Home | History | Annotate | Line # | Download | only in rtl
      1 //===-- tsan_interceptors_mac.cc ------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of ThreadSanitizer (TSan), a race detector.
     11 //
     12 // Mac-specific interceptors.
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "sanitizer_common/sanitizer_platform.h"
     16 #if SANITIZER_MAC
     17 
     18 #include "interception/interception.h"
     19 #include "tsan_interceptors.h"
     20 #include "tsan_interface.h"
     21 #include "tsan_interface_ann.h"
     22 #include "sanitizer_common/sanitizer_addrhashmap.h"
     23 
     24 #include <libkern/OSAtomic.h>
     25 #include <objc/objc-sync.h>
     26 
     27 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
     28 #include <xpc/xpc.h>
     29 #endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
     30 
     31 typedef long long_t;  // NOLINT
     32 
     33 namespace __tsan {
     34 
     35 // The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
     36 // but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
     37 // actually aliases of each other, and we cannot have different interceptors for
     38 // them, because they're actually the same function.  Thus, we have to stay
     39 // conservative and treat the non-barrier versions as mo_acq_rel.
     40 static const morder kMacOrderBarrier = mo_acq_rel;
     41 static const morder kMacOrderNonBarrier = mo_acq_rel;
     42 
     43 #define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
     44   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                 \
     45     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                 \
     46     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo);                \
     47   }
     48 
     49 #define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
     50   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                        \
     51     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                        \
     52     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x;                   \
     53   }
     54 
     55 #define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
     56   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                             \
     57     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                           \
     58     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1;                   \
     59   }
     60 
     61 #define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
     62                                      mo)                                    \
     63   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                          \
     64     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                        \
     65     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1;                \
     66   }
     67 
     68 #define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m)                  \
     69   m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,             \
     70     kMacOrderNonBarrier)                                                       \
     71   m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,    \
     72     kMacOrderBarrier)                                                          \
     73   m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f,             \
     74     kMacOrderNonBarrier)                                                       \
     75   m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f,    \
     76     kMacOrderBarrier)
     77 
     78 #define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig)             \
     79   m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,            \
     80     kMacOrderNonBarrier)                                                       \
     81   m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,   \
     82     kMacOrderBarrier)                                                          \
     83   m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
     84     kMacOrderNonBarrier)                                                       \
     85   m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier,                           \
     86     __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
     87 
     88 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
     89                                  OSATOMIC_INTERCEPTOR_PLUS_X)
     90 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
     91                                  OSATOMIC_INTERCEPTOR_PLUS_1)
     92 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
     93                                  OSATOMIC_INTERCEPTOR_MINUS_1)
     94 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
     95                               OSATOMIC_INTERCEPTOR)
     96 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
     97                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
     98 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
     99                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
    100 
    101 #define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t)              \
    102   TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) {    \
    103     SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr);                  \
    104     return tsan_atomic_f##_compare_exchange_strong(                         \
    105         (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
    106         kMacOrderNonBarrier, kMacOrderNonBarrier);                          \
    107   }                                                                         \
    108                                                                             \
    109   TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value,              \
    110                    t volatile *ptr) {                                       \
    111     SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr);         \
    112     return tsan_atomic_f##_compare_exchange_strong(                         \
    113         (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
    114         kMacOrderBarrier, kMacOrderNonBarrier);                             \
    115   }
    116 
    117 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
    118 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
    119                           long_t)
    120 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
    121                           void *)
    122 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
    123                           int32_t)
    124 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
    125                           int64_t)
    126 
    127 #define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo)             \
    128   TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) {    \
    129     SCOPED_TSAN_INTERCEPTOR(f, n, ptr);                          \
    130     volatile char *byte_ptr = ((volatile char *)ptr) + (n >> 3); \
    131     char bit = 0x80u >> (n & 7);                                 \
    132     char mask = clear ? ~bit : bit;                              \
    133     char orig_byte = op((volatile a8 *)byte_ptr, mask, mo);      \
    134     return orig_byte & bit;                                      \
    135   }
    136 
    137 #define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear)               \
    138   OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
    139   OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
    140 
    141 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
    142 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
    143                             true)
    144 
    145 TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
    146                  size_t offset) {
    147   SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
    148   __tsan_release(item);
    149   REAL(OSAtomicEnqueue)(list, item, offset);
    150 }
    151 
    152 TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
    153   SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
    154   void *item = REAL(OSAtomicDequeue)(list, offset);
    155   if (item) __tsan_acquire(item);
    156   return item;
    157 }
    158 
    159 // OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
    160 #if !SANITIZER_IOS
    161 
    162 TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
    163                  size_t offset) {
    164   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
    165   __tsan_release(item);
    166   REAL(OSAtomicFifoEnqueue)(list, item, offset);
    167 }
    168 
    169 TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
    170                  size_t offset) {
    171   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
    172   void *item = REAL(OSAtomicFifoDequeue)(list, offset);
    173   if (item) __tsan_acquire(item);
    174   return item;
    175 }
    176 
    177 #endif
    178 
    179 TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
    180   CHECK(!cur_thread()->is_dead);
    181   if (!cur_thread()->is_inited) {
    182     return REAL(OSSpinLockLock)(lock);
    183   }
    184   SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
    185   REAL(OSSpinLockLock)(lock);
    186   Acquire(thr, pc, (uptr)lock);
    187 }
    188 
    189 TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
    190   CHECK(!cur_thread()->is_dead);
    191   if (!cur_thread()->is_inited) {
    192     return REAL(OSSpinLockTry)(lock);
    193   }
    194   SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
    195   bool result = REAL(OSSpinLockTry)(lock);
    196   if (result)
    197     Acquire(thr, pc, (uptr)lock);
    198   return result;
    199 }
    200 
    201 TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
    202   CHECK(!cur_thread()->is_dead);
    203   if (!cur_thread()->is_inited) {
    204     return REAL(OSSpinLockUnlock)(lock);
    205   }
    206   SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
    207   Release(thr, pc, (uptr)lock);
    208   REAL(OSSpinLockUnlock)(lock);
    209 }
    210 
    211 TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
    212   CHECK(!cur_thread()->is_dead);
    213   if (!cur_thread()->is_inited) {
    214     return REAL(os_lock_lock)(lock);
    215   }
    216   SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
    217   REAL(os_lock_lock)(lock);
    218   Acquire(thr, pc, (uptr)lock);
    219 }
    220 
    221 TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
    222   CHECK(!cur_thread()->is_dead);
    223   if (!cur_thread()->is_inited) {
    224     return REAL(os_lock_trylock)(lock);
    225   }
    226   SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
    227   bool result = REAL(os_lock_trylock)(lock);
    228   if (result)
    229     Acquire(thr, pc, (uptr)lock);
    230   return result;
    231 }
    232 
    233 TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
    234   CHECK(!cur_thread()->is_dead);
    235   if (!cur_thread()->is_inited) {
    236     return REAL(os_lock_unlock)(lock);
    237   }
    238   SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
    239   Release(thr, pc, (uptr)lock);
    240   REAL(os_lock_unlock)(lock);
    241 }
    242 
    243 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
    244 
    245 TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
    246                  xpc_connection_t connection, xpc_handler_t handler) {
    247   SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
    248                           handler);
    249   Release(thr, pc, (uptr)connection);
    250   xpc_handler_t new_handler = ^(xpc_object_t object) {
    251     {
    252       SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
    253       Acquire(thr, pc, (uptr)connection);
    254     }
    255     handler(object);
    256   };
    257   REAL(xpc_connection_set_event_handler)(connection, new_handler);
    258 }
    259 
    260 TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
    261                  dispatch_block_t barrier) {
    262   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
    263   Release(thr, pc, (uptr)connection);
    264   dispatch_block_t new_barrier = ^() {
    265     {
    266       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
    267       Acquire(thr, pc, (uptr)connection);
    268     }
    269     barrier();
    270   };
    271   REAL(xpc_connection_send_barrier)(connection, new_barrier);
    272 }
    273 
    274 TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
    275                  xpc_connection_t connection, xpc_object_t message,
    276                  dispatch_queue_t replyq, xpc_handler_t handler) {
    277   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
    278                           message, replyq, handler);
    279   Release(thr, pc, (uptr)connection);
    280   xpc_handler_t new_handler = ^(xpc_object_t object) {
    281     {
    282       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
    283       Acquire(thr, pc, (uptr)connection);
    284     }
    285     handler(object);
    286   };
    287   REAL(xpc_connection_send_message_with_reply)
    288   (connection, message, replyq, new_handler);
    289 }
    290 
    291 TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) {
    292   SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection);
    293   Release(thr, pc, (uptr)connection);
    294   REAL(xpc_connection_cancel)(connection);
    295 }
    296 
    297 #endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
    298 
    299 // Determines whether the Obj-C object pointer is a tagged pointer. Tagged
    300 // pointers encode the object data directly in their pointer bits and do not
    301 // have an associated memory allocation. The Obj-C runtime uses tagged pointers
    302 // to transparently optimize small objects.
    303 static bool IsTaggedObjCPointer(id obj) {
    304   const uptr kPossibleTaggedBits = 0x8000000000000001ull;
    305   return ((uptr)obj & kPossibleTaggedBits) != 0;
    306 }
    307 
    308 // Returns an address which can be used to inform TSan about synchronization
    309 // points (MutexLock/Unlock). The TSan infrastructure expects this to be a valid
    310 // address in the process space. We do a small allocation here to obtain a
    311 // stable address (the array backing the hash map can change). The memory is
    312 // never free'd (leaked) and allocation and locking are slow, but this code only
    313 // runs for @synchronized with tagged pointers, which is very rare.
    314 static uptr GetOrCreateSyncAddress(uptr addr, ThreadState *thr, uptr pc) {
    315   typedef AddrHashMap<uptr, 5> Map;
    316   static Map Addresses;
    317   Map::Handle h(&Addresses, addr);
    318   if (h.created()) {
    319     ThreadIgnoreBegin(thr, pc);
    320     *h = (uptr) user_alloc(thr, pc, /*size=*/1);
    321     ThreadIgnoreEnd(thr, pc);
    322   }
    323   return *h;
    324 }
    325 
    326 // Returns an address on which we can synchronize given an Obj-C object pointer.
    327 // For normal object pointers, this is just the address of the object in memory.
    328 // Tagged pointers are not backed by an actual memory allocation, so we need to
    329 // synthesize a valid address.
    330 static uptr SyncAddressForObjCObject(id obj, ThreadState *thr, uptr pc) {
    331   if (IsTaggedObjCPointer(obj))
    332     return GetOrCreateSyncAddress((uptr)obj, thr, pc);
    333   return (uptr)obj;
    334 }
    335 
    336 TSAN_INTERCEPTOR(int, objc_sync_enter, id obj) {
    337   SCOPED_TSAN_INTERCEPTOR(objc_sync_enter, obj);
    338   if (!obj) return REAL(objc_sync_enter)(obj);
    339   uptr addr = SyncAddressForObjCObject(obj, thr, pc);
    340   MutexPreLock(thr, pc, addr, MutexFlagWriteReentrant);
    341   int result = REAL(objc_sync_enter)(obj);
    342   CHECK_EQ(result, OBJC_SYNC_SUCCESS);
    343   MutexPostLock(thr, pc, addr, MutexFlagWriteReentrant);
    344   return result;
    345 }
    346 
    347 TSAN_INTERCEPTOR(int, objc_sync_exit, id obj) {
    348   SCOPED_TSAN_INTERCEPTOR(objc_sync_exit, obj);
    349   if (!obj) return REAL(objc_sync_exit)(obj);
    350   uptr addr = SyncAddressForObjCObject(obj, thr, pc);
    351   MutexUnlock(thr, pc, addr);
    352   int result = REAL(objc_sync_exit)(obj);
    353   if (result != OBJC_SYNC_SUCCESS) MutexInvalidAccess(thr, pc, addr);
    354   return result;
    355 }
    356 
    357 // On macOS, libc++ is always linked dynamically, so intercepting works the
    358 // usual way.
    359 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
    360 
    361 namespace {
    362 struct fake_shared_weak_count {
    363   volatile a64 shared_owners;
    364   volatile a64 shared_weak_owners;
    365   virtual void _unused_0x0() = 0;
    366   virtual void _unused_0x8() = 0;
    367   virtual void on_zero_shared() = 0;
    368   virtual void _unused_0x18() = 0;
    369   virtual void on_zero_shared_weak() = 0;
    370 };
    371 }  // namespace
    372 
    373 // The following code adds libc++ interceptors for:
    374 //     void __shared_weak_count::__release_shared() _NOEXCEPT;
    375 //     bool __shared_count::__release_shared() _NOEXCEPT;
    376 // Shared and weak pointers in C++ maintain reference counts via atomics in
    377 // libc++.dylib, which are TSan-invisible, and this leads to false positives in
    378 // destructor code. These interceptors re-implements the whole functions so that
    379 // the mo_acq_rel semantics of the atomic decrement are visible.
    380 //
    381 // Unfortunately, the interceptors cannot simply Acquire/Release some sync
    382 // object and call the original function, because it would have a race between
    383 // the sync and the destruction of the object.  Calling both under a lock will
    384 // not work because the destructor can invoke this interceptor again (and even
    385 // in a different thread, so recursive locks don't help).
    386 
    387 STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
    388                    fake_shared_weak_count *o) {
    389   if (!flags()->shared_ptr_interceptor)
    390     return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);
    391 
    392   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
    393                           o);
    394   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
    395     Acquire(thr, pc, (uptr)&o->shared_owners);
    396     o->on_zero_shared();
    397     if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
    398         0) {
    399       Acquire(thr, pc, (uptr)&o->shared_weak_owners);
    400       o->on_zero_shared_weak();
    401     }
    402   }
    403 }
    404 
    405 STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv,
    406                    fake_shared_weak_count *o) {
    407   if (!flags()->shared_ptr_interceptor)
    408     return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o);
    409 
    410   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o);
    411   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
    412     Acquire(thr, pc, (uptr)&o->shared_owners);
    413     o->on_zero_shared();
    414     return true;
    415   }
    416   return false;
    417 }
    418 
    419 namespace {
    420 struct call_once_callback_args {
    421   void (*orig_func)(void *arg);
    422   void *orig_arg;
    423   void *flag;
    424 };
    425 
    426 void call_once_callback_wrapper(void *arg) {
    427   call_once_callback_args *new_args = (call_once_callback_args *)arg;
    428   new_args->orig_func(new_args->orig_arg);
    429   __tsan_release(new_args->flag);
    430 }
    431 }  // namespace
    432 
    433 // This adds a libc++ interceptor for:
    434 //     void __call_once(volatile unsigned long&, void*, void(*)(void*));
    435 // C++11 call_once is implemented via an internal function __call_once which is
    436 // inside libc++.dylib, and the atomic release store inside it is thus
    437 // TSan-invisible. To avoid false positives, this interceptor wraps the callback
    438 // function and performs an explicit Release after the user code has run.
    439 STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
    440                    void *arg, void (*func)(void *arg)) {
    441   call_once_callback_args new_args = {func, arg, flag};
    442   REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
    443                                             call_once_callback_wrapper);
    444 }
    445 
    446 }  // namespace __tsan
    447 
    448 #endif  // SANITIZER_MAC
    449