Home | History | Annotate | Line # | Download | only in pci
      1 /*	$NetBSD: agp.c,v 1.88 2022/05/22 11:27:35 andvar Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 Doug Rabson
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
     29  */
     30 
     31 /*
     32  * Copyright (c) 2001 Wasabi Systems, Inc.
     33  * All rights reserved.
     34  *
     35  * Written by Frank van der Linden for Wasabi Systems, Inc.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *      This product includes software developed for the NetBSD Project by
     48  *      Wasabi Systems, Inc.
     49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     50  *    or promote products derived from this software without specific prior
     51  *    written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     63  * POSSIBILITY OF SUCH DAMAGE.
     64  */
     65 
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.88 2022/05/22 11:27:35 andvar Exp $");
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/malloc.h>
     73 #include <sys/kernel.h>
     74 #include <sys/device.h>
     75 #include <sys/conf.h>
     76 #include <sys/ioctl.h>
     77 #include <sys/fcntl.h>
     78 #include <sys/agpio.h>
     79 #include <sys/proc.h>
     80 #include <sys/mutex.h>
     81 
     82 #include <dev/pci/pcireg.h>
     83 #include <dev/pci/pcivar.h>
     84 #include <dev/pci/agpvar.h>
     85 #include <dev/pci/agpreg.h>
     86 #include <dev/pci/pcidevs.h>
     87 
     88 #include <sys/bus.h>
     89 
     90 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
     91 
     92 /* Helper functions for implementing chipset mini drivers. */
     93 /* XXXfvdl get rid of this one. */
     94 
     95 extern struct cfdriver agp_cd;
     96 
     97 static int agp_info_user(struct agp_softc *, agp_info *);
     98 static int agp_setup_user(struct agp_softc *, agp_setup *);
     99 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
    100 static int agp_deallocate_user(struct agp_softc *, int);
    101 static int agp_bind_user(struct agp_softc *, agp_bind *);
    102 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
    103 static int agp_generic_enable_v2(struct agp_softc *,
    104     const struct pci_attach_args *, int, u_int32_t);
    105 static int agp_generic_enable_v3(struct agp_softc *,
    106     const struct pci_attach_args *, int, u_int32_t);
    107 static int agpdev_match(const struct pci_attach_args *);
    108 static bool agp_resume(device_t, const pmf_qual_t *);
    109 
    110 #include "agp_ali.h"
    111 #include "agp_amd.h"
    112 #include "agp_i810.h"
    113 #include "agp_intel.h"
    114 #include "agp_sis.h"
    115 #include "agp_via.h"
    116 #include "agp_amd64.h"
    117 
    118 const struct agp_product {
    119 	uint32_t	ap_vendor;
    120 	uint32_t	ap_product;
    121 	int		(*ap_match)(const struct pci_attach_args *);
    122 	int		(*ap_attach)(device_t, device_t, void *);
    123 } agp_products[] = {
    124 #if NAGP_AMD64 > 0
    125 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
    126 	  agp_amd64_match,	agp_amd64_attach },
    127 #endif
    128 
    129 #if NAGP_ALI > 0
    130 	{ PCI_VENDOR_ALI,	-1,
    131 	  NULL,			agp_ali_attach },
    132 #endif
    133 
    134 #if NAGP_AMD64 > 0
    135 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
    136 	  agp_amd64_match,	agp_amd64_attach },
    137 #endif
    138 
    139 #if NAGP_AMD > 0
    140 	{ PCI_VENDOR_AMD,	-1,
    141 	  agp_amd_match,	agp_amd_attach },
    142 #endif
    143 
    144 #if NAGP_I810 > 0
    145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
    146 	  NULL,			agp_i810_attach },
    147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
    148 	  NULL,			agp_i810_attach },
    149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
    150 	  NULL,			agp_i810_attach },
    151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
    152 	  NULL,			agp_i810_attach },
    153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
    154 	  NULL,			agp_i810_attach },
    155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
    156 	  NULL,			agp_i810_attach },
    157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
    158 	  NULL,			agp_i810_attach },
    159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
    160 	  NULL,			agp_i810_attach },
    161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
    162 	  NULL,			agp_i810_attach },
    163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
    164 	  NULL,			agp_i810_attach },
    165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
    166 	  NULL,			agp_i810_attach },
    167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
    168 	  NULL,			agp_i810_attach },
    169 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
    170 	  NULL,			agp_i810_attach },
    171 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GME_HB,
    172 	  NULL,			agp_i810_attach },
    173 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
    174 	  NULL,			agp_i810_attach },
    175 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
    176 	  NULL,			agp_i810_attach },
    177 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
    178 	  NULL,			agp_i810_attach },
    179 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
    180 	  NULL,			agp_i810_attach },
    181 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
    182 	  NULL,			agp_i810_attach },
    183 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
    184 	  NULL,			agp_i810_attach },
    185 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G35_HB,
    186 	  NULL,			agp_i810_attach },
    187 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82946GZ_HB,
    188 	  NULL,			agp_i810_attach },
    189 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82GM45_HB,
    190 	  NULL, 		agp_i810_attach },
    191 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82IGD_E_HB,
    192 	  NULL, 		agp_i810_attach },
    193 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q45_HB,
    194 	  NULL, 		agp_i810_attach },
    195 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G45_HB,
    196 	  NULL, 		agp_i810_attach },
    197 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G41_HB,
    198 	  NULL, 		agp_i810_attach },
    199 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_E7221_HB,
    200 	  NULL, 		agp_i810_attach },
    201 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965GME_HB,
    202 	  NULL, 		agp_i810_attach },
    203 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82B43_HB,
    204 	  NULL, 		agp_i810_attach },
    205 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
    206 	  NULL, 		agp_i810_attach },
    207 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
    208 	  NULL, 		agp_i810_attach },
    209 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
    210 	  NULL, 		agp_i810_attach },
    211 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
    212 	  NULL, 		agp_i810_attach },
    213 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PINEVIEW_HB,
    214 	  NULL, 		agp_i810_attach },
    215 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PINEVIEW_M_HB,
    216 	  NULL, 		agp_i810_attach },
    217 #endif
    218 
    219 #if NAGP_INTEL > 0
    220 	{ PCI_VENDOR_INTEL,	-1,
    221 	  NULL,			agp_intel_attach },
    222 #endif
    223 
    224 #if NAGP_AMD64 > 0
    225 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
    226 	  agp_amd64_match,	agp_amd64_attach },
    227 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
    228 	  agp_amd64_match,	agp_amd64_attach },
    229 #endif
    230 
    231 #if NAGP_AMD64 > 0
    232 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
    233 	  agp_amd64_match,	agp_amd64_attach },
    234 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
    235 	  agp_amd64_match,	agp_amd64_attach },
    236 #endif
    237 
    238 #if NAGP_SIS > 0
    239 	{ PCI_VENDOR_SIS,	-1,
    240 	  NULL,			agp_sis_attach },
    241 #endif
    242 
    243 #if NAGP_AMD64 > 0
    244 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
    245 	  agp_amd64_match,	agp_amd64_attach },
    246 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
    247 	  agp_amd64_match,	agp_amd64_attach },
    248 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
    249 	  agp_amd64_match,	agp_amd64_attach },
    250 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
    251 	  agp_amd64_match,	agp_amd64_attach },
    252 #endif
    253 
    254 #if NAGP_VIA > 0
    255 	{ PCI_VENDOR_VIATECH,	-1,
    256 	  NULL,			agp_via_attach },
    257 #endif
    258 
    259 	{ 0,			0,
    260 	  NULL,			NULL },
    261 };
    262 
    263 static const struct agp_product *
    264 agp_lookup(const struct pci_attach_args *pa)
    265 {
    266 	const struct agp_product *ap;
    267 
    268 	/* First find the vendor. */
    269 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
    270 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
    271 			break;
    272 	}
    273 
    274 	if (ap->ap_attach == NULL)
    275 		return (NULL);
    276 
    277 	/* Now find the product within the vendor's domain. */
    278 	for (; ap->ap_attach != NULL; ap++) {
    279 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
    280 			/* Ran out of this vendor's section of the table. */
    281 			return (NULL);
    282 		}
    283 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
    284 			/* Exact match. */
    285 			break;
    286 		}
    287 		if (ap->ap_product == (uint32_t) -1) {
    288 			/* Wildcard match. */
    289 			break;
    290 		}
    291 	}
    292 
    293 	if (ap->ap_attach == NULL)
    294 		return (NULL);
    295 
    296 	/* Now let the product-specific driver filter the match. */
    297 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
    298 		return (NULL);
    299 
    300 	return (ap);
    301 }
    302 
    303 static int
    304 agpmatch(device_t parent, cfdata_t match, void *aux)
    305 {
    306 	struct agpbus_attach_args *apa = aux;
    307 	struct pci_attach_args *pa = &apa->apa_pci_args;
    308 
    309 	if (agp_lookup(pa) == NULL)
    310 		return (0);
    311 
    312 	return (1);
    313 }
    314 
    315 static const u_int agp_max[][2] = {
    316 	{0,	0},
    317 	{32,	4},
    318 	{64,	28},
    319 	{128,	96},
    320 	{256,	204},
    321 	{512,	440},
    322 	{1024,	942},
    323 	{2048,	1920},
    324 	{4096,	3932}
    325 };
    326 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
    327 
    328 static void
    329 agpattach(device_t parent, device_t self, void *aux)
    330 {
    331 	struct agpbus_attach_args *apa = aux;
    332 	struct pci_attach_args *pa = &apa->apa_pci_args;
    333 	struct agp_softc *sc = device_private(self);
    334 	const struct agp_product *ap;
    335 	int ret;
    336 	u_int memsize, i;
    337 
    338 	ap = agp_lookup(pa);
    339 	KASSERT(ap != NULL);
    340 
    341 	aprint_naive(": AGP controller\n");
    342 
    343 	sc->as_dev = self;
    344 	sc->as_dmat = pa->pa_dmat;
    345 	sc->as_pc = pa->pa_pc;
    346 	sc->as_tag = pa->pa_tag;
    347 	sc->as_id = pa->pa_id;
    348 
    349 	/*
    350 	 * Work out an upper bound for agp memory allocation. This
    351 	 * uses a heuristic table from the Linux driver.
    352 	 */
    353 	memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
    354 	for (i = 0; i < agp_max_size; i++) {
    355 		if (memsize <= agp_max[i][0])
    356 			break;
    357 	}
    358 	if (i == agp_max_size)
    359 		i = agp_max_size - 1;
    360 	sc->as_maxmem = agp_max[i][1] << 20U;
    361 
    362 	/*
    363 	 * The mutex is used to prevent re-entry to
    364 	 * agp_generic_bind_memory() since that function can sleep.
    365 	 */
    366 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
    367 
    368 	TAILQ_INIT(&sc->as_memory);
    369 
    370 	ret = (*ap->ap_attach)(parent, self, pa);
    371 	if (ret == 0)
    372 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
    373 		    (unsigned long)sc->as_apaddr,
    374 		    (unsigned long)AGP_GET_APERTURE(sc));
    375 	else
    376 		sc->as_chipc = NULL;
    377 
    378 	if (!pmf_device_register(self, NULL, agp_resume))
    379 		aprint_error_dev(self, "couldn't establish power handler\n");
    380 }
    381 
    382 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
    383     agpmatch, agpattach, NULL, NULL);
    384 
    385 int
    386 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
    387 {
    388 	/*
    389 	 * Find the aperture. Don't map it (yet), this would
    390 	 * eat KVA.
    391 	 */
    392 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
    393 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
    394 	    &sc->as_apflags) != 0)
    395 		return ENXIO;
    396 
    397 	sc->as_apt = pa->pa_memt;
    398 
    399 	return 0;
    400 }
    401 
    402 struct agp_gatt *
    403 agp_alloc_gatt(struct agp_softc *sc)
    404 {
    405 	u_int32_t apsize = AGP_GET_APERTURE(sc);
    406 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
    407 	struct agp_gatt *gatt;
    408 	void *virtual;
    409 	int dummyseg;
    410 
    411 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_WAITOK);
    412 	gatt->ag_entries = entries;
    413 
    414 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
    415 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
    416 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
    417 		free(gatt, M_AGP);
    418 		return NULL;
    419 	}
    420 	gatt->ag_virtual = (uint32_t *)virtual;
    421 
    422 	gatt->ag_size = entries * sizeof(u_int32_t);
    423 	memset(gatt->ag_virtual, 0, gatt->ag_size);
    424 	agp_flush_cache();
    425 
    426 	return gatt;
    427 }
    428 
    429 void
    430 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
    431 {
    432 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
    433 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
    434 	free(gatt, M_AGP);
    435 }
    436 
    437 
    438 int
    439 agp_generic_detach(struct agp_softc *sc)
    440 {
    441 	mutex_destroy(&sc->as_mtx);
    442 	agp_flush_cache();
    443 	return 0;
    444 }
    445 
    446 static int
    447 agpdev_match(const struct pci_attach_args *pa)
    448 {
    449 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
    450 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
    451 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
    452 		    NULL, NULL))
    453 		return 1;
    454 
    455 	return 0;
    456 }
    457 
    458 int
    459 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
    460 {
    461 	struct pci_attach_args pa;
    462 	pcireg_t tstatus, mstatus;
    463 	int capoff;
    464 
    465 	if (pci_find_device(&pa, agpdev_match) == 0 ||
    466 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
    467 	     &capoff, NULL) == 0) {
    468 		aprint_error_dev(sc->as_dev, "can't find display\n");
    469 		return ENXIO;
    470 	}
    471 
    472 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    473 	    sc->as_capoff + PCI_AGP_STATUS);
    474 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
    475 	    capoff + PCI_AGP_STATUS);
    476 
    477 	if (AGP_MODE_GET_MODE_3(mode) &&
    478 	    AGP_MODE_GET_MODE_3(tstatus) &&
    479 	    AGP_MODE_GET_MODE_3(mstatus))
    480 		return agp_generic_enable_v3(sc, &pa, capoff, mode);
    481 	else
    482 		return agp_generic_enable_v2(sc, &pa, capoff, mode);
    483 }
    484 
    485 static int
    486 agp_generic_enable_v2(struct agp_softc *sc, const struct pci_attach_args *pa,
    487     int capoff, u_int32_t mode)
    488 {
    489 	pcireg_t tstatus, mstatus;
    490 	pcireg_t command;
    491 	int rq, sba, fw, rate;
    492 
    493 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    494 	    sc->as_capoff + PCI_AGP_STATUS);
    495 	mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
    496 	    capoff + PCI_AGP_STATUS);
    497 
    498 	/* Set RQ to the min of mode, tstatus and mstatus */
    499 	rq = AGP_MODE_GET_RQ(mode);
    500 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    501 		rq = AGP_MODE_GET_RQ(tstatus);
    502 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    503 		rq = AGP_MODE_GET_RQ(mstatus);
    504 
    505 	/* Set SBA if all three can deal with SBA */
    506 	sba = (AGP_MODE_GET_SBA(tstatus)
    507 	       & AGP_MODE_GET_SBA(mstatus)
    508 	       & AGP_MODE_GET_SBA(mode));
    509 
    510 	/* Similar for FW */
    511 	fw = (AGP_MODE_GET_FW(tstatus)
    512 	       & AGP_MODE_GET_FW(mstatus)
    513 	       & AGP_MODE_GET_FW(mode));
    514 
    515 	/* Figure out the max rate */
    516 	rate = (AGP_MODE_GET_RATE(tstatus)
    517 		& AGP_MODE_GET_RATE(mstatus)
    518 		& AGP_MODE_GET_RATE(mode));
    519 	if (rate & AGP_MODE_V2_RATE_4x)
    520 		rate = AGP_MODE_V2_RATE_4x;
    521 	else if (rate & AGP_MODE_V2_RATE_2x)
    522 		rate = AGP_MODE_V2_RATE_2x;
    523 	else
    524 		rate = AGP_MODE_V2_RATE_1x;
    525 
    526 	/* Construct the new mode word and tell the hardware */
    527 	command = AGP_MODE_SET_RQ(0, rq);
    528 	command = AGP_MODE_SET_SBA(command, sba);
    529 	command = AGP_MODE_SET_FW(command, fw);
    530 	command = AGP_MODE_SET_RATE(command, rate);
    531 	command = AGP_MODE_SET_AGP(command, 1);
    532 	pci_conf_write(sc->as_pc, sc->as_tag,
    533 	    sc->as_capoff + PCI_AGP_COMMAND, command);
    534 	pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
    535 		       command);
    536 
    537 	return 0;
    538 }
    539 
    540 static int
    541 agp_generic_enable_v3(struct agp_softc *sc, const struct pci_attach_args *pa,
    542     int capoff, u_int32_t mode)
    543 {
    544 	pcireg_t tstatus, mstatus;
    545 	pcireg_t command;
    546 	int rq, sba, fw, rate, arqsz, cal;
    547 
    548 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
    549 	    sc->as_capoff + PCI_AGP_STATUS);
    550 	mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
    551 	    capoff + PCI_AGP_STATUS);
    552 
    553 	/* Set RQ to the min of mode, tstatus and mstatus */
    554 	rq = AGP_MODE_GET_RQ(mode);
    555 	if (AGP_MODE_GET_RQ(tstatus) < rq)
    556 		rq = AGP_MODE_GET_RQ(tstatus);
    557 	if (AGP_MODE_GET_RQ(mstatus) < rq)
    558 		rq = AGP_MODE_GET_RQ(mstatus);
    559 
    560 	/*
    561 	 * ARQSZ - Set the value to the maximum one.
    562 	 * Don't allow the mode register to override values.
    563 	 */
    564 	arqsz = AGP_MODE_GET_ARQSZ(mode);
    565 	if (AGP_MODE_GET_ARQSZ(tstatus) > arqsz)
    566 		arqsz = AGP_MODE_GET_ARQSZ(tstatus);
    567 	if (AGP_MODE_GET_ARQSZ(mstatus) > arqsz)
    568 		arqsz = AGP_MODE_GET_ARQSZ(mstatus);
    569 
    570 	/* Calibration cycle - don't allow override by mode register */
    571 	cal = AGP_MODE_GET_CAL(tstatus);
    572 	if (AGP_MODE_GET_CAL(mstatus) < cal)
    573 		cal = AGP_MODE_GET_CAL(mstatus);
    574 
    575 	/* SBA must be supported for AGP v3. */
    576 	sba = 1;
    577 
    578 	/* Set FW if all three support it. */
    579 	fw = (AGP_MODE_GET_FW(tstatus)
    580 	       & AGP_MODE_GET_FW(mstatus)
    581 	       & AGP_MODE_GET_FW(mode));
    582 
    583 	/* Figure out the max rate */
    584 	rate = (AGP_MODE_GET_RATE(tstatus)
    585 		& AGP_MODE_GET_RATE(mstatus)
    586 		& AGP_MODE_GET_RATE(mode));
    587 	if (rate & AGP_MODE_V3_RATE_8x)
    588 		rate = AGP_MODE_V3_RATE_8x;
    589 	else
    590 		rate = AGP_MODE_V3_RATE_4x;
    591 
    592 	/* Construct the new mode word and tell the hardware */
    593 	command = AGP_MODE_SET_RQ(0, rq);
    594 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
    595 	command = AGP_MODE_SET_CAL(command, cal);
    596 	command = AGP_MODE_SET_SBA(command, sba);
    597 	command = AGP_MODE_SET_FW(command, fw);
    598 	command = AGP_MODE_SET_RATE(command, rate);
    599 	command = AGP_MODE_SET_AGP(command, 1);
    600 	pci_conf_write(sc->as_pc, sc->as_tag,
    601 	    sc->as_capoff + PCI_AGP_COMMAND, command);
    602 	pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
    603 		       command);
    604 
    605 	return 0;
    606 }
    607 
    608 struct agp_memory *
    609 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
    610 {
    611 	struct agp_memory *mem;
    612 
    613 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
    614 		return 0;
    615 
    616 	if (sc->as_allocated + size > sc->as_maxmem)
    617 		return 0;
    618 
    619 	if (type != 0) {
    620 		printf("agp_generic_alloc_memory: unsupported type %d\n",
    621 		       type);
    622 		return 0;
    623 	}
    624 
    625 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
    626 	if (mem == NULL)
    627 		return NULL;
    628 
    629 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
    630 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
    631 		free(mem, M_AGP);
    632 		return NULL;
    633 	}
    634 
    635 	mem->am_id = sc->as_nextid++;
    636 	mem->am_size = size;
    637 	mem->am_type = 0;
    638 	mem->am_physical = 0;
    639 	mem->am_offset = 0;
    640 	mem->am_is_bound = 0;
    641 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
    642 	sc->as_allocated += size;
    643 
    644 	return mem;
    645 }
    646 
    647 int
    648 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
    649 {
    650 	if (mem->am_is_bound)
    651 		return EBUSY;
    652 
    653 	sc->as_allocated -= mem->am_size;
    654 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
    655 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
    656 	free(mem, M_AGP);
    657 	return 0;
    658 }
    659 
    660 int
    661 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
    662     off_t offset)
    663 {
    664 
    665 	return agp_generic_bind_memory_bounded(sc, mem, offset,
    666 	    0, AGP_GET_APERTURE(sc));
    667 }
    668 
    669 int
    670 agp_generic_bind_memory_bounded(struct agp_softc *sc, struct agp_memory *mem,
    671     off_t offset, off_t start, off_t end)
    672 {
    673 	off_t i, k;
    674 	bus_size_t done, j;
    675 	int error;
    676 	bus_dma_segment_t *segs, *seg;
    677 	bus_addr_t pa;
    678 	int contigpages, nseg;
    679 
    680 	mutex_enter(&sc->as_mtx);
    681 
    682 	if (mem->am_is_bound) {
    683 		aprint_error_dev(sc->as_dev, "memory already bound\n");
    684 		mutex_exit(&sc->as_mtx);
    685 		return EINVAL;
    686 	}
    687 
    688 	if (offset < start
    689 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
    690 	    || offset > end
    691 	    || mem->am_size > (end - offset)) {
    692 		aprint_error_dev(sc->as_dev,
    693 			      "binding memory at bad offset %#lx\n",
    694 			      (unsigned long) offset);
    695 		mutex_exit(&sc->as_mtx);
    696 		return EINVAL;
    697 	}
    698 
    699 	/*
    700 	 * XXXfvdl
    701 	 * The memory here needs to be directly accessible from the
    702 	 * AGP video card, so it should be allocated using bus_dma.
    703 	 * However, it need not be contiguous, since individual pages
    704 	 * are translated using the GATT.
    705 	 *
    706 	 * Using a large chunk of contiguous memory may get in the way
    707 	 * of other subsystems that may need one, so we try to be friendly
    708 	 * and ask for allocation in chunks of a minimum of 8 pages
    709 	 * of contiguous memory on average, falling back to 4, 2 and 1
    710 	 * if really needed. Larger chunks are preferred, since allocating
    711 	 * a bus_dma_segment per page would be overkill.
    712 	 */
    713 
    714 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
    715 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
    716 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
    717 		if (segs == NULL) {
    718 			mutex_exit(&sc->as_mtx);
    719 			return ENOMEM;
    720 		}
    721 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
    722 				     segs, nseg, &mem->am_nseg,
    723 				     contigpages > 1 ?
    724 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
    725 			free(segs, M_AGP);
    726 			continue;
    727 		}
    728 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
    729 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
    730 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    731 			free(segs, M_AGP);
    732 			continue;
    733 		}
    734 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
    735 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
    736 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    737 			    mem->am_size);
    738 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
    739 			free(segs, M_AGP);
    740 			continue;
    741 		}
    742 		mem->am_dmaseg = segs;
    743 		break;
    744 	}
    745 
    746 	if (contigpages == 0) {
    747 		mutex_exit(&sc->as_mtx);
    748 		return ENOMEM;
    749 	}
    750 
    751 
    752 	/*
    753 	 * Bind the individual pages and flush the chipset's
    754 	 * TLB.
    755 	 */
    756 	done = 0;
    757 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
    758 		seg = &mem->am_dmamap->dm_segs[i];
    759 		/*
    760 		 * Install entries in the GATT, making sure that if
    761 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
    762 		 * aligned to PAGE_SIZE, we don't modify too many GATT
    763 		 * entries.
    764 		 */
    765 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
    766 		     j += AGP_PAGE_SIZE) {
    767 			pa = seg->ds_addr + j;
    768 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
    769 				(unsigned long)(offset + done + j),
    770 				(unsigned long)pa));
    771 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
    772 			if (error) {
    773 				/*
    774 				 * Bail out. Reverse all the mappings
    775 				 * and unwire the pages.
    776 				 */
    777 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
    778 					AGP_UNBIND_PAGE(sc, offset + k);
    779 
    780 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    781 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
    782 						 mem->am_size);
    783 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
    784 						mem->am_nseg);
    785 				free(mem->am_dmaseg, M_AGP);
    786 				mutex_exit(&sc->as_mtx);
    787 				return error;
    788 			}
    789 		}
    790 		done += seg->ds_len;
    791 	}
    792 
    793 	/*
    794 	 * Flush the CPU cache since we are providing a new mapping
    795 	 * for these pages.
    796 	 */
    797 	agp_flush_cache();
    798 
    799 	/*
    800 	 * Make sure the chipset gets the new mappings.
    801 	 */
    802 	AGP_FLUSH_TLB(sc);
    803 
    804 	mem->am_offset = offset;
    805 	mem->am_is_bound = 1;
    806 
    807 	mutex_exit(&sc->as_mtx);
    808 
    809 	return 0;
    810 }
    811 
    812 int
    813 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
    814 {
    815 	int i;
    816 
    817 	mutex_enter(&sc->as_mtx);
    818 
    819 	if (!mem->am_is_bound) {
    820 		aprint_error_dev(sc->as_dev, "memory is not bound\n");
    821 		mutex_exit(&sc->as_mtx);
    822 		return EINVAL;
    823 	}
    824 
    825 
    826 	/*
    827 	 * Unbind the individual pages and flush the chipset's
    828 	 * TLB. Unwire the pages so they can be swapped.
    829 	 */
    830 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
    831 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
    832 
    833 	agp_flush_cache();
    834 	AGP_FLUSH_TLB(sc);
    835 
    836 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
    837 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
    838 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
    839 
    840 	free(mem->am_dmaseg, M_AGP);
    841 
    842 	mem->am_offset = 0;
    843 	mem->am_is_bound = 0;
    844 
    845 	mutex_exit(&sc->as_mtx);
    846 
    847 	return 0;
    848 }
    849 
    850 /* Helper functions for implementing user/kernel api */
    851 
    852 static int
    853 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
    854 {
    855 	if (sc->as_state != AGP_ACQUIRE_FREE)
    856 		return EBUSY;
    857 	sc->as_state = state;
    858 
    859 	return 0;
    860 }
    861 
    862 static int
    863 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
    864 {
    865 
    866 	if (sc->as_state == AGP_ACQUIRE_FREE)
    867 		return 0;
    868 
    869 	if (sc->as_state != state)
    870 		return EBUSY;
    871 
    872 	sc->as_state = AGP_ACQUIRE_FREE;
    873 	return 0;
    874 }
    875 
    876 static struct agp_memory *
    877 agp_find_memory(struct agp_softc *sc, int id)
    878 {
    879 	struct agp_memory *mem;
    880 
    881 	AGP_DPF(("searching for memory block %d\n", id));
    882 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
    883 		AGP_DPF(("considering memory block %d\n", mem->am_id));
    884 		if (mem->am_id == id)
    885 			return mem;
    886 	}
    887 	return 0;
    888 }
    889 
    890 /* Implementation of the userland ioctl api */
    891 
    892 static int
    893 agp_info_user(struct agp_softc *sc, agp_info *info)
    894 {
    895 	memset(info, 0, sizeof *info);
    896 	info->bridge_id = sc->as_id;
    897 	if (sc->as_capoff != 0)
    898 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
    899 					       sc->as_capoff + PCI_AGP_STATUS);
    900 	else
    901 		info->agp_mode = 0; /* i810 doesn't have real AGP */
    902 	info->aper_base = sc->as_apaddr;
    903 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
    904 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
    905 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
    906 
    907 	return 0;
    908 }
    909 
    910 static int
    911 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
    912 {
    913 	return AGP_ENABLE(sc, setup->agp_mode);
    914 }
    915 
    916 static int
    917 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
    918 {
    919 	struct agp_memory *mem;
    920 
    921 	mem = AGP_ALLOC_MEMORY(sc,
    922 			       alloc->type,
    923 			       alloc->pg_count << AGP_PAGE_SHIFT);
    924 	if (mem) {
    925 		alloc->key = mem->am_id;
    926 		alloc->physical = mem->am_physical;
    927 		return 0;
    928 	} else {
    929 		return ENOMEM;
    930 	}
    931 }
    932 
    933 static int
    934 agp_deallocate_user(struct agp_softc *sc, int id)
    935 {
    936 	struct agp_memory *mem = agp_find_memory(sc, id);
    937 
    938 	if (mem) {
    939 		AGP_FREE_MEMORY(sc, mem);
    940 		return 0;
    941 	} else {
    942 		return ENOENT;
    943 	}
    944 }
    945 
    946 static int
    947 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
    948 {
    949 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
    950 
    951 	if (!mem)
    952 		return ENOENT;
    953 
    954 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
    955 }
    956 
    957 static int
    958 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
    959 {
    960 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
    961 
    962 	if (!mem)
    963 		return ENOENT;
    964 
    965 	return AGP_UNBIND_MEMORY(sc, mem);
    966 }
    967 
    968 static int
    969 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
    970 {
    971 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    972 
    973 	if (sc == NULL)
    974 		return ENXIO;
    975 
    976 	if (sc->as_chipc == NULL)
    977 		return ENXIO;
    978 
    979 	if (!sc->as_isopen)
    980 		sc->as_isopen = 1;
    981 	else
    982 		return EBUSY;
    983 
    984 	return 0;
    985 }
    986 
    987 static int
    988 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
    989 {
    990 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
    991 	struct agp_memory *mem;
    992 
    993 	if (sc == NULL)
    994 		return ENODEV;
    995 
    996 	/*
    997 	 * Clear the GATT and force release on last close
    998 	 */
    999 	if (sc->as_state == AGP_ACQUIRE_USER) {
   1000 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
   1001 			if (mem->am_is_bound) {
   1002 				printf("agpclose: mem %d is bound\n",
   1003 				       mem->am_id);
   1004 				AGP_UNBIND_MEMORY(sc, mem);
   1005 			}
   1006 			/*
   1007 			 * XXX it is not documented, but if the protocol allows
   1008 			 * allocate->acquire->bind, it would be possible that
   1009 			 * memory ranges are allocated by the kernel here,
   1010 			 * which we shouldn't free. We'd have to keep track of
   1011 			 * the memory range's owner.
   1012 			 * The kernel API is unsed yet, so we get away with
   1013 			 * freeing all.
   1014 			 */
   1015 			AGP_FREE_MEMORY(sc, mem);
   1016 		}
   1017 		agp_release_helper(sc, AGP_ACQUIRE_USER);
   1018 	}
   1019 	sc->as_isopen = 0;
   1020 
   1021 	return 0;
   1022 }
   1023 
   1024 static int
   1025 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
   1026 {
   1027 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
   1028 
   1029 	if (sc == NULL)
   1030 		return ENODEV;
   1031 
   1032 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
   1033 		return EPERM;
   1034 
   1035 	switch (cmd) {
   1036 	case AGPIOC_INFO:
   1037 		return agp_info_user(sc, (agp_info *) data);
   1038 
   1039 	case AGPIOC_ACQUIRE:
   1040 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
   1041 
   1042 	case AGPIOC_RELEASE:
   1043 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
   1044 
   1045 	case AGPIOC_SETUP:
   1046 		return agp_setup_user(sc, (agp_setup *)data);
   1047 
   1048 #ifdef __x86_64__
   1049 {
   1050 	/*
   1051 	 * Handle paddr_t change from 32 bit for non PAE kernels
   1052 	 * to 64 bit.
   1053 	 */
   1054 #define AGPIOC_OALLOCATE  _IOWR(AGPIOC_BASE, 6, agp_oallocate)
   1055 
   1056 	typedef struct _agp_oallocate {
   1057 		int key;		/* tag of allocation            */
   1058 		size_t pg_count;	/* number of pages              */
   1059 		uint32_t type;		/* 0 == normal, other devspec   */
   1060 		u_long physical;	/* device specific (some devices
   1061 					 * need a phys address of the
   1062 					 * actual page behind the gatt
   1063 					 * table)                        */
   1064 	} agp_oallocate;
   1065 
   1066 	case AGPIOC_OALLOCATE: {
   1067 		int ret;
   1068 		agp_allocate aga;
   1069 		agp_oallocate *oaga = data;
   1070 
   1071 		aga.type = oaga->type;
   1072 		aga.pg_count = oaga->pg_count;
   1073 
   1074 		if ((ret = agp_allocate_user(sc, &aga)) == 0) {
   1075 			oaga->key = aga.key;
   1076 			oaga->physical = (u_long)aga.physical;
   1077 		}
   1078 
   1079 		return ret;
   1080 	}
   1081 }
   1082 #endif
   1083 	case AGPIOC_ALLOCATE:
   1084 		return agp_allocate_user(sc, (agp_allocate *)data);
   1085 
   1086 	case AGPIOC_DEALLOCATE:
   1087 		return agp_deallocate_user(sc, *(int *) data);
   1088 
   1089 	case AGPIOC_BIND:
   1090 		return agp_bind_user(sc, (agp_bind *)data);
   1091 
   1092 	case AGPIOC_UNBIND:
   1093 		return agp_unbind_user(sc, (agp_unbind *)data);
   1094 
   1095 	}
   1096 
   1097 	return EINVAL;
   1098 }
   1099 
   1100 static paddr_t
   1101 agpmmap(dev_t dev, off_t offset, int prot)
   1102 {
   1103 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
   1104 
   1105 	if (sc == NULL)
   1106 		return ENODEV;
   1107 
   1108 	if (offset > AGP_GET_APERTURE(sc))
   1109 		return -1;
   1110 
   1111 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
   1112 	    BUS_SPACE_MAP_LINEAR));
   1113 }
   1114 
   1115 const struct cdevsw agp_cdevsw = {
   1116 	.d_open = agpopen,
   1117 	.d_close = agpclose,
   1118 	.d_read = noread,
   1119 	.d_write = nowrite,
   1120 	.d_ioctl = agpioctl,
   1121 	.d_stop = nostop,
   1122 	.d_tty = notty,
   1123 	.d_poll = nopoll,
   1124 	.d_mmap = agpmmap,
   1125 	.d_kqfilter = nokqfilter,
   1126 	.d_discard = nodiscard,
   1127 	.d_flag = D_OTHER
   1128 };
   1129 
   1130 /* Implementation of the kernel api */
   1131 
   1132 void *
   1133 agp_find_device(int unit)
   1134 {
   1135 	return device_lookup_private(&agp_cd, unit);
   1136 }
   1137 
   1138 enum agp_acquire_state
   1139 agp_state(void *devcookie)
   1140 {
   1141 	struct agp_softc *sc = devcookie;
   1142 
   1143 	return sc->as_state;
   1144 }
   1145 
   1146 void
   1147 agp_get_info(void *devcookie, struct agp_info *info)
   1148 {
   1149 	struct agp_softc *sc = devcookie;
   1150 
   1151 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
   1152 	    sc->as_capoff + PCI_AGP_STATUS);
   1153 	info->ai_aperture_base = sc->as_apaddr;
   1154 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
   1155 	info->ai_memory_allowed = sc->as_maxmem;
   1156 	info->ai_memory_used = sc->as_allocated;
   1157 	info->ai_devid = sc->as_id;
   1158 }
   1159 
   1160 int
   1161 agp_acquire(void *dev)
   1162 {
   1163 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
   1164 }
   1165 
   1166 int
   1167 agp_release(void *dev)
   1168 {
   1169 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
   1170 }
   1171 
   1172 int
   1173 agp_enable(void *dev, u_int32_t mode)
   1174 {
   1175 	struct agp_softc *sc = dev;
   1176 
   1177 	return AGP_ENABLE(sc, mode);
   1178 }
   1179 
   1180 void *
   1181 agp_alloc_memory(void *dev, int type, vsize_t bytes)
   1182 {
   1183 	struct agp_softc *sc = dev;
   1184 
   1185 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
   1186 }
   1187 
   1188 void
   1189 agp_free_memory(void *dev, void *handle)
   1190 {
   1191 	struct agp_softc *sc = dev;
   1192 	struct agp_memory *mem = handle;
   1193 
   1194 	AGP_FREE_MEMORY(sc, mem);
   1195 }
   1196 
   1197 int
   1198 agp_bind_memory(void *dev, void *handle, off_t offset)
   1199 {
   1200 	struct agp_softc *sc = dev;
   1201 	struct agp_memory *mem = handle;
   1202 
   1203 	return AGP_BIND_MEMORY(sc, mem, offset);
   1204 }
   1205 
   1206 int
   1207 agp_unbind_memory(void *dev, void *handle)
   1208 {
   1209 	struct agp_softc *sc = dev;
   1210 	struct agp_memory *mem = handle;
   1211 
   1212 	return AGP_UNBIND_MEMORY(sc, mem);
   1213 }
   1214 
   1215 void
   1216 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
   1217 {
   1218 	struct agp_memory *mem = handle;
   1219 
   1220 	mi->ami_size = mem->am_size;
   1221 	mi->ami_physical = mem->am_physical;
   1222 	mi->ami_offset = mem->am_offset;
   1223 	mi->ami_is_bound = mem->am_is_bound;
   1224 }
   1225 
   1226 int
   1227 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
   1228 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
   1229 		 bus_dma_segment_t *seg, int nseg, int *rseg)
   1230 
   1231 {
   1232 	int error, level = 0;
   1233 
   1234 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
   1235 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
   1236 		goto out;
   1237 	level++;
   1238 
   1239 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
   1240 			BUS_DMA_NOWAIT | flags)) != 0)
   1241 		goto out;
   1242 	level++;
   1243 
   1244 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
   1245 			BUS_DMA_NOWAIT, mapp)) != 0)
   1246 		goto out;
   1247 	level++;
   1248 
   1249 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
   1250 			BUS_DMA_NOWAIT)) != 0)
   1251 		goto out;
   1252 
   1253 	*baddr = (*mapp)->dm_segs[0].ds_addr;
   1254 
   1255 	return 0;
   1256 out:
   1257 	switch (level) {
   1258 	case 3:
   1259 		bus_dmamap_destroy(tag, *mapp);
   1260 		/* FALLTHROUGH */
   1261 	case 2:
   1262 		bus_dmamem_unmap(tag, *vaddr, size);
   1263 		/* FALLTHROUGH */
   1264 	case 1:
   1265 		bus_dmamem_free(tag, seg, *rseg);
   1266 		break;
   1267 	default:
   1268 		break;
   1269 	}
   1270 
   1271 	return error;
   1272 }
   1273 
   1274 void
   1275 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
   1276 		void *vaddr, bus_dma_segment_t *seg, int nseg)
   1277 {
   1278 	bus_dmamap_unload(tag, map);
   1279 	bus_dmamap_destroy(tag, map);
   1280 	bus_dmamem_unmap(tag, vaddr, size);
   1281 	bus_dmamem_free(tag, seg, nseg);
   1282 }
   1283 
   1284 static bool
   1285 agp_resume(device_t dv, const pmf_qual_t *qual)
   1286 {
   1287 	agp_flush_cache();
   1288 
   1289 	return true;
   1290 }
   1291