUTE_NORMAL, nullptr); 671 } else { 672 UNIMPLEMENTED(); 673 } 674 CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd); 675 CHECK(res != kStderrFd || kStderrFd == kInvalidFd); 676 if (res == kInvalidFd && last_error) 677 *last_error = GetLastError(); 678 return res; 679 } 680 681 void CloseFile(fd_t fd) { 682 CloseHandle(fd); 683 } 684 685 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read, 686 error_t *error_p) { 687 CHECK(fd != kInvalidFd); 688 689 // bytes_read can't be passed directly to ReadFile: 690 // uptr is unsigned long long on 64-bit Windows. 691 unsigned long num_read_long; 692 693 bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr); 694 if (!success && error_p) 695 *error_p = GetLastError(); 696 if (bytes_read) 697 *bytes_read = num_read_long; 698 return success; 699 } 700 701 bool SupportsColoredOutput(fd_t fd) { 702 // FIXME: support colored output. 703 return false; 704 } 705 706 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written, 707 error_t *error_p) { 708 CHECK(fd != kInvalidFd); 709 710 // Handle null optional parameters. 711 error_t dummy_error; 712 error_p = error_p ? error_p : &dummy_error; 713 uptr dummy_bytes_written; 714 bytes_written = bytes_written ? bytes_written : &dummy_bytes_written; 715 716 // Initialize output parameters in case we fail. 717 *error_p = 0; 718 *bytes_written = 0; 719 720 // Map the conventional Unix fds 1 and 2 to Windows handles. They might be 721 // closed, in which case this will fail. 722 if (fd == kStdoutFd || fd == kStderrFd) { 723 fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE); 724 if (fd == 0) { 725 *error_p = ERROR_INVALID_HANDLE; 726 return false; 727 } 728 } 729 730 DWORD bytes_written_32; 731 if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) { 732 *error_p = GetLastError(); 733 return false; 734 } else { 735 *bytes_written = bytes_written_32; 736 return true; 737 } 738 } 739 740 uptr internal_sched_yield() { 741 Sleep(0); 742 return 0; 743 } 744 745 void internal__exit(int exitcode) { 746 // ExitProcess runs some finalizers, so use TerminateProcess to avoid that. 747 // The debugger doesn't stop on TerminateProcess like it does on ExitProcess, 748 // so add our own breakpoint here. 749 if (::IsDebuggerPresent()) 750 __debugbreak(); 751 TerminateProcess(GetCurrentProcess(), exitcode); 752 BUILTIN_UNREACHABLE(); 753 } 754 755 uptr internal_ftruncate(fd_t fd, uptr size) { 756 UNIMPLEMENTED(); 757 } 758 759 uptr GetRSS() { 760 PROCESS_MEMORY_COUNTERS counters; 761 if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters))) 762 return 0; 763 return counters.WorkingSetSize; 764 } 765 766 void *internal_start_thread(void (*func)(void *arg), void *arg) { return 0; } 767 void internal_join_thread(void *th) { } 768 769 // ---------------------- BlockingMutex ---------------- {{{1 770 771 BlockingMutex::BlockingMutex() { 772 CHECK(sizeof(SRWLOCK) <= sizeof(opaque_storage_)); 773 internal_memset(this, 0, sizeof(*this)); 774 } 775 776 void BlockingMutex::Lock() { 777 AcquireSRWLockExclusive((PSRWLOCK)opaque_storage_); 778 CHECK_EQ(owner_, 0); 779 owner_ = GetThreadSelf(); 780 } 781 782 void BlockingMutex::Unlock() { 783 CheckLocked(); 784 owner_ = 0; 785 ReleaseSRWLockExclusive((PSRWLOCK)opaque_storage_); 786 } 787 788 void BlockingMutex::CheckLocked() { 789 CHECK_EQ(owner_, GetThreadSelf()); 790 } 791 792 uptr GetTlsSize() { 793 return 0; 794 } 795 796 void InitTlsSize() { 797 } 798 799 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, 800 uptr *tls_addr, uptr *tls_size) { 801 #if SANITIZER_GO 802 *stk_addr = 0; 803 *stk_size = 0; 804 *tls_addr = 0; 805 *tls_size = 0; 806 #else 807 uptr stack_top, stack_bottom; 808 GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom); 809 *stk_addr = stack_bottom; 810 *stk_size = stack_top - stack_bottom; 811 *tls_addr = 0; 812 *tls_size = 0; 813 #endif 814 } 815 816 void ReportFile::Write(const char *buffer, uptr length) { 817 SpinMutexLock l(mu); 818 ReopenIfNecessary(); 819 if (!WriteToFile(fd, buffer, length)) { 820 // stderr may be closed, but we may be able to print to the debugger 821 // instead. This is the case when launching a program from Visual Studio, 822 // and the following routine should write to its console. 823 OutputDebugStringA(buffer); 824 } 825 } 826 827 void SetAlternateSignalStack() { 828 // FIXME: Decide what to do on Windows. 829 } 830 831 void UnsetAlternateSignalStack() { 832 // FIXME: Decide what to do on Windows. 833 } 834 835 void InstallDeadlySignalHandlers(SignalHandlerType handler) { 836 (void)handler; 837 // FIXME: Decide what to do on Windows. 838 } 839 840 HandleSignalMode GetHandleSignalMode(int signum) { 841 // FIXME: Decide what to do on Windows. 842 return kHandleSignalNo; 843 } 844 845 // Check based on flags if we should handle this exception. 846 bool IsHandledDeadlyException(DWORD exceptionCode) { 847 switch (exceptionCode) { 848 case EXCEPTION_ACCESS_VIOLATION: 849 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED: 850 case EXCEPTION_STACK_OVERFLOW: 851 case EXCEPTION_DATATYPE_MISALIGNMENT: 852 case EXCEPTION_IN_PAGE_ERROR: 853 return common_flags()->handle_segv; 854 case EXCEPTION_ILLEGAL_INSTRUCTION: 855 case EXCEPTION_PRIV_INSTRUCTION: 856 case EXCEPTION_BREAKPOINT: 857 return common_flags()->handle_sigill; 858 case EXCEPTION_FLT_DENORMAL_OPERAND: 859 case EXCEPTION_FLT_DIVIDE_BY_ZERO: 860 case EXCEPTION_FLT_INEXACT_RESULT: 861 case EXCEPTION_FLT_INVALID_OPERATION: 862 case EXCEPTION_FLT_OVERFLOW: 863 case EXCEPTION_FLT_STACK_CHECK: 864 case EXCEPTION_FLT_UNDERFLOW: 865 case EXCEPTION_INT_DIVIDE_BY_ZERO: 866 case EXCEPTION_INT_OVERFLOW: 867 return common_flags()->handle_sigfpe; 868 } 869 return false; 870 } 871 872 bool IsAccessibleMemoryRange(uptr beg, uptr size) { 873 SYSTEM_INFO si; 874 GetNativeSystemInfo(&si); 875 uptr page_size = si.dwPageSize; 876 uptr page_mask = ~(page_size - 1); 877 878 for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask; 879 page <= end;) { 880 MEMORY_BASIC_INFORMATION info; 881 if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info)) 882 return false; 883 884 if (info.Protect == 0 || info.Protect == PAGE_NOACCESS || 885 info.Protect == PAGE_EXECUTE) 886 return false; 887 888 if (info.RegionSize == 0) 889 return false; 890 891 page += info.RegionSize; 892 } 893 894 return true; 895 } 896 897 bool SignalContext::IsStackOverflow() const { 898 return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW; 899 } 900 901 void SignalContext::InitPcSpBp() { 902 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; 903 CONTEXT *context_record = (CONTEXT *)context; 904 905 pc = (uptr)exception_record->ExceptionAddress; 906 #ifdef _WIN64 907 bp = (uptr)context_record->Rbp; 908 sp = (uptr)context_record->Rsp; 909 #else 910 bp = (uptr)context_record->Ebp; 911 sp = (uptr)context_record->Esp; 912 #endif 913 } 914 915 uptr SignalContext::GetAddress() const { 916 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; 917 return exception_record->ExceptionInformation[1]; 918 } 919 920 bool SignalContext::IsMemoryAccess() const { 921 return GetWriteFlag() != SignalContext::UNKNOWN; 922 } 923 924 SignalContext::WriteFlag SignalContext::GetWriteFlag() const { 925 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; 926 // The contents of this array are documented at 927 // https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx 928 // The first element indicates read as 0, write as 1, or execute as 8. The 929 // second element is the faulting address. 930 switch (exception_record->ExceptionInformation[0]) { 931 case 0: 932 return SignalContext::READ; 933 case 1: 934 return SignalContext::WRITE; 935 case 8: 936 return SignalContext::UNKNOWN; 937 } 938 return SignalContext::UNKNOWN; 939 } 940 941 void SignalContext::DumpAllRegisters(void *context) { 942 // FIXME: Implement this. 943 } 944 945 int SignalContext::GetType() const { 946 return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode; 947 } 948 949 const char *SignalContext::Describe() const { 950 unsigned code = GetType(); 951 // Get the string description of the exception if this is a known deadly 952 // exception. 953 switch (code) { 954 case EXCEPTION_ACCESS_VIOLATION: 955 return "access-violation"; 956 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED: 957 return "array-bounds-exceeded"; 958 case EXCEPTION_STACK_OVERFLOW: 959 return "stack-overflow"; 960 case EXCEPTION_DATATYPE_MISALIGNMENT: 961 return "datatype-misalignment"; 962 case EXCEPTION_IN_PAGE_ERROR: 963 return "in-page-error"; 964 case EXCEPTION_ILLEGAL_INSTRUCTION: 965 return "illegal-instruction"; 966 case EXCEPTION_PRIV_INSTRUCTION: 967 return "priv-instruction"; 968 case EXCEPTION_BREAKPOINT: 969 return "breakpoint"; 970 case EXCEPTION_FLT_DENORMAL_OPERAND: 971 return "flt-denormal-operand"; 972 case EXCEPTION_FLT_DIVIDE_BY_ZERO: 973 return "flt-divide-by-zero"; 974 case EXCEPTION_FLT_INEXACT_RESULT: 975 return "flt-inexact-result"; 976 case EXCEPTION_FLT_INVALID_OPERATION: 977 return "flt-invalid-operation"; 978 case EXCEPTION_FLT_OVERFLOW: 979 return "flt-overflow"; 980 case EXCEPTION_FLT_STACK_CHECK: 981 return "flt-stack-check"; 982 case EXCEPTION_FLT_UNDERFLOW: 983 return "flt-underflow"; 984 case EXCEPTION_INT_DIVIDE_BY_ZERO: 985 return "int-divide-by-zero"; 986 case EXCEPTION_INT_OVERFLOW: 987 return "int-overflow"; 988 } 989 return "unknown exception"; 990 } 991 992 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) { 993 // FIXME: Actually implement this function. 994 CHECK_GT(buf_len, 0); 995 buf[0] = 0; 996 return 0; 997 } 998 999 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) { 1000 return ReadBinaryName(buf, buf_len); 1001 } 1002 1003 void CheckVMASize() { 1004 // Do nothing. 1005 } 1006 1007 void InitializePlatformEarly() { 1008 // Do nothing. 1009 } 1010 1011 void MaybeReexec() { 1012 // No need to re-exec on Windows. 1013 } 1014 1015 void CheckASLR() { 1016 // Do nothing 1017 } 1018 1019 void CheckMPROTECT() { 1020 // Do nothing 1021 } 1022 1023 char **GetArgv() { 1024 // FIXME: Actually implement this function. 1025 return 0; 1026 } 1027 1028 char **GetEnviron() { 1029 // FIXME: Actually implement this function. 1030 return 0; 1031 } 1032 1033 pid_t StartSubprocess(const char *program, const char *const argv[], 1034 fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) { 1035 // FIXME: implement on this platform 1036 // Should be implemented based on 1037 // SymbolizerProcess::StarAtSymbolizerSubprocess 1038 // from lib/sanitizer_common/sanitizer_symbolizer_win.cc. 1039 return -1; 1040 } 1041 1042 bool IsProcessRunning(pid_t pid) { 1043 // FIXME: implement on this platform. 1044 return false; 1045 } 1046 1047 int WaitForProcess(pid_t pid) { return -1; } 1048 1049 // FIXME implement on this platform. 1050 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { } 1051 1052 void CheckNoDeepBind(const char *filename, int flag) { 1053 // Do nothing. 1054 } 1055 1056 // FIXME: implement on this platform. 1057 bool GetRandom(void *buffer, uptr length, bool blocking) { 1058 UNIMPLEMENTED(); 1059 } 1060 1061 u32 GetNumberOfCPUs() { 1062 SYSTEM_INFO sysinfo = {}; 1063 GetNativeSystemInfo(&sysinfo); 1064 return sysinfo.dwNumberOfProcessors; 1065 } 1066 1067 } // namespace __sanitizer 1068 1069 #endif // _WIN32 1070