Home | History | Annotate | Line # | Download | only in net
      1 /*	$NetBSD: if_wg.c,v 1.135 2024/12/27 16:42:28 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (C) Ryota Ozaki <ozaki.ryota (at) gmail.com>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * This network interface aims to implement the WireGuard protocol.
     34  * The implementation is based on the paper of WireGuard as of
     35  * 2018-06-30 [1].  The paper is referred in the source code with label
     36  * [W].  Also the specification of the Noise protocol framework as of
     37  * 2018-07-11 [2] is referred with label [N].
     38  *
     39  * [1] https://www.wireguard.com/papers/wireguard.pdf
     40  *     https://web.archive.org/web/20180805103233/https://www.wireguard.com/papers/wireguard.pdf
     41  * [2] http://noiseprotocol.org/noise.pdf
     42  *     https://web.archive.org/web/20180727193154/https://noiseprotocol.org/noise.pdf
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: if_wg.c,v 1.135 2024/12/27 16:42:28 riastradh Exp $");
     47 
     48 #ifdef _KERNEL_OPT
     49 #include "opt_altq_enabled.h"
     50 #include "opt_inet.h"
     51 #endif
     52 
     53 #include <sys/param.h>
     54 #include <sys/types.h>
     55 
     56 #include <sys/atomic.h>
     57 #include <sys/callout.h>
     58 #include <sys/cprng.h>
     59 #include <sys/cpu.h>
     60 #include <sys/device.h>
     61 #include <sys/domain.h>
     62 #include <sys/errno.h>
     63 #include <sys/intr.h>
     64 #include <sys/ioctl.h>
     65 #include <sys/kernel.h>
     66 #include <sys/kmem.h>
     67 #include <sys/mbuf.h>
     68 #include <sys/module.h>
     69 #include <sys/mutex.h>
     70 #include <sys/once.h>
     71 #include <sys/percpu.h>
     72 #include <sys/pserialize.h>
     73 #include <sys/psref.h>
     74 #include <sys/queue.h>
     75 #include <sys/rwlock.h>
     76 #include <sys/socket.h>
     77 #include <sys/socketvar.h>
     78 #include <sys/sockio.h>
     79 #include <sys/sysctl.h>
     80 #include <sys/syslog.h>
     81 #include <sys/systm.h>
     82 #include <sys/thmap.h>
     83 #include <sys/threadpool.h>
     84 #include <sys/time.h>
     85 #include <sys/timespec.h>
     86 #include <sys/workqueue.h>
     87 
     88 #include <lib/libkern/libkern.h>
     89 
     90 #include <net/bpf.h>
     91 #include <net/if.h>
     92 #include <net/if_types.h>
     93 #include <net/if_wg.h>
     94 #include <net/pktqueue.h>
     95 #include <net/route.h>
     96 
     97 #ifdef INET
     98 #include <netinet/in.h>
     99 #include <netinet/in_pcb.h>
    100 #include <netinet/in_var.h>
    101 #include <netinet/ip.h>
    102 #include <netinet/ip_var.h>
    103 #include <netinet/udp.h>
    104 #include <netinet/udp_var.h>
    105 #endif	/* INET */
    106 
    107 #ifdef INET6
    108 #include <netinet/ip6.h>
    109 #include <netinet6/in6_pcb.h>
    110 #include <netinet6/in6_var.h>
    111 #include <netinet6/ip6_var.h>
    112 #include <netinet6/udp6_var.h>
    113 #endif	/* INET6 */
    114 
    115 #include <prop/proplib.h>
    116 
    117 #include <crypto/blake2/blake2s.h>
    118 #include <crypto/sodium/crypto_aead_chacha20poly1305.h>
    119 #include <crypto/sodium/crypto_aead_xchacha20poly1305.h>
    120 #include <crypto/sodium/crypto_scalarmult.h>
    121 
    122 #include "ioconf.h"
    123 
    124 #ifdef WG_RUMPKERNEL
    125 #include "wg_user.h"
    126 #endif
    127 
    128 #ifndef time_uptime32
    129 #define	time_uptime32	((uint32_t)time_uptime)
    130 #endif
    131 
    132 /*
    133  * Data structures
    134  * - struct wg_softc is an instance of wg interfaces
    135  *   - It has a list of peers (struct wg_peer)
    136  *   - It has a threadpool job that sends/receives handshake messages and
    137  *     runs event handlers
    138  *   - It has its own two routing tables: one is for IPv4 and the other IPv6
    139  * - struct wg_peer is a representative of a peer
    140  *   - It has a struct work to handle handshakes and timer tasks
    141  *   - It has a pair of session instances (struct wg_session)
    142  *   - It has a pair of endpoint instances (struct wg_sockaddr)
    143  *     - Normally one endpoint is used and the second one is used only on
    144  *       a peer migration (a change of peer's IP address)
    145  *   - It has a list of IP addresses and sub networks called allowedips
    146  *     (struct wg_allowedip)
    147  *     - A packets sent over a session is allowed if its destination matches
    148  *       any IP addresses or sub networks of the list
    149  * - struct wg_session represents a session of a secure tunnel with a peer
    150  *   - Two instances of sessions belong to a peer; a stable session and a
    151  *     unstable session
    152  *   - A handshake process of a session always starts with a unstable instance
    153  *   - Once a session is established, its instance becomes stable and the
    154  *     other becomes unstable instead
    155  *   - Data messages are always sent via a stable session
    156  *
    157  * Locking notes:
    158  * - Each wg has a mutex(9) wg_lock, and a rwlock(9) wg_rwlock
    159  *   - Changes to the peer list are serialized by wg_lock
    160  *   - The peer list may be read with pserialize(9) and psref(9)
    161  *   - The rwlock (wg_rwlock) protects the routing tables (wg_rtable_ipv[46])
    162  *     => XXX replace by pserialize when routing table is psz-safe
    163  * - Each peer (struct wg_peer, wgp) has a mutex wgp_lock, which can be taken
    164  *   only in thread context and serializes:
    165  *   - the stable and unstable session pointers
    166  *   - all unstable session state
    167  * - Packet processing may be done in softint context:
    168  *   - The stable session can be read under pserialize(9) or psref(9)
    169  *     - The stable session is always ESTABLISHED
    170  *     - On a session swap, we must wait for all readers to release a
    171  *       reference to a stable session before changing wgs_state and
    172  *       session states
    173  * - Lock order: wg_lock -> wgp_lock
    174  */
    175 
    176 
    177 #define WGLOG(level, fmt, args...)					      \
    178 	log(level, "%s: " fmt, __func__, ##args)
    179 
    180 #define WG_DEBUG
    181 
    182 /* Debug options */
    183 #ifdef WG_DEBUG
    184 /* Output debug logs */
    185 #ifndef WG_DEBUG_LOG
    186 #define WG_DEBUG_LOG
    187 #endif
    188 /* Output trace logs */
    189 #ifndef WG_DEBUG_TRACE
    190 #define WG_DEBUG_TRACE
    191 #endif
    192 /* Output hash values, etc. */
    193 #ifndef WG_DEBUG_DUMP
    194 #define WG_DEBUG_DUMP
    195 #endif
    196 /* Make some internal parameters configurable for testing and debugging */
    197 #ifndef WG_DEBUG_PARAMS
    198 #define WG_DEBUG_PARAMS
    199 #endif
    200 #endif /* WG_DEBUG */
    201 
    202 #ifndef WG_DEBUG
    203 # if defined(WG_DEBUG_LOG) || defined(WG_DEBUG_TRACE) ||		    \
    204 	defined(WG_DEBUG_DUMP) || defined(WG_DEBUG_PARAMS)
    205 #   define WG_DEBUG
    206 # endif
    207 #endif
    208 
    209 #ifdef WG_DEBUG
    210 int wg_debug;
    211 #define WG_DEBUG_FLAGS_LOG	1
    212 #define WG_DEBUG_FLAGS_TRACE	2
    213 #define WG_DEBUG_FLAGS_DUMP	4
    214 #endif
    215 
    216 #ifdef WG_DEBUG_TRACE
    217 #define WG_TRACE(msg)	 do {						\
    218 	if (wg_debug & WG_DEBUG_FLAGS_TRACE)				\
    219 	    log(LOG_DEBUG, "%s:%d: %s\n", __func__, __LINE__, (msg));	\
    220 } while (0)
    221 #else
    222 #define WG_TRACE(msg)	__nothing
    223 #endif
    224 
    225 #ifdef WG_DEBUG_LOG
    226 #define WG_DLOG(fmt, args...)	 do {					\
    227 	if (wg_debug & WG_DEBUG_FLAGS_LOG)				\
    228 	    log(LOG_DEBUG, "%s: " fmt, __func__, ##args);		\
    229 } while (0)
    230 #else
    231 #define WG_DLOG(fmt, args...)	__nothing
    232 #endif
    233 
    234 #define WG_LOG_RATECHECK(wgprc, level, fmt, args...)	do {		\
    235 	if (ppsratecheck(&(wgprc)->wgprc_lasttime,			\
    236 	    &(wgprc)->wgprc_curpps, 1)) {				\
    237 		log(level, fmt, ##args);				\
    238 	}								\
    239 } while (0)
    240 
    241 #ifdef WG_DEBUG_PARAMS
    242 static bool wg_force_underload = false;
    243 #endif
    244 
    245 #ifdef WG_DEBUG_DUMP
    246 
    247 static char enomem[10] = "[enomem]";
    248 
    249 #define	MAX_HDUMP_LEN	10000	/* large enough */
    250 
    251 /*
    252  * gethexdump(p, n)
    253  *
    254  *	Allocate a string returning a hexdump of bytes p[0..n),
    255  *	truncated to MAX_HDUMP_LEN.  Must be freed with puthexdump.
    256  *
    257  *	We use this instead of libkern hexdump() because the result is
    258  *	logged with log(LOG_DEBUG, ...), which puts a priority tag on
    259  *	every message, so it can't be done incrementally.
    260  */
    261 static char *
    262 gethexdump(const void *vp, size_t n)
    263 {
    264 	char *buf;
    265 	const uint8_t *p = vp;
    266 	size_t i, alloc;
    267 
    268 	alloc = n;
    269 	if (n > MAX_HDUMP_LEN)
    270 		alloc = MAX_HDUMP_LEN;
    271 	buf = kmem_alloc(3*alloc + 5, KM_NOSLEEP);
    272 	if (buf == NULL)
    273 		return enomem;
    274 	for (i = 0; i < alloc; i++)
    275 		snprintf(buf + 3*i, 3 + 1, " %02hhx", p[i]);
    276 	if (alloc != n)
    277 		snprintf(buf + 3*i, 4 + 1, " ...");
    278 	return buf;
    279 }
    280 
    281 static void
    282 puthexdump(char *buf, const void *p, size_t n)
    283 {
    284 
    285 	if (buf == NULL || buf == enomem)
    286 		return;
    287 	if (n > MAX_HDUMP_LEN)
    288 		n = MAX_HDUMP_LEN;
    289 	kmem_free(buf, 3*n + 5);
    290 }
    291 
    292 #ifdef WG_RUMPKERNEL
    293 static void
    294 wg_dump_buf(const char *func, const char *buf, const size_t size)
    295 {
    296 	if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
    297 		return;
    298 
    299 	char *hex = gethexdump(buf, size);
    300 
    301 	log(LOG_DEBUG, "%s: %s\n", func, hex);
    302 	puthexdump(hex, buf, size);
    303 }
    304 #endif
    305 
    306 static void
    307 wg_dump_hash(const uint8_t *func, const uint8_t *name, const uint8_t *hash,
    308     const size_t size)
    309 {
    310 	if ((wg_debug & WG_DEBUG_FLAGS_DUMP) == 0)
    311 		return;
    312 
    313 	char *hex = gethexdump(hash, size);
    314 
    315 	log(LOG_DEBUG, "%s: %s: %s\n", func, name, hex);
    316 	puthexdump(hex, hash, size);
    317 }
    318 
    319 #define WG_DUMP_HASH(name, hash) \
    320 	wg_dump_hash(__func__, name, hash, WG_HASH_LEN)
    321 #define WG_DUMP_HASH48(name, hash) \
    322 	wg_dump_hash(__func__, name, hash, 48)
    323 #define WG_DUMP_BUF(buf, size) \
    324 	wg_dump_buf(__func__, buf, size)
    325 #else
    326 #define WG_DUMP_HASH(name, hash)	__nothing
    327 #define WG_DUMP_HASH48(name, hash)	__nothing
    328 #define WG_DUMP_BUF(buf, size)	__nothing
    329 #endif /* WG_DEBUG_DUMP */
    330 
    331 /* chosen somewhat arbitrarily -- fits in signed 16 bits NUL-terminated */
    332 #define	WG_MAX_PROPLEN		32766
    333 
    334 #define WG_MTU			1420
    335 #define WG_ALLOWEDIPS		16
    336 
    337 #define CURVE25519_KEY_LEN	32
    338 #define TAI64N_LEN		(sizeof(uint32_t) * 3)
    339 #define POLY1305_AUTHTAG_LEN	16
    340 #define HMAC_BLOCK_LEN		64
    341 
    342 /* [N] 4.1: "DHLEN must be 32 or greater."  WireGuard chooses 32. */
    343 /* [N] 4.3: Hash functions */
    344 #define NOISE_DHLEN		32
    345 /* [N] 4.3: "Must be 32 or 64."  WireGuard chooses 32. */
    346 #define NOISE_HASHLEN		32
    347 #define NOISE_BLOCKLEN		64
    348 #define NOISE_HKDF_OUTPUT_LEN	NOISE_HASHLEN
    349 /* [N] 5.1: "k" */
    350 #define NOISE_CIPHER_KEY_LEN	32
    351 /*
    352  * [N] 9.2: "psk"
    353  *          "... psk is a 32-byte secret value provided by the application."
    354  */
    355 #define NOISE_PRESHARED_KEY_LEN	32
    356 
    357 #define WG_STATIC_KEY_LEN	CURVE25519_KEY_LEN
    358 #define WG_TIMESTAMP_LEN	TAI64N_LEN
    359 
    360 #define WG_PRESHARED_KEY_LEN	NOISE_PRESHARED_KEY_LEN
    361 
    362 #define WG_COOKIE_LEN		16
    363 #define WG_MAC_LEN		16
    364 #define WG_COOKIESECRET_LEN	32
    365 
    366 #define WG_EPHEMERAL_KEY_LEN	CURVE25519_KEY_LEN
    367 /* [N] 5.2: "ck: A chaining key of HASHLEN bytes" */
    368 #define WG_CHAINING_KEY_LEN	NOISE_HASHLEN
    369 /* [N] 5.2: "h: A hash output of HASHLEN bytes" */
    370 #define WG_HASH_LEN		NOISE_HASHLEN
    371 #define WG_CIPHER_KEY_LEN	NOISE_CIPHER_KEY_LEN
    372 #define WG_DH_OUTPUT_LEN	NOISE_DHLEN
    373 #define WG_KDF_OUTPUT_LEN	NOISE_HKDF_OUTPUT_LEN
    374 #define WG_AUTHTAG_LEN		POLY1305_AUTHTAG_LEN
    375 #define WG_DATA_KEY_LEN		32
    376 #define WG_SALT_LEN		24
    377 
    378 /*
    379  * The protocol messages
    380  */
    381 struct wg_msg {
    382 	uint32_t	wgm_type;
    383 } __packed;
    384 
    385 /* [W] 5.4.2 First Message: Initiator to Responder */
    386 struct wg_msg_init {
    387 	uint32_t	wgmi_type;
    388 	uint32_t	wgmi_sender;
    389 	uint8_t		wgmi_ephemeral[WG_EPHEMERAL_KEY_LEN];
    390 	uint8_t		wgmi_static[WG_STATIC_KEY_LEN + WG_AUTHTAG_LEN];
    391 	uint8_t		wgmi_timestamp[WG_TIMESTAMP_LEN + WG_AUTHTAG_LEN];
    392 	uint8_t		wgmi_mac1[WG_MAC_LEN];
    393 	uint8_t		wgmi_mac2[WG_MAC_LEN];
    394 } __packed;
    395 
    396 /* [W] 5.4.3 Second Message: Responder to Initiator */
    397 struct wg_msg_resp {
    398 	uint32_t	wgmr_type;
    399 	uint32_t	wgmr_sender;
    400 	uint32_t	wgmr_receiver;
    401 	uint8_t		wgmr_ephemeral[WG_EPHEMERAL_KEY_LEN];
    402 	uint8_t		wgmr_empty[0 + WG_AUTHTAG_LEN];
    403 	uint8_t		wgmr_mac1[WG_MAC_LEN];
    404 	uint8_t		wgmr_mac2[WG_MAC_LEN];
    405 } __packed;
    406 
    407 /* [W] 5.4.6 Subsequent Messages: Transport Data Messages */
    408 struct wg_msg_data {
    409 	uint32_t	wgmd_type;
    410 	uint32_t	wgmd_receiver;
    411 	uint64_t	wgmd_counter;
    412 	uint32_t	wgmd_packet[];
    413 } __packed;
    414 
    415 /* [W] 5.4.7 Under Load: Cookie Reply Message */
    416 struct wg_msg_cookie {
    417 	uint32_t	wgmc_type;
    418 	uint32_t	wgmc_receiver;
    419 	uint8_t		wgmc_salt[WG_SALT_LEN];
    420 	uint8_t		wgmc_cookie[WG_COOKIE_LEN + WG_AUTHTAG_LEN];
    421 } __packed;
    422 
    423 #define WG_MSG_TYPE_INIT		1
    424 #define WG_MSG_TYPE_RESP		2
    425 #define WG_MSG_TYPE_COOKIE		3
    426 #define WG_MSG_TYPE_DATA		4
    427 #define WG_MSG_TYPE_MAX			WG_MSG_TYPE_DATA
    428 
    429 /* Sliding windows */
    430 
    431 #define	SLIWIN_BITS	2048u
    432 #define	SLIWIN_TYPE	uint32_t
    433 #define	SLIWIN_BPW	(NBBY*sizeof(SLIWIN_TYPE))
    434 #define	SLIWIN_WORDS	howmany(SLIWIN_BITS, SLIWIN_BPW)
    435 #define	SLIWIN_NPKT	(SLIWIN_BITS - NBBY*sizeof(SLIWIN_TYPE))
    436 
    437 struct sliwin {
    438 	SLIWIN_TYPE	B[SLIWIN_WORDS];
    439 	uint64_t	T;
    440 };
    441 
    442 /*
    443  * sliwin_reset(W)
    444  *
    445  *	Reset sliding window state to a blank history with no observed
    446  *	sequence numbers.
    447  *
    448  *	Caller must have exclusive access to W.
    449  */
    450 static void
    451 sliwin_reset(struct sliwin *W)
    452 {
    453 
    454 	memset(W, 0, sizeof(*W));
    455 }
    456 
    457 /*
    458  * sliwin_check_fast(W, S)
    459  *
    460  *	Do a fast check of the sliding window W to validate sequence
    461  *	number S.  No state is recorded.  Return 0 on accept, nonzero
    462  *	error code on reject.
    463  *
    464  *	May be called concurrently with other calls to
    465  *	sliwin_check_fast and sliwin_update.
    466  */
    467 static int
    468 sliwin_check_fast(const volatile struct sliwin *W, uint64_t S)
    469 {
    470 
    471 	/*
    472 	 * If it's more than one window older than the highest sequence
    473 	 * number we've seen, reject.
    474 	 */
    475 #ifdef __HAVE_ATOMIC64_LOADSTORE
    476 	if (S + SLIWIN_NPKT < atomic_load_relaxed(&W->T))
    477 		return EAUTH;
    478 #endif
    479 
    480 	/*
    481 	 * Otherwise, we need to take the lock to decide, so don't
    482 	 * reject just yet.  Caller must serialize a call to
    483 	 * sliwin_update in this case.
    484 	 */
    485 	return 0;
    486 }
    487 
    488 /*
    489  * sliwin_update(W, S)
    490  *
    491  *	Check the sliding window W to validate sequence number S, and
    492  *	if accepted, update it to reflect having observed S.  Return 0
    493  *	on accept, nonzero error code on reject.
    494  *
    495  *	May be called concurrently with other calls to
    496  *	sliwin_check_fast, but caller must exclude other calls to
    497  *	sliwin_update.
    498  */
    499 static int
    500 sliwin_update(struct sliwin *W, uint64_t S)
    501 {
    502 	unsigned word, bit;
    503 
    504 	/*
    505 	 * If it's more than one window older than the highest sequence
    506 	 * number we've seen, reject.
    507 	 */
    508 	if (S + SLIWIN_NPKT < W->T)
    509 		return EAUTH;
    510 
    511 	/*
    512 	 * If it's higher than the highest sequence number we've seen,
    513 	 * advance the window.
    514 	 */
    515 	if (S > W->T) {
    516 		uint64_t i = W->T / SLIWIN_BPW;
    517 		uint64_t j = S / SLIWIN_BPW;
    518 		unsigned k;
    519 
    520 		for (k = 0; k < MIN(j - i, SLIWIN_WORDS); k++)
    521 			W->B[(i + k + 1) % SLIWIN_WORDS] = 0;
    522 #ifdef __HAVE_ATOMIC64_LOADSTORE
    523 		atomic_store_relaxed(&W->T, S);
    524 #else
    525 		W->T = S;
    526 #endif
    527 	}
    528 
    529 	/* Test and set the bit -- if already set, reject.  */
    530 	word = (S / SLIWIN_BPW) % SLIWIN_WORDS;
    531 	bit = S % SLIWIN_BPW;
    532 	if (W->B[word] & (1UL << bit))
    533 		return EAUTH;
    534 	W->B[word] |= 1U << bit;
    535 
    536 	/* Accept!  */
    537 	return 0;
    538 }
    539 
    540 struct wg_session {
    541 	struct wg_peer	*wgs_peer;
    542 	struct psref_target
    543 			wgs_psref;
    544 
    545 	volatile int	wgs_state;
    546 #define WGS_STATE_UNKNOWN	0
    547 #define WGS_STATE_INIT_ACTIVE	1
    548 #define WGS_STATE_INIT_PASSIVE	2
    549 #define WGS_STATE_ESTABLISHED	3
    550 #define WGS_STATE_DESTROYING	4
    551 
    552 	uint32_t	wgs_time_established;
    553 	volatile uint32_t
    554 			wgs_time_last_data_sent;
    555 	volatile bool	wgs_force_rekey;
    556 	bool		wgs_is_initiator;
    557 
    558 	uint32_t	wgs_local_index;
    559 	uint32_t	wgs_remote_index;
    560 #ifdef __HAVE_ATOMIC64_LOADSTORE
    561 	volatile uint64_t
    562 			wgs_send_counter;
    563 #else
    564 	kmutex_t	wgs_send_counter_lock;
    565 	uint64_t	wgs_send_counter;
    566 #endif
    567 
    568 	struct {
    569 		kmutex_t	lock;
    570 		struct sliwin	window;
    571 	}		*wgs_recvwin;
    572 
    573 	uint8_t		wgs_handshake_hash[WG_HASH_LEN];
    574 	uint8_t		wgs_chaining_key[WG_CHAINING_KEY_LEN];
    575 	uint8_t		wgs_ephemeral_key_pub[WG_EPHEMERAL_KEY_LEN];
    576 	uint8_t		wgs_ephemeral_key_priv[WG_EPHEMERAL_KEY_LEN];
    577 	uint8_t		wgs_ephemeral_key_peer[WG_EPHEMERAL_KEY_LEN];
    578 	uint8_t		wgs_tkey_send[WG_DATA_KEY_LEN];
    579 	uint8_t		wgs_tkey_recv[WG_DATA_KEY_LEN];
    580 };
    581 
    582 struct wg_sockaddr {
    583 	union {
    584 		struct sockaddr_storage _ss;
    585 		struct sockaddr _sa;
    586 		struct sockaddr_in _sin;
    587 		struct sockaddr_in6 _sin6;
    588 	};
    589 	struct psref_target	wgsa_psref;
    590 };
    591 
    592 #define wgsatoss(wgsa)		(&(wgsa)->_ss)
    593 #define wgsatosa(wgsa)		(&(wgsa)->_sa)
    594 #define wgsatosin(wgsa)		(&(wgsa)->_sin)
    595 #define wgsatosin6(wgsa)	(&(wgsa)->_sin6)
    596 
    597 #define	wgsa_family(wgsa)	(wgsatosa(wgsa)->sa_family)
    598 
    599 struct wg_peer;
    600 struct wg_allowedip {
    601 	struct radix_node	wga_nodes[2];
    602 	struct wg_sockaddr	_wga_sa_addr;
    603 	struct wg_sockaddr	_wga_sa_mask;
    604 #define wga_sa_addr		_wga_sa_addr._sa
    605 #define wga_sa_mask		_wga_sa_mask._sa
    606 
    607 	int			wga_family;
    608 	uint8_t			wga_cidr;
    609 	union {
    610 		struct in_addr _ip4;
    611 		struct in6_addr _ip6;
    612 	} wga_addr;
    613 #define wga_addr4	wga_addr._ip4
    614 #define wga_addr6	wga_addr._ip6
    615 
    616 	struct wg_peer		*wga_peer;
    617 };
    618 
    619 typedef uint8_t wg_timestamp_t[WG_TIMESTAMP_LEN];
    620 
    621 struct wg_ppsratecheck {
    622 	struct timeval		wgprc_lasttime;
    623 	int			wgprc_curpps;
    624 };
    625 
    626 struct wg_softc;
    627 struct wg_peer {
    628 	struct wg_softc		*wgp_sc;
    629 	char			wgp_name[WG_PEER_NAME_MAXLEN + 1];
    630 	struct pslist_entry	wgp_peerlist_entry;
    631 	pserialize_t		wgp_psz;
    632 	struct psref_target	wgp_psref;
    633 	kmutex_t		*wgp_lock;
    634 	kmutex_t		*wgp_intr_lock;
    635 
    636 	uint8_t	wgp_pubkey[WG_STATIC_KEY_LEN];
    637 	struct wg_sockaddr	*volatile wgp_endpoint;
    638 	struct wg_sockaddr	*wgp_endpoint0;
    639 	volatile unsigned	wgp_endpoint_changing;
    640 	volatile bool		wgp_endpoint_available;
    641 
    642 			/* The preshared key (optional) */
    643 	uint8_t		wgp_psk[WG_PRESHARED_KEY_LEN];
    644 
    645 	struct wg_session	*volatile wgp_session_stable;
    646 	struct wg_session	*wgp_session_unstable;
    647 
    648 	/* first outgoing packet awaiting session initiation */
    649 	struct mbuf		*volatile wgp_pending;
    650 
    651 	/* timestamp in big-endian */
    652 	wg_timestamp_t	wgp_timestamp_latest_init;
    653 
    654 	struct timespec		wgp_last_handshake_time;
    655 
    656 	callout_t		wgp_handshake_timeout_timer;
    657 	callout_t		wgp_session_dtor_timer;
    658 
    659 	time_t			wgp_handshake_start_time;
    660 
    661 	int			wgp_n_allowedips;
    662 	struct wg_allowedip	wgp_allowedips[WG_ALLOWEDIPS];
    663 
    664 	time_t			wgp_latest_cookie_time;
    665 	uint8_t			wgp_latest_cookie[WG_COOKIE_LEN];
    666 	uint8_t			wgp_last_sent_mac1[WG_MAC_LEN];
    667 	bool			wgp_last_sent_mac1_valid;
    668 	uint8_t			wgp_last_sent_cookie[WG_COOKIE_LEN];
    669 	bool			wgp_last_sent_cookie_valid;
    670 
    671 	time_t			wgp_last_msg_received_time[WG_MSG_TYPE_MAX];
    672 
    673 	time_t			wgp_last_cookiesecret_time;
    674 	uint8_t			wgp_cookiesecret[WG_COOKIESECRET_LEN];
    675 
    676 	struct wg_ppsratecheck	wgp_ppsratecheck;
    677 
    678 	struct work		wgp_work;
    679 	unsigned int		wgp_tasks;
    680 #define WGP_TASK_SEND_INIT_MESSAGE		__BIT(0)
    681 #define WGP_TASK_RETRY_HANDSHAKE		__BIT(1)
    682 #define WGP_TASK_ESTABLISH_SESSION		__BIT(2)
    683 #define WGP_TASK_ENDPOINT_CHANGED		__BIT(3)
    684 #define WGP_TASK_SEND_KEEPALIVE_MESSAGE		__BIT(4)
    685 #define WGP_TASK_DESTROY_PREV_SESSION		__BIT(5)
    686 };
    687 
    688 struct wg_ops;
    689 
    690 struct wg_softc {
    691 	struct ifnet	wg_if;
    692 	LIST_ENTRY(wg_softc) wg_list;
    693 	kmutex_t	*wg_lock;
    694 	kmutex_t	*wg_intr_lock;
    695 	krwlock_t	*wg_rwlock;
    696 
    697 	uint8_t		wg_privkey[WG_STATIC_KEY_LEN];
    698 	uint8_t		wg_pubkey[WG_STATIC_KEY_LEN];
    699 
    700 	int		wg_npeers;
    701 	struct pslist_head	wg_peers;
    702 	struct thmap	*wg_peers_bypubkey;
    703 	struct thmap	*wg_peers_byname;
    704 	struct thmap	*wg_sessions_byindex;
    705 	uint16_t	wg_listen_port;
    706 
    707 	struct threadpool	*wg_threadpool;
    708 
    709 	struct threadpool_job	wg_job;
    710 	int			wg_upcalls;
    711 #define	WG_UPCALL_INET	__BIT(0)
    712 #define	WG_UPCALL_INET6	__BIT(1)
    713 
    714 #ifdef INET
    715 	struct socket		*wg_so4;
    716 	struct radix_node_head	*wg_rtable_ipv4;
    717 #endif
    718 #ifdef INET6
    719 	struct socket		*wg_so6;
    720 	struct radix_node_head	*wg_rtable_ipv6;
    721 #endif
    722 
    723 	struct wg_ppsratecheck	wg_ppsratecheck;
    724 
    725 	struct wg_ops		*wg_ops;
    726 
    727 #ifdef WG_RUMPKERNEL
    728 	struct wg_user		*wg_user;
    729 #endif
    730 };
    731 
    732 /* [W] 6.1 Preliminaries */
    733 #define WG_REKEY_AFTER_MESSAGES		(1ULL << 60)
    734 #define WG_REJECT_AFTER_MESSAGES	(UINT64_MAX - (1 << 13))
    735 #define WG_REKEY_AFTER_TIME		120
    736 #define WG_REJECT_AFTER_TIME		180
    737 #define WG_REKEY_ATTEMPT_TIME		 90
    738 #define WG_REKEY_TIMEOUT		  5
    739 #define WG_KEEPALIVE_TIMEOUT		 10
    740 
    741 #define WG_COOKIE_TIME			120
    742 #define WG_COOKIESECRET_TIME		(2 * 60)
    743 
    744 static uint64_t wg_rekey_after_messages = WG_REKEY_AFTER_MESSAGES;
    745 static uint64_t wg_reject_after_messages = WG_REJECT_AFTER_MESSAGES;
    746 static unsigned wg_rekey_after_time = WG_REKEY_AFTER_TIME;
    747 static unsigned wg_reject_after_time = WG_REJECT_AFTER_TIME;
    748 static unsigned wg_rekey_attempt_time = WG_REKEY_ATTEMPT_TIME;
    749 static unsigned wg_rekey_timeout = WG_REKEY_TIMEOUT;
    750 static unsigned wg_keepalive_timeout = WG_KEEPALIVE_TIMEOUT;
    751 
    752 static struct mbuf *
    753 		wg_get_mbuf(size_t, size_t);
    754 
    755 static void	wg_send_data_msg(struct wg_peer *, struct wg_session *,
    756 		    struct mbuf *);
    757 static void	wg_send_cookie_msg(struct wg_softc *, struct wg_peer *,
    758 		    const uint32_t, const uint8_t[static WG_MAC_LEN],
    759 		    const struct sockaddr *);
    760 static void	wg_send_handshake_msg_resp(struct wg_softc *, struct wg_peer *,
    761 		    struct wg_session *, const struct wg_msg_init *);
    762 static void	wg_send_keepalive_msg(struct wg_peer *, struct wg_session *);
    763 
    764 static struct wg_peer *
    765 		wg_pick_peer_by_sa(struct wg_softc *, const struct sockaddr *,
    766 		    struct psref *);
    767 static struct wg_peer *
    768 		wg_lookup_peer_by_pubkey(struct wg_softc *,
    769 		    const uint8_t[static WG_STATIC_KEY_LEN], struct psref *);
    770 
    771 static struct wg_session *
    772 		wg_lookup_session_by_index(struct wg_softc *,
    773 		    const uint32_t, struct psref *);
    774 
    775 static void	wg_update_endpoint_if_necessary(struct wg_peer *,
    776 		    const struct sockaddr *);
    777 
    778 static void	wg_schedule_session_dtor_timer(struct wg_peer *);
    779 
    780 static bool	wg_is_underload(struct wg_softc *, struct wg_peer *, int);
    781 static void	wg_calculate_keys(struct wg_session *, const bool);
    782 
    783 static void	wg_clear_states(struct wg_session *);
    784 
    785 static void	wg_get_peer(struct wg_peer *, struct psref *);
    786 static void	wg_put_peer(struct wg_peer *, struct psref *);
    787 
    788 static int	wg_send_hs(struct wg_peer *, struct mbuf *);
    789 static int	wg_send_data(struct wg_peer *, struct mbuf *);
    790 static int	wg_output(struct ifnet *, struct mbuf *,
    791 			   const struct sockaddr *, const struct rtentry *);
    792 static void	wg_input(struct ifnet *, struct mbuf *, const int);
    793 static int	wg_ioctl(struct ifnet *, u_long, void *);
    794 static int	wg_bind_port(struct wg_softc *, const uint16_t);
    795 static int	wg_init(struct ifnet *);
    796 #ifdef ALTQ
    797 static void	wg_start(struct ifnet *);
    798 #endif
    799 static void	wg_stop(struct ifnet *, int);
    800 
    801 static void	wg_peer_work(struct work *, void *);
    802 static void	wg_job(struct threadpool_job *);
    803 static void	wgintr(void *);
    804 static void	wg_purge_pending_packets(struct wg_peer *);
    805 
    806 static int	wg_clone_create(struct if_clone *, int);
    807 static int	wg_clone_destroy(struct ifnet *);
    808 
    809 struct wg_ops {
    810 	int (*send_hs_msg)(struct wg_peer *, struct mbuf *);
    811 	int (*send_data_msg)(struct wg_peer *, struct mbuf *);
    812 	void (*input)(struct ifnet *, struct mbuf *, const int);
    813 	int (*bind_port)(struct wg_softc *, const uint16_t);
    814 };
    815 
    816 struct wg_ops wg_ops_rumpkernel = {
    817 	.send_hs_msg	= wg_send_hs,
    818 	.send_data_msg	= wg_send_data,
    819 	.input		= wg_input,
    820 	.bind_port	= wg_bind_port,
    821 };
    822 
    823 #ifdef WG_RUMPKERNEL
    824 static bool	wg_user_mode(struct wg_softc *);
    825 static int	wg_ioctl_linkstr(struct wg_softc *, struct ifdrv *);
    826 
    827 static int	wg_send_hs_user(struct wg_peer *, struct mbuf *);
    828 static int	wg_send_data_user(struct wg_peer *, struct mbuf *);
    829 static void	wg_input_user(struct ifnet *, struct mbuf *, const int);
    830 static int	wg_bind_port_user(struct wg_softc *, const uint16_t);
    831 
    832 struct wg_ops wg_ops_rumpuser = {
    833 	.send_hs_msg	= wg_send_hs_user,
    834 	.send_data_msg	= wg_send_data_user,
    835 	.input		= wg_input_user,
    836 	.bind_port	= wg_bind_port_user,
    837 };
    838 #endif
    839 
    840 #define WG_PEER_READER_FOREACH(wgp, wg)					\
    841 	PSLIST_READER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    842 	    wgp_peerlist_entry)
    843 #define WG_PEER_WRITER_FOREACH(wgp, wg)					\
    844 	PSLIST_WRITER_FOREACH((wgp), &(wg)->wg_peers, struct wg_peer,	\
    845 	    wgp_peerlist_entry)
    846 #define WG_PEER_WRITER_INSERT_HEAD(wgp, wg)				\
    847 	PSLIST_WRITER_INSERT_HEAD(&(wg)->wg_peers, (wgp), wgp_peerlist_entry)
    848 #define WG_PEER_WRITER_REMOVE(wgp)					\
    849 	PSLIST_WRITER_REMOVE((wgp), wgp_peerlist_entry)
    850 
    851 struct wg_route {
    852 	struct radix_node	wgr_nodes[2];
    853 	struct wg_peer		*wgr_peer;
    854 };
    855 
    856 static struct radix_node_head *
    857 wg_rnh(struct wg_softc *wg, const int family)
    858 {
    859 
    860 	switch (family) {
    861 #ifdef INET
    862 		case AF_INET:
    863 			return wg->wg_rtable_ipv4;
    864 #endif
    865 #ifdef INET6
    866 		case AF_INET6:
    867 			return wg->wg_rtable_ipv6;
    868 #endif
    869 		default:
    870 			return NULL;
    871 	}
    872 }
    873 
    874 
    875 /*
    876  * Global variables
    877  */
    878 static volatile unsigned wg_count __cacheline_aligned;
    879 
    880 struct psref_class *wg_psref_class __read_mostly;
    881 
    882 static struct if_clone wg_cloner =
    883     IF_CLONE_INITIALIZER("wg", wg_clone_create, wg_clone_destroy);
    884 
    885 static struct pktqueue *wg_pktq __read_mostly;
    886 static struct workqueue *wg_wq __read_mostly;
    887 
    888 void wgattach(int);
    889 /* ARGSUSED */
    890 void
    891 wgattach(int count)
    892 {
    893 	/*
    894 	 * Nothing to do here, initialization is handled by the
    895 	 * module initialization code in wginit() below).
    896 	 */
    897 }
    898 
    899 static void
    900 wginit(void)
    901 {
    902 
    903 	wg_psref_class = psref_class_create("wg", IPL_SOFTNET);
    904 
    905 	if_clone_attach(&wg_cloner);
    906 }
    907 
    908 /*
    909  * XXX Kludge: This should just happen in wginit, but workqueue_create
    910  * cannot be run until after CPUs have been detected, and wginit runs
    911  * before configure.
    912  */
    913 static int
    914 wginitqueues(void)
    915 {
    916 	int error __diagused;
    917 
    918 	wg_pktq = pktq_create(IFQ_MAXLEN, wgintr, NULL);
    919 	KASSERT(wg_pktq != NULL);
    920 
    921 	error = workqueue_create(&wg_wq, "wgpeer", wg_peer_work, NULL,
    922 	    PRI_NONE, IPL_SOFTNET, WQ_MPSAFE|WQ_PERCPU);
    923 	KASSERTMSG(error == 0, "error=%d", error);
    924 
    925 	return 0;
    926 }
    927 
    928 static void
    929 wg_guarantee_initialized(void)
    930 {
    931 	static ONCE_DECL(init);
    932 	int error __diagused;
    933 
    934 	error = RUN_ONCE(&init, wginitqueues);
    935 	KASSERTMSG(error == 0, "error=%d", error);
    936 }
    937 
    938 static int
    939 wg_count_inc(void)
    940 {
    941 	unsigned o, n;
    942 
    943 	do {
    944 		o = atomic_load_relaxed(&wg_count);
    945 		if (o == UINT_MAX)
    946 			return ENFILE;
    947 		n = o + 1;
    948 	} while (atomic_cas_uint(&wg_count, o, n) != o);
    949 
    950 	return 0;
    951 }
    952 
    953 static void
    954 wg_count_dec(void)
    955 {
    956 	unsigned c __diagused;
    957 
    958 	membar_release();	/* match atomic_load_acquire in wgdetach */
    959 	c = atomic_dec_uint_nv(&wg_count);
    960 	KASSERT(c != UINT_MAX);
    961 }
    962 
    963 static int
    964 wgdetach(void)
    965 {
    966 
    967 	/* Prevent new interface creation.  */
    968 	if_clone_detach(&wg_cloner);
    969 
    970 	/*
    971 	 * Check whether there are any existing interfaces.  Matches
    972 	 * membar_release and atomic_dec_uint_nv in wg_count_dec.
    973 	 */
    974 	if (atomic_load_acquire(&wg_count)) {
    975 		/* Back out -- reattach the cloner.  */
    976 		if_clone_attach(&wg_cloner);
    977 		return EBUSY;
    978 	}
    979 
    980 	/* No interfaces left.  Nuke it.  */
    981 	if (wg_wq)
    982 		workqueue_destroy(wg_wq);
    983 	if (wg_pktq)
    984 		pktq_destroy(wg_pktq);
    985 	psref_class_destroy(wg_psref_class);
    986 
    987 	return 0;
    988 }
    989 
    990 static void
    991 wg_init_key_and_hash(uint8_t ckey[static WG_CHAINING_KEY_LEN],
    992     uint8_t hash[static WG_HASH_LEN])
    993 {
    994 	/* [W] 5.4: CONSTRUCTION */
    995 	const char *signature = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
    996 	/* [W] 5.4: IDENTIFIER */
    997 	const char *id = "WireGuard v1 zx2c4 Jason (at) zx2c4.com";
    998 	struct blake2s state;
    999 
   1000 	blake2s(ckey, WG_CHAINING_KEY_LEN, NULL, 0,
   1001 	    signature, strlen(signature));
   1002 
   1003 	CTASSERT(WG_HASH_LEN == WG_CHAINING_KEY_LEN);
   1004 	memcpy(hash, ckey, WG_CHAINING_KEY_LEN);
   1005 
   1006 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1007 	blake2s_update(&state, ckey, WG_CHAINING_KEY_LEN);
   1008 	blake2s_update(&state, id, strlen(id));
   1009 	blake2s_final(&state, hash);
   1010 
   1011 	WG_DUMP_HASH("ckey", ckey);
   1012 	WG_DUMP_HASH("hash", hash);
   1013 }
   1014 
   1015 static void
   1016 wg_algo_hash(uint8_t hash[static WG_HASH_LEN], const uint8_t input[],
   1017     const size_t inputsize)
   1018 {
   1019 	struct blake2s state;
   1020 
   1021 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1022 	blake2s_update(&state, hash, WG_HASH_LEN);
   1023 	blake2s_update(&state, input, inputsize);
   1024 	blake2s_final(&state, hash);
   1025 }
   1026 
   1027 static void
   1028 wg_algo_mac(uint8_t out[], const size_t outsize,
   1029     const uint8_t key[], const size_t keylen,
   1030     const uint8_t input1[], const size_t input1len,
   1031     const uint8_t input2[], const size_t input2len)
   1032 {
   1033 	struct blake2s state;
   1034 
   1035 	blake2s_init(&state, outsize, key, keylen);
   1036 
   1037 	blake2s_update(&state, input1, input1len);
   1038 	if (input2 != NULL)
   1039 		blake2s_update(&state, input2, input2len);
   1040 	blake2s_final(&state, out);
   1041 }
   1042 
   1043 static void
   1044 wg_algo_mac_mac1(uint8_t out[], const size_t outsize,
   1045     const uint8_t input1[], const size_t input1len,
   1046     const uint8_t input2[], const size_t input2len)
   1047 {
   1048 	struct blake2s state;
   1049 	/* [W] 5.4: LABEL-MAC1 */
   1050 	const char *label = "mac1----";
   1051 	uint8_t key[WG_HASH_LEN];
   1052 
   1053 	blake2s_init(&state, sizeof(key), NULL, 0);
   1054 	blake2s_update(&state, label, strlen(label));
   1055 	blake2s_update(&state, input1, input1len);
   1056 	blake2s_final(&state, key);
   1057 
   1058 	blake2s_init(&state, outsize, key, sizeof(key));
   1059 	if (input2 != NULL)
   1060 		blake2s_update(&state, input2, input2len);
   1061 	blake2s_final(&state, out);
   1062 }
   1063 
   1064 static void
   1065 wg_algo_mac_cookie(uint8_t out[], const size_t outsize,
   1066     const uint8_t input1[], const size_t input1len)
   1067 {
   1068 	struct blake2s state;
   1069 	/* [W] 5.4: LABEL-COOKIE */
   1070 	const char *label = "cookie--";
   1071 
   1072 	blake2s_init(&state, outsize, NULL, 0);
   1073 	blake2s_update(&state, label, strlen(label));
   1074 	blake2s_update(&state, input1, input1len);
   1075 	blake2s_final(&state, out);
   1076 }
   1077 
   1078 static void
   1079 wg_algo_generate_keypair(uint8_t pubkey[static WG_EPHEMERAL_KEY_LEN],
   1080     uint8_t privkey[static WG_EPHEMERAL_KEY_LEN])
   1081 {
   1082 
   1083 	CTASSERT(WG_EPHEMERAL_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
   1084 
   1085 	cprng_strong(kern_cprng, privkey, WG_EPHEMERAL_KEY_LEN, 0);
   1086 	crypto_scalarmult_base(pubkey, privkey);
   1087 }
   1088 
   1089 static void
   1090 wg_algo_dh(uint8_t out[static WG_DH_OUTPUT_LEN],
   1091     const uint8_t privkey[static WG_STATIC_KEY_LEN],
   1092     const uint8_t pubkey[static WG_STATIC_KEY_LEN])
   1093 {
   1094 
   1095 	CTASSERT(WG_STATIC_KEY_LEN == crypto_scalarmult_curve25519_BYTES);
   1096 
   1097 	int ret __diagused = crypto_scalarmult(out, privkey, pubkey);
   1098 	KASSERT(ret == 0);
   1099 }
   1100 
   1101 static void
   1102 wg_algo_hmac(uint8_t out[], const size_t outlen,
   1103     const uint8_t key[], const size_t keylen,
   1104     const uint8_t in[], const size_t inlen)
   1105 {
   1106 #define IPAD	0x36
   1107 #define OPAD	0x5c
   1108 	uint8_t hmackey[HMAC_BLOCK_LEN] = {0};
   1109 	uint8_t ipad[HMAC_BLOCK_LEN];
   1110 	uint8_t opad[HMAC_BLOCK_LEN];
   1111 	size_t i;
   1112 	struct blake2s state;
   1113 
   1114 	KASSERT(outlen == WG_HASH_LEN);
   1115 	KASSERT(keylen <= HMAC_BLOCK_LEN);
   1116 
   1117 	memcpy(hmackey, key, keylen);
   1118 
   1119 	for (i = 0; i < sizeof(hmackey); i++) {
   1120 		ipad[i] = hmackey[i] ^ IPAD;
   1121 		opad[i] = hmackey[i] ^ OPAD;
   1122 	}
   1123 
   1124 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1125 	blake2s_update(&state, ipad, sizeof(ipad));
   1126 	blake2s_update(&state, in, inlen);
   1127 	blake2s_final(&state, out);
   1128 
   1129 	blake2s_init(&state, WG_HASH_LEN, NULL, 0);
   1130 	blake2s_update(&state, opad, sizeof(opad));
   1131 	blake2s_update(&state, out, WG_HASH_LEN);
   1132 	blake2s_final(&state, out);
   1133 #undef IPAD
   1134 #undef OPAD
   1135 }
   1136 
   1137 static void
   1138 wg_algo_kdf(uint8_t out1[static WG_KDF_OUTPUT_LEN],
   1139     uint8_t out2[WG_KDF_OUTPUT_LEN],
   1140     uint8_t out3[WG_KDF_OUTPUT_LEN],
   1141     const uint8_t ckey[static WG_CHAINING_KEY_LEN],
   1142     const uint8_t input[], const size_t inputlen)
   1143 {
   1144 	uint8_t tmp1[WG_KDF_OUTPUT_LEN], tmp2[WG_KDF_OUTPUT_LEN + 1];
   1145 	uint8_t one[1];
   1146 
   1147 	/*
   1148 	 * [N] 4.3: "an input_key_material byte sequence with length
   1149 	 * either zero bytes, 32 bytes, or DHLEN bytes."
   1150 	 */
   1151 	KASSERT(inputlen == 0 || inputlen == 32 || inputlen == NOISE_DHLEN);
   1152 
   1153 	WG_DUMP_HASH("ckey", ckey);
   1154 	if (input != NULL)
   1155 		WG_DUMP_HASH("input", input);
   1156 	wg_algo_hmac(tmp1, sizeof(tmp1), ckey, WG_CHAINING_KEY_LEN,
   1157 	    input, inputlen);
   1158 	WG_DUMP_HASH("tmp1", tmp1);
   1159 	one[0] = 1;
   1160 	wg_algo_hmac(out1, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1161 	    one, sizeof(one));
   1162 	WG_DUMP_HASH("out1", out1);
   1163 	if (out2 == NULL)
   1164 		return;
   1165 	memcpy(tmp2, out1, WG_KDF_OUTPUT_LEN);
   1166 	tmp2[WG_KDF_OUTPUT_LEN] = 2;
   1167 	wg_algo_hmac(out2, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1168 	    tmp2, sizeof(tmp2));
   1169 	WG_DUMP_HASH("out2", out2);
   1170 	if (out3 == NULL)
   1171 		return;
   1172 	memcpy(tmp2, out2, WG_KDF_OUTPUT_LEN);
   1173 	tmp2[WG_KDF_OUTPUT_LEN] = 3;
   1174 	wg_algo_hmac(out3, WG_KDF_OUTPUT_LEN, tmp1, sizeof(tmp1),
   1175 	    tmp2, sizeof(tmp2));
   1176 	WG_DUMP_HASH("out3", out3);
   1177 }
   1178 
   1179 static void __noinline
   1180 wg_algo_dh_kdf(uint8_t ckey[static WG_CHAINING_KEY_LEN],
   1181     uint8_t cipher_key[WG_CIPHER_KEY_LEN],
   1182     const uint8_t local_key[static WG_STATIC_KEY_LEN],
   1183     const uint8_t remote_key[static WG_STATIC_KEY_LEN])
   1184 {
   1185 	uint8_t dhout[WG_DH_OUTPUT_LEN];
   1186 
   1187 	wg_algo_dh(dhout, local_key, remote_key);
   1188 	wg_algo_kdf(ckey, cipher_key, NULL, ckey, dhout, sizeof(dhout));
   1189 
   1190 	WG_DUMP_HASH("dhout", dhout);
   1191 	WG_DUMP_HASH("ckey", ckey);
   1192 	if (cipher_key != NULL)
   1193 		WG_DUMP_HASH("cipher_key", cipher_key);
   1194 }
   1195 
   1196 static void
   1197 wg_algo_aead_enc(uint8_t out[], size_t expected_outsize,
   1198     const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
   1199     const uint64_t counter,
   1200     const uint8_t plain[], const size_t plainsize,
   1201     const uint8_t auth[], size_t authlen)
   1202 {
   1203 	uint8_t nonce[(32 + 64) / 8] = {0};
   1204 	long long unsigned int outsize;
   1205 	int error __diagused;
   1206 
   1207 	le64enc(&nonce[4], counter);
   1208 
   1209 	error = crypto_aead_chacha20poly1305_ietf_encrypt(out, &outsize, plain,
   1210 	    plainsize, auth, authlen, NULL, nonce, key);
   1211 	KASSERT(error == 0);
   1212 	KASSERT(outsize == expected_outsize);
   1213 }
   1214 
   1215 static int
   1216 wg_algo_aead_dec(uint8_t out[], size_t expected_outsize,
   1217     const uint8_t key[static crypto_aead_chacha20poly1305_ietf_KEYBYTES],
   1218     const uint64_t counter,
   1219     const uint8_t encrypted[], const size_t encryptedsize,
   1220     const uint8_t auth[], size_t authlen)
   1221 {
   1222 	uint8_t nonce[(32 + 64) / 8] = {0};
   1223 	long long unsigned int outsize;
   1224 	int error;
   1225 
   1226 	le64enc(&nonce[4], counter);
   1227 
   1228 	error = crypto_aead_chacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1229 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1230 	if (error == 0)
   1231 		KASSERT(outsize == expected_outsize);
   1232 	return error;
   1233 }
   1234 
   1235 static void
   1236 wg_algo_xaead_enc(uint8_t out[], const size_t expected_outsize,
   1237     const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
   1238     const uint8_t plain[], const size_t plainsize,
   1239     const uint8_t auth[], size_t authlen,
   1240     const uint8_t nonce[static WG_SALT_LEN])
   1241 {
   1242 	long long unsigned int outsize;
   1243 	int error __diagused;
   1244 
   1245 	CTASSERT(WG_SALT_LEN == crypto_aead_xchacha20poly1305_ietf_NPUBBYTES);
   1246 	error = crypto_aead_xchacha20poly1305_ietf_encrypt(out, &outsize,
   1247 	    plain, plainsize, auth, authlen, NULL, nonce, key);
   1248 	KASSERT(error == 0);
   1249 	KASSERT(outsize == expected_outsize);
   1250 }
   1251 
   1252 static int
   1253 wg_algo_xaead_dec(uint8_t out[], const size_t expected_outsize,
   1254     const uint8_t key[static crypto_aead_xchacha20poly1305_ietf_KEYBYTES],
   1255     const uint8_t encrypted[], const size_t encryptedsize,
   1256     const uint8_t auth[], size_t authlen,
   1257     const uint8_t nonce[static WG_SALT_LEN])
   1258 {
   1259 	long long unsigned int outsize;
   1260 	int error;
   1261 
   1262 	error = crypto_aead_xchacha20poly1305_ietf_decrypt(out, &outsize, NULL,
   1263 	    encrypted, encryptedsize, auth, authlen, nonce, key);
   1264 	if (error == 0)
   1265 		KASSERT(outsize == expected_outsize);
   1266 	return error;
   1267 }
   1268 
   1269 static void
   1270 wg_algo_tai64n(wg_timestamp_t timestamp)
   1271 {
   1272 	struct timespec ts;
   1273 
   1274 	/* FIXME strict TAI64N (https://cr.yp.to/libtai/tai64.html) */
   1275 	getnanotime(&ts);
   1276 	/* TAI64 label in external TAI64 format */
   1277 	be32enc(timestamp, 0x40000000U + (uint32_t)(ts.tv_sec >> 32));
   1278 	/* second beginning from 1970 TAI */
   1279 	be32enc(timestamp + 4, (uint32_t)(ts.tv_sec & 0xffffffffU));
   1280 	/* nanosecond in big-endian format */
   1281 	be32enc(timestamp + 8, (uint32_t)ts.tv_nsec);
   1282 }
   1283 
   1284 /*
   1285  * wg_get_stable_session(wgp, psref)
   1286  *
   1287  *	Get a passive reference to the current stable session, or
   1288  *	return NULL if there is no current stable session.
   1289  *
   1290  *	The pointer is always there but the session is not necessarily
   1291  *	ESTABLISHED; if it is not ESTABLISHED, return NULL.  However,
   1292  *	the session may transition from ESTABLISHED to DESTROYING while
   1293  *	holding the passive reference.
   1294  */
   1295 static struct wg_session *
   1296 wg_get_stable_session(struct wg_peer *wgp, struct psref *psref)
   1297 {
   1298 	int s;
   1299 	struct wg_session *wgs;
   1300 
   1301 	s = pserialize_read_enter();
   1302 	wgs = atomic_load_consume(&wgp->wgp_session_stable);
   1303 	if (__predict_false(atomic_load_relaxed(&wgs->wgs_state) !=
   1304 		WGS_STATE_ESTABLISHED))
   1305 		wgs = NULL;
   1306 	else
   1307 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   1308 	pserialize_read_exit(s);
   1309 
   1310 	return wgs;
   1311 }
   1312 
   1313 static void
   1314 wg_put_session(struct wg_session *wgs, struct psref *psref)
   1315 {
   1316 
   1317 	psref_release(psref, &wgs->wgs_psref, wg_psref_class);
   1318 }
   1319 
   1320 static void
   1321 wg_destroy_session(struct wg_softc *wg, struct wg_session *wgs)
   1322 {
   1323 	struct wg_peer *wgp = wgs->wgs_peer;
   1324 	struct wg_session *wgs0 __diagused;
   1325 	void *garbage;
   1326 
   1327 	KASSERT(mutex_owned(wgp->wgp_lock));
   1328 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1329 
   1330 	/* Remove the session from the table.  */
   1331 	wgs0 = thmap_del(wg->wg_sessions_byindex,
   1332 	    &wgs->wgs_local_index, sizeof(wgs->wgs_local_index));
   1333 	KASSERT(wgs0 == wgs);
   1334 	garbage = thmap_stage_gc(wg->wg_sessions_byindex);
   1335 
   1336 	/* Wait for passive references to drain.  */
   1337 	pserialize_perform(wgp->wgp_psz);
   1338 	psref_target_destroy(&wgs->wgs_psref, wg_psref_class);
   1339 
   1340 	/*
   1341 	 * Free memory, zero state, and transition to UNKNOWN.  We have
   1342 	 * exclusive access to the session now, so there is no need for
   1343 	 * an atomic store.
   1344 	 */
   1345 	thmap_gc(wg->wg_sessions_byindex, garbage);
   1346 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_UNKNOWN\n",
   1347 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   1348 	wgs->wgs_local_index = 0;
   1349 	wgs->wgs_remote_index = 0;
   1350 	wg_clear_states(wgs);
   1351 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   1352 	wgs->wgs_force_rekey = false;
   1353 }
   1354 
   1355 /*
   1356  * wg_get_session_index(wg, wgs)
   1357  *
   1358  *	Choose a session index for wgs->wgs_local_index, and store it
   1359  *	in wg's table of sessions by index.
   1360  *
   1361  *	wgs must be the unstable session of its peer, and must be
   1362  *	transitioning out of the UNKNOWN state.
   1363  */
   1364 static void
   1365 wg_get_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1366 {
   1367 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1368 	struct wg_session *wgs0;
   1369 	uint32_t index;
   1370 
   1371 	KASSERT(mutex_owned(wgp->wgp_lock));
   1372 	KASSERT(wgs == wgp->wgp_session_unstable);
   1373 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1374 	    wgs->wgs_state);
   1375 
   1376 	do {
   1377 		/* Pick a uniform random index.  */
   1378 		index = cprng_strong32();
   1379 
   1380 		/* Try to take it.  */
   1381 		wgs->wgs_local_index = index;
   1382 		wgs0 = thmap_put(wg->wg_sessions_byindex,
   1383 		    &wgs->wgs_local_index, sizeof wgs->wgs_local_index, wgs);
   1384 
   1385 		/* If someone else beat us, start over.  */
   1386 	} while (__predict_false(wgs0 != wgs));
   1387 }
   1388 
   1389 /*
   1390  * wg_put_session_index(wg, wgs)
   1391  *
   1392  *	Remove wgs from the table of sessions by index, wait for any
   1393  *	passive references to drain, and transition the session to the
   1394  *	UNKNOWN state.
   1395  *
   1396  *	wgs must be the unstable session of its peer, and must not be
   1397  *	UNKNOWN or ESTABLISHED.
   1398  */
   1399 static void
   1400 wg_put_session_index(struct wg_softc *wg, struct wg_session *wgs)
   1401 {
   1402 	struct wg_peer *wgp __diagused = wgs->wgs_peer;
   1403 
   1404 	KASSERT(mutex_owned(wgp->wgp_lock));
   1405 	KASSERT(wgs->wgs_state != WGS_STATE_UNKNOWN);
   1406 	KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
   1407 
   1408 	wg_destroy_session(wg, wgs);
   1409 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   1410 }
   1411 
   1412 /*
   1413  * Handshake patterns
   1414  *
   1415  * [W] 5: "These messages use the "IK" pattern from Noise"
   1416  * [N] 7.5. Interactive handshake patterns (fundamental)
   1417  *     "The first character refers to the initiators static key:"
   1418  *     "I = Static key for initiator Immediately transmitted to responder,
   1419  *          despite reduced or absent identity hiding"
   1420  *     "The second character refers to the responders static key:"
   1421  *     "K = Static key for responder Known to initiator"
   1422  *     "IK:
   1423  *        <- s
   1424  *        ...
   1425  *        -> e, es, s, ss
   1426  *        <- e, ee, se"
   1427  * [N] 9.4. Pattern modifiers
   1428  *     "IKpsk2:
   1429  *        <- s
   1430  *        ...
   1431  *        -> e, es, s, ss
   1432  *        <- e, ee, se, psk"
   1433  */
   1434 static void
   1435 wg_fill_msg_init(struct wg_softc *wg, struct wg_peer *wgp,
   1436     struct wg_session *wgs, struct wg_msg_init *wgmi)
   1437 {
   1438 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1439 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1440 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1441 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   1442 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   1443 
   1444 	KASSERT(mutex_owned(wgp->wgp_lock));
   1445 	KASSERT(wgs == wgp->wgp_session_unstable);
   1446 	KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
   1447 	    wgs->wgs_state);
   1448 
   1449 	wgmi->wgmi_type = htole32(WG_MSG_TYPE_INIT);
   1450 	wgmi->wgmi_sender = wgs->wgs_local_index;
   1451 
   1452 	/* [W] 5.4.2: First Message: Initiator to Responder */
   1453 
   1454 	/* Ci := HASH(CONSTRUCTION) */
   1455 	/* Hi := HASH(Ci || IDENTIFIER) */
   1456 	wg_init_key_and_hash(ckey, hash);
   1457 	/* Hi := HASH(Hi || Sr^pub) */
   1458 	wg_algo_hash(hash, wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
   1459 
   1460 	WG_DUMP_HASH("hash", hash);
   1461 
   1462 	/* [N] 2.2: "e" */
   1463 	/* Ei^priv, Ei^pub := DH-GENERATE() */
   1464 	wg_algo_generate_keypair(pubkey, privkey);
   1465 	/* Ci := KDF1(Ci, Ei^pub) */
   1466 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   1467 	/* msg.ephemeral := Ei^pub */
   1468 	memcpy(wgmi->wgmi_ephemeral, pubkey, sizeof(wgmi->wgmi_ephemeral));
   1469 	/* Hi := HASH(Hi || msg.ephemeral) */
   1470 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   1471 
   1472 	WG_DUMP_HASH("ckey", ckey);
   1473 	WG_DUMP_HASH("hash", hash);
   1474 
   1475 	/* [N] 2.2: "es" */
   1476 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1477 	wg_algo_dh_kdf(ckey, cipher_key, privkey, wgp->wgp_pubkey);
   1478 
   1479 	/* [N] 2.2: "s" */
   1480 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1481 	wg_algo_aead_enc(wgmi->wgmi_static, sizeof(wgmi->wgmi_static),
   1482 	    cipher_key, 0, wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1483 	    hash, sizeof(hash));
   1484 	/* Hi := HASH(Hi || msg.static) */
   1485 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1486 
   1487 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1488 
   1489 	/* [N] 2.2: "ss" */
   1490 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1491 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1492 
   1493 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1494 	wg_timestamp_t timestamp;
   1495 	wg_algo_tai64n(timestamp);
   1496 	wg_algo_aead_enc(wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1497 	    cipher_key, 0, timestamp, sizeof(timestamp), hash, sizeof(hash));
   1498 	/* Hi := HASH(Hi || msg.timestamp) */
   1499 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1500 
   1501 	/* [W] 5.4.4 Cookie MACs */
   1502 	wg_algo_mac_mac1(wgmi->wgmi_mac1, sizeof(wgmi->wgmi_mac1),
   1503 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   1504 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1505 	/* Need mac1 to decrypt a cookie from a cookie message */
   1506 	memcpy(wgp->wgp_last_sent_mac1, wgmi->wgmi_mac1,
   1507 	    sizeof(wgp->wgp_last_sent_mac1));
   1508 	wgp->wgp_last_sent_mac1_valid = true;
   1509 
   1510 	if (wgp->wgp_latest_cookie_time == 0 ||
   1511 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   1512 		memset(wgmi->wgmi_mac2, 0, sizeof(wgmi->wgmi_mac2));
   1513 	else {
   1514 		wg_algo_mac(wgmi->wgmi_mac2, sizeof(wgmi->wgmi_mac2),
   1515 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   1516 		    (const uint8_t *)wgmi,
   1517 		    offsetof(struct wg_msg_init, wgmi_mac2),
   1518 		    NULL, 0);
   1519 	}
   1520 
   1521 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   1522 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   1523 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1524 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1525 	WG_DLOG("%s: sender=%x\n", __func__, wgs->wgs_local_index);
   1526 }
   1527 
   1528 /*
   1529  * wg_initiator_priority(wg, wgp)
   1530  *
   1531  *	Return true if we claim priority over peer wgp as initiator at
   1532  *	the moment, false if not.  That is, if we and our peer are
   1533  *	trying to initiate a session, do we ignore the peer's attempt
   1534  *	and barge ahead with ours, or discard our attempt and accept
   1535  *	the peer's?
   1536  *
   1537  *	We jointly flip a coin by computing
   1538  *
   1539  *		H(pubkey A) ^ H(pubkey B) ^ H(posix minutes as le64),
   1540  *
   1541  *	and taking the low-order bit.  If our public key hash, as a
   1542  *	256-bit integer in little-endian, is less than the peer's
   1543  *	public key hash, also as a 256-bit integer in little-endian, we
   1544  *	claim priority iff the bit is 0; otherwise we claim priority
   1545  *	iff the bit is 1.
   1546  *
   1547  *	This way, it is essentially arbitrary who claims priority, and
   1548  *	it may change (by a coin toss) minute to minute, but both
   1549  *	parties agree at any given moment -- except possibly at the
   1550  *	boundary of a minute -- who will take priority.
   1551  *
   1552  *	This is an extension to the WireGuard protocol -- as far as I
   1553  *	can tell, the protocol whitepaper has no resolution to this
   1554  *	deadlock scenario.  According to the author, `the deadlock
   1555  *	doesn't happen because of some additional state machine logic,
   1556  *	and on very small chances that it does, it quickly undoes
   1557  *	itself.', but this additional state machine logic does not
   1558  *	appear to be anywhere in the whitepaper, and I don't see how it
   1559  *	can undo itself until both sides have given up and one side is
   1560  *	quicker to initiate the next time around.
   1561  *
   1562  *	XXX It might be prudent to put a prefix in the hash input, so
   1563  *	we avoid accidentally colliding with any other uses of the same
   1564  *	hash on the same input.  But it's best if any changes are
   1565  *	coordinated, so that peers generally agree on what coin is
   1566  *	being tossed, instead of tossing their own independent coins
   1567  *	(which will also converge to working but more slowly over more
   1568  *	handshake retries).
   1569  */
   1570 static bool
   1571 wg_initiator_priority(struct wg_softc *wg, struct wg_peer *wgp)
   1572 {
   1573 	const uint64_t now = time_second/60, now_le = htole64(now);
   1574 	uint8_t h_min;
   1575 	uint8_t h_local[BLAKE2S_MAX_DIGEST];
   1576 	uint8_t h_peer[BLAKE2S_MAX_DIGEST];
   1577 	int borrow;
   1578 	unsigned i;
   1579 
   1580 	blake2s(&h_min, 1, NULL, 0, &now_le, sizeof(now_le));
   1581 	blake2s(h_local, sizeof(h_local), NULL, 0,
   1582 	    wg->wg_pubkey, sizeof(wg->wg_pubkey));
   1583 	blake2s(h_peer, sizeof(h_peer), NULL, 0,
   1584 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey));
   1585 
   1586 	for (borrow = 0, i = 0; i < BLAKE2S_MAX_DIGEST; i++)
   1587 		borrow = (h_local[i] - h_peer[i] + borrow) >> 8;
   1588 
   1589 	return 1 & (h_local[0] ^ h_peer[0] ^ h_min ^ borrow);
   1590 }
   1591 
   1592 static void __noinline
   1593 wg_handle_msg_init(struct wg_softc *wg, const struct wg_msg_init *wgmi,
   1594     const struct sockaddr *src)
   1595 {
   1596 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.2: Ci */
   1597 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.2: Hi */
   1598 	uint8_t cipher_key[WG_CIPHER_KEY_LEN];
   1599 	uint8_t peer_pubkey[WG_STATIC_KEY_LEN];
   1600 	struct wg_peer *wgp;
   1601 	struct wg_session *wgs;
   1602 	int error, ret;
   1603 	struct psref psref_peer;
   1604 	uint8_t mac1[WG_MAC_LEN];
   1605 
   1606 	WG_TRACE("init msg received");
   1607 
   1608 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   1609 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   1610 	    (const uint8_t *)wgmi, offsetof(struct wg_msg_init, wgmi_mac1));
   1611 
   1612 	/*
   1613 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   1614 	 * "the responder, ..., must always reject messages with an invalid
   1615 	 *  msg.mac1"
   1616 	 */
   1617 	if (!consttime_memequal(mac1, wgmi->wgmi_mac1, sizeof(mac1))) {
   1618 		WG_DLOG("mac1 is invalid\n");
   1619 		return;
   1620 	}
   1621 
   1622 	/*
   1623 	 * [W] 5.4.2: First Message: Initiator to Responder
   1624 	 * "When the responder receives this message, it does the same
   1625 	 *  operations so that its final state variables are identical,
   1626 	 *  replacing the operands of the DH function to produce equivalent
   1627 	 *  values."
   1628 	 *  Note that the following comments of operations are just copies of
   1629 	 *  the initiator's ones.
   1630 	 */
   1631 
   1632 	/* Ci := HASH(CONSTRUCTION) */
   1633 	/* Hi := HASH(Ci || IDENTIFIER) */
   1634 	wg_init_key_and_hash(ckey, hash);
   1635 	/* Hi := HASH(Hi || Sr^pub) */
   1636 	wg_algo_hash(hash, wg->wg_pubkey, sizeof(wg->wg_pubkey));
   1637 
   1638 	/* [N] 2.2: "e" */
   1639 	/* Ci := KDF1(Ci, Ei^pub) */
   1640 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmi->wgmi_ephemeral,
   1641 	    sizeof(wgmi->wgmi_ephemeral));
   1642 	/* Hi := HASH(Hi || msg.ephemeral) */
   1643 	wg_algo_hash(hash, wgmi->wgmi_ephemeral, sizeof(wgmi->wgmi_ephemeral));
   1644 
   1645 	WG_DUMP_HASH("ckey", ckey);
   1646 
   1647 	/* [N] 2.2: "es" */
   1648 	/* Ci, k := KDF2(Ci, DH(Ei^priv, Sr^pub)) */
   1649 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgmi->wgmi_ephemeral);
   1650 
   1651 	WG_DUMP_HASH48("wgmi_static", wgmi->wgmi_static);
   1652 
   1653 	/* [N] 2.2: "s" */
   1654 	/* msg.static := AEAD(k, 0, Si^pub, Hi) */
   1655 	error = wg_algo_aead_dec(peer_pubkey, WG_STATIC_KEY_LEN, cipher_key, 0,
   1656 	    wgmi->wgmi_static, sizeof(wgmi->wgmi_static), hash, sizeof(hash));
   1657 	if (error != 0) {
   1658 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   1659 		    "%s: wg_algo_aead_dec for secret key failed\n",
   1660 		    if_name(&wg->wg_if));
   1661 		return;
   1662 	}
   1663 	/* Hi := HASH(Hi || msg.static) */
   1664 	wg_algo_hash(hash, wgmi->wgmi_static, sizeof(wgmi->wgmi_static));
   1665 
   1666 	wgp = wg_lookup_peer_by_pubkey(wg, peer_pubkey, &psref_peer);
   1667 	if (wgp == NULL) {
   1668 		WG_DLOG("peer not found\n");
   1669 		return;
   1670 	}
   1671 
   1672 	/*
   1673 	 * Lock the peer to serialize access to cookie state.
   1674 	 *
   1675 	 * XXX Can we safely avoid holding the lock across DH?  Take it
   1676 	 * just to verify mac2 and then unlock/DH/lock?
   1677 	 */
   1678 	mutex_enter(wgp->wgp_lock);
   1679 
   1680 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_INIT))) {
   1681 		WG_TRACE("under load");
   1682 		/*
   1683 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   1684 		 * "the responder, ..., and when under load may reject messages
   1685 		 *  with an invalid msg.mac2.  If the responder receives a
   1686 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   1687 		 *  and is under load, it may respond with a cookie reply
   1688 		 *  message"
   1689 		 */
   1690 		uint8_t zero[WG_MAC_LEN] = {0};
   1691 		if (consttime_memequal(wgmi->wgmi_mac2, zero, sizeof(zero))) {
   1692 			WG_TRACE("sending a cookie message: no cookie included");
   1693 			wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1694 			    wgmi->wgmi_mac1, src);
   1695 			goto out;
   1696 		}
   1697 		if (!wgp->wgp_last_sent_cookie_valid) {
   1698 			WG_TRACE("sending a cookie message: no cookie sent ever");
   1699 			wg_send_cookie_msg(wg, wgp, wgmi->wgmi_sender,
   1700 			    wgmi->wgmi_mac1, src);
   1701 			goto out;
   1702 		}
   1703 		uint8_t mac2[WG_MAC_LEN];
   1704 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   1705 		    WG_COOKIE_LEN, (const uint8_t *)wgmi,
   1706 		    offsetof(struct wg_msg_init, wgmi_mac2), NULL, 0);
   1707 		if (!consttime_memequal(mac2, wgmi->wgmi_mac2, sizeof(mac2))) {
   1708 			WG_DLOG("mac2 is invalid\n");
   1709 			goto out;
   1710 		}
   1711 		WG_TRACE("under load, but continue to sending");
   1712 	}
   1713 
   1714 	/* [N] 2.2: "ss" */
   1715 	/* Ci, k := KDF2(Ci, DH(Si^priv, Sr^pub)) */
   1716 	wg_algo_dh_kdf(ckey, cipher_key, wg->wg_privkey, wgp->wgp_pubkey);
   1717 
   1718 	/* msg.timestamp := AEAD(k, TIMESTAMP(), Hi) */
   1719 	wg_timestamp_t timestamp;
   1720 	error = wg_algo_aead_dec(timestamp, sizeof(timestamp), cipher_key, 0,
   1721 	    wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp),
   1722 	    hash, sizeof(hash));
   1723 	if (error != 0) {
   1724 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1725 		    "%s: peer %s: wg_algo_aead_dec for timestamp failed\n",
   1726 		    if_name(&wg->wg_if), wgp->wgp_name);
   1727 		goto out;
   1728 	}
   1729 	/* Hi := HASH(Hi || msg.timestamp) */
   1730 	wg_algo_hash(hash, wgmi->wgmi_timestamp, sizeof(wgmi->wgmi_timestamp));
   1731 
   1732 	/*
   1733 	 * [W] 5.1 "The responder keeps track of the greatest timestamp
   1734 	 *      received per peer and discards packets containing
   1735 	 *      timestamps less than or equal to it."
   1736 	 */
   1737 	ret = memcmp(timestamp, wgp->wgp_timestamp_latest_init,
   1738 	    sizeof(timestamp));
   1739 	if (ret <= 0) {
   1740 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   1741 		    "%s: peer %s: invalid init msg: timestamp is old\n",
   1742 		    if_name(&wg->wg_if), wgp->wgp_name);
   1743 		goto out;
   1744 	}
   1745 	memcpy(wgp->wgp_timestamp_latest_init, timestamp, sizeof(timestamp));
   1746 
   1747 	/*
   1748 	 * Message is good -- we're committing to handle it now, unless
   1749 	 * we were already initiating a session.
   1750 	 */
   1751 	wgs = wgp->wgp_session_unstable;
   1752 	switch (wgs->wgs_state) {
   1753 	case WGS_STATE_UNKNOWN:		/* new session initiated by peer */
   1754 		break;
   1755 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating */
   1756 		if (wg_initiator_priority(wg, wgp)) {
   1757 			WG_TRACE("Session already initializing,"
   1758 			    " ignoring the message");
   1759 			goto out;
   1760 		}
   1761 		WG_TRACE("Yielding session initiation to peer");
   1762 		wg_put_session_index(wg, wgs);
   1763 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1764 		    wgs->wgs_state);
   1765 		break;
   1766 	case WGS_STATE_INIT_PASSIVE:	/* peer is retrying, start over */
   1767 		WG_TRACE("Session already initializing, destroying old states");
   1768 		/*
   1769 		 * XXX Avoid this -- just resend our response -- if the
   1770 		 * INIT message is identical to the previous one.
   1771 		 */
   1772 		wg_put_session_index(wg, wgs);
   1773 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1774 		    wgs->wgs_state);
   1775 		break;
   1776 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1777 		panic("unstable session can't be established");
   1778 	case WGS_STATE_DESTROYING:	/* rekey initiated by peer */
   1779 		WG_TRACE("Session destroying, but force to clear");
   1780 		wg_put_session_index(wg, wgs);
   1781 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1782 		    wgs->wgs_state);
   1783 		break;
   1784 	default:
   1785 		panic("invalid session state: %d", wgs->wgs_state);
   1786 	}
   1787 
   1788 	/*
   1789 	 * Assign a fresh session index.
   1790 	 */
   1791 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1792 	    wgs->wgs_state);
   1793 	wg_get_session_index(wg, wgs);
   1794 
   1795 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   1796 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   1797 	memcpy(wgs->wgs_ephemeral_key_peer, wgmi->wgmi_ephemeral,
   1798 	    sizeof(wgmi->wgmi_ephemeral));
   1799 
   1800 	/*
   1801 	 * The packet is genuine.  Update the peer's endpoint if the
   1802 	 * source address changed.
   1803 	 *
   1804 	 * XXX How to prevent DoS by replaying genuine packets from the
   1805 	 * wrong source address?
   1806 	 */
   1807 	wg_update_endpoint_if_necessary(wgp, src);
   1808 
   1809 	/*
   1810 	 * Even though we don't transition from INIT_PASSIVE to
   1811 	 * ESTABLISHED until we receive the first data packet from the
   1812 	 * initiator, we count the time of the INIT message as the time
   1813 	 * of establishment -- this is used to decide when to erase
   1814 	 * keys, and we want to start counting as soon as we have
   1815 	 * generated keys.
   1816 	 */
   1817 	wgs->wgs_time_established = time_uptime32;
   1818 	wg_schedule_session_dtor_timer(wgp);
   1819 
   1820 	/*
   1821 	 * Respond to the initiator with our ephemeral public key.
   1822 	 */
   1823 	wg_send_handshake_msg_resp(wg, wgp, wgs, wgmi);
   1824 
   1825 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
   1826 	    " calculate keys as responder\n",
   1827 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   1828 	wg_calculate_keys(wgs, false);
   1829 	wg_clear_states(wgs);
   1830 
   1831 	/*
   1832 	 * Session is ready to receive data now that we have received
   1833 	 * the peer initiator's ephemeral key pair, generated our
   1834 	 * responder's ephemeral key pair, and derived a session key.
   1835 	 *
   1836 	 * Transition from UNKNOWN to INIT_PASSIVE to publish it to the
   1837 	 * data rx path, wg_handle_msg_data, where the
   1838 	 * atomic_load_acquire matching this atomic_store_release
   1839 	 * happens.
   1840 	 *
   1841 	 * (Session is not, however, ready to send data until the peer
   1842 	 * has acknowledged our response by sending its first data
   1843 	 * packet.  So don't swap the sessions yet.)
   1844 	 */
   1845 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_INIT_PASSIVE\n",
   1846 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   1847 	atomic_store_release(&wgs->wgs_state, WGS_STATE_INIT_PASSIVE);
   1848 	WG_TRACE("WGS_STATE_INIT_PASSIVE");
   1849 
   1850 out:
   1851 	mutex_exit(wgp->wgp_lock);
   1852 	wg_put_peer(wgp, &psref_peer);
   1853 }
   1854 
   1855 static struct socket *
   1856 wg_get_so_by_af(struct wg_softc *wg, const int af)
   1857 {
   1858 
   1859 	switch (af) {
   1860 #ifdef INET
   1861 	case AF_INET:
   1862 		return wg->wg_so4;
   1863 #endif
   1864 #ifdef INET6
   1865 	case AF_INET6:
   1866 		return wg->wg_so6;
   1867 #endif
   1868 	default:
   1869 		panic("wg: no such af: %d", af);
   1870 	}
   1871 }
   1872 
   1873 static struct socket *
   1874 wg_get_so_by_peer(struct wg_peer *wgp, struct wg_sockaddr *wgsa)
   1875 {
   1876 
   1877 	return wg_get_so_by_af(wgp->wgp_sc, wgsa_family(wgsa));
   1878 }
   1879 
   1880 static struct wg_sockaddr *
   1881 wg_get_endpoint_sa(struct wg_peer *wgp, struct psref *psref)
   1882 {
   1883 	struct wg_sockaddr *wgsa;
   1884 	int s;
   1885 
   1886 	s = pserialize_read_enter();
   1887 	wgsa = atomic_load_consume(&wgp->wgp_endpoint);
   1888 	psref_acquire(psref, &wgsa->wgsa_psref, wg_psref_class);
   1889 	pserialize_read_exit(s);
   1890 
   1891 	return wgsa;
   1892 }
   1893 
   1894 static void
   1895 wg_put_sa(struct wg_peer *wgp, struct wg_sockaddr *wgsa, struct psref *psref)
   1896 {
   1897 
   1898 	psref_release(psref, &wgsa->wgsa_psref, wg_psref_class);
   1899 }
   1900 
   1901 static int
   1902 wg_send_hs(struct wg_peer *wgp, struct mbuf *m)
   1903 {
   1904 	int error;
   1905 	struct socket *so;
   1906 	struct psref psref;
   1907 	struct wg_sockaddr *wgsa;
   1908 
   1909 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   1910 #ifdef WG_DEBUG_LOG
   1911 	char addr[128];
   1912 	sockaddr_format(wgsatosa(wgsa), addr, sizeof(addr));
   1913 	WG_DLOG("send handshake msg to %s\n", addr);
   1914 #endif
   1915 	so = wg_get_so_by_peer(wgp, wgsa);
   1916 	error = sosend(so, wgsatosa(wgsa), NULL, m, NULL, 0, curlwp);
   1917 	wg_put_sa(wgp, wgsa, &psref);
   1918 
   1919 	return error;
   1920 }
   1921 
   1922 static void
   1923 wg_send_handshake_msg_init(struct wg_softc *wg, struct wg_peer *wgp)
   1924 {
   1925 	int error;
   1926 	struct mbuf *m;
   1927 	struct wg_msg_init *wgmi;
   1928 	struct wg_session *wgs;
   1929 
   1930 	KASSERT(mutex_owned(wgp->wgp_lock));
   1931 
   1932 	wgs = wgp->wgp_session_unstable;
   1933 	/* XXX pull dispatch out into wg_task_send_init_message */
   1934 	switch (wgs->wgs_state) {
   1935 	case WGS_STATE_UNKNOWN:		/* new session initiated by us */
   1936 		break;
   1937 	case WGS_STATE_INIT_ACTIVE:	/* we're already initiating, stop */
   1938 		WG_TRACE("Session already initializing, skip starting new one");
   1939 		return;
   1940 	case WGS_STATE_INIT_PASSIVE:	/* peer was trying -- XXX what now? */
   1941 		WG_TRACE("Session already initializing, waiting for peer");
   1942 		return;
   1943 	case WGS_STATE_ESTABLISHED:	/* can't happen */
   1944 		panic("unstable session can't be established");
   1945 	case WGS_STATE_DESTROYING:	/* rekey initiated by us too early */
   1946 		WG_TRACE("Session destroying");
   1947 		wg_put_session_index(wg, wgs);
   1948 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1949 		    wgs->wgs_state);
   1950 		break;
   1951 	}
   1952 
   1953 	/*
   1954 	 * Assign a fresh session index.
   1955 	 */
   1956 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   1957 	    wgs->wgs_state);
   1958 	wg_get_session_index(wg, wgs);
   1959 
   1960 	/*
   1961 	 * We have initiated a session.  Transition to INIT_ACTIVE.
   1962 	 * This doesn't publish it for use in the data rx path,
   1963 	 * wg_handle_msg_data, or in the data tx path, wg_output -- we
   1964 	 * have to wait for the peer to respond with their ephemeral
   1965 	 * public key before we can derive a session key for tx/rx.
   1966 	 * Hence only atomic_store_relaxed.
   1967 	 */
   1968 	WG_DLOG("session[L=%"PRIx32" R=(unknown)] -> WGS_STATE_INIT_ACTIVE\n",
   1969 	    wgs->wgs_local_index);
   1970 	atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_INIT_ACTIVE);
   1971 
   1972 	m = m_gethdr(M_WAIT, MT_DATA);
   1973 	if (sizeof(*wgmi) > MHLEN) {
   1974 		m_clget(m, M_WAIT);
   1975 		CTASSERT(sizeof(*wgmi) <= MCLBYTES);
   1976 	}
   1977 	m->m_pkthdr.len = m->m_len = sizeof(*wgmi);
   1978 	wgmi = mtod(m, struct wg_msg_init *);
   1979 	wg_fill_msg_init(wg, wgp, wgs, wgmi);
   1980 
   1981 	error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
   1982 	if (error) {
   1983 		/*
   1984 		 * Sending out an initiation packet failed; give up on
   1985 		 * this session and toss packet waiting for it if any.
   1986 		 *
   1987 		 * XXX Why don't we just let the periodic handshake
   1988 		 * retry logic work in this case?
   1989 		 */
   1990 		WG_DLOG("send_hs_msg failed, error=%d\n", error);
   1991 		wg_put_session_index(wg, wgs);
   1992 		m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
   1993 		membar_acquire(); /* matches membar_release in wgintr */
   1994 		m_freem(m);
   1995 		return;
   1996 	}
   1997 
   1998 	WG_TRACE("init msg sent");
   1999 	if (wgp->wgp_handshake_start_time == 0)
   2000 		wgp->wgp_handshake_start_time = time_uptime;
   2001 	callout_schedule(&wgp->wgp_handshake_timeout_timer,
   2002 	    MIN(wg_rekey_timeout, (unsigned)(INT_MAX / hz)) * hz);
   2003 }
   2004 
   2005 static void
   2006 wg_fill_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   2007     struct wg_session *wgs, struct wg_msg_resp *wgmr,
   2008     const struct wg_msg_init *wgmi)
   2009 {
   2010 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   2011 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Hr */
   2012 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   2013 	uint8_t pubkey[WG_EPHEMERAL_KEY_LEN];
   2014 	uint8_t privkey[WG_EPHEMERAL_KEY_LEN];
   2015 
   2016 	KASSERT(mutex_owned(wgp->wgp_lock));
   2017 	KASSERT(wgs == wgp->wgp_session_unstable);
   2018 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   2019 	    wgs->wgs_state);
   2020 
   2021 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   2022 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   2023 
   2024 	wgmr->wgmr_type = htole32(WG_MSG_TYPE_RESP);
   2025 	wgmr->wgmr_sender = wgs->wgs_local_index;
   2026 	wgmr->wgmr_receiver = wgmi->wgmi_sender;
   2027 
   2028 	/* [W] 5.4.3 Second Message: Responder to Initiator */
   2029 
   2030 	/* [N] 2.2: "e" */
   2031 	/* Er^priv, Er^pub := DH-GENERATE() */
   2032 	wg_algo_generate_keypair(pubkey, privkey);
   2033 	/* Cr := KDF1(Cr, Er^pub) */
   2034 	wg_algo_kdf(ckey, NULL, NULL, ckey, pubkey, sizeof(pubkey));
   2035 	/* msg.ephemeral := Er^pub */
   2036 	memcpy(wgmr->wgmr_ephemeral, pubkey, sizeof(wgmr->wgmr_ephemeral));
   2037 	/* Hr := HASH(Hr || msg.ephemeral) */
   2038 	wg_algo_hash(hash, pubkey, sizeof(pubkey));
   2039 
   2040 	WG_DUMP_HASH("ckey", ckey);
   2041 	WG_DUMP_HASH("hash", hash);
   2042 
   2043 	/* [N] 2.2: "ee" */
   2044 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   2045 	wg_algo_dh_kdf(ckey, NULL, privkey, wgs->wgs_ephemeral_key_peer);
   2046 
   2047 	/* [N] 2.2: "se" */
   2048 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   2049 	wg_algo_dh_kdf(ckey, NULL, privkey, wgp->wgp_pubkey);
   2050 
   2051 	/* [N] 9.2: "psk" */
   2052     {
   2053 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   2054 	/* Cr, r, k := KDF3(Cr, Q) */
   2055 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   2056 	    sizeof(wgp->wgp_psk));
   2057 	/* Hr := HASH(Hr || r) */
   2058 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   2059     }
   2060 
   2061 	/* msg.empty := AEAD(k, 0, e, Hr) */
   2062 	wg_algo_aead_enc(wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty),
   2063 	    cipher_key, 0, NULL, 0, hash, sizeof(hash));
   2064 	/* Hr := HASH(Hr || msg.empty) */
   2065 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   2066 
   2067 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   2068 
   2069 	/* [W] 5.4.4: Cookie MACs */
   2070 	/* msg.mac1 := MAC(HASH(LABEL-MAC1 || Sm'^pub), msg_a) */
   2071 	wg_algo_mac_mac1(wgmr->wgmr_mac1, sizeof(wgmi->wgmi_mac1),
   2072 	    wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey),
   2073 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   2074 	/* Need mac1 to decrypt a cookie from a cookie message */
   2075 	memcpy(wgp->wgp_last_sent_mac1, wgmr->wgmr_mac1,
   2076 	    sizeof(wgp->wgp_last_sent_mac1));
   2077 	wgp->wgp_last_sent_mac1_valid = true;
   2078 
   2079 	if (wgp->wgp_latest_cookie_time == 0 ||
   2080 	    (time_uptime - wgp->wgp_latest_cookie_time) >= WG_COOKIE_TIME)
   2081 		/* msg.mac2 := 0^16 */
   2082 		memset(wgmr->wgmr_mac2, 0, sizeof(wgmr->wgmr_mac2));
   2083 	else {
   2084 		/* msg.mac2 := MAC(Lm, msg_b) */
   2085 		wg_algo_mac(wgmr->wgmr_mac2, sizeof(wgmi->wgmi_mac2),
   2086 		    wgp->wgp_latest_cookie, WG_COOKIE_LEN,
   2087 		    (const uint8_t *)wgmr,
   2088 		    offsetof(struct wg_msg_resp, wgmr_mac2),
   2089 		    NULL, 0);
   2090 	}
   2091 
   2092 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(hash));
   2093 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(ckey));
   2094 	memcpy(wgs->wgs_ephemeral_key_pub, pubkey, sizeof(pubkey));
   2095 	memcpy(wgs->wgs_ephemeral_key_priv, privkey, sizeof(privkey));
   2096 	wgs->wgs_remote_index = wgmi->wgmi_sender;
   2097 	WG_DLOG("sender=%x\n", wgs->wgs_local_index);
   2098 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   2099 }
   2100 
   2101 /*
   2102  * wg_swap_sessions(wg, wgp)
   2103  *
   2104  *	Caller has just finished establishing the unstable session in
   2105  *	wg for peer wgp.  Publish it as the stable session, send queued
   2106  *	packets or keepalives as necessary to kick off the session,
   2107  *	move the previously stable session to unstable, and begin
   2108  *	destroying it.
   2109  */
   2110 static void
   2111 wg_swap_sessions(struct wg_softc *wg, struct wg_peer *wgp)
   2112 {
   2113 	struct wg_session *wgs, *wgs_prev;
   2114 	struct mbuf *m;
   2115 
   2116 	KASSERT(mutex_owned(wgp->wgp_lock));
   2117 
   2118 	/*
   2119 	 * Get the newly established session, to become the new
   2120 	 * session.  Caller must have transitioned from INIT_ACTIVE to
   2121 	 * INIT_PASSIVE or to ESTABLISHED already.  This will become
   2122 	 * the stable session.
   2123 	 */
   2124 	wgs = wgp->wgp_session_unstable;
   2125 	KASSERTMSG(wgs->wgs_state == WGS_STATE_ESTABLISHED, "state=%d",
   2126 	    wgs->wgs_state);
   2127 
   2128 	/*
   2129 	 * Get the stable session, which is either the previously
   2130 	 * established session in the ESTABLISHED state, or has not
   2131 	 * been established at all and is UNKNOWN.  This will become
   2132 	 * the unstable session.
   2133 	 */
   2134 	wgs_prev = wgp->wgp_session_stable;
   2135 	KASSERTMSG((wgs_prev->wgs_state == WGS_STATE_ESTABLISHED ||
   2136 		wgs_prev->wgs_state == WGS_STATE_UNKNOWN),
   2137 	    "state=%d", wgs_prev->wgs_state);
   2138 
   2139 	/*
   2140 	 * Publish the newly established session for the tx path to use
   2141 	 * and make the other one the unstable session to handle
   2142 	 * stragglers in the rx path and later be used for the next
   2143 	 * session's handshake.
   2144 	 */
   2145 	atomic_store_release(&wgp->wgp_session_stable, wgs);
   2146 	wgp->wgp_session_unstable = wgs_prev;
   2147 
   2148 	/*
   2149 	 * Record the handshake time and reset the handshake state.
   2150 	 */
   2151 	getnanotime(&wgp->wgp_last_handshake_time);
   2152 	wgp->wgp_handshake_start_time = 0;
   2153 	wgp->wgp_last_sent_mac1_valid = false;
   2154 	wgp->wgp_last_sent_cookie_valid = false;
   2155 
   2156 	/*
   2157 	 * If we had a data packet queued up, send it.
   2158 	 *
   2159 	 * If not, but we're the initiator, send a keepalive message --
   2160 	 * if we're the initiator we have to send something immediately
   2161 	 * or else the responder will never answer.
   2162 	 */
   2163 	if ((m = atomic_swap_ptr(&wgp->wgp_pending, NULL)) != NULL) {
   2164 		membar_acquire(); /* matches membar_release in wgintr */
   2165 		wg_send_data_msg(wgp, wgs, m); /* consumes m */
   2166 		m = NULL;
   2167 	} else if (wgs->wgs_is_initiator) {
   2168 		wg_send_keepalive_msg(wgp, wgs);
   2169 	}
   2170 
   2171 	/*
   2172 	 * If the previous stable session was established, begin to
   2173 	 * destroy it.
   2174 	 */
   2175 	if (wgs_prev->wgs_state == WGS_STATE_ESTABLISHED) {
   2176 		/*
   2177 		 * Transition ESTABLISHED->DESTROYING.  The session
   2178 		 * will remain usable for the data rx path to process
   2179 		 * packets still in flight to us, but we won't use it
   2180 		 * for data tx.
   2181 		 */
   2182 		WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]"
   2183 		    " -> WGS_STATE_DESTROYING\n",
   2184 		    wgs_prev->wgs_local_index, wgs_prev->wgs_remote_index);
   2185 		atomic_store_relaxed(&wgs_prev->wgs_state,
   2186 		    WGS_STATE_DESTROYING);
   2187 	} else {
   2188 		KASSERTMSG(wgs_prev->wgs_state == WGS_STATE_UNKNOWN,
   2189 		    "state=%d", wgs_prev->wgs_state);
   2190 		wgs_prev->wgs_local_index = 0; /* paranoia */
   2191 		wgs_prev->wgs_remote_index = 0; /* paranoia */
   2192 		wg_clear_states(wgs_prev); /* paranoia */
   2193 		wgs_prev->wgs_state = WGS_STATE_UNKNOWN;
   2194 	}
   2195 }
   2196 
   2197 static void __noinline
   2198 wg_handle_msg_resp(struct wg_softc *wg, const struct wg_msg_resp *wgmr,
   2199     const struct sockaddr *src)
   2200 {
   2201 	uint8_t ckey[WG_CHAINING_KEY_LEN]; /* [W] 5.4.3: Cr */
   2202 	uint8_t hash[WG_HASH_LEN]; /* [W] 5.4.3: Kr */
   2203 	uint8_t cipher_key[WG_KDF_OUTPUT_LEN];
   2204 	struct wg_peer *wgp;
   2205 	struct wg_session *wgs;
   2206 	struct psref psref;
   2207 	int error;
   2208 	uint8_t mac1[WG_MAC_LEN];
   2209 
   2210 	wg_algo_mac_mac1(mac1, sizeof(mac1),
   2211 	    wg->wg_pubkey, sizeof(wg->wg_pubkey),
   2212 	    (const uint8_t *)wgmr, offsetof(struct wg_msg_resp, wgmr_mac1));
   2213 
   2214 	/*
   2215 	 * [W] 5.3: Denial of Service Mitigation & Cookies
   2216 	 * "the responder, ..., must always reject messages with an invalid
   2217 	 *  msg.mac1"
   2218 	 */
   2219 	if (!consttime_memequal(mac1, wgmr->wgmr_mac1, sizeof(mac1))) {
   2220 		WG_DLOG("mac1 is invalid\n");
   2221 		return;
   2222 	}
   2223 
   2224 	WG_TRACE("resp msg received");
   2225 	wgs = wg_lookup_session_by_index(wg, wgmr->wgmr_receiver, &psref);
   2226 	if (wgs == NULL) {
   2227 		WG_TRACE("No session found");
   2228 		return;
   2229 	}
   2230 
   2231 	wgp = wgs->wgs_peer;
   2232 
   2233 	mutex_enter(wgp->wgp_lock);
   2234 
   2235 	/* If we weren't waiting for a handshake response, drop it.  */
   2236 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE) {
   2237 		WG_TRACE("peer sent spurious handshake response, ignoring");
   2238 		goto out;
   2239 	}
   2240 
   2241 	if (__predict_false(wg_is_underload(wg, wgp, WG_MSG_TYPE_RESP))) {
   2242 		WG_TRACE("under load");
   2243 		/*
   2244 		 * [W] 5.3: Denial of Service Mitigation & Cookies
   2245 		 * "the responder, ..., and when under load may reject messages
   2246 		 *  with an invalid msg.mac2.  If the responder receives a
   2247 		 *  message with a valid msg.mac1 yet with an invalid msg.mac2,
   2248 		 *  and is under load, it may respond with a cookie reply
   2249 		 *  message"
   2250 		 */
   2251 		uint8_t zero[WG_MAC_LEN] = {0};
   2252 		if (consttime_memequal(wgmr->wgmr_mac2, zero, sizeof(zero))) {
   2253 			WG_TRACE("sending a cookie message: no cookie included");
   2254 			wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   2255 			    wgmr->wgmr_mac1, src);
   2256 			goto out;
   2257 		}
   2258 		if (!wgp->wgp_last_sent_cookie_valid) {
   2259 			WG_TRACE("sending a cookie message: no cookie sent ever");
   2260 			wg_send_cookie_msg(wg, wgp, wgmr->wgmr_sender,
   2261 			    wgmr->wgmr_mac1, src);
   2262 			goto out;
   2263 		}
   2264 		uint8_t mac2[WG_MAC_LEN];
   2265 		wg_algo_mac(mac2, sizeof(mac2), wgp->wgp_last_sent_cookie,
   2266 		    WG_COOKIE_LEN, (const uint8_t *)wgmr,
   2267 		    offsetof(struct wg_msg_resp, wgmr_mac2), NULL, 0);
   2268 		if (!consttime_memequal(mac2, wgmr->wgmr_mac2, sizeof(mac2))) {
   2269 			WG_DLOG("mac2 is invalid\n");
   2270 			goto out;
   2271 		}
   2272 		WG_TRACE("under load, but continue to sending");
   2273 	}
   2274 
   2275 	memcpy(hash, wgs->wgs_handshake_hash, sizeof(hash));
   2276 	memcpy(ckey, wgs->wgs_chaining_key, sizeof(ckey));
   2277 
   2278 	/*
   2279 	 * [W] 5.4.3 Second Message: Responder to Initiator
   2280 	 * "When the initiator receives this message, it does the same
   2281 	 *  operations so that its final state variables are identical,
   2282 	 *  replacing the operands of the DH function to produce equivalent
   2283 	 *  values."
   2284 	 *  Note that the following comments of operations are just copies of
   2285 	 *  the initiator's ones.
   2286 	 */
   2287 
   2288 	/* [N] 2.2: "e" */
   2289 	/* Cr := KDF1(Cr, Er^pub) */
   2290 	wg_algo_kdf(ckey, NULL, NULL, ckey, wgmr->wgmr_ephemeral,
   2291 	    sizeof(wgmr->wgmr_ephemeral));
   2292 	/* Hr := HASH(Hr || msg.ephemeral) */
   2293 	wg_algo_hash(hash, wgmr->wgmr_ephemeral, sizeof(wgmr->wgmr_ephemeral));
   2294 
   2295 	WG_DUMP_HASH("ckey", ckey);
   2296 	WG_DUMP_HASH("hash", hash);
   2297 
   2298 	/* [N] 2.2: "ee" */
   2299 	/* Cr := KDF1(Cr, DH(Er^priv, Ei^pub)) */
   2300 	wg_algo_dh_kdf(ckey, NULL, wgs->wgs_ephemeral_key_priv,
   2301 	    wgmr->wgmr_ephemeral);
   2302 
   2303 	/* [N] 2.2: "se" */
   2304 	/* Cr := KDF1(Cr, DH(Er^priv, Si^pub)) */
   2305 	wg_algo_dh_kdf(ckey, NULL, wg->wg_privkey, wgmr->wgmr_ephemeral);
   2306 
   2307 	/* [N] 9.2: "psk" */
   2308     {
   2309 	uint8_t kdfout[WG_KDF_OUTPUT_LEN];
   2310 	/* Cr, r, k := KDF3(Cr, Q) */
   2311 	wg_algo_kdf(ckey, kdfout, cipher_key, ckey, wgp->wgp_psk,
   2312 	    sizeof(wgp->wgp_psk));
   2313 	/* Hr := HASH(Hr || r) */
   2314 	wg_algo_hash(hash, kdfout, sizeof(kdfout));
   2315     }
   2316 
   2317     {
   2318 	uint8_t out[sizeof(wgmr->wgmr_empty)]; /* for safety */
   2319 	/* msg.empty := AEAD(k, 0, e, Hr) */
   2320 	error = wg_algo_aead_dec(out, 0, cipher_key, 0, wgmr->wgmr_empty,
   2321 	    sizeof(wgmr->wgmr_empty), hash, sizeof(hash));
   2322 	WG_DUMP_HASH("wgmr_empty", wgmr->wgmr_empty);
   2323 	if (error != 0) {
   2324 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2325 		    "%s: peer %s: wg_algo_aead_dec for empty message failed\n",
   2326 		    if_name(&wg->wg_if), wgp->wgp_name);
   2327 		goto out;
   2328 	}
   2329 	/* Hr := HASH(Hr || msg.empty) */
   2330 	wg_algo_hash(hash, wgmr->wgmr_empty, sizeof(wgmr->wgmr_empty));
   2331     }
   2332 
   2333 	memcpy(wgs->wgs_handshake_hash, hash, sizeof(wgs->wgs_handshake_hash));
   2334 	memcpy(wgs->wgs_chaining_key, ckey, sizeof(wgs->wgs_chaining_key));
   2335 	wgs->wgs_remote_index = wgmr->wgmr_sender;
   2336 	WG_DLOG("receiver=%x\n", wgs->wgs_remote_index);
   2337 
   2338 	/*
   2339 	 * The packet is genuine.  Update the peer's endpoint if the
   2340 	 * source address changed.
   2341 	 *
   2342 	 * XXX How to prevent DoS by replaying genuine packets from the
   2343 	 * wrong source address?
   2344 	 */
   2345 	wg_update_endpoint_if_necessary(wgp, src);
   2346 
   2347 	KASSERTMSG(wgs->wgs_state == WGS_STATE_INIT_ACTIVE, "state=%d",
   2348 	    wgs->wgs_state);
   2349 	wgs->wgs_time_established = time_uptime32;
   2350 	wg_schedule_session_dtor_timer(wgp);
   2351 	wgs->wgs_time_last_data_sent = 0;
   2352 	wgs->wgs_is_initiator = true;
   2353 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"]:"
   2354 	    " calculate keys as initiator\n",
   2355 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   2356 	wg_calculate_keys(wgs, true);
   2357 	wg_clear_states(wgs);
   2358 
   2359 	/*
   2360 	 * Session is ready to receive data now that we have received
   2361 	 * the responder's response.
   2362 	 *
   2363 	 * Transition from INIT_ACTIVE to ESTABLISHED to publish it to
   2364 	 * the data rx path, wg_handle_msg_data.
   2365 	 */
   2366 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32" -> WGS_STATE_ESTABLISHED\n",
   2367 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   2368 	atomic_store_release(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
   2369 	WG_TRACE("WGS_STATE_ESTABLISHED");
   2370 
   2371 	callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
   2372 
   2373 	/*
   2374 	 * Session is ready to send data now that we have received the
   2375 	 * responder's response.
   2376 	 *
   2377 	 * Swap the sessions to publish the new one as the stable
   2378 	 * session for the data tx path, wg_output.
   2379 	 */
   2380 	wg_swap_sessions(wg, wgp);
   2381 	KASSERT(wgs == wgp->wgp_session_stable);
   2382 
   2383 out:
   2384 	mutex_exit(wgp->wgp_lock);
   2385 	wg_put_session(wgs, &psref);
   2386 }
   2387 
   2388 static void
   2389 wg_send_handshake_msg_resp(struct wg_softc *wg, struct wg_peer *wgp,
   2390     struct wg_session *wgs, const struct wg_msg_init *wgmi)
   2391 {
   2392 	int error;
   2393 	struct mbuf *m;
   2394 	struct wg_msg_resp *wgmr;
   2395 
   2396 	KASSERT(mutex_owned(wgp->wgp_lock));
   2397 	KASSERT(wgs == wgp->wgp_session_unstable);
   2398 	KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   2399 	    wgs->wgs_state);
   2400 
   2401 	m = m_gethdr(M_WAIT, MT_DATA);
   2402 	if (sizeof(*wgmr) > MHLEN) {
   2403 		m_clget(m, M_WAIT);
   2404 		CTASSERT(sizeof(*wgmr) <= MCLBYTES);
   2405 	}
   2406 	m->m_pkthdr.len = m->m_len = sizeof(*wgmr);
   2407 	wgmr = mtod(m, struct wg_msg_resp *);
   2408 	wg_fill_msg_resp(wg, wgp, wgs, wgmr, wgmi);
   2409 
   2410 	error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
   2411 	if (error) {
   2412 		WG_DLOG("send_hs_msg failed, error=%d\n", error);
   2413 		return;
   2414 	}
   2415 
   2416 	WG_TRACE("resp msg sent");
   2417 }
   2418 
   2419 static struct wg_peer *
   2420 wg_lookup_peer_by_pubkey(struct wg_softc *wg,
   2421     const uint8_t pubkey[static WG_STATIC_KEY_LEN], struct psref *psref)
   2422 {
   2423 	struct wg_peer *wgp;
   2424 
   2425 	int s = pserialize_read_enter();
   2426 	wgp = thmap_get(wg->wg_peers_bypubkey, pubkey, WG_STATIC_KEY_LEN);
   2427 	if (wgp != NULL)
   2428 		wg_get_peer(wgp, psref);
   2429 	pserialize_read_exit(s);
   2430 
   2431 	return wgp;
   2432 }
   2433 
   2434 static void
   2435 wg_fill_msg_cookie(struct wg_softc *wg, struct wg_peer *wgp,
   2436     struct wg_msg_cookie *wgmc, const uint32_t sender,
   2437     const uint8_t mac1[static WG_MAC_LEN], const struct sockaddr *src)
   2438 {
   2439 	uint8_t cookie[WG_COOKIE_LEN];
   2440 	uint8_t key[WG_HASH_LEN];
   2441 	uint8_t addr[sizeof(struct in6_addr)];
   2442 	size_t addrlen;
   2443 	uint16_t uh_sport; /* be */
   2444 
   2445 	KASSERT(mutex_owned(wgp->wgp_lock));
   2446 
   2447 	wgmc->wgmc_type = htole32(WG_MSG_TYPE_COOKIE);
   2448 	wgmc->wgmc_receiver = sender;
   2449 	cprng_fast(wgmc->wgmc_salt, sizeof(wgmc->wgmc_salt));
   2450 
   2451 	/*
   2452 	 * [W] 5.4.7: Under Load: Cookie Reply Message
   2453 	 * "The secret variable, Rm, changes every two minutes to a
   2454 	 * random value"
   2455 	 */
   2456 	if ((time_uptime - wgp->wgp_last_cookiesecret_time) >
   2457 	    WG_COOKIESECRET_TIME) {
   2458 		cprng_strong(kern_cprng, wgp->wgp_cookiesecret,
   2459 		    sizeof(wgp->wgp_cookiesecret), 0);
   2460 		wgp->wgp_last_cookiesecret_time = time_uptime;
   2461 	}
   2462 
   2463 	switch (src->sa_family) {
   2464 #ifdef INET
   2465 	case AF_INET: {
   2466 		const struct sockaddr_in *sin = satocsin(src);
   2467 		addrlen = sizeof(sin->sin_addr);
   2468 		memcpy(addr, &sin->sin_addr, addrlen);
   2469 		uh_sport = sin->sin_port;
   2470 		break;
   2471 	    }
   2472 #endif
   2473 #ifdef INET6
   2474 	case AF_INET6: {
   2475 		const struct sockaddr_in6 *sin6 = satocsin6(src);
   2476 		addrlen = sizeof(sin6->sin6_addr);
   2477 		memcpy(addr, &sin6->sin6_addr, addrlen);
   2478 		uh_sport = sin6->sin6_port;
   2479 		break;
   2480 	    }
   2481 #endif
   2482 	default:
   2483 		panic("invalid af=%d", src->sa_family);
   2484 	}
   2485 
   2486 	wg_algo_mac(cookie, sizeof(cookie),
   2487 	    wgp->wgp_cookiesecret, sizeof(wgp->wgp_cookiesecret),
   2488 	    addr, addrlen, (const uint8_t *)&uh_sport, sizeof(uh_sport));
   2489 	wg_algo_mac_cookie(key, sizeof(key), wg->wg_pubkey,
   2490 	    sizeof(wg->wg_pubkey));
   2491 	wg_algo_xaead_enc(wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie), key,
   2492 	    cookie, sizeof(cookie), mac1, WG_MAC_LEN, wgmc->wgmc_salt);
   2493 
   2494 	/* Need to store to calculate mac2 */
   2495 	memcpy(wgp->wgp_last_sent_cookie, cookie, sizeof(cookie));
   2496 	wgp->wgp_last_sent_cookie_valid = true;
   2497 }
   2498 
   2499 static void
   2500 wg_send_cookie_msg(struct wg_softc *wg, struct wg_peer *wgp,
   2501     const uint32_t sender, const uint8_t mac1[static WG_MAC_LEN],
   2502     const struct sockaddr *src)
   2503 {
   2504 	int error;
   2505 	struct mbuf *m;
   2506 	struct wg_msg_cookie *wgmc;
   2507 
   2508 	KASSERT(mutex_owned(wgp->wgp_lock));
   2509 
   2510 	m = m_gethdr(M_WAIT, MT_DATA);
   2511 	if (sizeof(*wgmc) > MHLEN) {
   2512 		m_clget(m, M_WAIT);
   2513 		CTASSERT(sizeof(*wgmc) <= MCLBYTES);
   2514 	}
   2515 	m->m_pkthdr.len = m->m_len = sizeof(*wgmc);
   2516 	wgmc = mtod(m, struct wg_msg_cookie *);
   2517 	wg_fill_msg_cookie(wg, wgp, wgmc, sender, mac1, src);
   2518 
   2519 	error = wg->wg_ops->send_hs_msg(wgp, m); /* consumes m */
   2520 	if (error) {
   2521 		WG_DLOG("send_hs_msg failed, error=%d\n", error);
   2522 		return;
   2523 	}
   2524 
   2525 	WG_TRACE("cookie msg sent");
   2526 }
   2527 
   2528 static bool
   2529 wg_is_underload(struct wg_softc *wg, struct wg_peer *wgp, int msgtype)
   2530 {
   2531 #ifdef WG_DEBUG_PARAMS
   2532 	if (wg_force_underload)
   2533 		return true;
   2534 #endif
   2535 
   2536 	/*
   2537 	 * XXX we don't have a means of a load estimation.  The purpose of
   2538 	 * the mechanism is a DoS mitigation, so we consider frequent handshake
   2539 	 * messages as (a kind of) load; if a message of the same type comes
   2540 	 * to a peer within 1 second, we consider we are under load.
   2541 	 */
   2542 	time_t last = wgp->wgp_last_msg_received_time[msgtype];
   2543 	wgp->wgp_last_msg_received_time[msgtype] = time_uptime;
   2544 	return (time_uptime - last) == 0;
   2545 }
   2546 
   2547 static void
   2548 wg_calculate_keys(struct wg_session *wgs, const bool initiator)
   2549 {
   2550 
   2551 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2552 
   2553 	/*
   2554 	 * [W] 5.4.5: Ti^send = Tr^recv, Ti^recv = Tr^send := KDF2(Ci = Cr, e)
   2555 	 */
   2556 	if (initiator) {
   2557 		wg_algo_kdf(wgs->wgs_tkey_send, wgs->wgs_tkey_recv, NULL,
   2558 		    wgs->wgs_chaining_key, NULL, 0);
   2559 	} else {
   2560 		wg_algo_kdf(wgs->wgs_tkey_recv, wgs->wgs_tkey_send, NULL,
   2561 		    wgs->wgs_chaining_key, NULL, 0);
   2562 	}
   2563 	WG_DUMP_HASH("wgs_tkey_send", wgs->wgs_tkey_send);
   2564 	WG_DUMP_HASH("wgs_tkey_recv", wgs->wgs_tkey_recv);
   2565 }
   2566 
   2567 static uint64_t
   2568 wg_session_get_send_counter(struct wg_session *wgs)
   2569 {
   2570 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2571 	return atomic_load_relaxed(&wgs->wgs_send_counter);
   2572 #else
   2573 	uint64_t send_counter;
   2574 
   2575 	mutex_enter(&wgs->wgs_send_counter_lock);
   2576 	send_counter = wgs->wgs_send_counter;
   2577 	mutex_exit(&wgs->wgs_send_counter_lock);
   2578 
   2579 	return send_counter;
   2580 #endif
   2581 }
   2582 
   2583 static uint64_t
   2584 wg_session_inc_send_counter(struct wg_session *wgs)
   2585 {
   2586 #ifdef __HAVE_ATOMIC64_LOADSTORE
   2587 	return atomic_inc_64_nv(&wgs->wgs_send_counter) - 1;
   2588 #else
   2589 	uint64_t send_counter;
   2590 
   2591 	mutex_enter(&wgs->wgs_send_counter_lock);
   2592 	send_counter = wgs->wgs_send_counter++;
   2593 	mutex_exit(&wgs->wgs_send_counter_lock);
   2594 
   2595 	return send_counter;
   2596 #endif
   2597 }
   2598 
   2599 static void
   2600 wg_clear_states(struct wg_session *wgs)
   2601 {
   2602 
   2603 	KASSERT(mutex_owned(wgs->wgs_peer->wgp_lock));
   2604 
   2605 	wgs->wgs_send_counter = 0;
   2606 	sliwin_reset(&wgs->wgs_recvwin->window);
   2607 
   2608 #define wgs_clear(v)	explicit_memset(wgs->wgs_##v, 0, sizeof(wgs->wgs_##v))
   2609 	wgs_clear(handshake_hash);
   2610 	wgs_clear(chaining_key);
   2611 	wgs_clear(ephemeral_key_pub);
   2612 	wgs_clear(ephemeral_key_priv);
   2613 	wgs_clear(ephemeral_key_peer);
   2614 #undef wgs_clear
   2615 }
   2616 
   2617 static struct wg_session *
   2618 wg_lookup_session_by_index(struct wg_softc *wg, const uint32_t index,
   2619     struct psref *psref)
   2620 {
   2621 	struct wg_session *wgs;
   2622 
   2623 	int s = pserialize_read_enter();
   2624 	wgs = thmap_get(wg->wg_sessions_byindex, &index, sizeof index);
   2625 	if (wgs != NULL) {
   2626 		KASSERTMSG(index == wgs->wgs_local_index,
   2627 		    "index=%"PRIx32" wgs->wgs_local_index=%"PRIx32,
   2628 		    index, wgs->wgs_local_index);
   2629 		psref_acquire(psref, &wgs->wgs_psref, wg_psref_class);
   2630 	}
   2631 	pserialize_read_exit(s);
   2632 
   2633 	return wgs;
   2634 }
   2635 
   2636 static void
   2637 wg_send_keepalive_msg(struct wg_peer *wgp, struct wg_session *wgs)
   2638 {
   2639 	struct mbuf *m;
   2640 
   2641 	/*
   2642 	 * [W] 6.5 Passive Keepalive
   2643 	 * "A keepalive message is simply a transport data message with
   2644 	 *  a zero-length encapsulated encrypted inner-packet."
   2645 	 */
   2646 	WG_TRACE("");
   2647 	m = m_gethdr(M_WAIT, MT_DATA);
   2648 	wg_send_data_msg(wgp, wgs, m);
   2649 }
   2650 
   2651 static bool
   2652 wg_need_to_send_init_message(struct wg_session *wgs)
   2653 {
   2654 	/*
   2655 	 * [W] 6.2 Transport Message Limits
   2656 	 * "if a peer is the initiator of a current secure session,
   2657 	 *  WireGuard will send a handshake initiation message to begin
   2658 	 *  a new secure session ... if after receiving a transport data
   2659 	 *  message, the current secure session is (REJECT-AFTER-TIME 
   2660 	 *  KEEPALIVE-TIMEOUT  REKEY-TIMEOUT) seconds old and it has
   2661 	 *  not yet acted upon this event."
   2662 	 */
   2663 	return wgs->wgs_is_initiator &&
   2664 	    atomic_load_relaxed(&wgs->wgs_time_last_data_sent) == 0 &&
   2665 	    (time_uptime32 - wgs->wgs_time_established >=
   2666 		(wg_reject_after_time - wg_keepalive_timeout -
   2667 		    wg_rekey_timeout));
   2668 }
   2669 
   2670 static void
   2671 wg_schedule_peer_task(struct wg_peer *wgp, unsigned int task)
   2672 {
   2673 
   2674 	mutex_enter(wgp->wgp_intr_lock);
   2675 	WG_DLOG("tasks=%d, task=%d\n", wgp->wgp_tasks, task);
   2676 	if (wgp->wgp_tasks == 0)
   2677 		/*
   2678 		 * XXX If the current CPU is already loaded -- e.g., if
   2679 		 * there's already a bunch of handshakes queued up --
   2680 		 * consider tossing this over to another CPU to
   2681 		 * distribute the load.
   2682 		 */
   2683 		workqueue_enqueue(wg_wq, &wgp->wgp_work, NULL);
   2684 	wgp->wgp_tasks |= task;
   2685 	mutex_exit(wgp->wgp_intr_lock);
   2686 }
   2687 
   2688 static void
   2689 wg_change_endpoint(struct wg_peer *wgp, const struct sockaddr *new)
   2690 {
   2691 	struct wg_sockaddr *wgsa_prev;
   2692 
   2693 	WG_TRACE("Changing endpoint");
   2694 
   2695 	memcpy(wgp->wgp_endpoint0, new, new->sa_len);
   2696 	wgsa_prev = wgp->wgp_endpoint;
   2697 	atomic_store_release(&wgp->wgp_endpoint, wgp->wgp_endpoint0);
   2698 	wgp->wgp_endpoint0 = wgsa_prev;
   2699 	atomic_store_release(&wgp->wgp_endpoint_available, true);
   2700 
   2701 	wg_schedule_peer_task(wgp, WGP_TASK_ENDPOINT_CHANGED);
   2702 }
   2703 
   2704 static bool
   2705 wg_validate_inner_packet(const char *packet, size_t decrypted_len, int *af)
   2706 {
   2707 	uint16_t packet_len;
   2708 	const struct ip *ip;
   2709 
   2710 	if (__predict_false(decrypted_len < sizeof(*ip))) {
   2711 		WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
   2712 		    sizeof(*ip));
   2713 		return false;
   2714 	}
   2715 
   2716 	ip = (const struct ip *)packet;
   2717 	if (ip->ip_v == 4)
   2718 		*af = AF_INET;
   2719 	else if (ip->ip_v == 6)
   2720 		*af = AF_INET6;
   2721 	else {
   2722 		WG_DLOG("ip_v=%d\n", ip->ip_v);
   2723 		return false;
   2724 	}
   2725 
   2726 	WG_DLOG("af=%d\n", *af);
   2727 
   2728 	switch (*af) {
   2729 #ifdef INET
   2730 	case AF_INET:
   2731 		packet_len = ntohs(ip->ip_len);
   2732 		break;
   2733 #endif
   2734 #ifdef INET6
   2735 	case AF_INET6: {
   2736 		const struct ip6_hdr *ip6;
   2737 
   2738 		if (__predict_false(decrypted_len < sizeof(*ip6))) {
   2739 			WG_DLOG("decrypted_len=%zu < %zu\n", decrypted_len,
   2740 			    sizeof(*ip6));
   2741 			return false;
   2742 		}
   2743 
   2744 		ip6 = (const struct ip6_hdr *)packet;
   2745 		packet_len = sizeof(*ip6) + ntohs(ip6->ip6_plen);
   2746 		break;
   2747 	}
   2748 #endif
   2749 	default:
   2750 		return false;
   2751 	}
   2752 
   2753 	if (packet_len > decrypted_len) {
   2754 		WG_DLOG("packet_len %u > decrypted_len %zu\n", packet_len,
   2755 		    decrypted_len);
   2756 		return false;
   2757 	}
   2758 
   2759 	return true;
   2760 }
   2761 
   2762 static bool
   2763 wg_validate_route(struct wg_softc *wg, struct wg_peer *wgp_expected,
   2764     int af, char *packet)
   2765 {
   2766 	struct sockaddr_storage ss;
   2767 	struct sockaddr *sa;
   2768 	struct psref psref;
   2769 	struct wg_peer *wgp;
   2770 	bool ok;
   2771 
   2772 	/*
   2773 	 * II CRYPTOKEY ROUTING
   2774 	 * "it will only accept it if its source IP resolves in the
   2775 	 *  table to the public key used in the secure session for
   2776 	 *  decrypting it."
   2777 	 */
   2778 
   2779 	switch (af) {
   2780 #ifdef INET
   2781 	case AF_INET: {
   2782 		const struct ip *ip = (const struct ip *)packet;
   2783 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   2784 		sockaddr_in_init(sin, &ip->ip_src, 0);
   2785 		sa = sintosa(sin);
   2786 		break;
   2787 	}
   2788 #endif
   2789 #ifdef INET6
   2790 	case AF_INET6: {
   2791 		const struct ip6_hdr *ip6 = (const struct ip6_hdr *)packet;
   2792 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   2793 		sockaddr_in6_init(sin6, &ip6->ip6_src, 0, 0, 0);
   2794 		sa = sin6tosa(sin6);
   2795 		break;
   2796 	}
   2797 #endif
   2798 	default:
   2799 		__USE(ss);
   2800 		return false;
   2801 	}
   2802 
   2803 	wgp = wg_pick_peer_by_sa(wg, sa, &psref);
   2804 	ok = (wgp == wgp_expected);
   2805 	if (wgp != NULL)
   2806 		wg_put_peer(wgp, &psref);
   2807 
   2808 	return ok;
   2809 }
   2810 
   2811 static void
   2812 wg_session_dtor_timer(void *arg)
   2813 {
   2814 	struct wg_peer *wgp = arg;
   2815 
   2816 	WG_TRACE("enter");
   2817 
   2818 	wg_schedule_session_dtor_timer(wgp);
   2819 	wg_schedule_peer_task(wgp, WGP_TASK_DESTROY_PREV_SESSION);
   2820 }
   2821 
   2822 static void
   2823 wg_schedule_session_dtor_timer(struct wg_peer *wgp)
   2824 {
   2825 
   2826 	/*
   2827 	 * If the periodic session destructor is already pending to
   2828 	 * handle the previous session, that's fine -- leave it in
   2829 	 * place; it will be scheduled again.
   2830 	 */
   2831 	if (callout_pending(&wgp->wgp_session_dtor_timer)) {
   2832 		WG_DLOG("session dtor already pending\n");
   2833 		return;
   2834 	}
   2835 
   2836 	WG_DLOG("scheduling session dtor in %u secs\n", wg_reject_after_time);
   2837 	callout_schedule(&wgp->wgp_session_dtor_timer,
   2838 	    wg_reject_after_time*hz);
   2839 }
   2840 
   2841 static bool
   2842 sockaddr_port_match(const struct sockaddr *sa1, const struct sockaddr *sa2)
   2843 {
   2844 	if (sa1->sa_family != sa2->sa_family)
   2845 		return false;
   2846 
   2847 	switch (sa1->sa_family) {
   2848 #ifdef INET
   2849 	case AF_INET:
   2850 		return satocsin(sa1)->sin_port == satocsin(sa2)->sin_port;
   2851 #endif
   2852 #ifdef INET6
   2853 	case AF_INET6:
   2854 		return satocsin6(sa1)->sin6_port == satocsin6(sa2)->sin6_port;
   2855 #endif
   2856 	default:
   2857 		return false;
   2858 	}
   2859 }
   2860 
   2861 static void
   2862 wg_update_endpoint_if_necessary(struct wg_peer *wgp,
   2863     const struct sockaddr *src)
   2864 {
   2865 	struct wg_sockaddr *wgsa;
   2866 	struct psref psref;
   2867 
   2868 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   2869 
   2870 #ifdef WG_DEBUG_LOG
   2871 	char oldaddr[128], newaddr[128];
   2872 	sockaddr_format(wgsatosa(wgsa), oldaddr, sizeof(oldaddr));
   2873 	sockaddr_format(src, newaddr, sizeof(newaddr));
   2874 	WG_DLOG("old=%s, new=%s\n", oldaddr, newaddr);
   2875 #endif
   2876 
   2877 	/*
   2878 	 * III: "Since the packet has authenticated correctly, the source IP of
   2879 	 * the outer UDP/IP packet is used to update the endpoint for peer..."
   2880 	 */
   2881 	if (__predict_false(sockaddr_cmp(src, wgsatosa(wgsa)) != 0 ||
   2882 		!sockaddr_port_match(src, wgsatosa(wgsa)))) {
   2883 		/* XXX We can't change the endpoint twice in a short period */
   2884 		if (atomic_swap_uint(&wgp->wgp_endpoint_changing, 1) == 0) {
   2885 			wg_change_endpoint(wgp, src);
   2886 		}
   2887 	}
   2888 
   2889 	wg_put_sa(wgp, wgsa, &psref);
   2890 }
   2891 
   2892 static void __noinline
   2893 wg_handle_msg_data(struct wg_softc *wg, struct mbuf *m,
   2894     const struct sockaddr *src)
   2895 {
   2896 	struct wg_msg_data *wgmd;
   2897 	char *encrypted_buf = NULL, *decrypted_buf;
   2898 	size_t encrypted_len, decrypted_len;
   2899 	struct wg_session *wgs;
   2900 	struct wg_peer *wgp;
   2901 	int state;
   2902 	uint32_t age;
   2903 	size_t mlen;
   2904 	struct psref psref;
   2905 	int error, af;
   2906 	bool success, free_encrypted_buf = false, ok;
   2907 	struct mbuf *n;
   2908 
   2909 	KASSERT(m->m_len >= sizeof(struct wg_msg_data));
   2910 	wgmd = mtod(m, struct wg_msg_data *);
   2911 
   2912 	KASSERT(wgmd->wgmd_type == htole32(WG_MSG_TYPE_DATA));
   2913 	WG_TRACE("data");
   2914 
   2915 	/* Find the putative session, or drop.  */
   2916 	wgs = wg_lookup_session_by_index(wg, wgmd->wgmd_receiver, &psref);
   2917 	if (wgs == NULL) {
   2918 		WG_TRACE("No session found");
   2919 		m_freem(m);
   2920 		return;
   2921 	}
   2922 
   2923 	/*
   2924 	 * We are only ready to handle data when in INIT_PASSIVE,
   2925 	 * ESTABLISHED, or DESTROYING.  All transitions out of that
   2926 	 * state dissociate the session index and drain psrefs.
   2927 	 *
   2928 	 * atomic_load_acquire matches atomic_store_release in either
   2929 	 * wg_handle_msg_init or wg_handle_msg_resp.  (The transition
   2930 	 * INIT_PASSIVE to ESTABLISHED in wg_task_establish_session
   2931 	 * doesn't make a difference for this rx path.)
   2932 	 */
   2933 	state = atomic_load_acquire(&wgs->wgs_state);
   2934 	switch (state) {
   2935 	case WGS_STATE_UNKNOWN:
   2936 	case WGS_STATE_INIT_ACTIVE:
   2937 		WG_TRACE("not yet ready for data");
   2938 		goto out;
   2939 	case WGS_STATE_INIT_PASSIVE:
   2940 	case WGS_STATE_ESTABLISHED:
   2941 	case WGS_STATE_DESTROYING:
   2942 		break;
   2943 	}
   2944 
   2945 	/*
   2946 	 * Reject if the session is too old.
   2947 	 */
   2948 	age = time_uptime32 - wgs->wgs_time_established;
   2949 	if (__predict_false(age >= wg_reject_after_time)) {
   2950 		WG_DLOG("session %"PRIx32" too old, %"PRIu32" sec\n",
   2951 		    wgmd->wgmd_receiver, age);
   2952 	       goto out;
   2953 	}
   2954 
   2955 	/*
   2956 	 * Get the peer, for rate-limited logs (XXX MPSAFE, dtrace) and
   2957 	 * to update the endpoint if authentication succeeds.
   2958 	 */
   2959 	wgp = wgs->wgs_peer;
   2960 
   2961 	/*
   2962 	 * Reject outrageously wrong sequence numbers before doing any
   2963 	 * crypto work or taking any locks.
   2964 	 */
   2965 	error = sliwin_check_fast(&wgs->wgs_recvwin->window,
   2966 	    le64toh(wgmd->wgmd_counter));
   2967 	if (error) {
   2968 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   2969 		    "%s: peer %s: out-of-window packet: %"PRIu64"\n",
   2970 		    if_name(&wg->wg_if), wgp->wgp_name,
   2971 		    le64toh(wgmd->wgmd_counter));
   2972 		goto out;
   2973 	}
   2974 
   2975 	/* Ensure the payload and authenticator are contiguous.  */
   2976 	mlen = m_length(m);
   2977 	encrypted_len = mlen - sizeof(*wgmd);
   2978 	if (encrypted_len < WG_AUTHTAG_LEN) {
   2979 		WG_DLOG("Short encrypted_len: %zu\n", encrypted_len);
   2980 		goto out;
   2981 	}
   2982 	success = m_ensure_contig(&m, sizeof(*wgmd) + encrypted_len);
   2983 	if (success) {
   2984 		encrypted_buf = mtod(m, char *) + sizeof(*wgmd);
   2985 	} else {
   2986 		encrypted_buf = kmem_intr_alloc(encrypted_len, KM_NOSLEEP);
   2987 		if (encrypted_buf == NULL) {
   2988 			WG_DLOG("failed to allocate encrypted_buf\n");
   2989 			goto out;
   2990 		}
   2991 		m_copydata(m, sizeof(*wgmd), encrypted_len, encrypted_buf);
   2992 		free_encrypted_buf = true;
   2993 	}
   2994 	/* m_ensure_contig may change m regardless of its result */
   2995 	KASSERT(m->m_len >= sizeof(*wgmd));
   2996 	wgmd = mtod(m, struct wg_msg_data *);
   2997 
   2998 	/*
   2999 	 * Get a buffer for the plaintext.  Add WG_AUTHTAG_LEN to avoid
   3000 	 * a zero-length buffer (XXX).  Drop if plaintext is longer
   3001 	 * than MCLBYTES (XXX).
   3002 	 */
   3003 	decrypted_len = encrypted_len - WG_AUTHTAG_LEN;
   3004 	if (decrypted_len > MCLBYTES) {
   3005 		/* FIXME handle larger data than MCLBYTES */
   3006 		WG_DLOG("couldn't handle larger data than MCLBYTES\n");
   3007 		goto out;
   3008 	}
   3009 	n = wg_get_mbuf(0, decrypted_len + WG_AUTHTAG_LEN);
   3010 	if (n == NULL) {
   3011 		WG_DLOG("wg_get_mbuf failed\n");
   3012 		goto out;
   3013 	}
   3014 	decrypted_buf = mtod(n, char *);
   3015 
   3016 	/* Decrypt and verify the packet.  */
   3017 	WG_DLOG("mlen=%zu, encrypted_len=%zu\n", mlen, encrypted_len);
   3018 	error = wg_algo_aead_dec(decrypted_buf,
   3019 	    encrypted_len - WG_AUTHTAG_LEN /* can be 0 */,
   3020 	    wgs->wgs_tkey_recv, le64toh(wgmd->wgmd_counter), encrypted_buf,
   3021 	    encrypted_len, NULL, 0);
   3022 	if (error != 0) {
   3023 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   3024 		    "%s: peer %s: failed to wg_algo_aead_dec\n",
   3025 		    if_name(&wg->wg_if), wgp->wgp_name);
   3026 		m_freem(n);
   3027 		goto out;
   3028 	}
   3029 	WG_DLOG("outsize=%u\n", (u_int)decrypted_len);
   3030 
   3031 	/* Packet is genuine.  Reject it if a replay or just too old.  */
   3032 	mutex_enter(&wgs->wgs_recvwin->lock);
   3033 	error = sliwin_update(&wgs->wgs_recvwin->window,
   3034 	    le64toh(wgmd->wgmd_counter));
   3035 	mutex_exit(&wgs->wgs_recvwin->lock);
   3036 	if (error) {
   3037 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   3038 		    "%s: peer %s: replay or out-of-window packet: %"PRIu64"\n",
   3039 		    if_name(&wg->wg_if), wgp->wgp_name,
   3040 		    le64toh(wgmd->wgmd_counter));
   3041 		m_freem(n);
   3042 		goto out;
   3043 	}
   3044 
   3045 	/* We're done with m now; free it and chuck the pointers.  */
   3046 	m_freem(m);
   3047 	m = NULL;
   3048 	wgmd = NULL;
   3049 
   3050 	/*
   3051 	 * The packet is genuine.  Update the peer's endpoint if the
   3052 	 * source address changed.
   3053 	 *
   3054 	 * XXX How to prevent DoS by replaying genuine packets from the
   3055 	 * wrong source address?
   3056 	 */
   3057 	wg_update_endpoint_if_necessary(wgp, src);
   3058 
   3059 	/*
   3060 	 * Validate the encapsulated packet header and get the address
   3061 	 * family, or drop.
   3062 	 */
   3063 	ok = wg_validate_inner_packet(decrypted_buf, decrypted_len, &af);
   3064 	if (!ok) {
   3065 		m_freem(n);
   3066 		goto update_state;
   3067 	}
   3068 
   3069 	/* Submit it into our network stack if routable.  */
   3070 	ok = wg_validate_route(wg, wgp, af, decrypted_buf);
   3071 	if (ok) {
   3072 		wg->wg_ops->input(&wg->wg_if, n, af);
   3073 	} else {
   3074 		char addrstr[INET6_ADDRSTRLEN];
   3075 		memset(addrstr, 0, sizeof(addrstr));
   3076 		switch (af) {
   3077 #ifdef INET
   3078 		case AF_INET: {
   3079 			const struct ip *ip = (const struct ip *)decrypted_buf;
   3080 			IN_PRINT(addrstr, &ip->ip_src);
   3081 			break;
   3082 		}
   3083 #endif
   3084 #ifdef INET6
   3085 		case AF_INET6: {
   3086 			const struct ip6_hdr *ip6 =
   3087 			    (const struct ip6_hdr *)decrypted_buf;
   3088 			IN6_PRINT(addrstr, &ip6->ip6_src);
   3089 			break;
   3090 		}
   3091 #endif
   3092 		default:
   3093 			panic("invalid af=%d", af);
   3094 		}
   3095 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   3096 		    "%s: peer %s: invalid source address (%s)\n",
   3097 		    if_name(&wg->wg_if), wgp->wgp_name, addrstr);
   3098 		m_freem(n);
   3099 		/*
   3100 		 * The inner address is invalid however the session is valid
   3101 		 * so continue the session processing below.
   3102 		 */
   3103 	}
   3104 	n = NULL;
   3105 
   3106 update_state:
   3107 	/* Update the state machine if necessary.  */
   3108 	if (__predict_false(state == WGS_STATE_INIT_PASSIVE)) {
   3109 		/*
   3110 		 * We were waiting for the initiator to send their
   3111 		 * first data transport message, and that has happened.
   3112 		 * Schedule a task to establish this session.
   3113 		 */
   3114 		wg_schedule_peer_task(wgp, WGP_TASK_ESTABLISH_SESSION);
   3115 	} else {
   3116 		if (__predict_false(wg_need_to_send_init_message(wgs))) {
   3117 			wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   3118 		}
   3119 		/*
   3120 		 * [W] 6.5 Passive Keepalive
   3121 		 * "If a peer has received a validly-authenticated transport
   3122 		 *  data message (section 5.4.6), but does not have any packets
   3123 		 *  itself to send back for KEEPALIVE-TIMEOUT seconds, it sends
   3124 		 *  a keepalive message."
   3125 		 */
   3126 		const uint32_t now = time_uptime32;
   3127 		const uint32_t time_last_data_sent =
   3128 		    atomic_load_relaxed(&wgs->wgs_time_last_data_sent);
   3129 		WG_DLOG("time_uptime32=%"PRIu32
   3130 		    " wgs_time_last_data_sent=%"PRIu32"\n",
   3131 		    now, time_last_data_sent);
   3132 		if ((now - time_last_data_sent) >= wg_keepalive_timeout) {
   3133 			WG_TRACE("Schedule sending keepalive message");
   3134 			/*
   3135 			 * We can't send a keepalive message here to avoid
   3136 			 * a deadlock;  we already hold the solock of a socket
   3137 			 * that is used to send the message.
   3138 			 */
   3139 			wg_schedule_peer_task(wgp,
   3140 			    WGP_TASK_SEND_KEEPALIVE_MESSAGE);
   3141 		}
   3142 	}
   3143 out:
   3144 	wg_put_session(wgs, &psref);
   3145 	m_freem(m);
   3146 	if (free_encrypted_buf)
   3147 		kmem_intr_free(encrypted_buf, encrypted_len);
   3148 }
   3149 
   3150 static void __noinline
   3151 wg_handle_msg_cookie(struct wg_softc *wg, const struct wg_msg_cookie *wgmc)
   3152 {
   3153 	struct wg_session *wgs;
   3154 	struct wg_peer *wgp;
   3155 	struct psref psref;
   3156 	int error;
   3157 	uint8_t key[WG_HASH_LEN];
   3158 	uint8_t cookie[WG_COOKIE_LEN];
   3159 
   3160 	WG_TRACE("cookie msg received");
   3161 
   3162 	/* Find the putative session.  */
   3163 	wgs = wg_lookup_session_by_index(wg, wgmc->wgmc_receiver, &psref);
   3164 	if (wgs == NULL) {
   3165 		WG_TRACE("No session found");
   3166 		return;
   3167 	}
   3168 
   3169 	/* Lock the peer so we can update the cookie state.  */
   3170 	wgp = wgs->wgs_peer;
   3171 	mutex_enter(wgp->wgp_lock);
   3172 
   3173 	if (!wgp->wgp_last_sent_mac1_valid) {
   3174 		WG_TRACE("No valid mac1 sent (or expired)");
   3175 		goto out;
   3176 	}
   3177 
   3178 	/*
   3179 	 * wgp_last_sent_mac1_valid is only set to true when we are
   3180 	 * transitioning to INIT_ACTIVE or INIT_PASSIVE, and always
   3181 	 * cleared on transition out of them.
   3182 	 */
   3183 	KASSERTMSG((wgs->wgs_state == WGS_STATE_INIT_ACTIVE ||
   3184 		wgs->wgs_state == WGS_STATE_INIT_PASSIVE),
   3185 	    "state=%d", wgs->wgs_state);
   3186 
   3187 	/* Decrypt the cookie and store it for later handshake retry.  */
   3188 	wg_algo_mac_cookie(key, sizeof(key), wgp->wgp_pubkey,
   3189 	    sizeof(wgp->wgp_pubkey));
   3190 	error = wg_algo_xaead_dec(cookie, sizeof(cookie), key,
   3191 	    wgmc->wgmc_cookie, sizeof(wgmc->wgmc_cookie),
   3192 	    wgp->wgp_last_sent_mac1, sizeof(wgp->wgp_last_sent_mac1),
   3193 	    wgmc->wgmc_salt);
   3194 	if (error != 0) {
   3195 		WG_LOG_RATECHECK(&wgp->wgp_ppsratecheck, LOG_DEBUG,
   3196 		    "%s: peer %s: wg_algo_aead_dec for cookie failed: "
   3197 		    "error=%d\n", if_name(&wg->wg_if), wgp->wgp_name, error);
   3198 		goto out;
   3199 	}
   3200 	/*
   3201 	 * [W] 6.6: Interaction with Cookie Reply System
   3202 	 * "it should simply store the decrypted cookie value from the cookie
   3203 	 *  reply message, and wait for the expiration of the REKEY-TIMEOUT
   3204 	 *  timer for retrying a handshake initiation message."
   3205 	 */
   3206 	wgp->wgp_latest_cookie_time = time_uptime;
   3207 	memcpy(wgp->wgp_latest_cookie, cookie, sizeof(wgp->wgp_latest_cookie));
   3208 out:
   3209 	mutex_exit(wgp->wgp_lock);
   3210 	wg_put_session(wgs, &psref);
   3211 }
   3212 
   3213 static struct mbuf *
   3214 wg_validate_msg_header(struct wg_softc *wg, struct mbuf *m)
   3215 {
   3216 	struct wg_msg wgm;
   3217 	size_t mbuflen;
   3218 	size_t msglen;
   3219 
   3220 	/*
   3221 	 * Get the mbuf chain length.  It is already guaranteed, by
   3222 	 * wg_overudp_cb, to be large enough for a struct wg_msg.
   3223 	 */
   3224 	mbuflen = m_length(m);
   3225 	KASSERT(mbuflen >= sizeof(struct wg_msg));
   3226 
   3227 	/*
   3228 	 * Copy the message header (32-bit message type) out -- we'll
   3229 	 * worry about contiguity and alignment later.
   3230 	 */
   3231 	m_copydata(m, 0, sizeof(wgm), &wgm);
   3232 	switch (le32toh(wgm.wgm_type)) {
   3233 	case WG_MSG_TYPE_INIT:
   3234 		msglen = sizeof(struct wg_msg_init);
   3235 		break;
   3236 	case WG_MSG_TYPE_RESP:
   3237 		msglen = sizeof(struct wg_msg_resp);
   3238 		break;
   3239 	case WG_MSG_TYPE_COOKIE:
   3240 		msglen = sizeof(struct wg_msg_cookie);
   3241 		break;
   3242 	case WG_MSG_TYPE_DATA:
   3243 		msglen = sizeof(struct wg_msg_data);
   3244 		break;
   3245 	default:
   3246 		WG_LOG_RATECHECK(&wg->wg_ppsratecheck, LOG_DEBUG,
   3247 		    "%s: Unexpected msg type: %u\n", if_name(&wg->wg_if),
   3248 		    le32toh(wgm.wgm_type));
   3249 		goto error;
   3250 	}
   3251 
   3252 	/* Verify the mbuf chain is long enough for this type of message.  */
   3253 	if (__predict_false(mbuflen < msglen)) {
   3254 		WG_DLOG("Invalid msg size: mbuflen=%zu type=%u\n", mbuflen,
   3255 		    le32toh(wgm.wgm_type));
   3256 		goto error;
   3257 	}
   3258 
   3259 	/* Make the message header contiguous if necessary.  */
   3260 	if (__predict_false(m->m_len < msglen)) {
   3261 		m = m_pullup(m, msglen);
   3262 		if (m == NULL)
   3263 			return NULL;
   3264 	}
   3265 
   3266 	return m;
   3267 
   3268 error:
   3269 	m_freem(m);
   3270 	return NULL;
   3271 }
   3272 
   3273 static void
   3274 wg_handle_packet(struct wg_softc *wg, struct mbuf *m,
   3275     const struct sockaddr *src)
   3276 {
   3277 	struct wg_msg *wgm;
   3278 
   3279 	KASSERT(curlwp->l_pflag & LP_BOUND);
   3280 
   3281 	m = wg_validate_msg_header(wg, m);
   3282 	if (__predict_false(m == NULL))
   3283 		return;
   3284 
   3285 	KASSERT(m->m_len >= sizeof(struct wg_msg));
   3286 	wgm = mtod(m, struct wg_msg *);
   3287 	switch (le32toh(wgm->wgm_type)) {
   3288 	case WG_MSG_TYPE_INIT:
   3289 		wg_handle_msg_init(wg, (struct wg_msg_init *)wgm, src);
   3290 		break;
   3291 	case WG_MSG_TYPE_RESP:
   3292 		wg_handle_msg_resp(wg, (struct wg_msg_resp *)wgm, src);
   3293 		break;
   3294 	case WG_MSG_TYPE_COOKIE:
   3295 		wg_handle_msg_cookie(wg, (struct wg_msg_cookie *)wgm);
   3296 		break;
   3297 	case WG_MSG_TYPE_DATA:
   3298 		wg_handle_msg_data(wg, m, src);
   3299 		/* wg_handle_msg_data frees m for us */
   3300 		return;
   3301 	default:
   3302 		panic("invalid message type: %d", le32toh(wgm->wgm_type));
   3303 	}
   3304 
   3305 	m_freem(m);
   3306 }
   3307 
   3308 static void
   3309 wg_receive_packets(struct wg_softc *wg, const int af)
   3310 {
   3311 
   3312 	for (;;) {
   3313 		int error, flags;
   3314 		struct socket *so;
   3315 		struct mbuf *m = NULL;
   3316 		struct uio dummy_uio;
   3317 		struct mbuf *paddr = NULL;
   3318 		struct sockaddr *src;
   3319 
   3320 		so = wg_get_so_by_af(wg, af);
   3321 		flags = MSG_DONTWAIT;
   3322 		dummy_uio.uio_resid = 1000000000;
   3323 
   3324 		error = so->so_receive(so, &paddr, &dummy_uio, &m, NULL,
   3325 		    &flags);
   3326 		if (error || m == NULL) {
   3327 			//if (error == EWOULDBLOCK)
   3328 			return;
   3329 		}
   3330 
   3331 		KASSERT(paddr != NULL);
   3332 		KASSERT(paddr->m_len >= sizeof(struct sockaddr));
   3333 		src = mtod(paddr, struct sockaddr *);
   3334 
   3335 		wg_handle_packet(wg, m, src);
   3336 	}
   3337 }
   3338 
   3339 static void
   3340 wg_get_peer(struct wg_peer *wgp, struct psref *psref)
   3341 {
   3342 
   3343 	psref_acquire(psref, &wgp->wgp_psref, wg_psref_class);
   3344 }
   3345 
   3346 static void
   3347 wg_put_peer(struct wg_peer *wgp, struct psref *psref)
   3348 {
   3349 
   3350 	psref_release(psref, &wgp->wgp_psref, wg_psref_class);
   3351 }
   3352 
   3353 static void
   3354 wg_task_send_init_message(struct wg_softc *wg, struct wg_peer *wgp)
   3355 {
   3356 	struct wg_session *wgs;
   3357 
   3358 	WG_TRACE("WGP_TASK_SEND_INIT_MESSAGE");
   3359 
   3360 	KASSERT(mutex_owned(wgp->wgp_lock));
   3361 
   3362 	if (!atomic_load_acquire(&wgp->wgp_endpoint_available)) {
   3363 		WGLOG(LOG_DEBUG, "%s: No endpoint available\n",
   3364 		    if_name(&wg->wg_if));
   3365 		/* XXX should do something? */
   3366 		return;
   3367 	}
   3368 
   3369 	/*
   3370 	 * If we already have an established session, there's no need
   3371 	 * to initiate a new one -- unless the rekey-after-time or
   3372 	 * rekey-after-messages limits have passed.
   3373 	 */
   3374 	wgs = wgp->wgp_session_stable;
   3375 	if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
   3376 	    !atomic_load_relaxed(&wgs->wgs_force_rekey))
   3377 		return;
   3378 
   3379 	/*
   3380 	 * Ensure we're initiating a new session.  If the unstable
   3381 	 * session is already INIT_ACTIVE or INIT_PASSIVE, this does
   3382 	 * nothing.
   3383 	 */
   3384 	wg_send_handshake_msg_init(wg, wgp);
   3385 }
   3386 
   3387 static void
   3388 wg_task_retry_handshake(struct wg_softc *wg, struct wg_peer *wgp)
   3389 {
   3390 	struct wg_session *wgs;
   3391 
   3392 	WG_TRACE("WGP_TASK_RETRY_HANDSHAKE");
   3393 
   3394 	KASSERT(mutex_owned(wgp->wgp_lock));
   3395 
   3396 	wgs = wgp->wgp_session_unstable;
   3397 	if (wgs->wgs_state != WGS_STATE_INIT_ACTIVE)
   3398 		return;
   3399 
   3400 	KASSERT(wgp->wgp_handshake_start_time != 0);
   3401 
   3402 	/*
   3403 	 * XXX no real need to assign a new index here, but we do need
   3404 	 * to transition to UNKNOWN temporarily
   3405 	 */
   3406 	wg_put_session_index(wg, wgs);
   3407 
   3408 	/* [W] 6.4 Handshake Initiation Retransmission */
   3409 	if ((time_uptime - wgp->wgp_handshake_start_time) >
   3410 	    wg_rekey_attempt_time) {
   3411 		/* Give up handshaking */
   3412 		wgp->wgp_handshake_start_time = 0;
   3413 		WG_TRACE("give up");
   3414 
   3415 		/*
   3416 		 * If a new data packet comes, handshaking will be retried
   3417 		 * and a new session would be established at that time,
   3418 		 * however we don't want to send pending packets then.
   3419 		 */
   3420 		wg_purge_pending_packets(wgp);
   3421 		return;
   3422 	}
   3423 
   3424 	wg_task_send_init_message(wg, wgp);
   3425 }
   3426 
   3427 static void
   3428 wg_task_establish_session(struct wg_softc *wg, struct wg_peer *wgp)
   3429 {
   3430 	struct wg_session *wgs;
   3431 
   3432 	KASSERT(mutex_owned(wgp->wgp_lock));
   3433 
   3434 	wgs = wgp->wgp_session_unstable;
   3435 	if (wgs->wgs_state != WGS_STATE_INIT_PASSIVE)
   3436 		/* XXX Can this happen?  */
   3437 		return;
   3438 
   3439 	wgs->wgs_time_last_data_sent = 0;
   3440 	wgs->wgs_is_initiator = false;
   3441 
   3442 	/*
   3443 	 * Session was already ready to receive data.  Transition from
   3444 	 * INIT_PASSIVE to ESTABLISHED just so we can swap the
   3445 	 * sessions.
   3446 	 *
   3447 	 * atomic_store_relaxed because this doesn't affect the data rx
   3448 	 * path, wg_handle_msg_data -- changing from INIT_PASSIVE to
   3449 	 * ESTABLISHED makes no difference to the data rx path, and the
   3450 	 * transition to INIT_PASSIVE with store-release already
   3451 	 * published the state needed by the data rx path.
   3452 	 */
   3453 	WG_DLOG("session[L=%"PRIx32" R=%"PRIx32"] -> WGS_STATE_ESTABLISHED\n",
   3454 	    wgs->wgs_local_index, wgs->wgs_remote_index);
   3455 	atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_ESTABLISHED);
   3456 	WG_TRACE("WGS_STATE_ESTABLISHED");
   3457 
   3458 	/*
   3459 	 * Session is ready to send data too now that we have received
   3460 	 * the peer initiator's first data packet.
   3461 	 *
   3462 	 * Swap the sessions to publish the new one as the stable
   3463 	 * session for the data tx path, wg_output.
   3464 	 */
   3465 	wg_swap_sessions(wg, wgp);
   3466 	KASSERT(wgs == wgp->wgp_session_stable);
   3467 }
   3468 
   3469 static void
   3470 wg_task_endpoint_changed(struct wg_softc *wg, struct wg_peer *wgp)
   3471 {
   3472 
   3473 	WG_TRACE("WGP_TASK_ENDPOINT_CHANGED");
   3474 
   3475 	KASSERT(mutex_owned(wgp->wgp_lock));
   3476 
   3477 	if (atomic_load_relaxed(&wgp->wgp_endpoint_changing)) {
   3478 		pserialize_perform(wgp->wgp_psz);
   3479 		mutex_exit(wgp->wgp_lock);
   3480 		psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref,
   3481 		    wg_psref_class);
   3482 		psref_target_init(&wgp->wgp_endpoint0->wgsa_psref,
   3483 		    wg_psref_class);
   3484 		mutex_enter(wgp->wgp_lock);
   3485 		atomic_store_release(&wgp->wgp_endpoint_changing, 0);
   3486 	}
   3487 }
   3488 
   3489 static void
   3490 wg_task_send_keepalive_message(struct wg_softc *wg, struct wg_peer *wgp)
   3491 {
   3492 	struct wg_session *wgs;
   3493 
   3494 	WG_TRACE("WGP_TASK_SEND_KEEPALIVE_MESSAGE");
   3495 
   3496 	KASSERT(mutex_owned(wgp->wgp_lock));
   3497 
   3498 	wgs = wgp->wgp_session_stable;
   3499 	if (wgs->wgs_state != WGS_STATE_ESTABLISHED)
   3500 		return;
   3501 
   3502 	wg_send_keepalive_msg(wgp, wgs);
   3503 }
   3504 
   3505 static void
   3506 wg_task_destroy_prev_session(struct wg_softc *wg, struct wg_peer *wgp)
   3507 {
   3508 	struct wg_session *wgs;
   3509 	uint32_t age;
   3510 
   3511 	WG_TRACE("WGP_TASK_DESTROY_PREV_SESSION");
   3512 
   3513 	KASSERT(mutex_owned(wgp->wgp_lock));
   3514 
   3515 	/*
   3516 	 * If theres's any previous unstable session, i.e., one that
   3517 	 * was ESTABLISHED and is now DESTROYING, older than
   3518 	 * reject-after-time, destroy it.  Upcoming sessions are still
   3519 	 * in INIT_ACTIVE or INIT_PASSIVE -- we don't touch those here.
   3520 	 */
   3521 	wgs = wgp->wgp_session_unstable;
   3522 	KASSERT(wgs->wgs_state != WGS_STATE_ESTABLISHED);
   3523 	if (wgs->wgs_state == WGS_STATE_DESTROYING &&
   3524 	    ((age = (time_uptime32 - wgs->wgs_time_established)) >=
   3525 		wg_reject_after_time)) {
   3526 		WG_DLOG("destroying past session %"PRIu32" sec old\n", age);
   3527 		wg_put_session_index(wg, wgs);
   3528 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   3529 		    wgs->wgs_state);
   3530 	}
   3531 
   3532 	/*
   3533 	 * If theres's any ESTABLISHED stable session older than
   3534 	 * reject-after-time, destroy it.  (The stable session can also
   3535 	 * be in UNKNOWN state -- nothing to do in that case)
   3536 	 */
   3537 	wgs = wgp->wgp_session_stable;
   3538 	KASSERT(wgs->wgs_state != WGS_STATE_INIT_ACTIVE);
   3539 	KASSERT(wgs->wgs_state != WGS_STATE_INIT_PASSIVE);
   3540 	KASSERT(wgs->wgs_state != WGS_STATE_DESTROYING);
   3541 	if (wgs->wgs_state == WGS_STATE_ESTABLISHED &&
   3542 	    ((age = (time_uptime32 - wgs->wgs_time_established)) >=
   3543 		wg_reject_after_time)) {
   3544 		WG_DLOG("destroying current session %"PRIu32" sec old\n", age);
   3545 		atomic_store_relaxed(&wgs->wgs_state, WGS_STATE_DESTROYING);
   3546 		wg_put_session_index(wg, wgs);
   3547 		KASSERTMSG(wgs->wgs_state == WGS_STATE_UNKNOWN, "state=%d",
   3548 		    wgs->wgs_state);
   3549 	}
   3550 
   3551 	/*
   3552 	 * If there's no sessions left, no need to have the timer run
   3553 	 * until the next time around -- halt it.
   3554 	 *
   3555 	 * It is only ever scheduled with wgp_lock held or in the
   3556 	 * callout itself, and callout_halt prevents rescheudling
   3557 	 * itself, so this never races with rescheduling.
   3558 	 */
   3559 	if (wgp->wgp_session_unstable->wgs_state == WGS_STATE_UNKNOWN &&
   3560 	    wgp->wgp_session_stable->wgs_state == WGS_STATE_UNKNOWN)
   3561 		callout_halt(&wgp->wgp_session_dtor_timer, NULL);
   3562 }
   3563 
   3564 static void
   3565 wg_peer_work(struct work *wk, void *cookie)
   3566 {
   3567 	struct wg_peer *wgp = container_of(wk, struct wg_peer, wgp_work);
   3568 	struct wg_softc *wg = wgp->wgp_sc;
   3569 	unsigned int tasks;
   3570 
   3571 	mutex_enter(wgp->wgp_intr_lock);
   3572 	while ((tasks = wgp->wgp_tasks) != 0) {
   3573 		wgp->wgp_tasks = 0;
   3574 		mutex_exit(wgp->wgp_intr_lock);
   3575 
   3576 		mutex_enter(wgp->wgp_lock);
   3577 		if (ISSET(tasks, WGP_TASK_SEND_INIT_MESSAGE))
   3578 			wg_task_send_init_message(wg, wgp);
   3579 		if (ISSET(tasks, WGP_TASK_RETRY_HANDSHAKE))
   3580 			wg_task_retry_handshake(wg, wgp);
   3581 		if (ISSET(tasks, WGP_TASK_ESTABLISH_SESSION))
   3582 			wg_task_establish_session(wg, wgp);
   3583 		if (ISSET(tasks, WGP_TASK_ENDPOINT_CHANGED))
   3584 			wg_task_endpoint_changed(wg, wgp);
   3585 		if (ISSET(tasks, WGP_TASK_SEND_KEEPALIVE_MESSAGE))
   3586 			wg_task_send_keepalive_message(wg, wgp);
   3587 		if (ISSET(tasks, WGP_TASK_DESTROY_PREV_SESSION))
   3588 			wg_task_destroy_prev_session(wg, wgp);
   3589 		mutex_exit(wgp->wgp_lock);
   3590 
   3591 		mutex_enter(wgp->wgp_intr_lock);
   3592 	}
   3593 	mutex_exit(wgp->wgp_intr_lock);
   3594 }
   3595 
   3596 static void
   3597 wg_job(struct threadpool_job *job)
   3598 {
   3599 	struct wg_softc *wg = container_of(job, struct wg_softc, wg_job);
   3600 	int bound, upcalls;
   3601 
   3602 	mutex_enter(wg->wg_intr_lock);
   3603 	while ((upcalls = wg->wg_upcalls) != 0) {
   3604 		wg->wg_upcalls = 0;
   3605 		mutex_exit(wg->wg_intr_lock);
   3606 		bound = curlwp_bind();
   3607 		if (ISSET(upcalls, WG_UPCALL_INET))
   3608 			wg_receive_packets(wg, AF_INET);
   3609 		if (ISSET(upcalls, WG_UPCALL_INET6))
   3610 			wg_receive_packets(wg, AF_INET6);
   3611 		curlwp_bindx(bound);
   3612 		mutex_enter(wg->wg_intr_lock);
   3613 	}
   3614 	threadpool_job_done(job);
   3615 	mutex_exit(wg->wg_intr_lock);
   3616 }
   3617 
   3618 static int
   3619 wg_bind_port(struct wg_softc *wg, const uint16_t port)
   3620 {
   3621 	int error = 0;
   3622 	uint16_t old_port = wg->wg_listen_port;
   3623 
   3624 	if (port != 0 && old_port == port)
   3625 		return 0;
   3626 
   3627 #ifdef INET
   3628 	struct sockaddr_in _sin, *sin = &_sin;
   3629 	sin->sin_len = sizeof(*sin);
   3630 	sin->sin_family = AF_INET;
   3631 	sin->sin_addr.s_addr = INADDR_ANY;
   3632 	sin->sin_port = htons(port);
   3633 
   3634 	error = sobind(wg->wg_so4, sintosa(sin), curlwp);
   3635 	if (error)
   3636 		return error;
   3637 #endif
   3638 
   3639 #ifdef INET6
   3640 	struct sockaddr_in6 _sin6, *sin6 = &_sin6;
   3641 	sin6->sin6_len = sizeof(*sin6);
   3642 	sin6->sin6_family = AF_INET6;
   3643 	sin6->sin6_addr = in6addr_any;
   3644 	sin6->sin6_port = htons(port);
   3645 
   3646 	error = sobind(wg->wg_so6, sin6tosa(sin6), curlwp);
   3647 	if (error)
   3648 		return error;
   3649 #endif
   3650 
   3651 	wg->wg_listen_port = port;
   3652 
   3653 	return error;
   3654 }
   3655 
   3656 static void
   3657 wg_so_upcall(struct socket *so, void *cookie, int events, int waitflag)
   3658 {
   3659 	struct wg_softc *wg = cookie;
   3660 	int reason;
   3661 
   3662 	reason = (so->so_proto->pr_domain->dom_family == AF_INET) ?
   3663 	    WG_UPCALL_INET :
   3664 	    WG_UPCALL_INET6;
   3665 
   3666 	mutex_enter(wg->wg_intr_lock);
   3667 	wg->wg_upcalls |= reason;
   3668 	threadpool_schedule_job(wg->wg_threadpool, &wg->wg_job);
   3669 	mutex_exit(wg->wg_intr_lock);
   3670 }
   3671 
   3672 /*
   3673  * wg_overudp_cb(&m, offset, so, src, arg)
   3674  *
   3675  *	Callback for incoming UDP packets in high-priority
   3676  *	packet-processing path.
   3677  *
   3678  *	Three cases:
   3679  *
   3680  *	- Data packet.  Consumed here for high-priority handling.
   3681  *	  => Returns 1 and takes ownership of m.
   3682  *
   3683  *	- Handshake packet.  Defer to thread context via so_receive in
   3684  *	  wg_receive_packets.
   3685  *	  => Returns 0 and leaves caller with ownership of m.
   3686  *
   3687  *	- Invalid.  Dropped on the floor and freed.
   3688  *	  => Returns -1 and takes ownership of m (frees m).
   3689  */
   3690 static int
   3691 wg_overudp_cb(struct mbuf **mp, int offset, struct socket *so,
   3692     struct sockaddr *src, void *arg)
   3693 {
   3694 	struct wg_softc *wg = arg;
   3695 	struct wg_msg wgm;
   3696 	struct mbuf *m = *mp;
   3697 
   3698 	WG_TRACE("enter");
   3699 
   3700 	/* Verify the mbuf chain is long enough to have a wg msg header.  */
   3701 	KASSERT(offset <= m_length(m));
   3702 	if (__predict_false(m_length(m) - offset < sizeof(struct wg_msg))) {
   3703 		/* drop on the floor */
   3704 		m_freem(m);
   3705 		*mp = NULL;
   3706 		return -1;	/* dropped */
   3707 	}
   3708 
   3709 	/*
   3710 	 * Copy the message header (32-bit message type) out -- we'll
   3711 	 * worry about contiguity and alignment later.
   3712 	 */
   3713 	m_copydata(m, offset, sizeof(struct wg_msg), &wgm);
   3714 	WG_DLOG("type=%d\n", le32toh(wgm.wgm_type));
   3715 
   3716 	/*
   3717 	 * Handle DATA packets promptly as they arrive, if they are in
   3718 	 * an active session.  Other packets may require expensive
   3719 	 * public-key crypto and are not as sensitive to latency, so
   3720 	 * defer them to the worker thread.
   3721 	 */
   3722 	switch (le32toh(wgm.wgm_type)) {
   3723 	case WG_MSG_TYPE_DATA:
   3724 		/* handle immediately */
   3725 		m_adj(m, offset);
   3726 		if (__predict_false(m->m_len < sizeof(struct wg_msg_data))) {
   3727 			m = m_pullup(m, sizeof(struct wg_msg_data));
   3728 			if (m == NULL) {
   3729 				*mp = NULL;
   3730 				return -1; /* dropped */
   3731 			}
   3732 		}
   3733 		wg_handle_msg_data(wg, m, src);
   3734 		*mp = NULL;
   3735 		return 1;	/* consumed */
   3736 	case WG_MSG_TYPE_INIT:
   3737 	case WG_MSG_TYPE_RESP:
   3738 	case WG_MSG_TYPE_COOKIE:
   3739 		/* pass through to so_receive in wg_receive_packets */
   3740 		return 0;	/* passthrough */
   3741 	default:
   3742 		/* drop on the floor */
   3743 		m_freem(m);
   3744 		*mp = NULL;
   3745 		return -1;	/* dropped */
   3746 	}
   3747 }
   3748 
   3749 static int
   3750 wg_socreate(struct wg_softc *wg, int af, struct socket **sop)
   3751 {
   3752 	int error;
   3753 	struct socket *so;
   3754 
   3755 	error = socreate(af, &so, SOCK_DGRAM, 0, curlwp, NULL);
   3756 	if (error != 0)
   3757 		return error;
   3758 
   3759 	solock(so);
   3760 	so->so_upcallarg = wg;
   3761 	so->so_upcall = wg_so_upcall;
   3762 	so->so_rcv.sb_flags |= SB_UPCALL;
   3763 	inpcb_register_overudp_cb(sotoinpcb(so), wg_overudp_cb, wg);
   3764 	sounlock(so);
   3765 
   3766 	*sop = so;
   3767 
   3768 	return 0;
   3769 }
   3770 
   3771 static bool
   3772 wg_session_hit_limits(struct wg_session *wgs)
   3773 {
   3774 
   3775 	/*
   3776 	 * [W] 6.2: Transport Message Limits
   3777 	 * "After REJECT-AFTER-MESSAGES transport data messages or after the
   3778 	 *  current secure session is REJECT-AFTER-TIME seconds old, whichever
   3779 	 *  comes first, WireGuard will refuse to send or receive any more
   3780 	 *  transport data messages using the current secure session, ..."
   3781 	 */
   3782 	KASSERT(wgs->wgs_time_established != 0 || time_uptime > UINT32_MAX);
   3783 	if (time_uptime32 - wgs->wgs_time_established > wg_reject_after_time) {
   3784 		WG_DLOG("The session hits REJECT_AFTER_TIME\n");
   3785 		return true;
   3786 	} else if (wg_session_get_send_counter(wgs) >
   3787 	    wg_reject_after_messages) {
   3788 		WG_DLOG("The session hits REJECT_AFTER_MESSAGES\n");
   3789 		return true;
   3790 	}
   3791 
   3792 	return false;
   3793 }
   3794 
   3795 static void
   3796 wgintr(void *cookie)
   3797 {
   3798 	struct wg_peer *wgp;
   3799 	struct wg_session *wgs;
   3800 	struct mbuf *m;
   3801 	struct psref psref;
   3802 
   3803 	while ((m = pktq_dequeue(wg_pktq)) != NULL) {
   3804 		wgp = M_GETCTX(m, struct wg_peer *);
   3805 		if ((wgs = wg_get_stable_session(wgp, &psref)) == NULL) {
   3806 			/*
   3807 			 * No established session.  If we're the first
   3808 			 * to try sending data, schedule a handshake
   3809 			 * and queue the packet for when the handshake
   3810 			 * is done; otherwise just drop the packet and
   3811 			 * let the ongoing handshake attempt continue.
   3812 			 * We could queue more data packets but it's
   3813 			 * not clear that's worthwhile.
   3814 			 */
   3815 			WG_TRACE("no stable session");
   3816 			membar_release();
   3817 			if ((m = atomic_swap_ptr(&wgp->wgp_pending, m)) ==
   3818 			    NULL) {
   3819 				WG_TRACE("queued first packet;"
   3820 				    " init handshake");
   3821 				wg_schedule_peer_task(wgp,
   3822 				    WGP_TASK_SEND_INIT_MESSAGE);
   3823 			} else {
   3824 				membar_acquire();
   3825 				WG_TRACE("first packet already queued,"
   3826 				    " dropping");
   3827 			}
   3828 			goto next0;
   3829 		}
   3830 		if (__predict_false(wg_session_hit_limits(wgs))) {
   3831 			WG_TRACE("stable session hit limits");
   3832 			membar_release();
   3833 			if ((m = atomic_swap_ptr(&wgp->wgp_pending, m)) ==
   3834 			    NULL) {
   3835 				WG_TRACE("queued first packet in a while;"
   3836 				    " reinit handshake");
   3837 				atomic_store_relaxed(&wgs->wgs_force_rekey,
   3838 				    true);
   3839 				wg_schedule_peer_task(wgp,
   3840 				    WGP_TASK_SEND_INIT_MESSAGE);
   3841 			} else {
   3842 				membar_acquire();
   3843 				WG_TRACE("first packet in already queued,"
   3844 				    " dropping");
   3845 			}
   3846 			goto next1;
   3847 		}
   3848 		wg_send_data_msg(wgp, wgs, m);
   3849 		m = NULL;	/* consumed */
   3850 next1:		wg_put_session(wgs, &psref);
   3851 next0:		m_freem(m);
   3852 		/* XXX Yield to avoid userland starvation?  */
   3853 	}
   3854 }
   3855 
   3856 static void
   3857 wg_purge_pending_packets(struct wg_peer *wgp)
   3858 {
   3859 	struct mbuf *m;
   3860 
   3861 	m = atomic_swap_ptr(&wgp->wgp_pending, NULL);
   3862 	membar_acquire();     /* matches membar_release in wgintr */
   3863 	m_freem(m);
   3864 #ifdef ALTQ
   3865 	wg_start(&wgp->wgp_sc->wg_if);
   3866 #endif
   3867 	pktq_barrier(wg_pktq);
   3868 }
   3869 
   3870 static void
   3871 wg_handshake_timeout_timer(void *arg)
   3872 {
   3873 	struct wg_peer *wgp = arg;
   3874 
   3875 	WG_TRACE("enter");
   3876 
   3877 	wg_schedule_peer_task(wgp, WGP_TASK_RETRY_HANDSHAKE);
   3878 }
   3879 
   3880 static struct wg_peer *
   3881 wg_alloc_peer(struct wg_softc *wg)
   3882 {
   3883 	struct wg_peer *wgp;
   3884 
   3885 	wgp = kmem_zalloc(sizeof(*wgp), KM_SLEEP);
   3886 
   3887 	wgp->wgp_sc = wg;
   3888 	callout_init(&wgp->wgp_handshake_timeout_timer, CALLOUT_MPSAFE);
   3889 	callout_setfunc(&wgp->wgp_handshake_timeout_timer,
   3890 	    wg_handshake_timeout_timer, wgp);
   3891 	callout_init(&wgp->wgp_session_dtor_timer, CALLOUT_MPSAFE);
   3892 	callout_setfunc(&wgp->wgp_session_dtor_timer,
   3893 	    wg_session_dtor_timer, wgp);
   3894 	PSLIST_ENTRY_INIT(wgp, wgp_peerlist_entry);
   3895 	wgp->wgp_endpoint_changing = false;
   3896 	wgp->wgp_endpoint_available = false;
   3897 	wgp->wgp_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   3898 	wgp->wgp_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3899 	wgp->wgp_psz = pserialize_create();
   3900 	psref_target_init(&wgp->wgp_psref, wg_psref_class);
   3901 
   3902 	wgp->wgp_endpoint = kmem_zalloc(sizeof(*wgp->wgp_endpoint), KM_SLEEP);
   3903 	wgp->wgp_endpoint0 = kmem_zalloc(sizeof(*wgp->wgp_endpoint0), KM_SLEEP);
   3904 	psref_target_init(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3905 	psref_target_init(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3906 
   3907 	struct wg_session *wgs;
   3908 	wgp->wgp_session_stable =
   3909 	    kmem_zalloc(sizeof(*wgp->wgp_session_stable), KM_SLEEP);
   3910 	wgp->wgp_session_unstable =
   3911 	    kmem_zalloc(sizeof(*wgp->wgp_session_unstable), KM_SLEEP);
   3912 	wgs = wgp->wgp_session_stable;
   3913 	wgs->wgs_peer = wgp;
   3914 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3915 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3916 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3917 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3918 #endif
   3919 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3920 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3921 
   3922 	wgs = wgp->wgp_session_unstable;
   3923 	wgs->wgs_peer = wgp;
   3924 	wgs->wgs_state = WGS_STATE_UNKNOWN;
   3925 	psref_target_init(&wgs->wgs_psref, wg_psref_class);
   3926 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3927 	mutex_init(&wgs->wgs_send_counter_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3928 #endif
   3929 	wgs->wgs_recvwin = kmem_zalloc(sizeof(*wgs->wgs_recvwin), KM_SLEEP);
   3930 	mutex_init(&wgs->wgs_recvwin->lock, MUTEX_DEFAULT, IPL_SOFTNET);
   3931 
   3932 	return wgp;
   3933 }
   3934 
   3935 static void
   3936 wg_destroy_peer(struct wg_peer *wgp)
   3937 {
   3938 	struct wg_session *wgs;
   3939 	struct wg_softc *wg = wgp->wgp_sc;
   3940 
   3941 	/* Prevent new packets from this peer on any source address.  */
   3942 	rw_enter(wg->wg_rwlock, RW_WRITER);
   3943 	for (int i = 0; i < wgp->wgp_n_allowedips; i++) {
   3944 		struct wg_allowedip *wga = &wgp->wgp_allowedips[i];
   3945 		struct radix_node_head *rnh = wg_rnh(wg, wga->wga_family);
   3946 		struct radix_node *rn;
   3947 
   3948 		KASSERT(rnh != NULL);
   3949 		rn = rnh->rnh_deladdr(&wga->wga_sa_addr,
   3950 		    &wga->wga_sa_mask, rnh);
   3951 		if (rn == NULL) {
   3952 			char addrstr[128];
   3953 			sockaddr_format(&wga->wga_sa_addr, addrstr,
   3954 			    sizeof(addrstr));
   3955 			WGLOG(LOG_WARNING, "%s: Couldn't delete %s",
   3956 			    if_name(&wg->wg_if), addrstr);
   3957 		}
   3958 	}
   3959 	rw_exit(wg->wg_rwlock);
   3960 
   3961 	/* Purge pending packets.  */
   3962 	wg_purge_pending_packets(wgp);
   3963 
   3964 	/* Halt all packet processing and timeouts.  */
   3965 	callout_halt(&wgp->wgp_handshake_timeout_timer, NULL);
   3966 	callout_halt(&wgp->wgp_session_dtor_timer, NULL);
   3967 
   3968 	/* Wait for any queued work to complete.  */
   3969 	workqueue_wait(wg_wq, &wgp->wgp_work);
   3970 
   3971 	wgs = wgp->wgp_session_unstable;
   3972 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3973 		mutex_enter(wgp->wgp_lock);
   3974 		wg_destroy_session(wg, wgs);
   3975 		mutex_exit(wgp->wgp_lock);
   3976 	}
   3977 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3978 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3979 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3980 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3981 #endif
   3982 	kmem_free(wgs, sizeof(*wgs));
   3983 
   3984 	wgs = wgp->wgp_session_stable;
   3985 	if (wgs->wgs_state != WGS_STATE_UNKNOWN) {
   3986 		mutex_enter(wgp->wgp_lock);
   3987 		wg_destroy_session(wg, wgs);
   3988 		mutex_exit(wgp->wgp_lock);
   3989 	}
   3990 	mutex_destroy(&wgs->wgs_recvwin->lock);
   3991 	kmem_free(wgs->wgs_recvwin, sizeof(*wgs->wgs_recvwin));
   3992 #ifndef __HAVE_ATOMIC64_LOADSTORE
   3993 	mutex_destroy(&wgs->wgs_send_counter_lock);
   3994 #endif
   3995 	kmem_free(wgs, sizeof(*wgs));
   3996 
   3997 	psref_target_destroy(&wgp->wgp_endpoint->wgsa_psref, wg_psref_class);
   3998 	psref_target_destroy(&wgp->wgp_endpoint0->wgsa_psref, wg_psref_class);
   3999 	kmem_free(wgp->wgp_endpoint, sizeof(*wgp->wgp_endpoint));
   4000 	kmem_free(wgp->wgp_endpoint0, sizeof(*wgp->wgp_endpoint0));
   4001 
   4002 	pserialize_destroy(wgp->wgp_psz);
   4003 	mutex_obj_free(wgp->wgp_intr_lock);
   4004 	mutex_obj_free(wgp->wgp_lock);
   4005 
   4006 	kmem_free(wgp, sizeof(*wgp));
   4007 }
   4008 
   4009 static void
   4010 wg_destroy_all_peers(struct wg_softc *wg)
   4011 {
   4012 	struct wg_peer *wgp, *wgp0 __diagused;
   4013 	void *garbage_byname, *garbage_bypubkey;
   4014 
   4015 restart:
   4016 	garbage_byname = garbage_bypubkey = NULL;
   4017 	mutex_enter(wg->wg_lock);
   4018 	WG_PEER_WRITER_FOREACH(wgp, wg) {
   4019 		if (wgp->wgp_name[0]) {
   4020 			wgp0 = thmap_del(wg->wg_peers_byname, wgp->wgp_name,
   4021 			    strlen(wgp->wgp_name));
   4022 			KASSERT(wgp0 == wgp);
   4023 			garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   4024 		}
   4025 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4026 		    sizeof(wgp->wgp_pubkey));
   4027 		KASSERT(wgp0 == wgp);
   4028 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   4029 		WG_PEER_WRITER_REMOVE(wgp);
   4030 		wg->wg_npeers--;
   4031 		mutex_enter(wgp->wgp_lock);
   4032 		pserialize_perform(wgp->wgp_psz);
   4033 		mutex_exit(wgp->wgp_lock);
   4034 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   4035 		break;
   4036 	}
   4037 	mutex_exit(wg->wg_lock);
   4038 
   4039 	if (wgp == NULL)
   4040 		return;
   4041 
   4042 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   4043 
   4044 	wg_destroy_peer(wgp);
   4045 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   4046 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   4047 
   4048 	goto restart;
   4049 }
   4050 
   4051 static int
   4052 wg_destroy_peer_name(struct wg_softc *wg, const char *name)
   4053 {
   4054 	struct wg_peer *wgp, *wgp0 __diagused;
   4055 	void *garbage_byname, *garbage_bypubkey;
   4056 
   4057 	mutex_enter(wg->wg_lock);
   4058 	wgp = thmap_del(wg->wg_peers_byname, name, strlen(name));
   4059 	if (wgp != NULL) {
   4060 		wgp0 = thmap_del(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4061 		    sizeof(wgp->wgp_pubkey));
   4062 		KASSERT(wgp0 == wgp);
   4063 		garbage_byname = thmap_stage_gc(wg->wg_peers_byname);
   4064 		garbage_bypubkey = thmap_stage_gc(wg->wg_peers_bypubkey);
   4065 		WG_PEER_WRITER_REMOVE(wgp);
   4066 		wg->wg_npeers--;
   4067 		if (wg->wg_npeers == 0)
   4068 			if_link_state_change(&wg->wg_if, LINK_STATE_DOWN);
   4069 		mutex_enter(wgp->wgp_lock);
   4070 		pserialize_perform(wgp->wgp_psz);
   4071 		mutex_exit(wgp->wgp_lock);
   4072 		PSLIST_ENTRY_DESTROY(wgp, wgp_peerlist_entry);
   4073 	}
   4074 	mutex_exit(wg->wg_lock);
   4075 
   4076 	if (wgp == NULL)
   4077 		return ENOENT;
   4078 
   4079 	psref_target_destroy(&wgp->wgp_psref, wg_psref_class);
   4080 
   4081 	wg_destroy_peer(wgp);
   4082 	thmap_gc(wg->wg_peers_byname, garbage_byname);
   4083 	thmap_gc(wg->wg_peers_bypubkey, garbage_bypubkey);
   4084 
   4085 	return 0;
   4086 }
   4087 
   4088 static int
   4089 wg_if_attach(struct wg_softc *wg)
   4090 {
   4091 
   4092 	wg->wg_if.if_addrlen = 0;
   4093 	wg->wg_if.if_mtu = WG_MTU;
   4094 	wg->wg_if.if_flags = IFF_MULTICAST;
   4095 	wg->wg_if.if_extflags = IFEF_MPSAFE;
   4096 	wg->wg_if.if_ioctl = wg_ioctl;
   4097 	wg->wg_if.if_output = wg_output;
   4098 	wg->wg_if.if_init = wg_init;
   4099 #ifdef ALTQ
   4100 	wg->wg_if.if_start = wg_start;
   4101 #endif
   4102 	wg->wg_if.if_stop = wg_stop;
   4103 	wg->wg_if.if_type = IFT_OTHER;
   4104 	wg->wg_if.if_dlt = DLT_NULL;
   4105 	wg->wg_if.if_softc = wg;
   4106 #ifdef ALTQ
   4107 	IFQ_SET_READY(&wg->wg_if.if_snd);
   4108 #endif
   4109 	if_initialize(&wg->wg_if);
   4110 
   4111 	wg->wg_if.if_link_state = LINK_STATE_DOWN;
   4112 	if_alloc_sadl(&wg->wg_if);
   4113 	if_register(&wg->wg_if);
   4114 
   4115 	bpf_attach(&wg->wg_if, DLT_NULL, sizeof(uint32_t));
   4116 
   4117 	return 0;
   4118 }
   4119 
   4120 static void
   4121 wg_if_detach(struct wg_softc *wg)
   4122 {
   4123 	struct ifnet *ifp = &wg->wg_if;
   4124 
   4125 	bpf_detach(ifp);
   4126 	if_detach(ifp);
   4127 }
   4128 
   4129 static int
   4130 wg_clone_create(struct if_clone *ifc, int unit)
   4131 {
   4132 	struct wg_softc *wg;
   4133 	int error;
   4134 
   4135 	wg_guarantee_initialized();
   4136 
   4137 	error = wg_count_inc();
   4138 	if (error)
   4139 		return error;
   4140 
   4141 	wg = kmem_zalloc(sizeof(*wg), KM_SLEEP);
   4142 
   4143 	if_initname(&wg->wg_if, ifc->ifc_name, unit);
   4144 
   4145 	PSLIST_INIT(&wg->wg_peers);
   4146 	wg->wg_peers_bypubkey = thmap_create(0, NULL, THMAP_NOCOPY);
   4147 	wg->wg_peers_byname = thmap_create(0, NULL, THMAP_NOCOPY);
   4148 	wg->wg_sessions_byindex = thmap_create(0, NULL, THMAP_NOCOPY);
   4149 	wg->wg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   4150 	wg->wg_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   4151 	wg->wg_rwlock = rw_obj_alloc();
   4152 	threadpool_job_init(&wg->wg_job, wg_job, wg->wg_intr_lock,
   4153 	    "%s", if_name(&wg->wg_if));
   4154 	wg->wg_ops = &wg_ops_rumpkernel;
   4155 
   4156 	error = threadpool_get(&wg->wg_threadpool, PRI_NONE);
   4157 	if (error)
   4158 		goto fail0;
   4159 
   4160 #ifdef INET
   4161 	error = wg_socreate(wg, AF_INET, &wg->wg_so4);
   4162 	if (error)
   4163 		goto fail1;
   4164 	rn_inithead((void **)&wg->wg_rtable_ipv4,
   4165 	    offsetof(struct sockaddr_in, sin_addr) * NBBY);
   4166 #endif
   4167 #ifdef INET6
   4168 	error = wg_socreate(wg, AF_INET6, &wg->wg_so6);
   4169 	if (error)
   4170 		goto fail2;
   4171 	rn_inithead((void **)&wg->wg_rtable_ipv6,
   4172 	    offsetof(struct sockaddr_in6, sin6_addr) * NBBY);
   4173 #endif
   4174 
   4175 	error = wg_if_attach(wg);
   4176 	if (error)
   4177 		goto fail3;
   4178 
   4179 	return 0;
   4180 
   4181 fail4: __unused
   4182 	wg_destroy_all_peers(wg);
   4183 	wg_if_detach(wg);
   4184 fail3:
   4185 #ifdef INET6
   4186 	solock(wg->wg_so6);
   4187 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   4188 	sounlock(wg->wg_so6);
   4189 #endif
   4190 #ifdef INET
   4191 	solock(wg->wg_so4);
   4192 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   4193 	sounlock(wg->wg_so4);
   4194 #endif
   4195 	mutex_enter(wg->wg_intr_lock);
   4196 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   4197 	mutex_exit(wg->wg_intr_lock);
   4198 #ifdef INET6
   4199 	if (wg->wg_rtable_ipv6 != NULL)
   4200 		free(wg->wg_rtable_ipv6, M_RTABLE);
   4201 	soclose(wg->wg_so6);
   4202 fail2:
   4203 #endif
   4204 #ifdef INET
   4205 	if (wg->wg_rtable_ipv4 != NULL)
   4206 		free(wg->wg_rtable_ipv4, M_RTABLE);
   4207 	soclose(wg->wg_so4);
   4208 fail1:
   4209 #endif
   4210 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   4211 fail0:	threadpool_job_destroy(&wg->wg_job);
   4212 	rw_obj_free(wg->wg_rwlock);
   4213 	mutex_obj_free(wg->wg_intr_lock);
   4214 	mutex_obj_free(wg->wg_lock);
   4215 	thmap_destroy(wg->wg_sessions_byindex);
   4216 	thmap_destroy(wg->wg_peers_byname);
   4217 	thmap_destroy(wg->wg_peers_bypubkey);
   4218 	PSLIST_DESTROY(&wg->wg_peers);
   4219 	kmem_free(wg, sizeof(*wg));
   4220 	wg_count_dec();
   4221 	return error;
   4222 }
   4223 
   4224 static int
   4225 wg_clone_destroy(struct ifnet *ifp)
   4226 {
   4227 	struct wg_softc *wg = container_of(ifp, struct wg_softc, wg_if);
   4228 
   4229 #ifdef WG_RUMPKERNEL
   4230 	if (wg_user_mode(wg)) {
   4231 		rumpuser_wg_destroy(wg->wg_user);
   4232 		wg->wg_user = NULL;
   4233 	}
   4234 #endif
   4235 
   4236 	wg_destroy_all_peers(wg);
   4237 	wg_if_detach(wg);
   4238 #ifdef INET6
   4239 	solock(wg->wg_so6);
   4240 	wg->wg_so6->so_rcv.sb_flags &= ~SB_UPCALL;
   4241 	sounlock(wg->wg_so6);
   4242 #endif
   4243 #ifdef INET
   4244 	solock(wg->wg_so4);
   4245 	wg->wg_so4->so_rcv.sb_flags &= ~SB_UPCALL;
   4246 	sounlock(wg->wg_so4);
   4247 #endif
   4248 	mutex_enter(wg->wg_intr_lock);
   4249 	threadpool_cancel_job(wg->wg_threadpool, &wg->wg_job);
   4250 	mutex_exit(wg->wg_intr_lock);
   4251 #ifdef INET6
   4252 	if (wg->wg_rtable_ipv6 != NULL)
   4253 		free(wg->wg_rtable_ipv6, M_RTABLE);
   4254 	soclose(wg->wg_so6);
   4255 #endif
   4256 #ifdef INET
   4257 	if (wg->wg_rtable_ipv4 != NULL)
   4258 		free(wg->wg_rtable_ipv4, M_RTABLE);
   4259 	soclose(wg->wg_so4);
   4260 #endif
   4261 	threadpool_put(wg->wg_threadpool, PRI_NONE);
   4262 	threadpool_job_destroy(&wg->wg_job);
   4263 	rw_obj_free(wg->wg_rwlock);
   4264 	mutex_obj_free(wg->wg_intr_lock);
   4265 	mutex_obj_free(wg->wg_lock);
   4266 	thmap_destroy(wg->wg_sessions_byindex);
   4267 	thmap_destroy(wg->wg_peers_byname);
   4268 	thmap_destroy(wg->wg_peers_bypubkey);
   4269 	PSLIST_DESTROY(&wg->wg_peers);
   4270 	kmem_free(wg, sizeof(*wg));
   4271 	wg_count_dec();
   4272 
   4273 	return 0;
   4274 }
   4275 
   4276 static struct wg_peer *
   4277 wg_pick_peer_by_sa(struct wg_softc *wg, const struct sockaddr *sa,
   4278     struct psref *psref)
   4279 {
   4280 	struct radix_node_head *rnh;
   4281 	struct radix_node *rn;
   4282 	struct wg_peer *wgp = NULL;
   4283 	struct wg_allowedip *wga;
   4284 
   4285 #ifdef WG_DEBUG_LOG
   4286 	char addrstr[128];
   4287 	sockaddr_format(sa, addrstr, sizeof(addrstr));
   4288 	WG_DLOG("sa=%s\n", addrstr);
   4289 #endif
   4290 
   4291 	rw_enter(wg->wg_rwlock, RW_READER);
   4292 
   4293 	rnh = wg_rnh(wg, sa->sa_family);
   4294 	if (rnh == NULL)
   4295 		goto out;
   4296 
   4297 	rn = rnh->rnh_matchaddr(sa, rnh);
   4298 	if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0)
   4299 		goto out;
   4300 
   4301 	WG_TRACE("success");
   4302 
   4303 	wga = container_of(rn, struct wg_allowedip, wga_nodes[0]);
   4304 	wgp = wga->wga_peer;
   4305 	wg_get_peer(wgp, psref);
   4306 
   4307 out:
   4308 	rw_exit(wg->wg_rwlock);
   4309 	return wgp;
   4310 }
   4311 
   4312 static void
   4313 wg_fill_msg_data(struct wg_softc *wg, struct wg_peer *wgp,
   4314     struct wg_session *wgs, struct wg_msg_data *wgmd)
   4315 {
   4316 
   4317 	memset(wgmd, 0, sizeof(*wgmd));
   4318 	wgmd->wgmd_type = htole32(WG_MSG_TYPE_DATA);
   4319 	wgmd->wgmd_receiver = wgs->wgs_remote_index;
   4320 	/* [W] 5.4.6: msg.counter := Nm^send */
   4321 	/* [W] 5.4.6: Nm^send := Nm^send + 1 */
   4322 	wgmd->wgmd_counter = htole64(wg_session_inc_send_counter(wgs));
   4323 	WG_DLOG("counter=%"PRIu64"\n", le64toh(wgmd->wgmd_counter));
   4324 }
   4325 
   4326 static int
   4327 wg_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
   4328     const struct rtentry *rt)
   4329 {
   4330 	struct wg_softc *wg = ifp->if_softc;
   4331 	struct wg_peer *wgp = NULL;
   4332 	struct psref wgp_psref;
   4333 	int bound;
   4334 	int error;
   4335 
   4336 	bound = curlwp_bind();
   4337 
   4338 	/* TODO make the nest limit configurable via sysctl */
   4339 	error = if_tunnel_check_nesting(ifp, m, 1);
   4340 	if (error) {
   4341 		WGLOG(LOG_ERR,
   4342 		    "%s: tunneling loop detected and packet dropped\n",
   4343 		    if_name(&wg->wg_if));
   4344 		goto out0;
   4345 	}
   4346 
   4347 #ifdef ALTQ
   4348 	bool altq = atomic_load_relaxed(&ifp->if_snd.altq_flags)
   4349 	    & ALTQF_ENABLED;
   4350 	if (altq)
   4351 		IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
   4352 #endif
   4353 
   4354 	bpf_mtap_af(ifp, dst->sa_family, m, BPF_D_OUT);
   4355 
   4356 	m->m_flags &= ~(M_BCAST|M_MCAST);
   4357 
   4358 	wgp = wg_pick_peer_by_sa(wg, dst, &wgp_psref);
   4359 	if (wgp == NULL) {
   4360 		WG_TRACE("peer not found");
   4361 		error = EHOSTUNREACH;
   4362 		goto out0;
   4363 	}
   4364 
   4365 	/* Clear checksum-offload flags. */
   4366 	m->m_pkthdr.csum_flags = 0;
   4367 	m->m_pkthdr.csum_data = 0;
   4368 
   4369 	/* Toss it in the queue.  */
   4370 #ifdef ALTQ
   4371 	if (altq) {
   4372 		mutex_enter(ifp->if_snd.ifq_lock);
   4373 		if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   4374 			M_SETCTX(m, wgp);
   4375 			ALTQ_ENQUEUE(&ifp->if_snd, m, error);
   4376 			m = NULL; /* consume */
   4377 		}
   4378 		mutex_exit(ifp->if_snd.ifq_lock);
   4379 		if (m == NULL) {
   4380 			wg_start(ifp);
   4381 			goto out1;
   4382 		}
   4383 	}
   4384 #endif
   4385 	kpreempt_disable();
   4386 	const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   4387 	M_SETCTX(m, wgp);
   4388 	if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   4389 		WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   4390 		    if_name(&wg->wg_if));
   4391 		error = ENOBUFS;
   4392 		goto out2;
   4393 	}
   4394 	m = NULL;		/* consumed */
   4395 	error = 0;
   4396 out2:	kpreempt_enable();
   4397 
   4398 #ifdef ALTQ
   4399 out1:
   4400 #endif
   4401 	wg_put_peer(wgp, &wgp_psref);
   4402 out0:	m_freem(m);
   4403 	curlwp_bindx(bound);
   4404 	return error;
   4405 }
   4406 
   4407 static int
   4408 wg_send_data(struct wg_peer *wgp, struct mbuf *m)
   4409 {
   4410 	struct psref psref;
   4411 	struct wg_sockaddr *wgsa;
   4412 	int error;
   4413 	struct socket *so;
   4414 
   4415 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   4416 	so = wg_get_so_by_peer(wgp, wgsa);
   4417 	solock(so);
   4418 	switch (wgsatosa(wgsa)->sa_family) {
   4419 #ifdef INET
   4420 	case AF_INET:
   4421 		error = udp_send(so, m, wgsatosa(wgsa), NULL, curlwp);
   4422 		break;
   4423 #endif
   4424 #ifdef INET6
   4425 	case AF_INET6:
   4426 		error = udp6_output(sotoinpcb(so), m, wgsatosin6(wgsa),
   4427 		    NULL, curlwp);
   4428 		break;
   4429 #endif
   4430 	default:
   4431 		m_freem(m);
   4432 		error = EPFNOSUPPORT;
   4433 	}
   4434 	sounlock(so);
   4435 	wg_put_sa(wgp, wgsa, &psref);
   4436 
   4437 	return error;
   4438 }
   4439 
   4440 /* Inspired by pppoe_get_mbuf */
   4441 static struct mbuf *
   4442 wg_get_mbuf(size_t leading_len, size_t len)
   4443 {
   4444 	struct mbuf *m;
   4445 
   4446 	KASSERT(leading_len <= MCLBYTES);
   4447 	KASSERT(len <= MCLBYTES - leading_len);
   4448 
   4449 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   4450 	if (m == NULL)
   4451 		return NULL;
   4452 	if (len + leading_len > MHLEN) {
   4453 		m_clget(m, M_DONTWAIT);
   4454 		if ((m->m_flags & M_EXT) == 0) {
   4455 			m_free(m);
   4456 			return NULL;
   4457 		}
   4458 	}
   4459 	m->m_data += leading_len;
   4460 	m->m_pkthdr.len = m->m_len = len;
   4461 
   4462 	return m;
   4463 }
   4464 
   4465 static void
   4466 wg_send_data_msg(struct wg_peer *wgp, struct wg_session *wgs, struct mbuf *m)
   4467 {
   4468 	struct wg_softc *wg = wgp->wgp_sc;
   4469 	int error;
   4470 	size_t inner_len, padded_len, encrypted_len;
   4471 	char *padded_buf = NULL;
   4472 	size_t mlen;
   4473 	struct wg_msg_data *wgmd;
   4474 	bool free_padded_buf = false;
   4475 	struct mbuf *n;
   4476 	size_t leading_len = max_hdr + sizeof(struct udphdr);
   4477 
   4478 	mlen = m_length(m);
   4479 	inner_len = mlen;
   4480 	padded_len = roundup(mlen, 16);
   4481 	encrypted_len = padded_len + WG_AUTHTAG_LEN;
   4482 	WG_DLOG("inner=%zu, padded=%zu, encrypted_len=%zu\n",
   4483 	    inner_len, padded_len, encrypted_len);
   4484 	if (mlen != 0) {
   4485 		bool success;
   4486 		success = m_ensure_contig(&m, padded_len);
   4487 		if (success) {
   4488 			padded_buf = mtod(m, char *);
   4489 		} else {
   4490 			padded_buf = kmem_intr_alloc(padded_len, KM_NOSLEEP);
   4491 			if (padded_buf == NULL) {
   4492 				error = ENOBUFS;
   4493 				goto out;
   4494 			}
   4495 			free_padded_buf = true;
   4496 			m_copydata(m, 0, mlen, padded_buf);
   4497 		}
   4498 		memset(padded_buf + mlen, 0, padded_len - inner_len);
   4499 	}
   4500 
   4501 	n = wg_get_mbuf(leading_len, sizeof(*wgmd) + encrypted_len);
   4502 	if (n == NULL) {
   4503 		error = ENOBUFS;
   4504 		goto out;
   4505 	}
   4506 	KASSERT(n->m_len >= sizeof(*wgmd));
   4507 	wgmd = mtod(n, struct wg_msg_data *);
   4508 	wg_fill_msg_data(wg, wgp, wgs, wgmd);
   4509 
   4510 	/* [W] 5.4.6: AEAD(Tm^send, Nm^send, P, e) */
   4511 	wg_algo_aead_enc((char *)wgmd + sizeof(*wgmd), encrypted_len,
   4512 	    wgs->wgs_tkey_send, le64toh(wgmd->wgmd_counter),
   4513 	    padded_buf, padded_len,
   4514 	    NULL, 0);
   4515 
   4516 	error = wg->wg_ops->send_data_msg(wgp, n); /* consumes n */
   4517 	if (error) {
   4518 		WG_DLOG("send_data_msg failed, error=%d\n", error);
   4519 		goto out;
   4520 	}
   4521 
   4522 	/*
   4523 	 * Packet was sent out -- count it in the interface statistics.
   4524 	 */
   4525 	if_statadd(&wg->wg_if, if_obytes, mlen);
   4526 	if_statinc(&wg->wg_if, if_opackets);
   4527 
   4528 	/*
   4529 	 * Record when we last sent data, for determining when we need
   4530 	 * to send a passive keepalive.
   4531 	 *
   4532 	 * Other logic assumes that wgs_time_last_data_sent is zero iff
   4533 	 * we have never sent data on this session.  Early at boot, if
   4534 	 * wg(4) starts operating within <1sec, or after 136 years of
   4535 	 * uptime, we may observe time_uptime32 = 0.  In that case,
   4536 	 * pretend we observed 1 instead.  That way, we correctly
   4537 	 * indicate we have sent data on this session; the only logic
   4538 	 * this might adversely affect is the keepalive timeout
   4539 	 * detection, which might spuriously send a keepalive during
   4540 	 * one second every 136 years.  All of this is very silly, of
   4541 	 * course, but the cost to guaranteeing wgs_time_last_data_sent
   4542 	 * is nonzero is negligible here.
   4543 	 */
   4544 	const uint32_t now = time_uptime32;
   4545 	atomic_store_relaxed(&wgs->wgs_time_last_data_sent, MAX(now, 1));
   4546 
   4547 	/*
   4548 	 * Check rekey-after-time.
   4549 	 */
   4550 	if (wgs->wgs_is_initiator &&
   4551 	    now - wgs->wgs_time_established >= wg_rekey_after_time) {
   4552 		/*
   4553 		 * [W] 6.2 Transport Message Limits
   4554 		 * "if a peer is the initiator of a current secure
   4555 		 *  session, WireGuard will send a handshake initiation
   4556 		 *  message to begin a new secure session if, after
   4557 		 *  transmitting a transport data message, the current
   4558 		 *  secure session is REKEY-AFTER-TIME seconds old,"
   4559 		 */
   4560 		WG_TRACE("rekey after time");
   4561 		atomic_store_relaxed(&wgs->wgs_force_rekey, true);
   4562 		wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   4563 	}
   4564 
   4565 	/*
   4566 	 * Check rekey-after-messages.
   4567 	 */
   4568 	if (wg_session_get_send_counter(wgs) >= wg_rekey_after_messages) {
   4569 		/*
   4570 		 * [W] 6.2 Transport Message Limits
   4571 		 * "WireGuard will try to create a new session, by
   4572 		 *  sending a handshake initiation message (section
   4573 		 *  5.4.2), after it has sent REKEY-AFTER-MESSAGES
   4574 		 *  transport data messages..."
   4575 		 */
   4576 		WG_TRACE("rekey after messages");
   4577 		atomic_store_relaxed(&wgs->wgs_force_rekey, true);
   4578 		wg_schedule_peer_task(wgp, WGP_TASK_SEND_INIT_MESSAGE);
   4579 	}
   4580 
   4581 out:	m_freem(m);
   4582 	if (free_padded_buf)
   4583 		kmem_intr_free(padded_buf, padded_len);
   4584 }
   4585 
   4586 static void
   4587 wg_input(struct ifnet *ifp, struct mbuf *m, const int af)
   4588 {
   4589 	pktqueue_t *pktq;
   4590 	size_t pktlen;
   4591 
   4592 	KASSERT(af == AF_INET || af == AF_INET6);
   4593 
   4594 	WG_TRACE("");
   4595 
   4596 	m_set_rcvif(m, ifp);
   4597 	pktlen = m->m_pkthdr.len;
   4598 
   4599 	bpf_mtap_af(ifp, af, m, BPF_D_IN);
   4600 
   4601 	switch (af) {
   4602 #ifdef INET
   4603 	case AF_INET:
   4604 		pktq = ip_pktq;
   4605 		break;
   4606 #endif
   4607 #ifdef INET6
   4608 	case AF_INET6:
   4609 		pktq = ip6_pktq;
   4610 		break;
   4611 #endif
   4612 	default:
   4613 		panic("invalid af=%d", af);
   4614 	}
   4615 
   4616 	kpreempt_disable();
   4617 	const u_int h = curcpu()->ci_index;
   4618 	if (__predict_true(pktq_enqueue(pktq, m, h))) {
   4619 		if_statadd(ifp, if_ibytes, pktlen);
   4620 		if_statinc(ifp, if_ipackets);
   4621 	} else {
   4622 		m_freem(m);
   4623 	}
   4624 	kpreempt_enable();
   4625 }
   4626 
   4627 static void
   4628 wg_calc_pubkey(uint8_t pubkey[static WG_STATIC_KEY_LEN],
   4629     const uint8_t privkey[static WG_STATIC_KEY_LEN])
   4630 {
   4631 
   4632 	crypto_scalarmult_base(pubkey, privkey);
   4633 }
   4634 
   4635 static int
   4636 wg_rtable_add_route(struct wg_softc *wg, struct wg_allowedip *wga)
   4637 {
   4638 	struct radix_node_head *rnh;
   4639 	struct radix_node *rn;
   4640 	int error = 0;
   4641 
   4642 	rw_enter(wg->wg_rwlock, RW_WRITER);
   4643 	rnh = wg_rnh(wg, wga->wga_family);
   4644 	KASSERT(rnh != NULL);
   4645 	rn = rnh->rnh_addaddr(&wga->wga_sa_addr, &wga->wga_sa_mask, rnh,
   4646 	    wga->wga_nodes);
   4647 	rw_exit(wg->wg_rwlock);
   4648 
   4649 	if (rn == NULL)
   4650 		error = EEXIST;
   4651 
   4652 	return error;
   4653 }
   4654 
   4655 static int
   4656 wg_handle_prop_peer(struct wg_softc *wg, prop_dictionary_t peer,
   4657     struct wg_peer **wgpp)
   4658 {
   4659 	int error = 0;
   4660 	const void *pubkey;
   4661 	size_t pubkey_len;
   4662 	const void *psk;
   4663 	size_t psk_len;
   4664 	const char *name = NULL;
   4665 
   4666 	if (prop_dictionary_get_string(peer, "name", &name)) {
   4667 		if (strlen(name) > WG_PEER_NAME_MAXLEN) {
   4668 			error = EINVAL;
   4669 			goto out;
   4670 		}
   4671 	}
   4672 
   4673 	if (!prop_dictionary_get_data(peer, "public_key",
   4674 		&pubkey, &pubkey_len)) {
   4675 		error = EINVAL;
   4676 		goto out;
   4677 	}
   4678 #ifdef WG_DEBUG_DUMP
   4679         if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4680 		char *hex = gethexdump(pubkey, pubkey_len);
   4681 		log(LOG_DEBUG, "pubkey=%p, pubkey_len=%zu\n%s\n",
   4682 		    pubkey, pubkey_len, hex);
   4683 		puthexdump(hex, pubkey, pubkey_len);
   4684 	}
   4685 #endif
   4686 
   4687 	struct wg_peer *wgp = wg_alloc_peer(wg);
   4688 	memcpy(wgp->wgp_pubkey, pubkey, sizeof(wgp->wgp_pubkey));
   4689 	if (name != NULL)
   4690 		strncpy(wgp->wgp_name, name, sizeof(wgp->wgp_name));
   4691 
   4692 	if (prop_dictionary_get_data(peer, "preshared_key", &psk, &psk_len)) {
   4693 		if (psk_len != sizeof(wgp->wgp_psk)) {
   4694 			error = EINVAL;
   4695 			goto out;
   4696 		}
   4697 		memcpy(wgp->wgp_psk, psk, sizeof(wgp->wgp_psk));
   4698 	}
   4699 
   4700 	const void *addr;
   4701 	size_t addr_len;
   4702 	struct wg_sockaddr *wgsa = wgp->wgp_endpoint;
   4703 
   4704 	if (!prop_dictionary_get_data(peer, "endpoint", &addr, &addr_len))
   4705 		goto skip_endpoint;
   4706 	if (addr_len < sizeof(*wgsatosa(wgsa)) ||
   4707 	    addr_len > sizeof(*wgsatoss(wgsa))) {
   4708 		error = EINVAL;
   4709 		goto out;
   4710 	}
   4711 	memcpy(wgsatoss(wgsa), addr, addr_len);
   4712 	switch (wgsa_family(wgsa)) {
   4713 #ifdef INET
   4714 	case AF_INET:
   4715 		break;
   4716 #endif
   4717 #ifdef INET6
   4718 	case AF_INET6:
   4719 		break;
   4720 #endif
   4721 	default:
   4722 		error = EPFNOSUPPORT;
   4723 		goto out;
   4724 	}
   4725 	if (addr_len != sockaddr_getsize_by_family(wgsa_family(wgsa))) {
   4726 		error = EINVAL;
   4727 		goto out;
   4728 	}
   4729     {
   4730 	char addrstr[128];
   4731 	sockaddr_format(wgsatosa(wgsa), addrstr, sizeof(addrstr));
   4732 	WG_DLOG("addr=%s\n", addrstr);
   4733     }
   4734 	wgp->wgp_endpoint_available = true;
   4735 
   4736 	prop_array_t allowedips;
   4737 skip_endpoint:
   4738 	allowedips = prop_dictionary_get(peer, "allowedips");
   4739 	if (allowedips == NULL)
   4740 		goto skip;
   4741 
   4742 	prop_object_iterator_t _it = prop_array_iterator(allowedips);
   4743 	prop_dictionary_t prop_allowedip;
   4744 	int j = 0;
   4745 	while ((prop_allowedip = prop_object_iterator_next(_it)) != NULL) {
   4746 		struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   4747 
   4748 		if (!prop_dictionary_get_int(prop_allowedip, "family",
   4749 			&wga->wga_family))
   4750 			continue;
   4751 		if (!prop_dictionary_get_data(prop_allowedip, "ip",
   4752 			&addr, &addr_len))
   4753 			continue;
   4754 		if (!prop_dictionary_get_uint8(prop_allowedip, "cidr",
   4755 			&wga->wga_cidr))
   4756 			continue;
   4757 
   4758 		switch (wga->wga_family) {
   4759 #ifdef INET
   4760 		case AF_INET: {
   4761 			struct sockaddr_in sin;
   4762 			char addrstr[128];
   4763 			struct in_addr mask;
   4764 			struct sockaddr_in sin_mask;
   4765 
   4766 			if (addr_len != sizeof(struct in_addr))
   4767 				return EINVAL;
   4768 			memcpy(&wga->wga_addr4, addr, addr_len);
   4769 
   4770 			sockaddr_in_init(&sin, (const struct in_addr *)addr,
   4771 			    0);
   4772 			sockaddr_copy(&wga->wga_sa_addr,
   4773 			    sizeof(sin), sintosa(&sin));
   4774 
   4775 			sockaddr_format(sintosa(&sin),
   4776 			    addrstr, sizeof(addrstr));
   4777 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4778 
   4779 			in_len2mask(&mask, wga->wga_cidr);
   4780 			sockaddr_in_init(&sin_mask, &mask, 0);
   4781 			sockaddr_copy(&wga->wga_sa_mask,
   4782 			    sizeof(sin_mask), sintosa(&sin_mask));
   4783 
   4784 			break;
   4785 		    }
   4786 #endif
   4787 #ifdef INET6
   4788 		case AF_INET6: {
   4789 			struct sockaddr_in6 sin6;
   4790 			char addrstr[128];
   4791 			struct in6_addr mask;
   4792 			struct sockaddr_in6 sin6_mask;
   4793 
   4794 			if (addr_len != sizeof(struct in6_addr))
   4795 				return EINVAL;
   4796 			memcpy(&wga->wga_addr6, addr, addr_len);
   4797 
   4798 			sockaddr_in6_init(&sin6, (const struct in6_addr *)addr,
   4799 			    0, 0, 0);
   4800 			sockaddr_copy(&wga->wga_sa_addr,
   4801 			    sizeof(sin6), sin6tosa(&sin6));
   4802 
   4803 			sockaddr_format(sin6tosa(&sin6),
   4804 			    addrstr, sizeof(addrstr));
   4805 			WG_DLOG("addr=%s/%d\n", addrstr, wga->wga_cidr);
   4806 
   4807 			in6_prefixlen2mask(&mask, wga->wga_cidr);
   4808 			sockaddr_in6_init(&sin6_mask, &mask, 0, 0, 0);
   4809 			sockaddr_copy(&wga->wga_sa_mask,
   4810 			    sizeof(sin6_mask), sin6tosa(&sin6_mask));
   4811 
   4812 			break;
   4813 		    }
   4814 #endif
   4815 		default:
   4816 			error = EINVAL;
   4817 			goto out;
   4818 		}
   4819 		wga->wga_peer = wgp;
   4820 
   4821 		error = wg_rtable_add_route(wg, wga);
   4822 		if (error != 0)
   4823 			goto out;
   4824 
   4825 		j++;
   4826 	}
   4827 	wgp->wgp_n_allowedips = j;
   4828 skip:
   4829 	*wgpp = wgp;
   4830 out:
   4831 	return error;
   4832 }
   4833 
   4834 static int
   4835 wg_alloc_prop_buf(char **_buf, struct ifdrv *ifd)
   4836 {
   4837 	int error;
   4838 	char *buf;
   4839 
   4840 	WG_DLOG("buf=%p, len=%zu\n", ifd->ifd_data, ifd->ifd_len);
   4841 	if (ifd->ifd_len >= WG_MAX_PROPLEN)
   4842 		return E2BIG;
   4843 	buf = kmem_alloc(ifd->ifd_len + 1, KM_SLEEP);
   4844 	error = copyin(ifd->ifd_data, buf, ifd->ifd_len);
   4845 	if (error != 0)
   4846 		return error;
   4847 	buf[ifd->ifd_len] = '\0';
   4848 #ifdef WG_DEBUG_DUMP
   4849 	if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4850 		log(LOG_DEBUG, "%.*s\n", (int)MIN(INT_MAX, ifd->ifd_len),
   4851 		    (const char *)buf);
   4852 	}
   4853 #endif
   4854 	*_buf = buf;
   4855 	return 0;
   4856 }
   4857 
   4858 static int
   4859 wg_ioctl_set_private_key(struct wg_softc *wg, struct ifdrv *ifd)
   4860 {
   4861 	int error;
   4862 	prop_dictionary_t prop_dict;
   4863 	char *buf = NULL;
   4864 	const void *privkey;
   4865 	size_t privkey_len;
   4866 
   4867 	error = wg_alloc_prop_buf(&buf, ifd);
   4868 	if (error != 0)
   4869 		return error;
   4870 	error = EINVAL;
   4871 	prop_dict = prop_dictionary_internalize(buf);
   4872 	if (prop_dict == NULL)
   4873 		goto out;
   4874 	if (!prop_dictionary_get_data(prop_dict, "private_key",
   4875 		&privkey, &privkey_len))
   4876 		goto out;
   4877 #ifdef WG_DEBUG_DUMP
   4878 	if (wg_debug & WG_DEBUG_FLAGS_DUMP) {
   4879 		char *hex = gethexdump(privkey, privkey_len);
   4880 		log(LOG_DEBUG, "privkey=%p, privkey_len=%zu\n%s\n",
   4881 		    privkey, privkey_len, hex);
   4882 		puthexdump(hex, privkey, privkey_len);
   4883 	}
   4884 #endif
   4885 	if (privkey_len != WG_STATIC_KEY_LEN)
   4886 		goto out;
   4887 	memcpy(wg->wg_privkey, privkey, WG_STATIC_KEY_LEN);
   4888 	wg_calc_pubkey(wg->wg_pubkey, wg->wg_privkey);
   4889 	error = 0;
   4890 
   4891 out:
   4892 	kmem_free(buf, ifd->ifd_len + 1);
   4893 	return error;
   4894 }
   4895 
   4896 static int
   4897 wg_ioctl_set_listen_port(struct wg_softc *wg, struct ifdrv *ifd)
   4898 {
   4899 	int error;
   4900 	prop_dictionary_t prop_dict;
   4901 	char *buf = NULL;
   4902 	uint16_t port;
   4903 
   4904 	error = wg_alloc_prop_buf(&buf, ifd);
   4905 	if (error != 0)
   4906 		return error;
   4907 	error = EINVAL;
   4908 	prop_dict = prop_dictionary_internalize(buf);
   4909 	if (prop_dict == NULL)
   4910 		goto out;
   4911 	if (!prop_dictionary_get_uint16(prop_dict, "listen_port", &port))
   4912 		goto out;
   4913 
   4914 	error = wg->wg_ops->bind_port(wg, (uint16_t)port);
   4915 
   4916 out:
   4917 	kmem_free(buf, ifd->ifd_len + 1);
   4918 	return error;
   4919 }
   4920 
   4921 static int
   4922 wg_ioctl_add_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4923 {
   4924 	int error;
   4925 	prop_dictionary_t prop_dict;
   4926 	char *buf = NULL;
   4927 	struct wg_peer *wgp = NULL, *wgp0 __diagused;
   4928 
   4929 	error = wg_alloc_prop_buf(&buf, ifd);
   4930 	if (error != 0)
   4931 		return error;
   4932 	error = EINVAL;
   4933 	prop_dict = prop_dictionary_internalize(buf);
   4934 	if (prop_dict == NULL)
   4935 		goto out;
   4936 
   4937 	error = wg_handle_prop_peer(wg, prop_dict, &wgp);
   4938 	if (error != 0)
   4939 		goto out;
   4940 
   4941 	mutex_enter(wg->wg_lock);
   4942 	if (thmap_get(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4943 		sizeof(wgp->wgp_pubkey)) != NULL ||
   4944 	    (wgp->wgp_name[0] &&
   4945 		thmap_get(wg->wg_peers_byname, wgp->wgp_name,
   4946 		    strlen(wgp->wgp_name)) != NULL)) {
   4947 		mutex_exit(wg->wg_lock);
   4948 		wg_destroy_peer(wgp);
   4949 		error = EEXIST;
   4950 		goto out;
   4951 	}
   4952 	wgp0 = thmap_put(wg->wg_peers_bypubkey, wgp->wgp_pubkey,
   4953 	    sizeof(wgp->wgp_pubkey), wgp);
   4954 	KASSERT(wgp0 == wgp);
   4955 	if (wgp->wgp_name[0]) {
   4956 		wgp0 = thmap_put(wg->wg_peers_byname, wgp->wgp_name,
   4957 		    strlen(wgp->wgp_name), wgp);
   4958 		KASSERT(wgp0 == wgp);
   4959 	}
   4960 	WG_PEER_WRITER_INSERT_HEAD(wgp, wg);
   4961 	wg->wg_npeers++;
   4962 	mutex_exit(wg->wg_lock);
   4963 
   4964 	if_link_state_change(&wg->wg_if, LINK_STATE_UP);
   4965 
   4966 out:
   4967 	kmem_free(buf, ifd->ifd_len + 1);
   4968 	return error;
   4969 }
   4970 
   4971 static int
   4972 wg_ioctl_delete_peer(struct wg_softc *wg, struct ifdrv *ifd)
   4973 {
   4974 	int error;
   4975 	prop_dictionary_t prop_dict;
   4976 	char *buf = NULL;
   4977 	const char *name;
   4978 
   4979 	error = wg_alloc_prop_buf(&buf, ifd);
   4980 	if (error != 0)
   4981 		return error;
   4982 	error = EINVAL;
   4983 	prop_dict = prop_dictionary_internalize(buf);
   4984 	if (prop_dict == NULL)
   4985 		goto out;
   4986 
   4987 	if (!prop_dictionary_get_string(prop_dict, "name", &name))
   4988 		goto out;
   4989 	if (strlen(name) > WG_PEER_NAME_MAXLEN)
   4990 		goto out;
   4991 
   4992 	error = wg_destroy_peer_name(wg, name);
   4993 out:
   4994 	kmem_free(buf, ifd->ifd_len + 1);
   4995 	return error;
   4996 }
   4997 
   4998 static bool
   4999 wg_is_authorized(struct wg_softc *wg, u_long cmd)
   5000 {
   5001 	int au = cmd == SIOCGDRVSPEC ?
   5002 	    KAUTH_REQ_NETWORK_INTERFACE_WG_GETPRIV :
   5003 	    KAUTH_REQ_NETWORK_INTERFACE_WG_SETPRIV;
   5004 	return kauth_authorize_network(kauth_cred_get(),
   5005 	    KAUTH_NETWORK_INTERFACE_WG, au, &wg->wg_if,
   5006 	    (void *)cmd, NULL) == 0;
   5007 }
   5008 
   5009 static int
   5010 wg_ioctl_get(struct wg_softc *wg, struct ifdrv *ifd)
   5011 {
   5012 	int error = ENOMEM;
   5013 	prop_dictionary_t prop_dict;
   5014 	prop_array_t peers = NULL;
   5015 	char *buf;
   5016 	struct wg_peer *wgp;
   5017 	int s, i;
   5018 
   5019 	prop_dict = prop_dictionary_create();
   5020 	if (prop_dict == NULL)
   5021 		goto error;
   5022 
   5023 	if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
   5024 		if (!prop_dictionary_set_data(prop_dict, "private_key",
   5025 			wg->wg_privkey, WG_STATIC_KEY_LEN))
   5026 			goto error;
   5027 	}
   5028 
   5029 	if (wg->wg_listen_port != 0) {
   5030 		if (!prop_dictionary_set_uint16(prop_dict, "listen_port",
   5031 			wg->wg_listen_port))
   5032 			goto error;
   5033 	}
   5034 
   5035 	if (wg->wg_npeers == 0)
   5036 		goto skip_peers;
   5037 
   5038 	peers = prop_array_create();
   5039 	if (peers == NULL)
   5040 		goto error;
   5041 
   5042 	s = pserialize_read_enter();
   5043 	i = 0;
   5044 	WG_PEER_READER_FOREACH(wgp, wg) {
   5045 		struct wg_sockaddr *wgsa;
   5046 		struct psref wgp_psref, wgsa_psref;
   5047 		prop_dictionary_t prop_peer;
   5048 
   5049 		wg_get_peer(wgp, &wgp_psref);
   5050 		pserialize_read_exit(s);
   5051 
   5052 		prop_peer = prop_dictionary_create();
   5053 		if (prop_peer == NULL)
   5054 			goto next;
   5055 
   5056 		if (strlen(wgp->wgp_name) > 0) {
   5057 			if (!prop_dictionary_set_string(prop_peer, "name",
   5058 				wgp->wgp_name))
   5059 				goto next;
   5060 		}
   5061 
   5062 		if (!prop_dictionary_set_data(prop_peer, "public_key",
   5063 			wgp->wgp_pubkey, sizeof(wgp->wgp_pubkey)))
   5064 			goto next;
   5065 
   5066 		uint8_t psk_zero[WG_PRESHARED_KEY_LEN] = {0};
   5067 		if (!consttime_memequal(wgp->wgp_psk, psk_zero,
   5068 			sizeof(wgp->wgp_psk))) {
   5069 			if (wg_is_authorized(wg, SIOCGDRVSPEC)) {
   5070 				if (!prop_dictionary_set_data(prop_peer,
   5071 					"preshared_key",
   5072 					wgp->wgp_psk, sizeof(wgp->wgp_psk)))
   5073 					goto next;
   5074 			}
   5075 		}
   5076 
   5077 		wgsa = wg_get_endpoint_sa(wgp, &wgsa_psref);
   5078 		CTASSERT(AF_UNSPEC == 0);
   5079 		if (wgsa_family(wgsa) != 0 /*AF_UNSPEC*/ &&
   5080 		    !prop_dictionary_set_data(prop_peer, "endpoint",
   5081 			wgsatoss(wgsa),
   5082 			sockaddr_getsize_by_family(wgsa_family(wgsa)))) {
   5083 			wg_put_sa(wgp, wgsa, &wgsa_psref);
   5084 			goto next;
   5085 		}
   5086 		wg_put_sa(wgp, wgsa, &wgsa_psref);
   5087 
   5088 		const struct timespec *t = &wgp->wgp_last_handshake_time;
   5089 
   5090 		if (!prop_dictionary_set_uint64(prop_peer,
   5091 			"last_handshake_time_sec", (uint64_t)t->tv_sec))
   5092 			goto next;
   5093 		if (!prop_dictionary_set_uint32(prop_peer,
   5094 			"last_handshake_time_nsec", (uint32_t)t->tv_nsec))
   5095 			goto next;
   5096 
   5097 		if (wgp->wgp_n_allowedips == 0)
   5098 			goto skip_allowedips;
   5099 
   5100 		prop_array_t allowedips = prop_array_create();
   5101 		if (allowedips == NULL)
   5102 			goto next;
   5103 		for (int j = 0; j < wgp->wgp_n_allowedips; j++) {
   5104 			struct wg_allowedip *wga = &wgp->wgp_allowedips[j];
   5105 			prop_dictionary_t prop_allowedip;
   5106 
   5107 			prop_allowedip = prop_dictionary_create();
   5108 			if (prop_allowedip == NULL)
   5109 				break;
   5110 
   5111 			if (!prop_dictionary_set_int(prop_allowedip, "family",
   5112 				wga->wga_family))
   5113 				goto _next;
   5114 			if (!prop_dictionary_set_uint8(prop_allowedip, "cidr",
   5115 				wga->wga_cidr))
   5116 				goto _next;
   5117 
   5118 			switch (wga->wga_family) {
   5119 #ifdef INET
   5120 			case AF_INET:
   5121 				if (!prop_dictionary_set_data(prop_allowedip,
   5122 					"ip", &wga->wga_addr4,
   5123 					sizeof(wga->wga_addr4)))
   5124 					goto _next;
   5125 				break;
   5126 #endif
   5127 #ifdef INET6
   5128 			case AF_INET6:
   5129 				if (!prop_dictionary_set_data(prop_allowedip,
   5130 					"ip", &wga->wga_addr6,
   5131 					sizeof(wga->wga_addr6)))
   5132 					goto _next;
   5133 				break;
   5134 #endif
   5135 			default:
   5136 				panic("invalid af=%d", wga->wga_family);
   5137 			}
   5138 			prop_array_set(allowedips, j, prop_allowedip);
   5139 		_next:
   5140 			prop_object_release(prop_allowedip);
   5141 		}
   5142 		prop_dictionary_set(prop_peer, "allowedips", allowedips);
   5143 		prop_object_release(allowedips);
   5144 
   5145 	skip_allowedips:
   5146 
   5147 		prop_array_set(peers, i, prop_peer);
   5148 	next:
   5149 		if (prop_peer)
   5150 			prop_object_release(prop_peer);
   5151 		i++;
   5152 
   5153 		s = pserialize_read_enter();
   5154 		wg_put_peer(wgp, &wgp_psref);
   5155 	}
   5156 	pserialize_read_exit(s);
   5157 
   5158 	prop_dictionary_set(prop_dict, "peers", peers);
   5159 	prop_object_release(peers);
   5160 	peers = NULL;
   5161 
   5162 skip_peers:
   5163 	buf = prop_dictionary_externalize(prop_dict);
   5164 	if (buf == NULL)
   5165 		goto error;
   5166 	if (ifd->ifd_len < (strlen(buf) + 1)) {
   5167 		error = EINVAL;
   5168 		goto error;
   5169 	}
   5170 	error = copyout(buf, ifd->ifd_data, strlen(buf) + 1);
   5171 
   5172 	free(buf, 0);
   5173 error:
   5174 	if (peers != NULL)
   5175 		prop_object_release(peers);
   5176 	if (prop_dict != NULL)
   5177 		prop_object_release(prop_dict);
   5178 
   5179 	return error;
   5180 }
   5181 
   5182 static int
   5183 wg_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5184 {
   5185 	struct wg_softc *wg = ifp->if_softc;
   5186 	struct ifreq *ifr = data;
   5187 	struct ifaddr *ifa = data;
   5188 	struct ifdrv *ifd = data;
   5189 	int error = 0;
   5190 
   5191 	switch (cmd) {
   5192 	case SIOCINITIFADDR:
   5193 		if (ifa->ifa_addr->sa_family != AF_LINK &&
   5194 		    (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
   5195 		    (IFF_UP | IFF_RUNNING)) {
   5196 			ifp->if_flags |= IFF_UP;
   5197 			error = if_init(ifp);
   5198 		}
   5199 		return error;
   5200 	case SIOCADDMULTI:
   5201 	case SIOCDELMULTI:
   5202 		switch (ifr->ifr_addr.sa_family) {
   5203 #ifdef INET
   5204 		case AF_INET:	/* IP supports Multicast */
   5205 			break;
   5206 #endif
   5207 #ifdef INET6
   5208 		case AF_INET6:	/* IP6 supports Multicast */
   5209 			break;
   5210 #endif
   5211 		default:  /* Other protocols doesn't support Multicast */
   5212 			error = EAFNOSUPPORT;
   5213 			break;
   5214 		}
   5215 		return error;
   5216 	case SIOCSDRVSPEC:
   5217 		if (!wg_is_authorized(wg, cmd)) {
   5218 			return EPERM;
   5219 		}
   5220 		switch (ifd->ifd_cmd) {
   5221 		case WG_IOCTL_SET_PRIVATE_KEY:
   5222 			error = wg_ioctl_set_private_key(wg, ifd);
   5223 			break;
   5224 		case WG_IOCTL_SET_LISTEN_PORT:
   5225 			error = wg_ioctl_set_listen_port(wg, ifd);
   5226 			break;
   5227 		case WG_IOCTL_ADD_PEER:
   5228 			error = wg_ioctl_add_peer(wg, ifd);
   5229 			break;
   5230 		case WG_IOCTL_DELETE_PEER:
   5231 			error = wg_ioctl_delete_peer(wg, ifd);
   5232 			break;
   5233 		default:
   5234 			error = EINVAL;
   5235 			break;
   5236 		}
   5237 		return error;
   5238 	case SIOCGDRVSPEC:
   5239 		return wg_ioctl_get(wg, ifd);
   5240 	case SIOCSIFFLAGS:
   5241 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   5242 			break;
   5243 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   5244 		case IFF_RUNNING:
   5245 			/*
   5246 			 * If interface is marked down and it is running,
   5247 			 * then stop and disable it.
   5248 			 */
   5249 			if_stop(ifp, 1);
   5250 			break;
   5251 		case IFF_UP:
   5252 			/*
   5253 			 * If interface is marked up and it is stopped, then
   5254 			 * start it.
   5255 			 */
   5256 			error = if_init(ifp);
   5257 			break;
   5258 		default:
   5259 			break;
   5260 		}
   5261 		return error;
   5262 #ifdef WG_RUMPKERNEL
   5263 	case SIOCSLINKSTR:
   5264 		error = wg_ioctl_linkstr(wg, ifd);
   5265 		if (error)
   5266 			return error;
   5267 		wg->wg_ops = &wg_ops_rumpuser;
   5268 		return 0;
   5269 #endif
   5270 	default:
   5271 		break;
   5272 	}
   5273 
   5274 	error = ifioctl_common(ifp, cmd, data);
   5275 
   5276 #ifdef WG_RUMPKERNEL
   5277 	if (!wg_user_mode(wg))
   5278 		return error;
   5279 
   5280 	/* Do the same to the corresponding tun device on the host */
   5281 	/*
   5282 	 * XXX Actually the command has not been handled yet.  It
   5283 	 *     will be handled via pr_ioctl form doifioctl later.
   5284 	 */
   5285 	switch (cmd) {
   5286 #ifdef INET
   5287 	case SIOCAIFADDR:
   5288 	case SIOCDIFADDR: {
   5289 		struct in_aliasreq _ifra = *(const struct in_aliasreq *)data;
   5290 		struct in_aliasreq *ifra = &_ifra;
   5291 		KASSERT(error == ENOTTY);
   5292 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   5293 		    IFNAMSIZ);
   5294 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET);
   5295 		if (error == 0)
   5296 			error = ENOTTY;
   5297 		break;
   5298 	}
   5299 #endif
   5300 #ifdef INET6
   5301 	case SIOCAIFADDR_IN6:
   5302 	case SIOCDIFADDR_IN6: {
   5303 		struct in6_aliasreq _ifra = *(const struct in6_aliasreq *)data;
   5304 		struct in6_aliasreq *ifra = &_ifra;
   5305 		KASSERT(error == ENOTTY);
   5306 		strncpy(ifra->ifra_name, rumpuser_wg_get_tunname(wg->wg_user),
   5307 		    IFNAMSIZ);
   5308 		error = rumpuser_wg_ioctl(wg->wg_user, cmd, ifra, AF_INET6);
   5309 		if (error == 0)
   5310 			error = ENOTTY;
   5311 		break;
   5312 	}
   5313 #endif
   5314 	default:
   5315 		break;
   5316 	}
   5317 #endif /* WG_RUMPKERNEL */
   5318 
   5319 	return error;
   5320 }
   5321 
   5322 static int
   5323 wg_init(struct ifnet *ifp)
   5324 {
   5325 
   5326 	ifp->if_flags |= IFF_RUNNING;
   5327 
   5328 	/* TODO flush pending packets. */
   5329 	return 0;
   5330 }
   5331 
   5332 #ifdef ALTQ
   5333 static void
   5334 wg_start(struct ifnet *ifp)
   5335 {
   5336 	struct mbuf *m;
   5337 
   5338 	for (;;) {
   5339 		IFQ_DEQUEUE(&ifp->if_snd, m);
   5340 		if (m == NULL)
   5341 			break;
   5342 
   5343 		kpreempt_disable();
   5344 		const uint32_t h = curcpu()->ci_index;	// pktq_rps_hash(m)
   5345 		if (__predict_false(!pktq_enqueue(wg_pktq, m, h))) {
   5346 			WGLOG(LOG_ERR, "%s: pktq full, dropping\n",
   5347 			    if_name(ifp));
   5348 			m_freem(m);
   5349 		}
   5350 		kpreempt_enable();
   5351 	}
   5352 }
   5353 #endif
   5354 
   5355 static void
   5356 wg_stop(struct ifnet *ifp, int disable)
   5357 {
   5358 
   5359 	KASSERT((ifp->if_flags & IFF_RUNNING) != 0);
   5360 	ifp->if_flags &= ~IFF_RUNNING;
   5361 
   5362 	/* Need to do something? */
   5363 }
   5364 
   5365 #ifdef WG_DEBUG_PARAMS
   5366 SYSCTL_SETUP(sysctl_net_wg_setup, "sysctl net.wg setup")
   5367 {
   5368 	const struct sysctlnode *node = NULL;
   5369 
   5370 	sysctl_createv(clog, 0, NULL, &node,
   5371 	    CTLFLAG_PERMANENT,
   5372 	    CTLTYPE_NODE, "wg",
   5373 	    SYSCTL_DESCR("wg(4)"),
   5374 	    NULL, 0, NULL, 0,
   5375 	    CTL_NET, CTL_CREATE, CTL_EOL);
   5376 	sysctl_createv(clog, 0, &node, NULL,
   5377 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5378 	    CTLTYPE_QUAD, "rekey_after_messages",
   5379 	    SYSCTL_DESCR("session liftime by messages"),
   5380 	    NULL, 0, &wg_rekey_after_messages, 0, CTL_CREATE, CTL_EOL);
   5381 	sysctl_createv(clog, 0, &node, NULL,
   5382 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5383 	    CTLTYPE_INT, "rekey_after_time",
   5384 	    SYSCTL_DESCR("session liftime"),
   5385 	    NULL, 0, &wg_rekey_after_time, 0, CTL_CREATE, CTL_EOL);
   5386 	sysctl_createv(clog, 0, &node, NULL,
   5387 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5388 	    CTLTYPE_INT, "rekey_timeout",
   5389 	    SYSCTL_DESCR("session handshake retry time"),
   5390 	    NULL, 0, &wg_rekey_timeout, 0, CTL_CREATE, CTL_EOL);
   5391 	sysctl_createv(clog, 0, &node, NULL,
   5392 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5393 	    CTLTYPE_INT, "rekey_attempt_time",
   5394 	    SYSCTL_DESCR("session handshake timeout"),
   5395 	    NULL, 0, &wg_rekey_attempt_time, 0, CTL_CREATE, CTL_EOL);
   5396 	sysctl_createv(clog, 0, &node, NULL,
   5397 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5398 	    CTLTYPE_INT, "keepalive_timeout",
   5399 	    SYSCTL_DESCR("keepalive timeout"),
   5400 	    NULL, 0, &wg_keepalive_timeout, 0, CTL_CREATE, CTL_EOL);
   5401 	sysctl_createv(clog, 0, &node, NULL,
   5402 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5403 	    CTLTYPE_BOOL, "force_underload",
   5404 	    SYSCTL_DESCR("force to detemine under load"),
   5405 	    NULL, 0, &wg_force_underload, 0, CTL_CREATE, CTL_EOL);
   5406 	sysctl_createv(clog, 0, &node, NULL,
   5407 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   5408 	    CTLTYPE_INT, "debug",
   5409 	    SYSCTL_DESCR("set debug flags 1=log 2=trace 4=dump 8=packet"),
   5410 	    NULL, 0, &wg_debug, 0, CTL_CREATE, CTL_EOL);
   5411 }
   5412 #endif
   5413 
   5414 #ifdef WG_RUMPKERNEL
   5415 static bool
   5416 wg_user_mode(struct wg_softc *wg)
   5417 {
   5418 
   5419 	return wg->wg_user != NULL;
   5420 }
   5421 
   5422 static int
   5423 wg_ioctl_linkstr(struct wg_softc *wg, struct ifdrv *ifd)
   5424 {
   5425 	struct ifnet *ifp = &wg->wg_if;
   5426 	int error;
   5427 
   5428 	if (ifp->if_flags & IFF_UP)
   5429 		return EBUSY;
   5430 
   5431 	if (ifd->ifd_cmd == IFLINKSTR_UNSET) {
   5432 		/* XXX do nothing */
   5433 		return 0;
   5434 	} else if (ifd->ifd_cmd != 0) {
   5435 		return EINVAL;
   5436 	} else if (wg->wg_user != NULL) {
   5437 		return EBUSY;
   5438 	}
   5439 
   5440 	/* Assume \0 included */
   5441 	if (ifd->ifd_len > IFNAMSIZ) {
   5442 		return E2BIG;
   5443 	} else if (ifd->ifd_len < 1) {
   5444 		return EINVAL;
   5445 	}
   5446 
   5447 	char tun_name[IFNAMSIZ];
   5448 	error = copyinstr(ifd->ifd_data, tun_name, ifd->ifd_len, NULL);
   5449 	if (error != 0)
   5450 		return error;
   5451 
   5452 	if (strncmp(tun_name, "tun", 3) != 0)
   5453 		return EINVAL;
   5454 
   5455 	error = rumpuser_wg_create(tun_name, wg, &wg->wg_user);
   5456 
   5457 	return error;
   5458 }
   5459 
   5460 static int
   5461 wg_send_user(struct wg_peer *wgp, struct mbuf *m, bool handshake)
   5462 {
   5463 	int error;
   5464 	struct psref psref;
   5465 	struct wg_sockaddr *wgsa;
   5466 	struct wg_softc *wg = wgp->wgp_sc;
   5467 	struct iovec iov[1];
   5468 
   5469 	wgsa = wg_get_endpoint_sa(wgp, &psref);
   5470 
   5471 #ifdef WG_DEBUG_LOG
   5472 	if (handshake) {
   5473 		char addr[128];
   5474 		sockaddr_format(wgsatosa(wgsa), addr, sizeof(addr));
   5475 		WG_DLOG("send handshake msg to %s\n", addr);
   5476 	}
   5477 #endif
   5478 
   5479 	iov[0].iov_base = mtod(m, void *);
   5480 	iov[0].iov_len = m->m_len;
   5481 
   5482 	/* Send messages to a peer via an ordinary socket. */
   5483 	error = rumpuser_wg_send_peer(wg->wg_user, wgsatosa(wgsa), iov, 1);
   5484 
   5485 	wg_put_sa(wgp, wgsa, &psref);
   5486 
   5487 	m_freem(m);
   5488 
   5489 	return error;
   5490 }
   5491 
   5492 static int
   5493 wg_send_hs_user(struct wg_peer *wgp, struct mbuf *m)
   5494 {
   5495 
   5496 	return wg_send_user(wgp, m, /*handshake*/true);
   5497 }
   5498 
   5499 static int
   5500 wg_send_data_user(struct wg_peer *wgp, struct mbuf *m)
   5501 {
   5502 
   5503 	return wg_send_user(wgp, m, /*handshake*/false);
   5504 }
   5505 
   5506 static void
   5507 wg_input_user(struct ifnet *ifp, struct mbuf *m, const int af)
   5508 {
   5509 	struct wg_softc *wg = ifp->if_softc;
   5510 	struct iovec iov[2];
   5511 	struct sockaddr_storage ss;
   5512 
   5513 	KASSERT(af == AF_INET || af == AF_INET6);
   5514 
   5515 	WG_TRACE("");
   5516 
   5517 	switch (af) {
   5518 #ifdef INET
   5519 	case AF_INET: {
   5520 		struct sockaddr_in *sin = (struct sockaddr_in *)&ss;
   5521 		struct ip *ip;
   5522 
   5523 		KASSERT(m->m_len >= sizeof(struct ip));
   5524 		ip = mtod(m, struct ip *);
   5525 		sockaddr_in_init(sin, &ip->ip_dst, 0);
   5526 		break;
   5527 	}
   5528 #endif
   5529 #ifdef INET6
   5530 	case AF_INET6: {
   5531 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&ss;
   5532 		struct ip6_hdr *ip6;
   5533 
   5534 		KASSERT(m->m_len >= sizeof(struct ip6_hdr));
   5535 		ip6 = mtod(m, struct ip6_hdr *);
   5536 		sockaddr_in6_init(sin6, &ip6->ip6_dst, 0, 0, 0);
   5537 		break;
   5538 	}
   5539 #endif
   5540 	default:
   5541 		goto out;
   5542 	}
   5543 
   5544 	iov[0].iov_base = &ss;
   5545 	iov[0].iov_len = ss.ss_len;
   5546 	iov[1].iov_base = mtod(m, void *);
   5547 	iov[1].iov_len = m->m_len;
   5548 
   5549 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5550 
   5551 	/* Send decrypted packets to users via a tun. */
   5552 	rumpuser_wg_send_user(wg->wg_user, iov, 2);
   5553 
   5554 out:	m_freem(m);
   5555 }
   5556 
   5557 static int
   5558 wg_bind_port_user(struct wg_softc *wg, const uint16_t port)
   5559 {
   5560 	int error;
   5561 	uint16_t old_port = wg->wg_listen_port;
   5562 
   5563 	if (port != 0 && old_port == port)
   5564 		return 0;
   5565 
   5566 	error = rumpuser_wg_sock_bind(wg->wg_user, port);
   5567 	if (error)
   5568 		return error;
   5569 
   5570 	wg->wg_listen_port = port;
   5571 	return 0;
   5572 }
   5573 
   5574 /*
   5575  * Receive user packets.
   5576  */
   5577 void
   5578 rumpkern_wg_recv_user(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   5579 {
   5580 	struct ifnet *ifp = &wg->wg_if;
   5581 	struct mbuf *m;
   5582 	const struct sockaddr *dst;
   5583 	int error;
   5584 
   5585 	WG_TRACE("");
   5586 
   5587 	dst = iov[0].iov_base;
   5588 
   5589 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   5590 	if (m == NULL)
   5591 		return;
   5592 	m->m_len = m->m_pkthdr.len = 0;
   5593 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   5594 
   5595 	WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
   5596 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5597 
   5598 	error = wg_output(ifp, m, dst, NULL); /* consumes m */
   5599 	if (error)
   5600 		WG_DLOG("wg_output failed, error=%d\n", error);
   5601 }
   5602 
   5603 /*
   5604  * Receive packets from a peer.
   5605  */
   5606 void
   5607 rumpkern_wg_recv_peer(struct wg_softc *wg, struct iovec *iov, size_t iovlen)
   5608 {
   5609 	struct mbuf *m;
   5610 	const struct sockaddr *src;
   5611 	int bound;
   5612 
   5613 	WG_TRACE("");
   5614 
   5615 	src = iov[0].iov_base;
   5616 
   5617 	m = m_gethdr(M_DONTWAIT, MT_DATA);
   5618 	if (m == NULL)
   5619 		return;
   5620 	m->m_len = m->m_pkthdr.len = 0;
   5621 	m_copyback(m, 0, iov[1].iov_len, iov[1].iov_base);
   5622 
   5623 	WG_DLOG("iov_len=%zu\n", iov[1].iov_len);
   5624 	WG_DUMP_BUF(iov[1].iov_base, iov[1].iov_len);
   5625 
   5626 	bound = curlwp_bind();
   5627 	wg_handle_packet(wg, m, src);
   5628 	curlwp_bindx(bound);
   5629 }
   5630 #endif /* WG_RUMPKERNEL */
   5631 
   5632 /*
   5633  * Module infrastructure
   5634  */
   5635 #include "if_module.h"
   5636 
   5637 IF_MODULE(MODULE_CLASS_DRIVER, wg, "sodium,blake2s")
   5638