Home | History | Annotate | Line # | Download | only in gdtoa
      1 /* $NetBSD: gdtoaimp.h,v 1.19 2022/04/19 20:32:15 rillig Exp $ */
      2 
      3 /****************************************************************
      4 
      5 The author of this software is David M. Gay.
      6 
      7 Copyright (C) 1998-2000 by Lucent Technologies
      8 All Rights Reserved
      9 
     10 Permission to use, copy, modify, and distribute this software and
     11 its documentation for any purpose and without fee is hereby
     12 granted, provided that the above copyright notice appear in all
     13 copies and that both that the copyright notice and this
     14 permission notice and warranty disclaimer appear in supporting
     15 documentation, and that the name of Lucent or any of its entities
     16 not be used in advertising or publicity pertaining to
     17 distribution of the software without specific, written prior
     18 permission.
     19 
     20 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
     21 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
     22 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
     23 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     24 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
     25 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
     26 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
     27 THIS SOFTWARE.
     28 
     29 ****************************************************************/
     30 
     31 /* This is a variation on dtoa.c that converts arbitrary binary
     32    floating-point formats to and from decimal notation.  It uses
     33    double-precision arithmetic internally, so there are still
     34    various #ifdefs that adapt the calculations to the native
     35    double-precision arithmetic (any of IEEE, VAX D_floating,
     36    or IBM mainframe arithmetic).
     37 
     38    Please send bug reports to David M. Gay (dmg at acm dot org,
     39    with " at " changed at "@" and " dot " changed to ".").
     40  */
     41 
     42 /* On a machine with IEEE extended-precision registers, it is
     43  * necessary to specify double-precision (53-bit) rounding precision
     44  * before invoking strtod or dtoa.  If the machine uses (the equivalent
     45  * of) Intel 80x87 arithmetic, the call
     46  *	_control87(PC_53, MCW_PC);
     47  * does this with many compilers.  Whether this or another call is
     48  * appropriate depends on the compiler; for this to work, it may be
     49  * necessary to #include "float.h" or another system-dependent header
     50  * file.
     51  */
     52 
     53 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
     54  *
     55  * This strtod returns a nearest machine number to the input decimal
     56  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
     57  * broken by the IEEE round-even rule.  Otherwise ties are broken by
     58  * biased rounding (add half and chop).
     59  *
     60  * Inspired loosely by William D. Clinger's paper "How to Read Floating
     61  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
     62  *
     63  * Modifications:
     64  *
     65  *	1. We only require IEEE, IBM, or VAX double-precision
     66  *		arithmetic (not IEEE double-extended).
     67  *	2. We get by with floating-point arithmetic in a case that
     68  *		Clinger missed -- when we're computing d * 10^n
     69  *		for a small integer d and the integer n is not too
     70  *		much larger than 22 (the maximum integer k for which
     71  *		we can represent 10^k exactly), we may be able to
     72  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
     73  *	3. Rather than a bit-at-a-time adjustment of the binary
     74  *		result in the hard case, we use floating-point
     75  *		arithmetic to determine the adjustment to within
     76  *		one bit; only in really hard cases do we need to
     77  *		compute a second residual.
     78  *	4. Because of 3., we don't need a large table of powers of 10
     79  *		for ten-to-e (just some small tables, e.g. of 10^k
     80  *		for 0 <= k <= 22).
     81  */
     82 
     83 /*
     84  * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
     85  *	significant byte has the lowest address.
     86  * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
     87  *	significant byte has the lowest address.
     88  * #define Long int on machines with 32-bit ints and 64-bit longs.
     89  * #define Sudden_Underflow for IEEE-format machines without gradual
     90  *	underflow (i.e., that flush to zero on underflow).
     91  * #define IBM for IBM mainframe-style floating-point arithmetic.
     92  * #define VAX for VAX-style floating-point arithmetic (D_floating).
     93  * #define No_leftright to omit left-right logic in fast floating-point
     94  *	computation of dtoa.
     95  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
     96  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
     97  *	that use extended-precision instructions to compute rounded
     98  *	products and quotients) with IBM.
     99  * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
    100  *	that rounds toward +Infinity.
    101  * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
    102  *	rounding when the underlying floating-point arithmetic uses
    103  *	unbiased rounding.  This prevent using ordinary floating-point
    104  *	arithmetic when the result could be computed with one rounding error.
    105  * #define Inaccurate_Divide for IEEE-format with correctly rounded
    106  *	products but inaccurate quotients, e.g., for Intel i860.
    107  * #define NO_LONG_LONG on machines that do not have a "long long"
    108  *	integer type (of >= 64 bits).  On such machines, you can
    109  *	#define Just_16 to store 16 bits per 32-bit Long when doing
    110  *	high-precision integer arithmetic.  Whether this speeds things
    111  *	up or slows things down depends on the machine and the number
    112  *	being converted.  If long long is available and the name is
    113  *	something other than "long long", #define Llong to be the name,
    114  *	and if "unsigned Llong" does not work as an unsigned version of
    115  *	Llong, #define #ULLong to be the corresponding unsigned type.
    116  * #define KR_headers for old-style C function headers.
    117  * #define Bad_float_h if your system lacks a float.h or if it does not
    118  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
    119  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
    120  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
    121  *	if memory is available and otherwise does something you deem
    122  *	appropriate.  If MALLOC is undefined, malloc will be invoked
    123  *	directly -- and assumed always to succeed.  Similarly, if you
    124  *	want something other than the system's free() to be called to
    125  *	recycle memory acquired from MALLOC, #define FREE to be the
    126  *	name of the alternate routine.  (FREE or free is only called in
    127  *	pathological cases, e.g., in a gdtoa call after a gdtoa return in
    128  *	mode 3 with thousands of digits requested.)
    129  * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
    130  *	memory allocations from a private pool of memory when possible.
    131  *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
    132  *	unless #defined to be a different length.  This default length
    133  *	suffices to get rid of MALLOC calls except for unusual cases,
    134  *	such as decimal-to-binary conversion of a very long string of
    135  *	digits.  When converting IEEE double precision values, the
    136  *	longest string gdtoa can return is about 751 bytes long.  For
    137  *	conversions by strtod of strings of 800 digits and all gdtoa
    138  *	conversions of IEEE doubles in single-threaded executions with
    139  *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
    140  *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
    141  * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
    142  *	#defined automatically on IEEE systems.  On such systems,
    143  *	when INFNAN_CHECK is #defined, strtod checks
    144  *	for Infinity and NaN (case insensitively).
    145  *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
    146  *	strtodg also accepts (case insensitively) strings of the form
    147  *	NaN(x), where x is a string of hexadecimal digits (optionally
    148  *	preceded by 0x or 0X) and spaces; if there is only one string
    149  *	of hexadecimal digits, it is taken for the fraction bits of the
    150  *	resulting NaN; if there are two or more strings of hexadecimal
    151  *	digits, each string is assigned to the next available sequence
    152  *	of 32-bit words of fractions bits (starting with the most
    153  *	significant), right-aligned in each sequence.
    154  *	Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
    155  *	is consumed even when ... has the wrong form (in which case the
    156  *	"(...)" is consumed but ignored).
    157  * #define MULTIPLE_THREADS if the system offers preemptively scheduled
    158  *	multiple threads.  In this case, you must provide (or suitably
    159  *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
    160  *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
    161  *	in pow5mult, ensures lazy evaluation of only one copy of high
    162  *	powers of 5; omitting this lock would introduce a small
    163  *	probability of wasting memory, but would otherwise be harmless.)
    164  *	You must also invoke freedtoa(s) to free the value s returned by
    165  *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
    166  * #define IMPRECISE_INEXACT if you do not care about the setting of
    167  *	the STRTOG_Inexact bits in the special case of doing IEEE double
    168  *	precision conversions (which could also be done by the strtod in
    169  *	dtoa.c).
    170  * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
    171  *	floating-point constants.
    172  * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
    173  *	strtodg.c).
    174  * #define NO_STRING_H to use private versions of memcpy.
    175  *	On some K&R systems, it may also be necessary to
    176  *	#define DECLARE_SIZE_T in this case.
    177  * #define USE_LOCALE to use the current locale's decimal_point value.
    178  */
    179 
    180 /* #define IEEE_{BIG,LITTLE}_ENDIAN in ${ARCHDIR}/gdtoa/arith.h */
    181 
    182 #include <assert.h>
    183 #include <stdint.h>
    184 #define Short   int16_t
    185 #define UShort uint16_t
    186 #define Long    int32_t
    187 #define ULong  uint32_t
    188 #define LLong   int64_t
    189 #define ULLong uint64_t
    190 
    191 #define INFNAN_CHECK
    192 #ifdef _REENTRANT
    193 #define MULTIPLE_THREADS
    194 #endif
    195 #define USE_LOCALE
    196 
    197 #ifndef GDTOAIMP_H_INCLUDED
    198 #define GDTOAIMP_H_INCLUDED
    199 #include "gdtoa.h"
    200 #include "gd_qnan.h"
    201 #ifdef Honor_FLT_ROUNDS
    202 #include <fenv.h>
    203 __unused __weakref_visible int __libc_fegetround_ref(void)
    204   __weak_reference(fegetround);
    205 #define fegetround()							\
    206 	(__libc_fegetround_ref ? __libc_fegetround_ref() : FE_TONEAREST)
    207 #endif
    208 
    209 #ifdef DEBUG
    210 #include "stdio.h"
    211 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
    212 #endif
    213 
    214 #include "stdlib.h"
    215 #include "string.h"
    216 
    217 #ifdef KR_headers
    218 #define Char char
    219 #else
    220 #define Char void
    221 #endif
    222 
    223 #ifdef MALLOC
    224 extern Char *MALLOC ANSI((size_t));
    225 #else
    226 #define MALLOC malloc
    227 #endif
    228 
    229 #undef IEEE_Arith
    230 #undef Avoid_Underflow
    231 #ifdef IEEE_BIG_ENDIAN
    232 #define IEEE_Arith
    233 #endif
    234 #ifdef IEEE_LITTLE_ENDIAN
    235 #define IEEE_Arith
    236 #endif
    237 
    238 #include "errno.h"
    239 #ifdef Bad_float_h
    240 
    241 #ifdef IEEE_Arith
    242 #define DBL_DIG 15
    243 #define DBL_MAX_10_EXP 308
    244 #define DBL_MAX_EXP 1024
    245 #define FLT_RADIX 2
    246 #define DBL_MAX 1.7976931348623157e+308
    247 #endif
    248 
    249 #ifdef IBM
    250 #define DBL_DIG 16
    251 #define DBL_MAX_10_EXP 75
    252 #define DBL_MAX_EXP 63
    253 #define FLT_RADIX 16
    254 #define DBL_MAX 7.2370055773322621e+75
    255 #endif
    256 
    257 #ifdef VAX
    258 #define DBL_DIG 16
    259 #define DBL_MAX_10_EXP 38
    260 #define DBL_MAX_EXP 127
    261 #define FLT_RADIX 2
    262 #define DBL_MAX 1.7014118346046923e+38
    263 #define n_bigtens 2
    264 #endif
    265 
    266 #ifndef LONG_MAX
    267 #define LONG_MAX 2147483647
    268 #endif
    269 
    270 #else /* ifndef Bad_float_h */
    271 #include "float.h"
    272 #endif /* Bad_float_h */
    273 
    274 #ifdef IEEE_Arith
    275 #define Scale_Bit 0x10
    276 #define n_bigtens 5
    277 #endif
    278 
    279 #ifdef IBM
    280 #define n_bigtens 3
    281 #endif
    282 
    283 #ifdef VAX
    284 #define n_bigtens 2
    285 #endif
    286 
    287 #include "math.h"
    288 
    289 #ifdef __cplusplus
    290 extern "C" {
    291 #endif
    292 
    293 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + defined(IBM) != 1
    294 Exactly one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined.
    295 #endif
    296 
    297 typedef union { double d; ULong L[2]; } __attribute__((__may_alias__)) U;
    298 
    299 #ifdef YES_ALIAS
    300 #define dval(x) x
    301 #ifdef IEEE_LITTLE_ENDIAN
    302 #define word0(x) ((ULong *)x)[1]
    303 #define word1(x) ((ULong *)x)[0]
    304 #else
    305 #define word0(x) ((ULong *)x)[0]
    306 #define word1(x) ((ULong *)x)[1]
    307 #endif
    308 #else /* !YES_ALIAS */
    309 #ifdef IEEE_LITTLE_ENDIAN
    310 #define word0(x) ( /* LINTED */ (U*)x)->L[1]
    311 #define word1(x) ( /* LINTED */ (U*)x)->L[0]
    312 #else
    313 #define word0(x) ( /* LINTED */ (U*)x)->L[0]
    314 #define word1(x) ( /* LINTED */ (U*)x)->L[1]
    315 #endif
    316 #define dval(x) ( /* LINTED */ (U*)x)->d
    317 #endif /* YES_ALIAS */
    318 
    319 /* The following definition of Storeinc is appropriate for MIPS processors.
    320  * An alternative that might be better on some machines is
    321  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
    322  */
    323 #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX)
    324 #define Storeinc(a,b,c) \
    325  (((unsigned short *)(void *)a)[1] = (unsigned short)b, \
    326   ((unsigned short *)(void *)a)[0] = (unsigned short)c, \
    327   a++)
    328 #else
    329 #define Storeinc(a,b,c) \
    330  (((unsigned short *)(void *)a)[0] = (unsigned short)b, \
    331   ((unsigned short *)(void *)a)[1] = (unsigned short)c, \
    332   a++)
    333 #endif
    334 
    335 /* #define P DBL_MANT_DIG */
    336 /* Ten_pmax = floor(P*log(2)/log(5)) */
    337 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
    338 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
    339 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
    340 
    341 #ifdef IEEE_Arith
    342 #define Exp_shift  20
    343 #define Exp_shift1 20
    344 #define Exp_msk1    0x100000
    345 #define Exp_msk11   0x100000
    346 #define Exp_mask  0x7ff00000
    347 #define P 53
    348 #define Bias 1023
    349 #define Emin (-1022)
    350 #define Exp_1  0x3ff00000
    351 #define Exp_11 0x3ff00000
    352 #define Ebits 11
    353 #define Frac_mask  0xfffff
    354 #define Frac_mask1 0xfffff
    355 #define Ten_pmax 22
    356 #define Bletch 0x10
    357 #define Bndry_mask  0xfffff
    358 #define Bndry_mask1 0xfffff
    359 #define LSB 1
    360 #define Sign_bit 0x80000000
    361 #define Log2P 1
    362 #define Tiny0 0
    363 #define Tiny1 1
    364 #define Quick_max 14
    365 #define Int_max 14
    366 
    367 #ifndef Flt_Rounds
    368 #ifdef FLT_ROUNDS
    369 #define Flt_Rounds FLT_ROUNDS
    370 #else
    371 #define Flt_Rounds 1
    372 #endif
    373 #endif /*Flt_Rounds*/
    374 
    375 #else /* ifndef IEEE_Arith */
    376 #undef  Sudden_Underflow
    377 #define Sudden_Underflow
    378 #ifdef IBM
    379 #undef Flt_Rounds
    380 #define Flt_Rounds 0
    381 #define Exp_shift  24
    382 #define Exp_shift1 24
    383 #define Exp_msk1   0x1000000
    384 #define Exp_msk11  0x1000000
    385 #define Exp_mask  0x7f000000
    386 #define P 14
    387 #define Bias 65
    388 #define Exp_1  0x41000000
    389 #define Exp_11 0x41000000
    390 #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
    391 #define Frac_mask  0xffffff
    392 #define Frac_mask1 0xffffff
    393 #define Bletch 4
    394 #define Ten_pmax 22
    395 #define Bndry_mask  0xefffff
    396 #define Bndry_mask1 0xffffff
    397 #define LSB 1
    398 #define Sign_bit 0x80000000
    399 #define Log2P 4
    400 #define Tiny0 0x100000
    401 #define Tiny1 0
    402 #define Quick_max 14
    403 #define Int_max 15
    404 #else /* VAX */
    405 #undef Flt_Rounds
    406 #define Flt_Rounds 1
    407 #define Exp_shift  23
    408 #define Exp_shift1 7
    409 #define Exp_msk1    0x80
    410 #define Exp_msk11   0x800000
    411 #define Exp_mask  0x7f80
    412 #define P 56
    413 #define Bias 129
    414 #define Emin (-127)	/* XXX: Check this */
    415 #define Exp_1  0x40800000
    416 #define Exp_11 0x4080
    417 #define Ebits 8
    418 #define Frac_mask  0x7fffff
    419 #define Frac_mask1 0xffff007f
    420 #define Ten_pmax 24
    421 #define Bletch 2
    422 #define Bndry_mask  0xffff007f
    423 #define Bndry_mask1 0xffff007f
    424 #define LSB 0x10000
    425 #define Sign_bit 0x8000
    426 #define Log2P 1
    427 #define Tiny0 0x80
    428 #define Tiny1 0
    429 #define Quick_max 15
    430 #define Int_max 15
    431 #endif /* IBM, VAX */
    432 #endif /* IEEE_Arith */
    433 
    434 #ifndef IEEE_Arith
    435 #define ROUND_BIASED
    436 #else
    437 #ifdef ROUND_BIASED_without_Round_Up
    438 #undef  ROUND_BIASED
    439 #define ROUND_BIASED
    440 #endif
    441 #endif
    442 
    443 #ifdef RND_PRODQUOT
    444 #define rounded_product(a,b) a = rnd_prod(a, b)
    445 #define rounded_quotient(a,b) a = rnd_quot(a, b)
    446 #ifdef KR_headers
    447 extern double rnd_prod(), rnd_quot();
    448 #else
    449 extern double rnd_prod(double, double), rnd_quot(double, double);
    450 #endif
    451 #else
    452 #define rounded_product(a,b) a *= b
    453 #define rounded_quotient(a,b) a /= b
    454 #endif
    455 
    456 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
    457 #define Big1 0xffffffff
    458 
    459 #undef  Pack_16
    460 #ifndef Pack_32
    461 #define Pack_32
    462 #endif
    463 
    464 #ifdef NO_LONG_LONG
    465 #undef ULLong
    466 #ifdef Just_16
    467 #undef Pack_32
    468 #define Pack_16
    469 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
    470  * This makes some inner loops simpler and sometimes saves work
    471  * during multiplications, but it often seems to make things slightly
    472  * slower.  Hence the default is now to store 32 bits per Long.
    473  */
    474 #endif
    475 #else	/* long long available */
    476 #ifndef Llong
    477 #define Llong long long
    478 #endif
    479 #ifndef ULLong
    480 #define ULLong unsigned Llong
    481 #endif
    482 #endif /* NO_LONG_LONG */
    483 
    484 #ifdef Pack_32
    485 #define ULbits 32
    486 #define kshift 5
    487 #define kmask 31
    488 #define ALL_ON 0xffffffff
    489 #else
    490 #define ULbits 16
    491 #define kshift 4
    492 #define kmask 15
    493 #define ALL_ON 0xffff
    494 #endif
    495 
    496 #ifndef MULTIPLE_THREADS
    497 #define ACQUIRE_DTOA_LOCK(n)	/*nothing*/
    498 #define FREE_DTOA_LOCK(n)	/*nothing*/
    499 #else
    500 #include "reentrant.h"
    501 
    502 extern mutex_t __gdtoa_locks[2];
    503 
    504 #define ACQUIRE_DTOA_LOCK(n)	\
    505 	do {							\
    506 		if (__isthreaded)				\
    507 			mutex_lock(&__gdtoa_locks[n]);		\
    508 	} while (0)
    509 #define FREE_DTOA_LOCK(n)	\
    510 	do {							\
    511 		if (__isthreaded)				\
    512 			mutex_unlock(&__gdtoa_locks[n]);	\
    513 	} while (0)
    514 #endif
    515 
    516 #define Kmax (sizeof(size_t) << 3)
    517 
    518  struct
    519 Bigint {
    520 	struct Bigint *next;
    521 	int k, maxwds, sign, wds;
    522 	ULong x[1];
    523 	};
    524 
    525  typedef struct Bigint Bigint;
    526 
    527 #ifdef NO_STRING_H
    528 #ifdef DECLARE_SIZE_T
    529 typedef unsigned int size_t;
    530 #endif
    531 extern void memcpy_D2A ANSI((void*, const void*, size_t));
    532 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
    533 #else /* !NO_STRING_H */
    534 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
    535 #endif /* NO_STRING_H */
    536 
    537 #define Balloc		__Balloc_D2A
    538 #define Bfree		__Bfree_D2A
    539 #define ULtoQ		__ULtoQ_D2A
    540 #define ULtof		__ULtof_D2A
    541 #define ULtod		__ULtod_D2A
    542 #define ULtodd		__ULtodd_D2A
    543 #define ULtox		__ULtox_D2A
    544 #define ULtoxL		__ULtoxL_D2A
    545 #define any_on 		__any_on_D2A
    546 #define b2d 		__b2d_D2A
    547 #define bigtens 	__bigtens_D2A
    548 #define cmp 		__cmp_D2A
    549 #define copybits 	__copybits_D2A
    550 #define d2b 		__d2b_D2A
    551 #define decrement 	__decrement_D2A
    552 #define diff 		__diff_D2A
    553 #define dtoa_result 	__dtoa_result_D2A
    554 #define g__fmt 		__g__fmt_D2A
    555 #define gethex 		__gethex_D2A
    556 #define hexdig 		__hexdig_D2A
    557 #define hexdig_init_D2A	__hexdig_init_D2A
    558 #define hexnan		__hexnan_D2A
    559 #define hi0bits		__hi0bits_D2A
    560 #define hi0bits_D2A	__hi0bits_D2A
    561 #define i2b		__i2b_D2A
    562 #define increment	__increment_D2A
    563 #define lo0bits		__lo0bits_D2A
    564 #define lshift		__lshift_D2A
    565 #define match		__match_D2A
    566 #define mult		__mult_D2A
    567 #define multadd		__multadd_D2A
    568 #define nrv_alloc	__nrv_alloc_D2A
    569 #define pow5mult	__pow5mult_D2A
    570 #define quorem		__quorem_D2A
    571 #define ratio		__ratio_D2A
    572 #define rshift		__rshift_D2A
    573 #define rv_alloc	__rv_alloc_D2A
    574 #define s2b		__s2b_D2A
    575 #define set_ones	__set_ones_D2A
    576 #define strcp		__strcp_D2A
    577 #define strcp_D2A	__strcp_D2A
    578 #define strtoIg		__strtoIg_D2A
    579 #define sum		__sum_D2A
    580 #define tens		__tens_D2A
    581 #define tinytens	__tinytens_D2A
    582 #define tinytens	__tinytens_D2A
    583 #define trailz		__trailz_D2A
    584 #define ulp		__ulp_D2A
    585 
    586  extern char *dtoa_result;
    587  extern CONST double bigtens[], tens[], tinytens[];
    588  extern unsigned char hexdig[];
    589 
    590  extern Bigint *Balloc ANSI((int));
    591  extern void Bfree ANSI((Bigint*));
    592  extern void ULtof ANSI((ULong*, ULong*, Long, int));
    593  extern void ULtod ANSI((ULong*, ULong*, Long, int));
    594  extern void ULtodd ANSI((ULong*, ULong*, Long, int));
    595  extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
    596  extern void ULtox ANSI((UShort*, ULong*, Long, int));
    597  extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
    598  extern ULong any_on ANSI((Bigint*, int));
    599  extern double b2d ANSI((Bigint*, int*));
    600  extern int cmp ANSI((Bigint*, Bigint*));
    601  extern void copybits ANSI((ULong*, int, Bigint*));
    602  extern Bigint *d2b ANSI((double, int*, int*));
    603  extern void decrement ANSI((Bigint*));
    604  extern Bigint *diff ANSI((Bigint*, Bigint*));
    605  extern char *dtoa ANSI((double d, int mode, int ndigits,
    606 			int *decpt, int *sign, char **rve));
    607  extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t));
    608  extern int gethex ANSI((CONST char**, CONST FPI*, Long*, Bigint**, int, locale_t));
    609  extern void hexdig_init_D2A(Void);
    610  extern int hexnan ANSI((CONST char**, CONST FPI*, ULong*));
    611  extern int hi0bits_D2A ANSI((ULong));
    612  extern Bigint *i2b ANSI((int));
    613  extern Bigint *increment ANSI((Bigint*));
    614  extern int lo0bits ANSI((ULong*));
    615  extern Bigint *lshift ANSI((Bigint*, int));
    616  extern int match ANSI((CONST char**, CONST char*));
    617  extern Bigint *mult ANSI((Bigint*, Bigint*));
    618  extern Bigint *multadd ANSI((Bigint*, int, int));
    619  extern char *nrv_alloc ANSI((CONST char*, char **, size_t));
    620  extern Bigint *pow5mult ANSI((Bigint*, int));
    621  extern int quorem ANSI((Bigint*, Bigint*));
    622  extern double ratio ANSI((Bigint*, Bigint*));
    623  extern void rshift ANSI((Bigint*, int));
    624  extern char *rv_alloc ANSI((size_t));
    625  extern Bigint *s2b ANSI((CONST char*, int, int, ULong, size_t));
    626  extern Bigint *set_ones ANSI((Bigint*, int));
    627  extern char *strcp ANSI((char*, const char*));
    628  extern int strtoIg ANSI((CONST char*, char**, CONST FPI*, Long*, Bigint**, int*));
    629  extern double strtod ANSI((const char *s00, char **se));
    630  extern Bigint *sum ANSI((Bigint*, Bigint*));
    631  extern int trailz ANSI((CONST Bigint*));
    632  extern double ulp ANSI((U*));
    633 
    634 #ifdef __cplusplus
    635 }
    636 #endif
    637 /*
    638  * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c.  Prior to
    639  * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
    640  * respectively), but now are determined by compiling and running
    641  * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
    642  * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
    643  * and -DNAN_WORD1=...  values if necessary.  This should still work.
    644  * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
    645  */
    646 #ifdef IEEE_Arith
    647 #ifndef NO_INFNAN_CHECK
    648 #undef INFNAN_CHECK
    649 #define INFNAN_CHECK
    650 #endif
    651 #ifdef IEEE_BIG_ENDIAN
    652 #define _0 0
    653 #define _1 1
    654 #ifndef NAN_WORD0
    655 #define NAN_WORD0 d_QNAN0
    656 #endif
    657 #ifndef NAN_WORD1
    658 #define NAN_WORD1 d_QNAN1
    659 #endif
    660 #else
    661 #define _0 1
    662 #define _1 0
    663 #ifndef NAN_WORD0
    664 #define NAN_WORD0 d_QNAN1
    665 #endif
    666 #ifndef NAN_WORD1
    667 #define NAN_WORD1 d_QNAN0
    668 #endif
    669 #endif
    670 #else
    671 #undef INFNAN_CHECK
    672 #endif
    673 
    674 #undef SI
    675 #ifdef Sudden_Underflow
    676 #define SI 1
    677 #else
    678 #define SI 0
    679 #endif
    680 
    681 #endif /* GDTOAIMP_H_INCLUDED */
    682