Home | History | Annotate | Line # | Download | only in src
      1 /* @(#)e_j1.c 5.1 93/09/24 */
      2 /*
      3  * ====================================================
      4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      5  *
      6  * Developed at SunPro, a Sun Microsystems, Inc. business.
      7  * Permission to use, copy, modify, and distribute this
      8  * software is freely granted, provided that this notice
      9  * is preserved.
     10  * ====================================================
     11  */
     12 
     13 #include <sys/cdefs.h>
     14 #if defined(LIBM_SCCS) && !defined(lint)
     15 __RCSID("$NetBSD: e_j1.c,v 1.13 2017/02/09 21:23:11 maya Exp $");
     16 #endif
     17 
     18 /* __ieee754_j1(x), __ieee754_y1(x)
     19  * Bessel function of the first and second kinds of order zero.
     20  * Method -- j1(x):
     21  *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
     22  *	2. Reduce x to |x| since j1(x)=-j1(-x),  and
     23  *	   for x in (0,2)
     24  *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
     25  *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
     26  *	   for x in (2,inf)
     27  * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
     28  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
     29  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
     30  *	   as follow:
     31  *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
     32  *			=  1/sqrt(2) * (sin(x) - cos(x))
     33  *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
     34  *			= -1/sqrt(2) * (sin(x) + cos(x))
     35  * 	   (To avoid cancellation, use
     36  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
     37  * 	    to compute the worse one.)
     38  *
     39  *	3 Special cases
     40  *		j1(nan)= nan
     41  *		j1(0) = 0
     42  *		j1(inf) = 0
     43  *
     44  * Method -- y1(x):
     45  *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
     46  *	2. For x<2.
     47  *	   Since
     48  *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
     49  *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
     50  *	   We use the following function to approximate y1,
     51  *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
     52  *	   where for x in [0,2] (abs err less than 2**-65.89)
     53  *		U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
     54  *		V(z) = 1  + v0[0]*z + ... + v0[4]*z^5
     55  *	   Note: For tiny x, 1/x dominate y1 and hence
     56  *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
     57  *	3. For x>=2.
     58  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
     59  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
     60  *	   by method mentioned above.
     61  */
     62 
     63 #include "namespace.h"
     64 #include "math.h"
     65 #include "math_private.h"
     66 
     67 static double pone(double), qone(double);
     68 
     69 static const double
     70 huge    = 1e300,
     71 one	= 1.0,
     72 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
     73 tpi      =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
     74 	/* R0/S0 on [0,2] */
     75 r00  = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
     76 r01  =  1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
     77 r02  = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
     78 r03  =  4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
     79 s01  =  1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
     80 s02  =  1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
     81 s03  =  1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
     82 s04  =  5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
     83 s05  =  1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
     84 
     85 static const double zero    = 0.0;
     86 
     87 double
     88 __ieee754_j1(double x)
     89 {
     90 	double z, s,c,ss,cc,r,u,v,y;
     91 	int32_t hx,ix;
     92 
     93 	GET_HIGH_WORD(hx,x);
     94 	ix = hx&0x7fffffff;
     95 	if(ix>=0x7ff00000) return one/x;
     96 	y = fabs(x);
     97 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
     98 		s = sin(y);
     99 		c = cos(y);
    100 		ss = -s-c;
    101 		cc = s-c;
    102 		if(ix<0x7fe00000) {  /* make sure y+y not overflow */
    103 		    z = cos(y+y);
    104 		    if ((s*c)>zero) cc = z/ss;
    105 		    else 	    ss = z/cc;
    106 		}
    107 	/*
    108 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
    109 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
    110 	 */
    111 		if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(y);
    112 		else {
    113 		    u = pone(y); v = qone(y);
    114 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
    115 		}
    116 		if(hx<0) return -z;
    117 		else  	 return  z;
    118 	}
    119 	if(ix<0x3e400000) {	/* |x|<2**-27 */
    120 	    if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
    121 	}
    122 	z = x*x;
    123 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
    124 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
    125 	r *= x;
    126 	return(x*0.5+r/s);
    127 }
    128 
    129 static const double U0[5] = {
    130  -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
    131   5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
    132  -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
    133   2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
    134  -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
    135 };
    136 static const double V0[5] = {
    137   1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
    138   2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
    139   1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
    140   6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
    141   1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
    142 };
    143 
    144 double
    145 __ieee754_y1(double x)
    146 {
    147 	double z, s,c,ss,cc,u,v;
    148 	int32_t hx,ix,lx;
    149 
    150 	EXTRACT_WORDS(hx,lx,x);
    151         ix = 0x7fffffff&hx;
    152     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
    153 	if(ix>=0x7ff00000) return  one/(x+x*x);
    154         if((ix|lx)==0) return -one/zero;
    155         if(hx<0) return zero/zero;
    156         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
    157                 s = sin(x);
    158                 c = cos(x);
    159                 ss = -s-c;
    160                 cc = s-c;
    161                 if(ix<0x7fe00000) {  /* make sure x+x not overflow */
    162                     z = cos(x+x);
    163                     if ((s*c)>zero) cc = z/ss;
    164                     else            ss = z/cc;
    165                 }
    166         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
    167          * where x0 = x-3pi/4
    168          *      Better formula:
    169          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
    170          *                      =  1/sqrt(2) * (sin(x) - cos(x))
    171          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
    172          *                      = -1/sqrt(2) * (cos(x) + sin(x))
    173          * To avoid cancellation, use
    174          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
    175          * to compute the worse one.
    176          */
    177                 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
    178                 else {
    179                     u = pone(x); v = qone(x);
    180                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
    181                 }
    182                 return z;
    183         }
    184         if(ix<=0x3c900000) {    /* x < 2**-54 */
    185             return(-tpi/x);
    186         }
    187         z = x*x;
    188         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
    189         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
    190         return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));
    191 }
    192 
    193 /* For x >= 8, the asymptotic expansions of pone is
    194  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
    195  * We approximate pone by
    196  * 	pone(x) = 1 + (R/S)
    197  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
    198  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
    199  * and
    200  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
    201  */
    202 
    203 static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    204   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
    205   1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
    206   1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
    207   4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
    208   3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
    209   7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
    210 };
    211 static const double ps8[5] = {
    212   1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
    213   3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
    214   3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
    215   9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
    216   3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
    217 };
    218 
    219 static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    220   1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
    221   1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
    222   6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
    223   1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
    224   5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
    225   5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
    226 };
    227 static const double ps5[5] = {
    228   5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
    229   9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
    230   5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
    231   7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
    232   1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
    233 };
    234 
    235 static const double pr3[6] = {
    236   3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
    237   1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
    238   3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
    239   3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
    240   9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
    241   4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
    242 };
    243 static const double ps3[5] = {
    244   3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
    245   3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
    246   1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
    247   8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
    248   1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
    249 };
    250 
    251 static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    252   1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
    253   1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
    254   2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
    255   1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
    256   1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
    257   5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
    258 };
    259 static const double ps2[5] = {
    260   2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
    261   1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
    262   2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
    263   1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
    264   8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
    265 };
    266 
    267 static double
    268 pone(double x)
    269 {
    270 	const double *p,*q;
    271 	double z,r,s;
    272         int32_t ix;
    273 
    274 	GET_HIGH_WORD(ix,x);
    275 	ix &= 0x7fffffff;
    276         if(ix>=0x40200000)         {p = pr8; q= ps8;}
    277         else if(ix>=0x40122E8B)    {p = pr5; q= ps5;}
    278         else if(ix>=0x4006DB6D)    {p = pr3; q= ps3;}
    279         else /*if(ix>=0x40000000)*/{p = pr2; q= ps2;}
    280         z = one/(x*x);
    281         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    282         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
    283         return one+ r/s;
    284 }
    285 
    286 
    287 /* For x >= 8, the asymptotic expansions of qone is
    288  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
    289  * We approximate pone by
    290  * 	qone(x) = s*(0.375 + (R/S))
    291  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
    292  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
    293  * and
    294  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
    295  */
    296 
    297 static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    298   0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
    299  -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
    300  -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
    301  -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
    302  -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
    303  -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
    304 };
    305 static const double qs8[6] = {
    306   1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
    307   7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
    308   1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
    309   7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
    310   6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
    311  -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
    312 };
    313 
    314 static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    315  -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
    316  -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
    317  -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
    318  -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
    319  -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
    320  -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
    321 };
    322 static const double qs5[6] = {
    323   8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
    324   1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
    325   1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
    326   4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
    327   2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
    328  -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
    329 };
    330 
    331 static const double qr3[6] = {
    332  -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
    333  -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
    334  -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
    335  -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
    336  -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
    337  -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
    338 };
    339 static const double qs3[6] = {
    340   4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
    341   6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
    342   3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
    343   5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
    344   1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
    345  -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
    346 };
    347 
    348 static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    349  -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
    350  -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
    351  -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
    352  -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
    353  -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
    354  -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
    355 };
    356 static const double qs2[6] = {
    357   2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
    358   2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
    359   7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
    360   7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
    361   1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
    362  -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
    363 };
    364 
    365 static double
    366 qone(double x)
    367 {
    368 	const double *p,*q;
    369 	double  s,r,z;
    370 	int32_t ix;
    371 
    372 	GET_HIGH_WORD(ix,x);
    373 	ix &= 0x7fffffff;
    374 	if(ix>=0x40200000)         {p = qr8; q= qs8;}
    375 	else if(ix>=0x40122E8B)    {p = qr5; q= qs5;}
    376 	else if(ix>=0x4006DB6D)    {p = qr3; q= qs3;}
    377 	else /*if(ix>=0x40000000)*/{p = qr2; q= qs2;}
    378 	z = one/(x*x);
    379 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    380 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
    381 	return (.375 + r/s)/x;
    382 }
    383