Home | History | Annotate | Line # | Download | only in ld80
      1 /*-
      2  * SPDX-License-Identifier: BSD-3-Clause
      3  *
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 
     34 /*
     35  * See bsdsrc/b_log.c for implementation details.
     36  *
     37  * bsdrc/b_log.c converted to long double by Steven G. Kargl.
     38  */
     39 
     40 #include "math_private.h"
     41 
     42 #define N 128
     43 
     44 /*
     45  * Coefficients in the polynomial approximation of log(1+f/F).
     46  * Domain of x is [0,1./256] with 2**(-84.48) precision.
     47  */
     48 static const union ieee_ext_u
     49     a1u = LD80C(0xaaaaaaaaaaaaaaab,    -4,  8.33333333333333333356e-02L),
     50     a2u = LD80C(0xcccccccccccccd29,    -7,  1.25000000000000000781e-02L),
     51     a3u = LD80C(0x9249249241ed3764,    -9,  2.23214285711721994134e-03L),
     52     a4u = LD80C(0xe38e959e1e7e01cf,   -12,  4.34030476540000360640e-04L);
     53 #define	A1	(a1u.extu_ld)
     54 #define	A2	(a2u.extu_ld)
     55 #define	A3	(a3u.extu_ld)
     56 #define	A4	(a4u.extu_ld)
     57 
     58 /*
     59  * Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
     60  * Used for generation of extend precision logarithms.
     61  * The constant 35184372088832 is 2^45, so the divide is exact.
     62  * It ensures correct reading of logF_head, even for inaccurate
     63  * decimal-to-binary conversion routines.  (Everybody gets the
     64  * right answer for integers less than 2^53.)
     65  * Values for log(F) were generated using error < 10^-57 absolute
     66  * with the bc -l package.
     67  */
     68 
     69 static double logF_head[N+1] = {
     70 	0.,
     71 	.007782140442060381246,
     72 	.015504186535963526694,
     73 	.023167059281547608406,
     74 	.030771658666765233647,
     75 	.038318864302141264488,
     76 	.045809536031242714670,
     77 	.053244514518837604555,
     78 	.060624621816486978786,
     79 	.067950661908525944454,
     80 	.075223421237524235039,
     81 	.082443669210988446138,
     82 	.089612158689760690322,
     83 	.096729626458454731618,
     84 	.103796793681567578460,
     85 	.110814366340264314203,
     86 	.117783035656430001836,
     87 	.124703478501032805070,
     88 	.131576357788617315236,
     89 	.138402322859292326029,
     90 	.145182009844575077295,
     91 	.151916042025732167530,
     92 	.158605030176659056451,
     93 	.165249572895390883786,
     94 	.171850256926518341060,
     95 	.178407657472689606947,
     96 	.184922338493834104156,
     97 	.191394852999565046047,
     98 	.197825743329758552135,
     99 	.204215541428766300668,
    100 	.210564769107350002741,
    101 	.216873938300523150246,
    102 	.223143551314024080056,
    103 	.229374101064877322642,
    104 	.235566071312860003672,
    105 	.241719936886966024758,
    106 	.247836163904594286577,
    107 	.253915209980732470285,
    108 	.259957524436686071567,
    109 	.265963548496984003577,
    110 	.271933715484010463114,
    111 	.277868451003087102435,
    112 	.283768173130738432519,
    113 	.289633292582948342896,
    114 	.295464212893421063199,
    115 	.301261330578199704177,
    116 	.307025035294827830512,
    117 	.312755710004239517729,
    118 	.318453731118097493890,
    119 	.324119468654316733591,
    120 	.329753286372579168528,
    121 	.335355541920762334484,
    122 	.340926586970454081892,
    123 	.346466767346100823488,
    124 	.351976423156884266063,
    125 	.357455888922231679316,
    126 	.362905493689140712376,
    127 	.368325561158599157352,
    128 	.373716409793814818840,
    129 	.379078352934811846353,
    130 	.384411698910298582632,
    131 	.389716751140440464951,
    132 	.394993808240542421117,
    133 	.400243164127459749579,
    134 	.405465108107819105498,
    135 	.410659924985338875558,
    136 	.415827895143593195825,
    137 	.420969294644237379543,
    138 	.426084395310681429691,
    139 	.431173464818130014464,
    140 	.436236766774527495726,
    141 	.441274560805140936281,
    142 	.446287102628048160113,
    143 	.451274644139630254358,
    144 	.456237433481874177232,
    145 	.461175715122408291790,
    146 	.466089729924533457960,
    147 	.470979715219073113985,
    148 	.475845904869856894947,
    149 	.480688529345570714212,
    150 	.485507815781602403149,
    151 	.490303988045525329653,
    152 	.495077266798034543171,
    153 	.499827869556611403822,
    154 	.504556010751912253908,
    155 	.509261901790523552335,
    156 	.513945751101346104405,
    157 	.518607764208354637958,
    158 	.523248143765158602036,
    159 	.527867089620485785417,
    160 	.532464798869114019908,
    161 	.537041465897345915436,
    162 	.541597282432121573947,
    163 	.546132437597407260909,
    164 	.550647117952394182793,
    165 	.555141507540611200965,
    166 	.559615787935399566777,
    167 	.564070138285387656651,
    168 	.568504735352689749561,
    169 	.572919753562018740922,
    170 	.577315365035246941260,
    171 	.581691739635061821900,
    172 	.586049045003164792433,
    173 	.590387446602107957005,
    174 	.594707107746216934174,
    175 	.599008189645246602594,
    176 	.603290851438941899687,
    177 	.607555250224322662688,
    178 	.611801541106615331955,
    179 	.616029877215623855590,
    180 	.620240409751204424537,
    181 	.624433288012369303032,
    182 	.628608659422752680256,
    183 	.632766669570628437213,
    184 	.636907462236194987781,
    185 	.641031179420679109171,
    186 	.645137961373620782978,
    187 	.649227946625615004450,
    188 	.653301272011958644725,
    189 	.657358072709030238911,
    190 	.661398482245203922502,
    191 	.665422632544505177065,
    192 	.669430653942981734871,
    193 	.673422675212350441142,
    194 	.677398823590920073911,
    195 	.681359224807238206267,
    196 	.685304003098281100392,
    197 	.689233281238557538017,
    198 	.693147180560117703862
    199 };
    200 
    201 static double logF_tail[N+1] = {
    202 	0.,
    203 	-.00000000000000543229938420049,
    204 	 .00000000000000172745674997061,
    205 	-.00000000000001323017818229233,
    206 	-.00000000000001154527628289872,
    207 	-.00000000000000466529469958300,
    208 	 .00000000000005148849572685810,
    209 	-.00000000000002532168943117445,
    210 	-.00000000000005213620639136504,
    211 	-.00000000000001819506003016881,
    212 	 .00000000000006329065958724544,
    213 	 .00000000000008614512936087814,
    214 	-.00000000000007355770219435028,
    215 	 .00000000000009638067658552277,
    216 	 .00000000000007598636597194141,
    217 	 .00000000000002579999128306990,
    218 	-.00000000000004654729747598444,
    219 	-.00000000000007556920687451336,
    220 	 .00000000000010195735223708472,
    221 	-.00000000000017319034406422306,
    222 	-.00000000000007718001336828098,
    223 	 .00000000000010980754099855238,
    224 	-.00000000000002047235780046195,
    225 	-.00000000000008372091099235912,
    226 	 .00000000000014088127937111135,
    227 	 .00000000000012869017157588257,
    228 	 .00000000000017788850778198106,
    229 	 .00000000000006440856150696891,
    230 	 .00000000000016132822667240822,
    231 	-.00000000000007540916511956188,
    232 	-.00000000000000036507188831790,
    233 	 .00000000000009120937249914984,
    234 	 .00000000000018567570959796010,
    235 	-.00000000000003149265065191483,
    236 	-.00000000000009309459495196889,
    237 	 .00000000000017914338601329117,
    238 	-.00000000000001302979717330866,
    239 	 .00000000000023097385217586939,
    240 	 .00000000000023999540484211737,
    241 	 .00000000000015393776174455408,
    242 	-.00000000000036870428315837678,
    243 	 .00000000000036920375082080089,
    244 	-.00000000000009383417223663699,
    245 	 .00000000000009433398189512690,
    246 	 .00000000000041481318704258568,
    247 	-.00000000000003792316480209314,
    248 	 .00000000000008403156304792424,
    249 	-.00000000000034262934348285429,
    250 	 .00000000000043712191957429145,
    251 	-.00000000000010475750058776541,
    252 	-.00000000000011118671389559323,
    253 	 .00000000000037549577257259853,
    254 	 .00000000000013912841212197565,
    255 	 .00000000000010775743037572640,
    256 	 .00000000000029391859187648000,
    257 	-.00000000000042790509060060774,
    258 	 .00000000000022774076114039555,
    259 	 .00000000000010849569622967912,
    260 	-.00000000000023073801945705758,
    261 	 .00000000000015761203773969435,
    262 	 .00000000000003345710269544082,
    263 	-.00000000000041525158063436123,
    264 	 .00000000000032655698896907146,
    265 	-.00000000000044704265010452446,
    266 	 .00000000000034527647952039772,
    267 	-.00000000000007048962392109746,
    268 	 .00000000000011776978751369214,
    269 	-.00000000000010774341461609578,
    270 	 .00000000000021863343293215910,
    271 	 .00000000000024132639491333131,
    272 	 .00000000000039057462209830700,
    273 	-.00000000000026570679203560751,
    274 	 .00000000000037135141919592021,
    275 	-.00000000000017166921336082431,
    276 	-.00000000000028658285157914353,
    277 	-.00000000000023812542263446809,
    278 	 .00000000000006576659768580062,
    279 	-.00000000000028210143846181267,
    280 	 .00000000000010701931762114254,
    281 	 .00000000000018119346366441110,
    282 	 .00000000000009840465278232627,
    283 	-.00000000000033149150282752542,
    284 	-.00000000000018302857356041668,
    285 	-.00000000000016207400156744949,
    286 	 .00000000000048303314949553201,
    287 	-.00000000000071560553172382115,
    288 	 .00000000000088821239518571855,
    289 	-.00000000000030900580513238244,
    290 	-.00000000000061076551972851496,
    291 	 .00000000000035659969663347830,
    292 	 .00000000000035782396591276383,
    293 	-.00000000000046226087001544578,
    294 	 .00000000000062279762917225156,
    295 	 .00000000000072838947272065741,
    296 	 .00000000000026809646615211673,
    297 	-.00000000000010960825046059278,
    298 	 .00000000000002311949383800537,
    299 	-.00000000000058469058005299247,
    300 	-.00000000000002103748251144494,
    301 	-.00000000000023323182945587408,
    302 	-.00000000000042333694288141916,
    303 	-.00000000000043933937969737844,
    304 	 .00000000000041341647073835565,
    305 	 .00000000000006841763641591466,
    306 	 .00000000000047585534004430641,
    307 	 .00000000000083679678674757695,
    308 	-.00000000000085763734646658640,
    309 	 .00000000000021913281229340092,
    310 	-.00000000000062242842536431148,
    311 	-.00000000000010983594325438430,
    312 	 .00000000000065310431377633651,
    313 	-.00000000000047580199021710769,
    314 	-.00000000000037854251265457040,
    315 	 .00000000000040939233218678664,
    316 	 .00000000000087424383914858291,
    317 	 .00000000000025218188456842882,
    318 	-.00000000000003608131360422557,
    319 	-.00000000000050518555924280902,
    320 	 .00000000000078699403323355317,
    321 	-.00000000000067020876961949060,
    322 	 .00000000000016108575753932458,
    323 	 .00000000000058527188436251509,
    324 	-.00000000000035246757297904791,
    325 	-.00000000000018372084495629058,
    326 	 .00000000000088606689813494916,
    327 	 .00000000000066486268071468700,
    328 	 .00000000000063831615170646519,
    329 	 .00000000000025144230728376072,
    330 	-.00000000000017239444525614834
    331 };
    332 /*
    333  * Extra precision variant, returning struct {double a, b;};
    334  * log(x) = a + b to 63 bits, with 'a' rounded to 24 bits.
    335  */
    336 static struct LDouble
    337 __log__LD(long double x)
    338 {
    339 	int m, j;
    340 	long double F, f, g, q, u, v, u1, u2;
    341 	struct LDouble r;
    342 
    343 	/*
    344 	 * Argument reduction: 1 <= g < 2; x/2^m = g;
    345 	 * y = F*(1 + f/F) for |f| <= 2^-8
    346 	 */
    347 	g = frexpl(x, &m);
    348 	g *= 2;
    349 	m--;
    350 	if (m == DBL_MIN_EXP - 1) {
    351 		j = ilogbl(g);
    352 		m += j;
    353 		g = ldexpl(g, -j);
    354 	}
    355 	j = N * (g - 1) + 0.5L;
    356 	F = (1.L / N) * j + 1;
    357 	f = g - F;
    358 
    359 	g = 1 / (2 * F + f);
    360 	u = 2 * f * g;
    361 	v = u * u;
    362 	q = u * v * (A1 + v * (A2 + v * (A3 + v * A4)));
    363 	if (m | j) {
    364 		u1 = u + 513;
    365 		u1 -= 513;
    366 	} else {
    367 		u1 = (float)u;
    368 	}
    369 	u2 = (2 * (f - F * u1) - u1 * f) * g;
    370 
    371 	u1 += m * (long double)logF_head[N] + logF_head[j];
    372 
    373 	u2 += logF_tail[j];
    374 	u2 += q;
    375 	u2 += logF_tail[N] * m;
    376 	r.a = (float)(u1 + u2);		/* Only difference is here. */
    377 	r.b = (u1 - r.a) + u2;
    378 	return (r);
    379 }
    380