1 /* $NetBSD: aes_ssse3.c,v 1.2 2020/06/30 20:32:11 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2020 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * Permutation-based AES using SSSE3, derived from Mike Hamburg's VPAES 31 * software, at <https://crypto.stanford.edu/vpaes/>, described in 32 * 33 * Mike Hamburg, `Accelerating AES with Vector Permute 34 * Instructions', in Christophe Clavier and Kris Gaj (eds.), 35 * Cryptographic Hardware and Embedded Systems -- CHES 2009, 36 * Springer LNCS 5747, pp. 18-32. 37 * 38 * https://link.springer.com/chapter/10.1007/978-3-642-04138-9_2 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(1, "$NetBSD: aes_ssse3.c,v 1.2 2020/06/30 20:32:11 riastradh Exp $"); 43 44 #include <sys/types.h> 45 46 #ifdef _KERNEL 47 #include <sys/systm.h> 48 #else 49 #include <err.h> 50 #define panic(fmt, args...) err(1, fmt, ##args) 51 #endif 52 53 #include "aes_ssse3_impl.h" 54 55 static const union m128const { 56 uint64_t u64[2]; 57 __m128i m; 58 } 59 mc_forward[4] = { 60 {.u64 = {0x0407060500030201, 0x0C0F0E0D080B0A09}}, 61 {.u64 = {0x080B0A0904070605, 0x000302010C0F0E0D}}, 62 {.u64 = {0x0C0F0E0D080B0A09, 0x0407060500030201}}, 63 {.u64 = {0x000302010C0F0E0D, 0x080B0A0904070605}}, 64 }, 65 mc_backward[4] = { 66 {.u64 = {0x0605040702010003, 0x0E0D0C0F0A09080B}}, 67 {.u64 = {0x020100030E0D0C0F, 0x0A09080B06050407}}, 68 {.u64 = {0x0E0D0C0F0A09080B, 0x0605040702010003}}, 69 {.u64 = {0x0A09080B06050407, 0x020100030E0D0C0F}}, 70 }, 71 ipt[2] = { 72 {.u64 = {0xC2B2E8985A2A7000, 0xCABAE09052227808}}, 73 {.u64 = {0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81}}, 74 }, 75 opt[2] = { 76 {.u64 = {0xFF9F4929D6B66000, 0xF7974121DEBE6808}}, 77 {.u64 = {0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0}}, 78 }, 79 dipt[2] = { 80 {.u64 = {0x0F505B040B545F00, 0x154A411E114E451A}}, 81 {.u64 = {0x86E383E660056500, 0x12771772F491F194}}, 82 }, 83 sb1[2] = { 84 {.u64 = {0xB19BE18FCB503E00, 0xA5DF7A6E142AF544}}, 85 {.u64 = {0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF}}, 86 }, 87 sb2[2] = { 88 {.u64 = {0xE27A93C60B712400, 0x5EB7E955BC982FCD}}, 89 {.u64 = {0x69EB88400AE12900, 0xC2A163C8AB82234A}}, 90 }, 91 sbo[2] = { 92 {.u64 = {0xD0D26D176FBDC700, 0x15AABF7AC502A878}}, 93 {.u64 = {0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA}}, 94 }, 95 dsb9[2] = { 96 {.u64 = {0x851C03539A86D600, 0xCAD51F504F994CC9}}, 97 {.u64 = {0xC03B1789ECD74900, 0x725E2C9EB2FBA565}}, 98 }, 99 dsbd[2] = { 100 {.u64 = {0x7D57CCDFE6B1A200, 0xF56E9B13882A4439}}, 101 {.u64 = {0x3CE2FAF724C6CB00, 0x2931180D15DEEFD3}}, 102 }, 103 dsbb[2] = { 104 {.u64 = {0xD022649296B44200, 0x602646F6B0F2D404}}, 105 {.u64 = {0xC19498A6CD596700, 0xF3FF0C3E3255AA6B}}, 106 }, 107 dsbe[2] = { 108 {.u64 = {0x46F2929626D4D000, 0x2242600464B4F6B0}}, 109 {.u64 = {0x0C55A6CDFFAAC100, 0x9467F36B98593E32}}, 110 }, 111 dsbo[2] = { 112 {.u64 = {0x1387EA537EF94000, 0xC7AA6DB9D4943E2D}}, 113 {.u64 = {0x12D7560F93441D00, 0xCA4B8159D8C58E9C}}, 114 }, 115 dks1[2] = { 116 {.u64 = {0xB6116FC87ED9A700, 0x4AED933482255BFC}}, 117 {.u64 = {0x4576516227143300, 0x8BB89FACE9DAFDCE}}, 118 }, 119 dks2[2] = { 120 {.u64 = {0x27438FEBCCA86400, 0x4622EE8AADC90561}}, 121 {.u64 = {0x815C13CE4F92DD00, 0x73AEE13CBD602FF2}}, 122 }, 123 dks3[2] = { 124 {.u64 = {0x03C4C50201C6C700, 0xF83F3EF9FA3D3CFB}}, 125 {.u64 = {0xEE1921D638CFF700, 0xA5526A9D7384BC4B}}, 126 }, 127 dks4[2] = { 128 {.u64 = {0xE3C390B053732000, 0xA080D3F310306343}}, 129 {.u64 = {0xA0CA214B036982E8, 0x2F45AEC48CE60D67}}, 130 }, 131 deskew[2] = { 132 {.u64 = {0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A}}, 133 {.u64 = {0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77}}, 134 }, 135 sr[4] = { 136 {.u64 = {0x0706050403020100, 0x0F0E0D0C0B0A0908}}, 137 {.u64 = {0x030E09040F0A0500, 0x0B06010C07020D08}}, 138 {.u64 = {0x0F060D040B020900, 0x070E050C030A0108}}, 139 {.u64 = {0x0B0E0104070A0D00, 0x0306090C0F020508}}, 140 }, 141 rcon = {.u64 = {0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81}}, 142 s63 = {.u64 = {0x5B5B5B5B5B5B5B5B, 0x5B5B5B5B5B5B5B5B}}, 143 of = {.u64 = {0x0F0F0F0F0F0F0F0F, 0x0F0F0F0F0F0F0F0F}}, 144 inv = {.u64 = {0x0E05060F0D080180, 0x040703090A0B0C02}}, 145 inva = {.u64 = {0x01040A060F0B0780, 0x030D0E0C02050809}}; 146 147 static inline __m128i 148 loadroundkey(const uint32_t *rk32) 149 { 150 return _mm_load_si128((const void *)rk32); 151 } 152 153 static inline void 154 storeroundkey(uint32_t *rk32, __m128i rk) 155 { 156 _mm_store_si128((void *)rk32, rk); 157 } 158 159 /* Given abcdefgh, set *lo = 0b0d0f0h and *hi = 0a0c0e0g. */ 160 static inline void 161 bytes2nybbles(__m128i *restrict lo, __m128i *restrict hi, __m128i x) 162 { 163 164 *lo = x & of.m; 165 *hi = _mm_srli_epi32(x & ~of.m, 4); 166 } 167 168 /* Given 0p0q0r0s, return 0x0y0z0w where x = a/p, y = a/q, &c. */ 169 static inline __m128i 170 gf16_inva(__m128i x) 171 { 172 return _mm_shuffle_epi8(inva.m, x); 173 } 174 175 /* Given 0p0q0r0s, return 0x0y0z0w where x = 1/p, y = 1/q, &c. */ 176 static inline __m128i 177 gf16_inv(__m128i x) 178 { 179 return _mm_shuffle_epi8(inv.m, x); 180 } 181 182 /* 183 * t is a pair of maps respectively from low and high nybbles to bytes. 184 * Apply t the nybbles, and add the results in GF(2). 185 */ 186 static __m128i 187 aes_schedule_transform(__m128i x, const union m128const t[static 2]) 188 { 189 __m128i lo, hi; 190 191 bytes2nybbles(&lo, &hi, x); 192 return _mm_shuffle_epi8(t[0].m, lo) ^ _mm_shuffle_epi8(t[1].m, hi); 193 } 194 195 static inline void 196 subbytes(__m128i *io, __m128i *jo, __m128i x) 197 { 198 __m128i k, i, ak, j; 199 200 bytes2nybbles(&k, &i, x); 201 ak = gf16_inva(k); 202 j = i ^ k; 203 *io = j ^ gf16_inv(ak ^ gf16_inv(i)); 204 *jo = i ^ gf16_inv(ak ^ gf16_inv(j)); 205 } 206 207 static __m128i 208 aes_schedule_low_round(__m128i rk, __m128i prk) 209 { 210 __m128i io, jo; 211 212 /* smear prk */ 213 prk ^= _mm_slli_si128(prk, 4); 214 prk ^= _mm_slli_si128(prk, 8); 215 prk ^= s63.m; 216 217 /* subbytes */ 218 subbytes(&io, &jo, rk); 219 rk = _mm_shuffle_epi8(sb1[0].m, io) ^ _mm_shuffle_epi8(sb1[1].m, jo); 220 221 /* add in smeared stuff */ 222 return rk ^ prk; 223 } 224 225 static __m128i 226 aes_schedule_round(__m128i rk, __m128i prk, __m128i *rcon_rot) 227 { 228 229 /* extract rcon from rcon_rot */ 230 prk ^= _mm_alignr_epi8(_mm_setzero_si128(), *rcon_rot, 15); 231 *rcon_rot = _mm_alignr_epi8(*rcon_rot, *rcon_rot, 15); 232 233 /* rotate */ 234 rk = _mm_shuffle_epi32(rk, 0xff); 235 rk = _mm_alignr_epi8(rk, rk, 1); 236 237 return aes_schedule_low_round(rk, prk); 238 } 239 240 static __m128i 241 aes_schedule_mangle_enc(__m128i x, __m128i sr_i) 242 { 243 __m128i y = _mm_setzero_si128(); 244 245 x ^= s63.m; 246 247 x = _mm_shuffle_epi8(x, mc_forward[0].m); 248 y ^= x; 249 x = _mm_shuffle_epi8(x, mc_forward[0].m); 250 y ^= x; 251 x = _mm_shuffle_epi8(x, mc_forward[0].m); 252 y ^= x; 253 254 return _mm_shuffle_epi8(y, sr_i); 255 } 256 257 static __m128i 258 aes_schedule_mangle_last_enc(__m128i x, __m128i sr_i) 259 { 260 261 return aes_schedule_transform(_mm_shuffle_epi8(x, sr_i) ^ s63.m, opt); 262 } 263 264 static __m128i 265 aes_schedule_mangle_dec(__m128i x, __m128i sr_i) 266 { 267 __m128i y = _mm_setzero_si128(); 268 269 x = aes_schedule_transform(x, dks1); 270 y = _mm_shuffle_epi8(y ^ x, mc_forward[0].m); 271 x = aes_schedule_transform(x, dks2); 272 y = _mm_shuffle_epi8(y ^ x, mc_forward[0].m); 273 x = aes_schedule_transform(x, dks3); 274 y = _mm_shuffle_epi8(y ^ x, mc_forward[0].m); 275 x = aes_schedule_transform(x, dks4); 276 y = _mm_shuffle_epi8(y ^ x, mc_forward[0].m); 277 278 return _mm_shuffle_epi8(y, sr_i); 279 } 280 281 static __m128i 282 aes_schedule_mangle_last_dec(__m128i x) 283 { 284 285 return aes_schedule_transform(x ^ s63.m, deskew); 286 } 287 288 static __m128i 289 aes_schedule_192_smear(__m128i prkhi, __m128i prk) 290 { 291 __m128i rk; 292 293 rk = prkhi; 294 rk ^= _mm_shuffle_epi32(prkhi, 0x80); 295 rk ^= _mm_shuffle_epi32(prk, 0xfe); 296 297 return rk; 298 } 299 300 static __m128i 301 aes_schedule_192_smearhi(__m128i rk) 302 { 303 return (__m128i)_mm_movehl_ps((__m128)rk, _mm_setzero_ps()); 304 } 305 306 void 307 aes_ssse3_setenckey(struct aesenc *enc, const uint8_t *key, unsigned nrounds) 308 { 309 uint32_t *rk32 = enc->aese_aes.aes_rk; 310 __m128i mrk; /* mangled round key */ 311 __m128i rk; /* round key */ 312 __m128i prk; /* previous round key */ 313 __m128i rcon_rot = rcon.m; 314 uint64_t i = 3; 315 316 /* input transform */ 317 rk = aes_schedule_transform(_mm_loadu_epi8(key), ipt); 318 storeroundkey(rk32, rk); 319 rk32 += 4; 320 321 switch (nrounds) { 322 case 10: 323 for (;;) { 324 rk = aes_schedule_round(rk, rk, &rcon_rot); 325 if (--nrounds == 0) 326 break; 327 mrk = aes_schedule_mangle_enc(rk, sr[i-- % 4].m); 328 storeroundkey(rk32, mrk); 329 rk32 += 4; 330 } 331 break; 332 case 12: { 333 __m128i prkhi; /* high half of previous round key */ 334 335 prk = rk; 336 rk = aes_schedule_transform(_mm_loadu_epi8(key + 8), ipt); 337 prkhi = aes_schedule_192_smearhi(rk); 338 for (;;) { 339 prk = aes_schedule_round(rk, prk, &rcon_rot); 340 rk = _mm_alignr_epi8(prk, prkhi, 8); 341 342 mrk = aes_schedule_mangle_enc(rk, sr[i-- % 4].m); 343 storeroundkey(rk32, mrk); 344 rk32 += 4; 345 rk = aes_schedule_192_smear(prkhi, prk); 346 prkhi = aes_schedule_192_smearhi(rk); 347 348 mrk = aes_schedule_mangle_enc(rk, sr[i-- % 4].m); 349 storeroundkey(rk32, mrk); 350 rk32 += 4; 351 rk = prk = aes_schedule_round(rk, prk, &rcon_rot); 352 if ((nrounds -= 3) == 0) 353 break; 354 355 mrk = aes_schedule_mangle_enc(rk, sr[i-- % 4].m); 356 storeroundkey(rk32, mrk); 357 rk32 += 4; 358 rk = aes_schedule_192_smear(prkhi, prk); 359 prkhi = aes_schedule_192_smearhi(rk); 360 } 361 break; 362 } 363 case 14: { 364 __m128i pprk; /* previous previous round key */ 365 366 prk = rk; 367 rk = aes_schedule_transform(_mm_loadu_epi8(key + 16), ipt); 368 for (;;) { 369 mrk = aes_schedule_mangle_enc(rk, sr[i-- % 4].m); 370 storeroundkey(rk32, mrk); 371 rk32 += 4; 372 pprk = rk; 373 374 /* high round */ 375 rk = prk = aes_schedule_round(rk, prk, &rcon_rot); 376 if ((nrounds -= 2) == 0) 377 break; 378 mrk = aes_schedule_mangle_enc(rk, sr[i-- % 4].m); 379 storeroundkey(rk32, mrk); 380 rk32 += 4; 381 382 /* low round */ 383 rk = _mm_shuffle_epi32(rk, 0xff); 384 rk = aes_schedule_low_round(rk, pprk); 385 } 386 break; 387 } 388 default: 389 panic("invalid number of AES rounds: %u", nrounds); 390 } 391 storeroundkey(rk32, aes_schedule_mangle_last_enc(rk, sr[i-- % 4].m)); 392 } 393 394 void 395 aes_ssse3_setdeckey(struct aesdec *dec, const uint8_t *key, unsigned nrounds) 396 { 397 uint32_t *rk32 = dec->aesd_aes.aes_rk; 398 __m128i mrk; /* mangled round key */ 399 __m128i ork; /* original round key */ 400 __m128i rk; /* round key */ 401 __m128i prk; /* previous round key */ 402 __m128i rcon_rot = rcon.m; 403 unsigned i = nrounds == 12 ? 0 : 2; 404 405 ork = _mm_loadu_epi8(key); 406 407 /* input transform */ 408 rk = aes_schedule_transform(ork, ipt); 409 410 /* go from end */ 411 rk32 += 4*nrounds; 412 storeroundkey(rk32, _mm_shuffle_epi8(ork, sr[i].m)); 413 rk32 -= 4; 414 i ^= 3; 415 416 switch (nrounds) { 417 case 10: 418 for (;;) { 419 rk = aes_schedule_round(rk, rk, &rcon_rot); 420 if (--nrounds == 0) 421 break; 422 mrk = aes_schedule_mangle_dec(rk, sr[i-- % 4].m); 423 storeroundkey(rk32, mrk); 424 rk32 -= 4; 425 } 426 break; 427 case 12: { 428 __m128i prkhi; /* high half of previous round key */ 429 430 prk = rk; 431 rk = aes_schedule_transform(_mm_loadu_epi8(key + 8), ipt); 432 prkhi = aes_schedule_192_smearhi(rk); 433 for (;;) { 434 prk = aes_schedule_round(rk, prk, &rcon_rot); 435 rk = _mm_alignr_epi8(prk, prkhi, 8); 436 437 mrk = aes_schedule_mangle_dec(rk, sr[i-- % 4].m); 438 storeroundkey(rk32, mrk); 439 rk32 -= 4; 440 rk = aes_schedule_192_smear(prkhi, prk); 441 prkhi = aes_schedule_192_smearhi(rk); 442 443 mrk = aes_schedule_mangle_dec(rk, sr[i-- % 4].m); 444 storeroundkey(rk32, mrk); 445 rk32 -= 4; 446 rk = prk = aes_schedule_round(rk, prk, &rcon_rot); 447 if ((nrounds -= 3) == 0) 448 break; 449 450 mrk = aes_schedule_mangle_dec(rk, sr[i-- % 4].m); 451 storeroundkey(rk32, mrk); 452 rk32 -= 4; 453 rk = aes_schedule_192_smear(prkhi, prk); 454 prkhi = aes_schedule_192_smearhi(rk); 455 } 456 break; 457 } 458 case 14: { 459 __m128i pprk; /* previous previous round key */ 460 461 prk = rk; 462 rk = aes_schedule_transform(_mm_loadu_epi8(key + 16), ipt); 463 for (;;) { 464 mrk = aes_schedule_mangle_dec(rk, sr[i-- % 4].m); 465 storeroundkey(rk32, mrk); 466 rk32 -= 4; 467 pprk = rk; 468 469 /* high round */ 470 rk = prk = aes_schedule_round(rk, prk, &rcon_rot); 471 if ((nrounds -= 2) == 0) 472 break; 473 mrk = aes_schedule_mangle_dec(rk, sr[i-- % 4].m); 474 storeroundkey(rk32, mrk); 475 rk32 -= 4; 476 477 /* low round */ 478 rk = _mm_shuffle_epi32(rk, 0xff); 479 rk = aes_schedule_low_round(rk, pprk); 480 } 481 break; 482 } 483 default: 484 panic("invalid number of AES rounds: %u", nrounds); 485 } 486 storeroundkey(rk32, aes_schedule_mangle_last_dec(rk)); 487 } 488 489 __m128i 490 aes_ssse3_enc1(const struct aesenc *enc, __m128i x, unsigned nrounds) 491 { 492 const uint32_t *rk32 = enc->aese_aes.aes_rk; 493 __m128i io, jo; 494 unsigned rmod4 = 0; 495 496 x = aes_schedule_transform(x, ipt); 497 x ^= loadroundkey(rk32); 498 for (;;) { 499 __m128i A, A2, A2_B, A2_B_D; 500 501 subbytes(&io, &jo, x); 502 503 rk32 += 4; 504 rmod4 = (rmod4 + 1) % 4; 505 if (--nrounds == 0) 506 break; 507 508 A = _mm_shuffle_epi8(sb1[0].m, io) ^ 509 _mm_shuffle_epi8(sb1[1].m, jo); 510 A ^= loadroundkey(rk32); 511 A2 = _mm_shuffle_epi8(sb2[0].m, io) ^ 512 _mm_shuffle_epi8(sb2[1].m, jo); 513 A2_B = A2 ^ _mm_shuffle_epi8(A, mc_forward[rmod4].m); 514 A2_B_D = A2_B ^ _mm_shuffle_epi8(A, mc_backward[rmod4].m); 515 x = A2_B_D ^ _mm_shuffle_epi8(A2_B, mc_forward[rmod4].m); 516 } 517 x = _mm_shuffle_epi8(sbo[0].m, io) ^ _mm_shuffle_epi8(sbo[1].m, jo); 518 x ^= loadroundkey(rk32); 519 return _mm_shuffle_epi8(x, sr[rmod4].m); 520 } 521 522 __m128i 523 aes_ssse3_dec1(const struct aesdec *dec, __m128i x, unsigned nrounds) 524 { 525 const uint32_t *rk32 = dec->aesd_aes.aes_rk; 526 unsigned i = 3 & ~(nrounds - 1); 527 __m128i io, jo, mc; 528 529 x = aes_schedule_transform(x, dipt); 530 x ^= loadroundkey(rk32); 531 rk32 += 4; 532 533 mc = mc_forward[3].m; 534 for (;;) { 535 subbytes(&io, &jo, x); 536 if (--nrounds == 0) 537 break; 538 539 x = _mm_shuffle_epi8(dsb9[0].m, io) ^ 540 _mm_shuffle_epi8(dsb9[1].m, jo); 541 x ^= loadroundkey(rk32); 542 rk32 += 4; /* next round key */ 543 544 x = _mm_shuffle_epi8(x, mc); 545 x ^= _mm_shuffle_epi8(dsbd[0].m, io) ^ 546 _mm_shuffle_epi8(dsbd[1].m, jo); 547 548 x = _mm_shuffle_epi8(x, mc); 549 x ^= _mm_shuffle_epi8(dsbb[0].m, io) ^ 550 _mm_shuffle_epi8(dsbb[1].m, jo); 551 552 x = _mm_shuffle_epi8(x, mc); 553 x ^= _mm_shuffle_epi8(dsbe[0].m, io) ^ 554 _mm_shuffle_epi8(dsbe[1].m, jo); 555 556 mc = _mm_alignr_epi8(mc, mc, 12); 557 } 558 x = _mm_shuffle_epi8(dsbo[0].m, io) ^ _mm_shuffle_epi8(dsbo[1].m, jo); 559 x ^= loadroundkey(rk32); 560 return _mm_shuffle_epi8(x, sr[i].m); 561 } 562