Home | History | Annotate | Line # | Download | only in src
      1 /* @(#)e_pow.c 1.5 04/04/22 SMI */
      2 /*
      3  * ====================================================
      4  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
      5  *
      6  * Permission to use, copy, modify, and distribute this
      7  * software is freely granted, provided that this notice
      8  * is preserved.
      9  * ====================================================
     10  */
     11 
     12 #include <sys/cdefs.h>
     13 #if defined(LIBM_SCCS) && !defined(lint)
     14 __RCSID("$NetBSD: e_pow.c,v 1.17 2016/08/27 10:01:08 christos Exp $");
     15 #endif
     16 
     17 /* __ieee754_pow(x,y) return x**y
     18  *
     19  *		      n
     20  * Method:  Let x =  2   * (1+f)
     21  *	1. Compute and return log2(x) in two pieces:
     22  *		log2(x) = w1 + w2,
     23  *	   where w1 has 53-24 = 29 bit trailing zeros.
     24  *	2. Perform y*log2(x) = n+y' by simulating multi-precision
     25  *	   arithmetic, where |y'|<=0.5.
     26  *	3. Return x**y = 2**n*exp(y'*log2)
     27  *
     28  * Special cases:
     29  *	1.  (anything) ** 0  is 1
     30  *	2.  (anything) ** 1  is itself
     31  *	3.  (anything) ** NAN is NAN except 1 ** NAN = 1
     32  *	4.  NAN ** (anything except 0) is NAN
     33  *	5.  +-(|x| > 1) **  +INF is +INF
     34  *	6.  +-(|x| > 1) **  -INF is +0
     35  *	7.  +-(|x| < 1) **  +INF is +0
     36  *	8.  +-(|x| < 1) **  -INF is +INF
     37  *	9.  +-1         ** +-INF is 1
     38  *	10. +0 ** (+anything except 0, NAN)               is +0
     39  *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
     40  *	12. +0 ** (-anything except 0, NAN)               is +INF
     41  *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
     42  *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
     43  *	15. +INF ** (+anything except 0,NAN) is +INF
     44  *	16. +INF ** (-anything except 0,NAN) is +0
     45  *	17. -INF ** (anything)  = -0 ** (-anything)
     46  *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
     47  *	19. (-anything except 0 and inf) ** (non-integer) is NAN
     48  *
     49  * Accuracy:
     50  *	pow(x,y) returns x**y nearly rounded. In particular
     51  *			pow(integer,integer)
     52  *	always returns the correct integer provided it is
     53  *	representable.
     54  *
     55  * Constants :
     56  * The hexadecimal values are the intended ones for the following
     57  * constants. The decimal values may be used, provided that the
     58  * compiler will convert from decimal to binary accurately enough
     59  * to produce the hexadecimal values shown.
     60  */
     61 
     62 #include "namespace.h"
     63 #include "math.h"
     64 #include "math_private.h"
     65 
     66 static const double
     67 bp[] = {1.0, 1.5,},
     68 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
     69 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
     70 zero    =  0.0,
     71 one	=  1.0,
     72 two	=  2.0,
     73 two53	=  9007199254740992.0,	/* 0x43400000, 0x00000000 */
     74 huge	=  1.0e300,
     75 tiny    =  1.0e-300,
     76 	/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
     77 L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
     78 L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
     79 L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
     80 L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
     81 L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
     82 L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
     83 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
     84 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
     85 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
     86 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
     87 P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
     88 lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
     89 lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
     90 lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
     91 ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
     92 cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
     93 cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
     94 cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
     95 ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
     96 ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
     97 ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
     98 
     99 double
    100 __ieee754_pow(double x, double y)
    101 {
    102 	double z,ax,z_h,z_l,p_h,p_l;
    103 	double yy1,t1,t2,r,s,t,u,v,w;
    104 	int32_t i,j,k,yisint,n;
    105 	int32_t hx,hy,ix,iy;
    106 	u_int32_t lx,ly;
    107 
    108 	EXTRACT_WORDS(hx,lx,x);
    109 	EXTRACT_WORDS(hy,ly,y);
    110 	ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
    111 
    112     /* y==zero: x**0 = 1 */
    113 	if((iy|ly)==0) return one;
    114 
    115     /* x==1: 1**y = 1, even if y is NaN */
    116 	if (hx==0x3ff00000 && lx == 0) return one;
    117 
    118     /* y!=zero: result is NaN if either arg is NaN */
    119 	if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
    120 	   iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
    121 		return (x+0.0)+(y+0.0);
    122 
    123     /* determine if y is an odd int when x < 0
    124      * yisint = 0	... y is not an integer
    125      * yisint = 1	... y is an odd int
    126      * yisint = 2	... y is an even int
    127      */
    128 	yisint  = 0;
    129 	if(hx<0) {
    130 	    if(iy>=0x43400000) yisint = 2; /* even integer y */
    131 	    else if(iy>=0x3ff00000) {
    132 		k = (iy>>20)-0x3ff;	   /* exponent */
    133 		if(k>20) {
    134 		    j = ly>>(52-k);
    135 		    if((uint32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
    136 		} else if(ly==0) {
    137 		    j = iy>>(20-k);
    138 		    if((j<<(20-k))==iy) yisint = 2-(j&1);
    139 		}
    140 	    }
    141 	}
    142 
    143     /* special value of y */
    144 	if(ly==0) {
    145 	    if (iy==0x7ff00000) {	/* y is +-inf */
    146 	        if(((ix-0x3ff00000)|lx)==0)
    147 		    return  one;	/* (-1)**+-inf is 1 */
    148 	        else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
    149 		    return (hy>=0)? y: zero;
    150 	        else			/* (|x|<1)**-,+inf = inf,0 */
    151 		    return (hy<0)?-y: zero;
    152 	    }
    153 	    if(iy==0x3ff00000) {	/* y is  +-1 */
    154 		if(hy<0) return one/x; else return x;
    155 	    }
    156 	    if(hy==0x40000000) return x*x; /* y is  2 */
    157 	    if(hy==0x3fe00000) {	/* y is  0.5 */
    158 		if(hx>=0)	/* x >= +0 */
    159 		return __ieee754_sqrt(x);
    160 	    }
    161 	}
    162 
    163 	ax   = fabs(x);
    164     /* special value of x */
    165 	if(lx==0) {
    166 	    if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
    167 		z = ax;			/*x is +-0,+-inf,+-1*/
    168 		if(hy<0) z = one/z;	/* z = (1/|x|) */
    169 		if(hx<0) {
    170 		    if(((ix-0x3ff00000)|yisint)==0) {
    171 			z = (z-z)/(z-z); /* (-1)**non-int is NaN */
    172 		    } else if(yisint==1)
    173 			z = -z;		/* (x<0)**odd = -(|x|**odd) */
    174 		}
    175 		return z;
    176 	    }
    177 	}
    178 
    179     /* CYGNUS LOCAL + fdlibm-5.3 fix: This used to be
    180 	n = (hx>>31)+1;
    181        but ANSI C says a right shift of a signed negative quantity is
    182        implementation defined.  */
    183 	n = ((u_int32_t)hx>>31)-1;
    184 
    185     /* (x<0)**(non-int) is NaN */
    186 	if((n|yisint)==0) return (x-x)/(x-x);
    187 
    188 	s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
    189 	if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
    190 
    191     /* |y| is huge */
    192 	if(iy>0x41e00000) { /* if |y| > 2**31 */
    193 	    if(iy>0x43f00000){	/* if |y| > 2**64, must o/uflow */
    194 		if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
    195 		if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
    196 	    }
    197 	/* over/underflow if x is not close to one */
    198 	    if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
    199 	    if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
    200 	/* now |1-x| is tiny <= 2**-20, suffice to compute
    201 	   log(x) by x-x^2/2+x^3/3-x^4/4 */
    202 	    t = ax-one;		/* t has 20 trailing zeros */
    203 	    w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
    204 	    u = ivln2_h*t;	/* ivln2_h has 21 sig. bits */
    205 	    v = t*ivln2_l-w*ivln2;
    206 	    t1 = u+v;
    207 	    SET_LOW_WORD(t1,0);
    208 	    t2 = v-(t1-u);
    209 	} else {
    210 	    double ss,s2,s_h,s_l,t_h,t_l;
    211 	    n = 0;
    212 	/* take care subnormal number */
    213 	    if(ix<0x00100000)
    214 		{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
    215 	    n  += ((ix)>>20)-0x3ff;
    216 	    j  = ix&0x000fffff;
    217 	/* determine interval */
    218 	    ix = j|0x3ff00000;		/* normalize ix */
    219 	    if(j<=0x3988E) k=0;		/* |x|<sqrt(3/2) */
    220 	    else if(j<0xBB67A) k=1;	/* |x|<sqrt(3)   */
    221 	    else {k=0;n+=1;ix -= 0x00100000;}
    222 	    SET_HIGH_WORD(ax,ix);
    223 
    224 	/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
    225 	    u = ax-bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
    226 	    v = one/(ax+bp[k]);
    227 	    ss = u*v;
    228 	    s_h = ss;
    229 	    SET_LOW_WORD(s_h,0);
    230 	/* t_h=ax+bp[k] High */
    231 	    t_h = zero;
    232 	    SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
    233 	    t_l = ax - (t_h-bp[k]);
    234 	    s_l = v*((u-s_h*t_h)-s_h*t_l);
    235 	/* compute log(ax) */
    236 	    s2 = ss*ss;
    237 	    r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
    238 	    r += s_l*(s_h+ss);
    239 	    s2  = s_h*s_h;
    240 	    t_h = 3.0+s2+r;
    241 	    SET_LOW_WORD(t_h,0);
    242 	    t_l = r-((t_h-3.0)-s2);
    243 	/* u+v = ss*(1+...) */
    244 	    u = s_h*t_h;
    245 	    v = s_l*t_h+t_l*ss;
    246 	/* 2/(3log2)*(ss+...) */
    247 	    p_h = u+v;
    248 	    SET_LOW_WORD(p_h,0);
    249 	    p_l = v-(p_h-u);
    250 	    z_h = cp_h*p_h;		/* cp_h+cp_l = 2/(3*log2) */
    251 	    z_l = cp_l*p_h+p_l*cp+dp_l[k];
    252 	/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
    253 	    t = (double)n;
    254 	    t1 = (((z_h+z_l)+dp_h[k])+t);
    255 	    SET_LOW_WORD(t1,0);
    256 	    t2 = z_l-(((t1-t)-dp_h[k])-z_h);
    257 	}
    258 
    259     /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
    260 	yy1  = y;
    261 	SET_LOW_WORD(yy1,0);
    262 	p_l = (y-yy1)*t1+y*t2;
    263 	p_h = yy1*t1;
    264 	z = p_l+p_h;
    265 	EXTRACT_WORDS(j,i,z);
    266 	if (j>=0x40900000) {				/* z >= 1024 */
    267 	    if(((j-0x40900000)|i)!=0)			/* if z > 1024 */
    268 		return s*huge*huge;			/* overflow */
    269 	    else {
    270 		if(p_l+ovt>z-p_h) return s*huge*huge;	/* overflow */
    271 	    }
    272 	} else if((j&0x7fffffff)>=0x4090cc00 ) {	/* z <= -1075 */
    273 	    if(((j-0xc090cc00)|i)!=0) 		/* z < -1075 */
    274 		return s*tiny*tiny;		/* underflow */
    275 	    else {
    276 		if(p_l<=z-p_h) return s*tiny*tiny;	/* underflow */
    277 	    }
    278 	}
    279     /*
    280      * compute 2**(p_h+p_l)
    281      */
    282 	i = j&0x7fffffff;
    283 	k = (i>>20)-0x3ff;
    284 	n = 0;
    285 	if(i>0x3fe00000) {		/* if |z| > 0.5, set n = [z+0.5] */
    286 	    n = j+(0x00100000>>(k+1));
    287 	    k = ((n&0x7fffffff)>>20)-0x3ff;	/* new k for n */
    288 	    t = zero;
    289 	    SET_HIGH_WORD(t,n&~(0x000fffff>>k));
    290 	    n = ((n&0x000fffff)|0x00100000)>>(20-k);
    291 	    if(j<0) n = -n;
    292 	    p_h -= t;
    293 	}
    294 	t = p_l+p_h;
    295 	SET_LOW_WORD(t,0);
    296 	u = t*lg2_h;
    297 	v = (p_l-(t-p_h))*lg2+t*lg2_l;
    298 	z = u+v;
    299 	w = v-(z-u);
    300 	t  = z*z;
    301 	t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
    302 	r  = (z*t1)/(t1-two)-(w+z*w);
    303 	z  = one-(r-z);
    304 	GET_HIGH_WORD(j,z);
    305 	j += (n<<20);
    306 	if((j>>20)<=0) z = scalbn(z,n);	/* subnormal output */
    307 	else SET_HIGH_WORD(z,j);
    308 	return s*z;
    309 }
    310