Home | History | Annotate | Line # | Download | only in acpi
      1 /* $NetBSD: acpi_cpu_md.c,v 1.84 2020/10/25 16:39:00 nia Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.84 2020/10/25 16:39:00 nia Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/cpufreq.h>
     35 #include <sys/device.h>
     36 #include <sys/kcore.h>
     37 #include <sys/sysctl.h>
     38 #include <sys/xcall.h>
     39 
     40 #include <x86/cpu.h>
     41 #include <x86/cpufunc.h>
     42 #include <x86/cputypes.h>
     43 #include <x86/cpuvar.h>
     44 #include <x86/machdep.h>
     45 #include <x86/x86/tsc.h>
     46 
     47 #include <dev/acpi/acpica.h>
     48 #include <dev/acpi/acpi_cpu.h>
     49 
     50 #include <dev/pci/pcivar.h>
     51 #include <dev/pci/pcidevs.h>
     52 
     53 #include <machine/acpi_machdep.h>
     54 
     55 /*
     56  * Intel IA32_MISC_ENABLE.
     57  */
     58 #define MSR_MISC_ENABLE_EST	__BIT(16)
     59 #define MSR_MISC_ENABLE_TURBO	__BIT(38)
     60 
     61 /*
     62  * AMD C1E.
     63  */
     64 #define MSR_CMPHALT		0xc0010055
     65 
     66 #define MSR_CMPHALT_SMI		__BIT(27)
     67 #define MSR_CMPHALT_C1E		__BIT(28)
     68 #define MSR_CMPHALT_BMSTS	__BIT(29)
     69 
     70 /*
     71  * AMD families 10h, 11h, 12h, 14h, and 15h.
     72  */
     73 #define MSR_10H_LIMIT		0xc0010061
     74 #define MSR_10H_CONTROL		0xc0010062
     75 #define MSR_10H_STATUS		0xc0010063
     76 #define MSR_10H_CONFIG		0xc0010064
     77 
     78 /*
     79  * AMD family 0Fh.
     80  */
     81 #define MSR_0FH_CONTROL		0xc0010041
     82 #define MSR_0FH_STATUS		0xc0010042
     83 
     84 #define MSR_0FH_STATUS_CFID	__BITS( 0,  5)
     85 #define MSR_0FH_STATUS_CVID	__BITS(32, 36)
     86 #define MSR_0FH_STATUS_PENDING	__BITS(31, 31)
     87 
     88 #define MSR_0FH_CONTROL_FID	__BITS( 0,  5)
     89 #define MSR_0FH_CONTROL_VID	__BITS( 8, 12)
     90 #define MSR_0FH_CONTROL_CHG	__BITS(16, 16)
     91 #define MSR_0FH_CONTROL_CNT	__BITS(32, 51)
     92 
     93 #define ACPI_0FH_STATUS_FID	__BITS( 0,  5)
     94 #define ACPI_0FH_STATUS_VID	__BITS( 6, 10)
     95 
     96 #define ACPI_0FH_CONTROL_FID	__BITS( 0,  5)
     97 #define ACPI_0FH_CONTROL_VID	__BITS( 6, 10)
     98 #define ACPI_0FH_CONTROL_VST	__BITS(11, 17)
     99 #define ACPI_0FH_CONTROL_MVS	__BITS(18, 19)
    100 #define ACPI_0FH_CONTROL_PLL	__BITS(20, 26)
    101 #define ACPI_0FH_CONTROL_RVO	__BITS(28, 29)
    102 #define ACPI_0FH_CONTROL_IRT	__BITS(30, 31)
    103 
    104 #define FID_TO_VCO_FID(fidd)	(((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
    105 
    106 static char	  native_idle_text[16];
    107 void		(*native_idle)(void) = NULL;
    108 
    109 static int	 acpicpu_md_quirk_piix4(const struct pci_attach_args *);
    110 static void	 acpicpu_md_pstate_hwf_reset(void *, void *);
    111 static int	 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
    112                                               uint32_t *);
    113 static int	 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
    114 static int	 acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
    115 static void	 acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
    116 					        uint32_t, uint32_t);
    117 static int	 acpicpu_md_pstate_sysctl_init(void);
    118 static int	 acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
    119 static int	 acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
    120 static int	 acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
    121 
    122 extern struct acpicpu_softc **acpicpu_sc;
    123 static struct sysctllog *acpicpu_log = NULL;
    124 
    125 struct cpu_info *
    126 acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
    127 {
    128 	struct cpufeature_attach_args *cfaa = aux;
    129 
    130 	if (strcmp(cfaa->name, "frequency") != 0)
    131 		return NULL;
    132 
    133 	return cfaa->ci;
    134 }
    135 
    136 struct cpu_info *
    137 acpicpu_md_attach(device_t parent, device_t self, void *aux)
    138 {
    139 	struct cpufeature_attach_args *cfaa = aux;
    140 
    141 	return cfaa->ci;
    142 }
    143 
    144 uint32_t
    145 acpicpu_md_flags(void)
    146 {
    147 	struct cpu_info *ci = curcpu();
    148 	struct pci_attach_args pa;
    149 	uint32_t family, val = 0;
    150 	uint32_t regs[4];
    151 	uint64_t msr;
    152 
    153 	if (acpi_md_ncpus() == 1)
    154 		val |= ACPICPU_FLAG_C_BM;
    155 
    156 	if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
    157 		val |= ACPICPU_FLAG_C_FFH;
    158 
    159 	/*
    160 	 * By default, assume that the local APIC timer
    161 	 * as well as TSC are stalled during C3 sleep.
    162 	 */
    163 	val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
    164 
    165 	/*
    166 	 * Detect whether TSC is invariant. If it is not, we keep the flag to
    167 	 * note that TSC will not run at constant rate. Depending on the CPU,
    168 	 * this may affect P- and T-state changes, but especially relevant
    169 	 * are C-states; with variant TSC, states larger than C1 may
    170 	 * completely stop the counter.
    171 	 */
    172 	if (tsc_is_invariant())
    173 		val &= ~ACPICPU_FLAG_C_TSC;
    174 
    175 	switch (cpu_vendor) {
    176 
    177 	case CPUVENDOR_IDT:
    178 
    179 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    180 			val |= ACPICPU_FLAG_P_FFH;
    181 
    182 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    183 			val |= ACPICPU_FLAG_T_FFH;
    184 
    185 		break;
    186 
    187 	case CPUVENDOR_INTEL:
    188 
    189 		/*
    190 		 * Bus master control and arbitration should be
    191 		 * available on all supported Intel CPUs (to be
    192 		 * sure, this is double-checked later from the
    193 		 * firmware data). These flags imply that it is
    194 		 * not necessary to flush caches before C3 state.
    195 		 */
    196 		val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
    197 
    198 		/*
    199 		 * Check if we can use "native", MSR-based,
    200 		 * access. If not, we have to resort to I/O.
    201 		 */
    202 		if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
    203 			val |= ACPICPU_FLAG_P_FFH;
    204 
    205 		if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
    206 			val |= ACPICPU_FLAG_T_FFH;
    207 
    208 		/*
    209 		 * Check whether MSR_APERF, MSR_MPERF, and Turbo
    210 		 * Boost are available. Also see if we might have
    211 		 * an invariant local APIC timer ("ARAT").
    212 		 */
    213 		if (cpuid_level >= 0x06) {
    214 
    215 			x86_cpuid(0x00000006, regs);
    216 
    217 			if ((regs[2] & CPUID_DSPM_HWF) != 0)
    218 				val |= ACPICPU_FLAG_P_HWF;
    219 
    220 			if ((regs[0] & CPUID_DSPM_IDA) != 0)
    221 				val |= ACPICPU_FLAG_P_TURBO;
    222 
    223 			if ((regs[0] & CPUID_DSPM_ARAT) != 0)
    224 				val &= ~ACPICPU_FLAG_C_APIC;
    225 
    226 		}
    227 
    228 		break;
    229 
    230 	case CPUVENDOR_AMD:
    231 
    232 		x86_cpuid(0x80000000, regs);
    233 
    234 		if (regs[0] < 0x80000007)
    235 			break;
    236 
    237 		x86_cpuid(0x80000007, regs);
    238 
    239 		family = CPUID_TO_FAMILY(ci->ci_signature);
    240 
    241     		switch (family) {
    242 
    243 		case 0x0f:
    244 
    245 			/*
    246 			 * Disable C1E if present.
    247 			 */
    248 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    249 				val |= ACPICPU_FLAG_C_C1E;
    250 
    251 			/*
    252 			 * Evaluate support for the "FID/VID
    253 			 * algorithm" also used by powernow(4).
    254 			 */
    255 			if ((regs[3] & CPUID_APM_FID) == 0)
    256 				break;
    257 
    258 			if ((regs[3] & CPUID_APM_VID) == 0)
    259 				break;
    260 
    261 			val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
    262 			break;
    263 
    264 		case 0x10:
    265 		case 0x11:
    266 
    267 			/*
    268 			 * Disable C1E if present.
    269 			 */
    270 			if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
    271 				val |= ACPICPU_FLAG_C_C1E;
    272 
    273 			/* FALLTHROUGH */
    274 
    275 		case 0x12:
    276 		case 0x14: /* AMD Fusion */
    277 		case 0x15: /* AMD Bulldozer */
    278 
    279 			/*
    280 			 * Like with Intel, detect MSR-based P-states,
    281 			 * and AMD's "turbo" (Core Performance Boost),
    282 			 * respectively.
    283 			 */
    284 			if ((regs[3] & CPUID_APM_HWP) != 0)
    285 				val |= ACPICPU_FLAG_P_FFH;
    286 
    287 			if ((regs[3] & CPUID_APM_CPB) != 0)
    288 				val |= ACPICPU_FLAG_P_TURBO;
    289 
    290 			/*
    291 			 * Also check for APERF and MPERF,
    292 			 * first available in the family 10h.
    293 			 */
    294 			if (cpuid_level >= 0x06) {
    295 
    296 				x86_cpuid(0x00000006, regs);
    297 
    298 				if ((regs[2] & CPUID_DSPM_HWF) != 0)
    299 					val |= ACPICPU_FLAG_P_HWF;
    300 			}
    301 
    302 			break;
    303 		}
    304 
    305 		break;
    306 	}
    307 
    308 	/*
    309 	 * There are several erratums for PIIX4.
    310 	 */
    311 	if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
    312 		val |= ACPICPU_FLAG_PIIX4;
    313 
    314 	return val;
    315 }
    316 
    317 static int
    318 acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
    319 {
    320 
    321 	/*
    322 	 * XXX: The pci_find_device(9) function only
    323 	 *	deals with attached devices. Change this
    324 	 *	to use something like pci_device_foreach().
    325 	 */
    326 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    327 		return 0;
    328 
    329 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
    330 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
    331 		return 1;
    332 
    333 	return 0;
    334 }
    335 
    336 void
    337 acpicpu_md_quirk_c1e(void)
    338 {
    339 	const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
    340 	uint64_t val;
    341 
    342 	val = rdmsr(MSR_CMPHALT);
    343 
    344 	if ((val & c1e) != 0)
    345 		wrmsr(MSR_CMPHALT, val & ~c1e);
    346 }
    347 
    348 int
    349 acpicpu_md_cstate_start(struct acpicpu_softc *sc)
    350 {
    351 	const size_t size = sizeof(native_idle_text);
    352 	struct acpicpu_cstate *cs;
    353 	bool ipi = false;
    354 	int i;
    355 
    356 	/*
    357 	 * Save the cpu_idle(9) loop used by default.
    358 	 */
    359 	x86_cpu_idle_get(&native_idle, native_idle_text, size);
    360 
    361 	for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
    362 
    363 		cs = &sc->sc_cstate[i];
    364 
    365 		if (cs->cs_method == ACPICPU_C_STATE_HALT) {
    366 			ipi = true;
    367 			break;
    368 		}
    369 	}
    370 
    371 	x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
    372 
    373 	return 0;
    374 }
    375 
    376 int
    377 acpicpu_md_cstate_stop(void)
    378 {
    379 	static char text[16];
    380 	void (*func)(void);
    381 	bool ipi;
    382 
    383 	x86_cpu_idle_get(&func, text, sizeof(text));
    384 
    385 	if (func == native_idle)
    386 		return EALREADY;
    387 
    388 	ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
    389 	x86_cpu_idle_set(native_idle, native_idle_text, ipi);
    390 
    391 	/*
    392 	 * Run a cross-call to ensure that all CPUs are
    393 	 * out from the ACPI idle-loop before detachment.
    394 	 */
    395 	xc_barrier(0);
    396 
    397 	return 0;
    398 }
    399 
    400 /*
    401  * Called with interrupts enabled.
    402  */
    403 void __nocsan
    404 acpicpu_md_cstate_enter(int method, int state)
    405 {
    406 	struct cpu_info *ci = curcpu();
    407 
    408 	KASSERT(ci->ci_ilevel == IPL_NONE);
    409 
    410 	switch (method) {
    411 
    412 	case ACPICPU_C_STATE_FFH:
    413 
    414 		x86_monitor(&ci->ci_want_resched, 0, 0);
    415 
    416 		if (__predict_false(ci->ci_want_resched != 0))
    417 			return;
    418 
    419 		x86_mwait((state - 1) << 4, 0);
    420 		break;
    421 
    422 	case ACPICPU_C_STATE_HALT:
    423 
    424 		x86_disable_intr();
    425 
    426 		if (__predict_false(ci->ci_want_resched != 0)) {
    427 			x86_enable_intr();
    428 			return;
    429 		}
    430 
    431 		x86_stihlt();
    432 		break;
    433 	}
    434 }
    435 
    436 int
    437 acpicpu_md_pstate_start(struct acpicpu_softc *sc)
    438 {
    439 	uint64_t xc, val;
    440 
    441 	switch (cpu_vendor) {
    442 
    443 	case CPUVENDOR_IDT:
    444 	case CPUVENDOR_INTEL:
    445 
    446 		/*
    447 		 * Make sure EST is enabled.
    448 		 */
    449 		if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
    450 
    451 			val = rdmsr(MSR_MISC_ENABLE);
    452 
    453 			if ((val & MSR_MISC_ENABLE_EST) == 0) {
    454 
    455 				val |= MSR_MISC_ENABLE_EST;
    456 				wrmsr(MSR_MISC_ENABLE, val);
    457 				val = rdmsr(MSR_MISC_ENABLE);
    458 
    459 				if ((val & MSR_MISC_ENABLE_EST) == 0)
    460 					return ENOTTY;
    461 			}
    462 		}
    463 	}
    464 
    465 	/*
    466 	 * Reset the APERF and MPERF counters.
    467 	 */
    468 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    469 		xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
    470 		xc_wait(xc);
    471 	}
    472 
    473 	return acpicpu_md_pstate_sysctl_init();
    474 }
    475 
    476 int
    477 acpicpu_md_pstate_stop(void)
    478 {
    479 
    480 	if (acpicpu_log == NULL)
    481 		return EALREADY;
    482 
    483 	sysctl_teardown(&acpicpu_log);
    484 	acpicpu_log = NULL;
    485 
    486 	return 0;
    487 }
    488 
    489 int
    490 acpicpu_md_pstate_init(struct acpicpu_softc *sc)
    491 {
    492 	struct cpu_info *ci = sc->sc_ci;
    493 	struct acpicpu_pstate *ps, msr;
    494 	uint32_t family, i = 0;
    495 
    496 	(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
    497 
    498 	switch (cpu_vendor) {
    499 
    500 	case CPUVENDOR_IDT:
    501 	case CPUVENDOR_INTEL:
    502 
    503 		/*
    504 		 * If the so-called Turbo Boost is present,
    505 		 * the P0-state is always the "turbo state".
    506 		 * It is shown as the P1 frequency + 1 MHz.
    507 		 *
    508 		 * For discussion, see:
    509 		 *
    510 		 *	Intel Corporation: Intel Turbo Boost Technology
    511 		 *	in Intel Core(tm) Microarchitectures (Nehalem)
    512 		 *	Based Processors. White Paper, November 2008.
    513 		 */
    514 		if (sc->sc_pstate_count >= 2 &&
    515 		   (sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
    516 
    517 			ps = &sc->sc_pstate[0];
    518 
    519 			if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
    520 				ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
    521 		}
    522 
    523 		msr.ps_control_addr = MSR_PERF_CTL;
    524 		msr.ps_control_mask = __BITS(0, 15);
    525 
    526 		msr.ps_status_addr  = MSR_PERF_STATUS;
    527 		msr.ps_status_mask  = __BITS(0, 15);
    528 		break;
    529 
    530 	case CPUVENDOR_AMD:
    531 
    532 		if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    533 			msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
    534 
    535 		family = CPUID_TO_FAMILY(ci->ci_signature);
    536 
    537 		switch (family) {
    538 
    539 		case 0x0f:
    540 			msr.ps_control_addr = MSR_0FH_CONTROL;
    541 			msr.ps_status_addr  = MSR_0FH_STATUS;
    542 			break;
    543 
    544 		case 0x10:
    545 		case 0x11:
    546 		case 0x12:
    547 		case 0x14:
    548 		case 0x15:
    549 			msr.ps_control_addr = MSR_10H_CONTROL;
    550 			msr.ps_control_mask = __BITS(0, 2);
    551 
    552 			msr.ps_status_addr  = MSR_10H_STATUS;
    553 			msr.ps_status_mask  = __BITS(0, 2);
    554 			break;
    555 
    556 		default:
    557 			/*
    558 			 * If we have an unknown AMD CPU, rely on XPSS.
    559 			 */
    560 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    561 				return EOPNOTSUPP;
    562 		}
    563 
    564 		break;
    565 
    566 	default:
    567 		return ENODEV;
    568 	}
    569 
    570 	/*
    571 	 * Fill the P-state structures with MSR addresses that are
    572 	 * known to be correct. If we do not know the addresses,
    573 	 * leave the values intact. If a vendor uses XPSS, we do
    574 	 * not necessarily need to do anything to support new CPUs.
    575 	 */
    576 	while (i < sc->sc_pstate_count) {
    577 
    578 		ps = &sc->sc_pstate[i];
    579 
    580 		if (msr.ps_flags != 0)
    581 			ps->ps_flags |= msr.ps_flags;
    582 
    583 		if (msr.ps_status_addr != 0)
    584 			ps->ps_status_addr = msr.ps_status_addr;
    585 
    586 		if (msr.ps_status_mask != 0)
    587 			ps->ps_status_mask = msr.ps_status_mask;
    588 
    589 		if (msr.ps_control_addr != 0)
    590 			ps->ps_control_addr = msr.ps_control_addr;
    591 
    592 		if (msr.ps_control_mask != 0)
    593 			ps->ps_control_mask = msr.ps_control_mask;
    594 
    595 		i++;
    596 	}
    597 
    598 	return 0;
    599 }
    600 
    601 /*
    602  * Read the IA32_APERF and IA32_MPERF counters. The first
    603  * increments at the rate of the fixed maximum frequency
    604  * configured during the boot, whereas APERF counts at the
    605  * rate of the actual frequency. Note that the MSRs must be
    606  * read without delay, and that only the ratio between
    607  * IA32_APERF and IA32_MPERF is architecturally defined.
    608  *
    609  * The function thus returns the percentage of the actual
    610  * frequency in terms of the maximum frequency of the calling
    611  * CPU since the last call. A value zero implies an error.
    612  *
    613  * For further details, refer to:
    614  *
    615  *	Intel Corporation: Intel 64 and IA-32 Architectures
    616  *	Software Developer's Manual. Section 13.2, Volume 3A:
    617  *	System Programming Guide, Part 1. July, 2008.
    618  *
    619  *	Advanced Micro Devices: BIOS and Kernel Developer's
    620  *	Guide (BKDG) for AMD Family 10h Processors. Section
    621  *	2.4.5, Revision 3.48, April 2010.
    622  */
    623 uint8_t
    624 acpicpu_md_pstate_hwf(struct cpu_info *ci)
    625 {
    626 	struct acpicpu_softc *sc;
    627 	uint64_t aperf, mperf;
    628 	uint8_t rv = 0;
    629 
    630 	sc = acpicpu_sc[ci->ci_acpiid];
    631 
    632 	if (__predict_false(sc == NULL))
    633 		return 0;
    634 
    635 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
    636 		return 0;
    637 
    638 	aperf = sc->sc_pstate_aperf;
    639 	mperf = sc->sc_pstate_mperf;
    640 
    641 	x86_disable_intr();
    642 
    643 	sc->sc_pstate_aperf = rdmsr(MSR_APERF);
    644 	sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
    645 
    646 	x86_enable_intr();
    647 
    648 	aperf = sc->sc_pstate_aperf - aperf;
    649 	mperf = sc->sc_pstate_mperf - mperf;
    650 
    651 	if (__predict_true(mperf != 0))
    652 		rv = (aperf * 100) / mperf;
    653 
    654 	return rv;
    655 }
    656 
    657 static void
    658 acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
    659 {
    660 	struct cpu_info *ci = curcpu();
    661 	struct acpicpu_softc *sc;
    662 
    663 	sc = acpicpu_sc[ci->ci_acpiid];
    664 
    665 	if (__predict_false(sc == NULL))
    666 		return;
    667 
    668 	x86_disable_intr();
    669 
    670 	wrmsr(MSR_APERF, 0);
    671 	wrmsr(MSR_MPERF, 0);
    672 
    673 	x86_enable_intr();
    674 
    675 	sc->sc_pstate_aperf = 0;
    676 	sc->sc_pstate_mperf = 0;
    677 }
    678 
    679 int
    680 acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    681 {
    682 	struct acpicpu_pstate *ps = NULL;
    683 	uint64_t val;
    684 	uint32_t i;
    685 
    686 	if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    687 		return acpicpu_md_pstate_fidvid_get(sc, freq);
    688 
    689 	/*
    690 	 * Pick any P-state for the status address.
    691 	 */
    692 	for (i = 0; i < sc->sc_pstate_count; i++) {
    693 
    694 		ps = &sc->sc_pstate[i];
    695 
    696 		if (__predict_true(ps->ps_freq != 0))
    697 			break;
    698 	}
    699 
    700 	if (__predict_false(ps == NULL))
    701 		return ENODEV;
    702 
    703 	if (__predict_false(ps->ps_status_addr == 0))
    704 		return EINVAL;
    705 
    706 	val = rdmsr(ps->ps_status_addr);
    707 
    708 	if (__predict_true(ps->ps_status_mask != 0))
    709 		val = val & ps->ps_status_mask;
    710 
    711 	/*
    712 	 * Search for the value from known P-states.
    713 	 */
    714 	for (i = 0; i < sc->sc_pstate_count; i++) {
    715 
    716 		ps = &sc->sc_pstate[i];
    717 
    718 		if (__predict_false(ps->ps_freq == 0))
    719 			continue;
    720 
    721 		if (val == ps->ps_status) {
    722 			*freq = ps->ps_freq;
    723 			return 0;
    724 		}
    725 	}
    726 
    727 	/*
    728 	 * If the value was not found, try APERF/MPERF.
    729 	 * The state is P0 if the return value is 100 %.
    730 	 */
    731 	if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
    732 
    733 		KASSERT(sc->sc_pstate_count > 0);
    734 		KASSERT(sc->sc_pstate[0].ps_freq != 0);
    735 
    736 		if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
    737 			*freq = sc->sc_pstate[0].ps_freq;
    738 			return 0;
    739 		}
    740 	}
    741 
    742 	return EIO;
    743 }
    744 
    745 int
    746 acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
    747 {
    748 	uint64_t val = 0;
    749 
    750 	if (__predict_false(ps->ps_control_addr == 0))
    751 		return EINVAL;
    752 
    753 	if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
    754 		return acpicpu_md_pstate_fidvid_set(ps);
    755 
    756 	/*
    757 	 * If the mask is set, do a read-modify-write.
    758 	 */
    759 	if (__predict_true(ps->ps_control_mask != 0)) {
    760 		val = rdmsr(ps->ps_control_addr);
    761 		val &= ~ps->ps_control_mask;
    762 	}
    763 
    764 	val |= ps->ps_control;
    765 
    766 	wrmsr(ps->ps_control_addr, val);
    767 	DELAY(ps->ps_latency);
    768 
    769 	return 0;
    770 }
    771 
    772 static int
    773 acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
    774 {
    775 	struct acpicpu_pstate *ps;
    776 	uint32_t fid, i, vid;
    777 	uint32_t cfid, cvid;
    778 	int rv;
    779 
    780 	/*
    781 	 * AMD family 0Fh needs special treatment.
    782 	 * While it wants to use ACPI, it does not
    783 	 * comply with the ACPI specifications.
    784 	 */
    785 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    786 
    787 	if (rv != 0)
    788 		return rv;
    789 
    790 	for (i = 0; i < sc->sc_pstate_count; i++) {
    791 
    792 		ps = &sc->sc_pstate[i];
    793 
    794 		if (__predict_false(ps->ps_freq == 0))
    795 			continue;
    796 
    797 		fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
    798 		vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
    799 
    800 		if (cfid == fid && cvid == vid) {
    801 			*freq = ps->ps_freq;
    802 			return 0;
    803 		}
    804 	}
    805 
    806 	return EIO;
    807 }
    808 
    809 static int
    810 acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
    811 {
    812 	const uint64_t ctrl = ps->ps_control;
    813 	uint32_t cfid, cvid, fid, i, irt;
    814 	uint32_t pll, vco_cfid, vco_fid;
    815 	uint32_t val, vid, vst;
    816 	int rv;
    817 
    818 	rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
    819 
    820 	if (rv != 0)
    821 		return rv;
    822 
    823 	fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
    824 	vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
    825 	irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
    826 	vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
    827 	pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
    828 
    829 	vst = vst * 20;
    830 	pll = pll * 1000 / 5;
    831 	irt = 10 * __BIT(irt);
    832 
    833 	/*
    834 	 * Phase 1.
    835 	 */
    836 	while (cvid > vid) {
    837 
    838 		val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
    839 		val = (val > cvid) ? 0 : cvid - val;
    840 
    841 		acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
    842 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    843 
    844 		if (rv != 0)
    845 			return rv;
    846 	}
    847 
    848 	i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
    849 
    850 	for (; i > 0 && cvid > 0; --i) {
    851 
    852 		acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
    853 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    854 
    855 		if (rv != 0)
    856 			return rv;
    857 	}
    858 
    859 	/*
    860 	 * Phase 2.
    861 	 */
    862 	if (cfid != fid) {
    863 
    864 		vco_fid  = FID_TO_VCO_FID(fid);
    865 		vco_cfid = FID_TO_VCO_FID(cfid);
    866 
    867 		while (abs(vco_fid - vco_cfid) > 2) {
    868 
    869 			if (fid <= cfid)
    870 				val = cfid - 2;
    871 			else {
    872 				val = (cfid > 6) ? cfid + 2 :
    873 				    FID_TO_VCO_FID(cfid) + 2;
    874 			}
    875 
    876 			acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
    877 			rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    878 
    879 			if (rv != 0)
    880 				return rv;
    881 
    882 			vco_cfid = FID_TO_VCO_FID(cfid);
    883 		}
    884 
    885 		acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
    886 		rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
    887 
    888 		if (rv != 0)
    889 			return rv;
    890 	}
    891 
    892 	/*
    893 	 * Phase 3.
    894 	 */
    895 	if (cvid != vid) {
    896 
    897 		acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
    898 		rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
    899 
    900 		if (rv != 0)
    901 			return rv;
    902 	}
    903 
    904 	return 0;
    905 }
    906 
    907 static int
    908 acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
    909 {
    910 	int i = ACPICPU_P_STATE_RETRY * 100;
    911 	uint64_t val;
    912 
    913 	do {
    914 		val = rdmsr(MSR_0FH_STATUS);
    915 
    916 	} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
    917 
    918 	if (i == 0)
    919 		return EAGAIN;
    920 
    921 	if (cfid != NULL)
    922 		*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
    923 
    924 	if (cvid != NULL)
    925 		*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
    926 
    927 	return 0;
    928 }
    929 
    930 static void
    931 acpicpu_md_pstate_fidvid_write(uint32_t fid,
    932     uint32_t vid, uint32_t cnt, uint32_t tmo)
    933 {
    934 	uint64_t val = 0;
    935 
    936 	val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
    937 	val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
    938 	val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
    939 	val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
    940 
    941 	wrmsr(MSR_0FH_CONTROL, val);
    942 	DELAY(tmo);
    943 }
    944 
    945 int
    946 acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
    947 {
    948 	struct acpicpu_tstate *ts;
    949 	uint64_t val;
    950 	uint32_t i;
    951 
    952 	val = rdmsr(MSR_THERM_CONTROL);
    953 
    954 	for (i = 0; i < sc->sc_tstate_count; i++) {
    955 
    956 		ts = &sc->sc_tstate[i];
    957 
    958 		if (ts->ts_percent == 0)
    959 			continue;
    960 
    961 		if (val == ts->ts_status) {
    962 			*percent = ts->ts_percent;
    963 			return 0;
    964 		}
    965 	}
    966 
    967 	return EIO;
    968 }
    969 
    970 int
    971 acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
    972 {
    973 	uint64_t val;
    974 	uint8_t i;
    975 
    976 	val = ts->ts_control;
    977 	val = val & __BITS(0, 4);
    978 
    979 	wrmsr(MSR_THERM_CONTROL, val);
    980 
    981 	if (ts->ts_status == 0) {
    982 		DELAY(ts->ts_latency);
    983 		return 0;
    984 	}
    985 
    986 	for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
    987 
    988 		val = rdmsr(MSR_THERM_CONTROL);
    989 
    990 		if (val == ts->ts_status)
    991 			return 0;
    992 
    993 		DELAY(ts->ts_latency);
    994 	}
    995 
    996 	return EAGAIN;
    997 }
    998 
    999 /*
   1000  * A kludge for backwards compatibility.
   1001  */
   1002 static int
   1003 acpicpu_md_pstate_sysctl_init(void)
   1004 {
   1005 	const struct sysctlnode	*fnode, *mnode, *rnode;
   1006 	int rv;
   1007 
   1008 	rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
   1009 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
   1010 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
   1011 
   1012 	if (rv != 0)
   1013 		goto fail;
   1014 
   1015 	rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
   1016 	    0, CTLTYPE_NODE, "cpu", NULL,
   1017 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1018 
   1019 	if (rv != 0)
   1020 		goto fail;
   1021 
   1022 	rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
   1023 	    0, CTLTYPE_NODE, "frequency", NULL,
   1024 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1025 
   1026 	if (rv != 0)
   1027 		goto fail;
   1028 
   1029 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1030 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
   1031 	    acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1032 
   1033 	if (rv != 0)
   1034 		goto fail;
   1035 
   1036 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1037 	    CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
   1038 	    acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1039 
   1040 	if (rv != 0)
   1041 		goto fail;
   1042 
   1043 	rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
   1044 	    CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
   1045 	    acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
   1046 
   1047 	if (rv != 0)
   1048 		goto fail;
   1049 
   1050 	return 0;
   1051 
   1052 fail:
   1053 	if (acpicpu_log != NULL) {
   1054 		sysctl_teardown(&acpicpu_log);
   1055 		acpicpu_log = NULL;
   1056 	}
   1057 
   1058 	return rv;
   1059 }
   1060 
   1061 static int
   1062 acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
   1063 {
   1064 	struct sysctlnode node;
   1065 	uint32_t freq;
   1066 	int err;
   1067 
   1068 	freq = cpufreq_get(curcpu());
   1069 
   1070 	if (freq == 0)
   1071 		return ENXIO;
   1072 
   1073 	node = *rnode;
   1074 	node.sysctl_data = &freq;
   1075 
   1076 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1077 
   1078 	if (err != 0 || newp == NULL)
   1079 		return err;
   1080 
   1081 	return 0;
   1082 }
   1083 
   1084 static int
   1085 acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
   1086 {
   1087 	struct sysctlnode node;
   1088 	uint32_t freq;
   1089 	int err;
   1090 
   1091 	freq = cpufreq_get(curcpu());
   1092 
   1093 	if (freq == 0)
   1094 		return ENXIO;
   1095 
   1096 	node = *rnode;
   1097 	node.sysctl_data = &freq;
   1098 
   1099 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1100 
   1101 	if (err != 0 || newp == NULL)
   1102 		return err;
   1103 
   1104 	cpufreq_set_all(freq);
   1105 
   1106 	return 0;
   1107 }
   1108 
   1109 static int
   1110 acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
   1111 {
   1112 	struct cpu_info *ci = curcpu();
   1113 	struct acpicpu_softc *sc;
   1114 	struct sysctlnode node;
   1115 	char buf[1024];
   1116 	size_t len;
   1117 	uint32_t i;
   1118 	int err;
   1119 
   1120 	sc = acpicpu_sc[ci->ci_acpiid];
   1121 
   1122 	if (sc == NULL)
   1123 		return ENXIO;
   1124 
   1125 	(void)memset(&buf, 0, sizeof(buf));
   1126 
   1127 	mutex_enter(&sc->sc_mtx);
   1128 
   1129 	for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
   1130 
   1131 		if (sc->sc_pstate[i].ps_freq == 0)
   1132 			continue;
   1133 
   1134 		if (len >= sizeof(buf))
   1135 			break;
   1136 		len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
   1137 		    sc->sc_pstate[i].ps_freq,
   1138 		    i < (sc->sc_pstate_count - 1) ? " " : "");
   1139 	}
   1140 
   1141 	mutex_exit(&sc->sc_mtx);
   1142 
   1143 	node = *rnode;
   1144 	node.sysctl_data = buf;
   1145 
   1146 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   1147 
   1148 	if (err != 0 || newp == NULL)
   1149 		return err;
   1150 
   1151 	return 0;
   1152 }
   1153 
   1154