Home | History | Annotate | Line # | Download | only in hash
      1 /*	$NetBSD: hash_bigkey.c,v 1.25 2015/11/18 18:22:42 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1990, 1993, 1994
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Margo Seltzer.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #if HAVE_NBTOOL_CONFIG_H
     36 #include "nbtool_config.h"
     37 #endif
     38 
     39 #include <sys/cdefs.h>
     40 __RCSID("$NetBSD: hash_bigkey.c,v 1.25 2015/11/18 18:22:42 christos Exp $");
     41 
     42 /*
     43  * PACKAGE: hash
     44  * DESCRIPTION:
     45  *	Big key/data handling for the hashing package.
     46  *
     47  * ROUTINES:
     48  * External
     49  *	__big_keydata
     50  *	__big_split
     51  *	__big_insert
     52  *	__big_return
     53  *	__big_delete
     54  *	__find_last_page
     55  * Internal
     56  *	collect_key
     57  *	collect_data
     58  */
     59 
     60 #include <sys/param.h>
     61 
     62 #include <errno.h>
     63 #include <stdio.h>
     64 #include <stdlib.h>
     65 #include <string.h>
     66 #include <assert.h>
     67 
     68 #include <db.h>
     69 #include "hash.h"
     70 #include "page.h"
     71 #include "extern.h"
     72 
     73 static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int);
     74 static int collect_data(HTAB *, BUFHEAD *, int, int);
     75 
     76 /*
     77  * Big_insert
     78  *
     79  * You need to do an insert and the key/data pair is too big
     80  *
     81  * Returns:
     82  * 0 ==> OK
     83  *-1 ==> ERROR
     84  */
     85 int
     86 __big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
     87 {
     88 	uint16_t *p, n;
     89 	size_t key_size, val_size;
     90 	uint16_t space, move_bytes, off;
     91 	char *cp, *key_data, *val_data;
     92 	size_t temp;
     93 
     94 	cp = bufp->page;		/* Character pointer of p. */
     95 	p = (uint16_t *)(void *)cp;
     96 
     97 	key_data = (char *)key->data;
     98 	_DBFIT(key->size, int);
     99 	key_size = key->size;
    100 	val_data = (char *)val->data;
    101 	_DBFIT(val->size, int);
    102 	val_size = val->size;
    103 
    104 	/* First move the Key */
    105 
    106 	temp = FREESPACE(p) - BIGOVERHEAD;
    107 	_DBFIT(temp, uint16_t);
    108 	space = (uint16_t)temp;
    109 	while (key_size) {
    110 		size_t kspace = MIN(space, key_size);
    111 		_DBFIT(kspace, uint16_t);
    112 		move_bytes = (uint16_t)kspace;
    113 		off = OFFSET(p) - move_bytes;
    114 		memmove(cp + off, key_data, (size_t)move_bytes);
    115 		key_size -= move_bytes;
    116 		key_data += move_bytes;
    117 		n = p[0];
    118 		p[++n] = off;
    119 		p[0] = ++n;
    120 		temp = off - PAGE_META(n);
    121 		_DBFIT(temp, uint16_t);
    122 		FREESPACE(p) = (uint16_t)temp;
    123 		OFFSET(p) = off;
    124 		p[n] = PARTIAL_KEY;
    125 		bufp = __add_ovflpage(hashp, bufp);
    126 		if (!bufp)
    127 			return (-1);
    128 		n = p[0];
    129 		if (!key_size) {
    130 			space = FREESPACE(p);
    131 			if (space) {
    132 				size_t vspace = MIN(space, val_size);
    133 				_DBFIT(vspace, uint16_t);
    134 				move_bytes = (uint16_t)vspace;
    135 				/*
    136 				 * If the data would fit exactly in the
    137 				 * remaining space, we must overflow it to the
    138 				 * next page; otherwise the invariant that the
    139 				 * data must end on a page with FREESPACE
    140 				 * non-zero would fail.
    141 				 */
    142 				if (space == val_size && val_size == val->size)
    143 					goto toolarge;
    144 				off = OFFSET(p) - move_bytes;
    145 				memmove(cp + off, val_data, (size_t)move_bytes);
    146 				val_data += move_bytes;
    147 				val_size -= move_bytes;
    148 				p[n] = off;
    149 				p[n - 2] = FULL_KEY_DATA;
    150 				FREESPACE(p) = FREESPACE(p) - move_bytes;
    151 				OFFSET(p) = off;
    152 			} else {
    153 			toolarge:
    154 				p[n - 2] = FULL_KEY;
    155 			}
    156 		}
    157 		p = (uint16_t *)(void *)bufp->page;
    158 		cp = bufp->page;
    159 		bufp->flags |= BUF_MOD;
    160 		temp = FREESPACE(p) - BIGOVERHEAD;
    161 		_DBFIT(temp, uint16_t);
    162 		space = (uint16_t)temp;
    163 	}
    164 
    165 	/* Now move the data */
    166 	temp = FREESPACE(p) - BIGOVERHEAD;
    167 	_DBFIT(temp, uint16_t);
    168 	space = (uint16_t)temp;
    169 	while (val_size) {
    170 		size_t vspace = MIN(space, val_size);
    171 		_DBFIT(vspace, uint16_t);
    172 		move_bytes = (uint16_t)vspace;
    173 		/*
    174 		 * Here's the hack to make sure that if the data ends on the
    175 		 * same page as the key ends, FREESPACE is at least one.
    176 		 */
    177 		if (space == val_size && val_size == val->size)
    178 			move_bytes--;
    179 		off = OFFSET(p) - move_bytes;
    180 		memmove(cp + off, val_data, (size_t)move_bytes);
    181 		val_size -= move_bytes;
    182 		val_data += move_bytes;
    183 		n = p[0];
    184 		p[++n] = off;
    185 		p[0] = ++n;
    186 		temp = off - PAGE_META(n);
    187 		_DBFIT(temp, uint16_t);
    188 		FREESPACE(p) = (uint16_t)temp;
    189 		OFFSET(p) = off;
    190 		if (val_size) {
    191 			p[n] = FULL_KEY;
    192 			bufp = __add_ovflpage(hashp, bufp);
    193 			if (!bufp)
    194 				return (-1);
    195 			cp = bufp->page;
    196 			p = (uint16_t *)(void *)cp;
    197 		} else
    198 			p[n] = FULL_KEY_DATA;
    199 		bufp->flags |= BUF_MOD;
    200 		temp = FREESPACE(p) - BIGOVERHEAD;
    201 		_DBFIT(temp, uint16_t);
    202 		space = (uint16_t)temp;
    203 	}
    204 	return (0);
    205 }
    206 
    207 /*
    208  * Called when bufp's page  contains a partial key (index should be 1)
    209  *
    210  * All pages in the big key/data pair except bufp are freed.  We cannot
    211  * free bufp because the page pointing to it is lost and we can't get rid
    212  * of its pointer.
    213  *
    214  * Returns:
    215  * 0 => OK
    216  *-1 => ERROR
    217  */
    218 int
    219 __big_delete(HTAB *hashp, BUFHEAD *bufp)
    220 {
    221 	BUFHEAD *last_bfp, *rbufp;
    222 	uint16_t *bp, pageno;
    223 	int key_done, n;
    224 	size_t temp;
    225 
    226 	rbufp = bufp;
    227 	last_bfp = NULL;
    228 	bp = (uint16_t *)(void *)bufp->page;
    229 	pageno = 0;
    230 	key_done = 0;
    231 
    232 	while (!key_done || (bp[2] != FULL_KEY_DATA)) {
    233 		if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
    234 			key_done = 1;
    235 
    236 		/*
    237 		 * If there is freespace left on a FULL_KEY_DATA page, then
    238 		 * the data is short and fits entirely on this page, and this
    239 		 * is the last page.
    240 		 */
    241 		if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
    242 			break;
    243 		pageno = bp[bp[0] - 1];
    244 		rbufp->flags |= BUF_MOD;
    245 		rbufp = __get_buf(hashp, (uint32_t)pageno, rbufp, 0);
    246 		if (last_bfp)
    247 			__free_ovflpage(hashp, last_bfp);
    248 		last_bfp = rbufp;
    249 		if (!rbufp)
    250 			return (-1);		/* Error. */
    251 		bp = (uint16_t *)(void *)rbufp->page;
    252 	}
    253 
    254 	/*
    255 	 * If we get here then rbufp points to the last page of the big
    256 	 * key/data pair.  Bufp points to the first one -- it should now be
    257 	 * empty pointing to the next page after this pair.  Can't free it
    258 	 * because we don't have the page pointing to it.
    259 	 */
    260 
    261 	/* This is information from the last page of the pair. */
    262 	n = bp[0];
    263 	pageno = bp[n - 1];
    264 
    265 	/* Now, bp is the first page of the pair. */
    266 	bp = (uint16_t *)(void *)bufp->page;
    267 	if (n > 2) {
    268 		/* There is an overflow page. */
    269 		bp[1] = pageno;
    270 		bp[2] = OVFLPAGE;
    271 		bufp->ovfl = rbufp->ovfl;
    272 	} else
    273 		/* This is the last page. */
    274 		bufp->ovfl = NULL;
    275 	n -= 2;
    276 	bp[0] = n;
    277 	temp = HASH_BSIZE(hashp) - PAGE_META(n);
    278 	_DBFIT(temp, uint16_t);
    279 	FREESPACE(bp) = (uint16_t)temp;
    280 	OFFSET(bp) = HASH_BSIZE(hashp);
    281 
    282 	bufp->flags |= BUF_MOD;
    283 	if (rbufp)
    284 		__free_ovflpage(hashp, rbufp);
    285 	if (last_bfp && last_bfp != rbufp)
    286 		__free_ovflpage(hashp, last_bfp);
    287 
    288 	hashp->NKEYS--;
    289 	return (0);
    290 }
    291 /*
    292  * Returns:
    293  *  0 = key not found
    294  * -1 = get next overflow page
    295  * -2 means key not found and this is big key/data
    296  * -3 error
    297  */
    298 int
    299 __find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size)
    300 {
    301 	uint16_t *bp;
    302 	char *p;
    303 	int ksize;
    304 	uint16_t bytes;
    305 	char *kkey;
    306 
    307 	bp = (uint16_t *)(void *)bufp->page;
    308 	p = bufp->page;
    309 	ksize = size;
    310 	kkey = key;
    311 
    312 	for (bytes = HASH_BSIZE(hashp) - bp[ndx];
    313 	    bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
    314 	    bytes = HASH_BSIZE(hashp) - bp[ndx]) {
    315 		if (memcmp(p + bp[ndx], kkey, (size_t)bytes))
    316 			return (-2);
    317 		kkey += bytes;
    318 		ksize -= bytes;
    319 		bufp = __get_buf(hashp, (uint32_t)bp[ndx + 2], bufp, 0);
    320 		if (!bufp)
    321 			return (-3);
    322 		p = bufp->page;
    323 		bp = (uint16_t *)(void *)p;
    324 		ndx = 1;
    325 	}
    326 
    327 	if (bytes != ksize || memcmp(p + bp[ndx], kkey, (size_t)bytes)) {
    328 #ifdef HASH_STATISTICS
    329 		++hash_collisions;
    330 #endif
    331 		return (-2);
    332 	} else
    333 		return (ndx);
    334 }
    335 
    336 /*
    337  * Given the buffer pointer of the first overflow page of a big pair,
    338  * find the end of the big pair
    339  *
    340  * This will set bpp to the buffer header of the last page of the big pair.
    341  * It will return the pageno of the overflow page following the last page
    342  * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
    343  * bucket)
    344  */
    345 uint16_t
    346 __find_last_page(HTAB *hashp, BUFHEAD **bpp)
    347 {
    348 	BUFHEAD *bufp;
    349 	uint16_t *bp, pageno;
    350 	int n;
    351 
    352 	bufp = *bpp;
    353 	bp = (uint16_t *)(void *)bufp->page;
    354 	for (;;) {
    355 		n = bp[0];
    356 
    357 		/*
    358 		 * This is the last page if: the tag is FULL_KEY_DATA and
    359 		 * either only 2 entries OVFLPAGE marker is explicit there
    360 		 * is freespace on the page.
    361 		 */
    362 		if (bp[2] == FULL_KEY_DATA &&
    363 		    ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
    364 			break;
    365 
    366 		pageno = bp[n - 1];
    367 		bufp = __get_buf(hashp, (uint32_t)pageno, bufp, 0);
    368 		if (!bufp)
    369 			return (0);	/* Need to indicate an error! */
    370 		bp = (uint16_t *)(void *)bufp->page;
    371 	}
    372 
    373 	*bpp = bufp;
    374 	if (bp[0] > 2)
    375 		return (bp[3]);
    376 	else
    377 		return (0);
    378 }
    379 
    380 /*
    381  * Return the data for the key/data pair that begins on this page at this
    382  * index (index should always be 1).
    383  */
    384 int
    385 __big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current)
    386 {
    387 	BUFHEAD *save_p;
    388 	uint16_t *bp, len, off, save_addr;
    389 	char *tp;
    390 
    391 	bp = (uint16_t *)(void *)bufp->page;
    392 	while (bp[ndx + 1] == PARTIAL_KEY) {
    393 		bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
    394 		if (!bufp)
    395 			return (-1);
    396 		bp = (uint16_t *)(void *)bufp->page;
    397 		ndx = 1;
    398 	}
    399 
    400 	if (bp[ndx + 1] == FULL_KEY) {
    401 		bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
    402 		if (!bufp)
    403 			return (-1);
    404 		bp = (uint16_t *)(void *)bufp->page;
    405 		save_p = bufp;
    406 		save_addr = save_p->addr;
    407 		off = bp[1];
    408 		len = 0;
    409 	} else
    410 		if (!FREESPACE(bp)) {
    411 			/*
    412 			 * This is a hack.  We can't distinguish between
    413 			 * FULL_KEY_DATA that contains complete data or
    414 			 * incomplete data, so we require that if the data
    415 			 * is complete, there is at least 1 byte of free
    416 			 * space left.
    417 			 */
    418 			off = bp[bp[0]];
    419 			len = bp[1] - off;
    420 			save_p = bufp;
    421 			save_addr = bufp->addr;
    422 			bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
    423 			    0);
    424 			if (!bufp)
    425 				return (-1);
    426 			bp = (uint16_t *)(void *)bufp->page;
    427 		} else {
    428 			/* The data is all on one page. */
    429 			tp = (char *)(void *)bp;
    430 			off = bp[bp[0]];
    431 			val->data = (uint8_t *)tp + off;
    432 			val->size = bp[1] - off;
    433 			if (set_current) {
    434 				if (bp[0] == 2) {	/* No more buckets in
    435 							 * chain */
    436 					hashp->cpage = NULL;
    437 					hashp->cbucket++;
    438 					hashp->cndx = 1;
    439 				} else {
    440 					hashp->cpage = __get_buf(hashp,
    441 					    (uint32_t)bp[bp[0] - 1], bufp, 0);
    442 					if (!hashp->cpage)
    443 						return (-1);
    444 					hashp->cndx = 1;
    445 					if (!((uint16_t *)(void *)
    446 					    hashp->cpage->page)[0]) {
    447 						hashp->cbucket++;
    448 						hashp->cpage = NULL;
    449 					}
    450 				}
    451 			}
    452 			return (0);
    453 		}
    454 
    455 	val->size = collect_data(hashp, bufp, (int)len, set_current);
    456 	if (val->size == (size_t)-1)
    457 		return (-1);
    458 	if (save_p->addr != save_addr) {
    459 		/* We are pretty short on buffers. */
    460 		errno = EINVAL;			/* OUT OF BUFFERS */
    461 		return (-1);
    462 	}
    463 	memmove(hashp->tmp_buf, (save_p->page) + off, (size_t)len);
    464 	val->data = (uint8_t *)hashp->tmp_buf;
    465 	return (0);
    466 }
    467 /*
    468  * Count how big the total datasize is by recursing through the pages.  Then
    469  * allocate a buffer and copy the data as you recurse up.
    470  */
    471 static int
    472 collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set)
    473 {
    474 	uint16_t *bp;
    475 	char *p;
    476 	BUFHEAD *xbp;
    477 	uint16_t save_addr;
    478 	int mylen, totlen;
    479 
    480 	p = bufp->page;
    481 	bp = (uint16_t *)(void *)p;
    482 	mylen = HASH_BSIZE(hashp) - bp[1];
    483 	save_addr = bufp->addr;
    484 
    485 	if (bp[2] == FULL_KEY_DATA) {		/* End of Data */
    486 		totlen = len + mylen;
    487 		if (hashp->tmp_buf)
    488 			free(hashp->tmp_buf);
    489 		if ((hashp->tmp_buf = calloc(1, (size_t)totlen)) == NULL)
    490 			return (-1);
    491 		if (set) {
    492 			hashp->cndx = 1;
    493 			if (bp[0] == 2) {	/* No more buckets in chain */
    494 				hashp->cpage = NULL;
    495 				hashp->cbucket++;
    496 			} else {
    497 				hashp->cpage =
    498 				    __get_buf(hashp, (uint32_t)bp[bp[0] - 1],
    499 				    bufp, 0);
    500 				if (!hashp->cpage)
    501 					return (-1);
    502 				else if (!((uint16_t *)(void *)hashp->cpage->page)[0]) {
    503 					hashp->cbucket++;
    504 					hashp->cpage = NULL;
    505 				}
    506 			}
    507 		}
    508 	} else {
    509 		xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
    510 		if (!xbp || ((totlen =
    511 		    collect_data(hashp, xbp, len + mylen, set)) < 1))
    512 			return (-1);
    513 	}
    514 	if (bufp->addr != save_addr) {
    515 		errno = EINVAL;			/* Out of buffers. */
    516 		return (-1);
    517 	}
    518 	memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], (size_t)mylen);
    519 	return (totlen);
    520 }
    521 
    522 /*
    523  * Fill in the key and data for this big pair.
    524  */
    525 int
    526 __big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set)
    527 {
    528 	key->size = collect_key(hashp, bufp, 0, val, set);
    529 	if (key->size == (size_t)-1)
    530 		return (-1);
    531 	key->data = (uint8_t *)hashp->tmp_key;
    532 	return (0);
    533 }
    534 
    535 /*
    536  * Count how big the total key size is by recursing through the pages.  Then
    537  * collect the data, allocate a buffer and copy the key as you recurse up.
    538  */
    539 static int
    540 collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set)
    541 {
    542 	BUFHEAD *xbp;
    543 	char *p;
    544 	int mylen, totlen;
    545 	uint16_t *bp, save_addr;
    546 
    547 	p = bufp->page;
    548 	bp = (uint16_t *)(void *)p;
    549 	mylen = HASH_BSIZE(hashp) - bp[1];
    550 
    551 	save_addr = bufp->addr;
    552 	totlen = len + mylen;
    553 	if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) {    /* End of Key. */
    554 		if (hashp->tmp_key != NULL)
    555 			free(hashp->tmp_key);
    556 		if ((hashp->tmp_key = calloc(1, (size_t)totlen)) == NULL)
    557 			return (-1);
    558 		if (__big_return(hashp, bufp, 1, val, set))
    559 			return (-1);
    560 	} else {
    561 		xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
    562 		if (!xbp || ((totlen =
    563 		    collect_key(hashp, xbp, totlen, val, set)) < 1))
    564 			return (-1);
    565 	}
    566 	if (bufp->addr != save_addr) {
    567 		errno = EINVAL;		/* MIS -- OUT OF BUFFERS */
    568 		return (-1);
    569 	}
    570 	memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], (size_t)mylen);
    571 	return (totlen);
    572 }
    573 
    574 /*
    575  * Returns:
    576  *  0 => OK
    577  * -1 => error
    578  */
    579 int
    580 __big_split(
    581 	HTAB *hashp,
    582 	BUFHEAD *op,	/* Pointer to where to put keys that go in old bucket */
    583 	BUFHEAD *np,	/* Pointer to new bucket page */
    584 			/* Pointer to first page containing the big key/data */
    585 	BUFHEAD *big_keyp,
    586 	int addr,	/* Address of big_keyp */
    587 	uint32_t   obucket,/* Old Bucket */
    588 	SPLIT_RETURN *ret
    589 )
    590 {
    591 	BUFHEAD *tmpp;
    592 	uint16_t *tp;
    593 	BUFHEAD *bp;
    594 	DBT key, val;
    595 	uint32_t change;
    596 	uint16_t free_space, n, off;
    597 	size_t temp;
    598 
    599 	bp = big_keyp;
    600 
    601 	/* Now figure out where the big key/data goes */
    602 	if (__big_keydata(hashp, big_keyp, &key, &val, 0))
    603 		return (-1);
    604 	change = (__call_hash(hashp, key.data, (int)key.size) != obucket);
    605 
    606 	if ((ret->next_addr = __find_last_page(hashp, &big_keyp)) != 0) {
    607 		if (!(ret->nextp =
    608 		    __get_buf(hashp, (uint32_t)ret->next_addr, big_keyp, 0)))
    609 			return (-1);
    610 	} else
    611 		ret->nextp = NULL;
    612 
    613 	/* Now make one of np/op point to the big key/data pair */
    614 	_DIAGASSERT(np->ovfl == NULL);
    615 	if (change)
    616 		tmpp = np;
    617 	else
    618 		tmpp = op;
    619 
    620 	tmpp->flags |= BUF_MOD;
    621 #ifdef DEBUG1
    622 	(void)fprintf(stderr,
    623 	    "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
    624 	    (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
    625 #endif
    626 	tmpp->ovfl = bp;	/* one of op/np point to big_keyp */
    627 	tp = (uint16_t *)(void *)tmpp->page;
    628 	_DIAGASSERT(FREESPACE(tp) >= OVFLSIZE);
    629 	n = tp[0];
    630 	off = OFFSET(tp);
    631 	free_space = FREESPACE(tp);
    632 	tp[++n] = (uint16_t)addr;
    633 	tp[++n] = OVFLPAGE;
    634 	tp[0] = n;
    635 	OFFSET(tp) = off;
    636 	temp = free_space - OVFLSIZE;
    637 	_DBFIT(temp, uint16_t);
    638 	FREESPACE(tp) = (uint16_t)temp;
    639 
    640 	/*
    641 	 * Finally, set the new and old return values. BIG_KEYP contains a
    642 	 * pointer to the last page of the big key_data pair. Make sure that
    643 	 * big_keyp has no following page (2 elements) or create an empty
    644 	 * following page.
    645 	 */
    646 
    647 	ret->newp = np;
    648 	ret->oldp = op;
    649 
    650 	tp = (uint16_t *)(void *)big_keyp->page;
    651 	big_keyp->flags |= BUF_MOD;
    652 	if (tp[0] > 2) {
    653 		/*
    654 		 * There may be either one or two offsets on this page.  If
    655 		 * there is one, then the overflow page is linked on normally
    656 		 * and tp[4] is OVFLPAGE.  If there are two, tp[4] contains
    657 		 * the second offset and needs to get stuffed in after the
    658 		 * next overflow page is added.
    659 		 */
    660 		n = tp[4];
    661 		free_space = FREESPACE(tp);
    662 		off = OFFSET(tp);
    663 		tp[0] -= 2;
    664 		temp = free_space + OVFLSIZE;
    665 		_DBFIT(temp, uint16_t);
    666 		FREESPACE(tp) = (uint16_t)temp;
    667 		OFFSET(tp) = off;
    668 		tmpp = __add_ovflpage(hashp, big_keyp);
    669 		if (!tmpp)
    670 			return (-1);
    671 		tp[4] = n;
    672 	} else
    673 		tmpp = big_keyp;
    674 
    675 	if (change)
    676 		ret->newp = tmpp;
    677 	else
    678 		ret->oldp = tmpp;
    679 	return (0);
    680 }
    681