Home | History | Annotate | Line # | Download | only in amdgpu
      1 /*	$NetBSD: amdgpu_ttm.c,v 1.12 2022/07/29 12:43:15 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2009 Jerome Glisse.
      5  * All Rights Reserved.
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a
      8  * copy of this software and associated documentation files (the
      9  * "Software"), to deal in the Software without restriction, including
     10  * without limitation the rights to use, copy, modify, merge, publish,
     11  * distribute, sub license, and/or sell copies of the Software, and to
     12  * permit persons to whom the Software is furnished to do so, subject to
     13  * the following conditions:
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
     18  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
     19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
     20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
     21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
     22  *
     23  * The above copyright notice and this permission notice (including the
     24  * next paragraph) shall be included in all copies or substantial portions
     25  * of the Software.
     26  *
     27  */
     28 /*
     29  * Authors:
     30  *    Jerome Glisse <glisse (at) freedesktop.org>
     31  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
     32  *    Dave Airlie
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: amdgpu_ttm.c,v 1.12 2022/07/29 12:43:15 riastradh Exp $");
     37 
     38 #include <linux/dma-mapping.h>
     39 #include <linux/iommu.h>
     40 #include <linux/hmm.h>
     41 #include <linux/pagemap.h>
     42 #include <linux/sched/task.h>
     43 #include <linux/sched/mm.h>
     44 #include <linux/seq_file.h>
     45 #include <linux/slab.h>
     46 #include <linux/swap.h>
     47 #include <linux/swiotlb.h>
     48 #include <linux/dma-buf.h>
     49 #include <linux/sizes.h>
     50 
     51 #include <drm/ttm/ttm_bo_api.h>
     52 #include <drm/ttm/ttm_bo_driver.h>
     53 #include <drm/ttm/ttm_placement.h>
     54 #include <drm/ttm/ttm_module.h>
     55 #include <drm/ttm/ttm_page_alloc.h>
     56 
     57 #include <drm/drm_debugfs.h>
     58 #include <drm/amdgpu_drm.h>
     59 
     60 #include "amdgpu.h"
     61 #include "amdgpu_object.h"
     62 #include "amdgpu_trace.h"
     63 #include "amdgpu_amdkfd.h"
     64 #include "amdgpu_sdma.h"
     65 #include "amdgpu_ras.h"
     66 #include "bif/bif_4_1_d.h"
     67 
     68 #include <linux/nbsd-namespace.h>
     69 
     70 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
     71 			     struct ttm_mem_reg *mem, unsigned num_pages,
     72 			     uint64_t offset, unsigned window,
     73 			     struct amdgpu_ring *ring,
     74 			     uint64_t *addr);
     75 
     76 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
     77 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
     78 
     79 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
     80 {
     81 	return 0;
     82 }
     83 
     84 /**
     85  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
     86  * memory request.
     87  *
     88  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
     89  * @type: The type of memory requested
     90  * @man: The memory type manager for each domain
     91  *
     92  * This is called by ttm_bo_init_mm() when a buffer object is being
     93  * initialized.
     94  */
     95 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
     96 				struct ttm_mem_type_manager *man)
     97 {
     98 	struct amdgpu_device *adev;
     99 
    100 	adev = amdgpu_ttm_adev(bdev);
    101 
    102 	switch (type) {
    103 	case TTM_PL_SYSTEM:
    104 		/* System memory */
    105 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
    106 		man->available_caching = TTM_PL_MASK_CACHING;
    107 		man->default_caching = TTM_PL_FLAG_CACHED;
    108 		break;
    109 	case TTM_PL_TT:
    110 		/* GTT memory  */
    111 		man->func = &amdgpu_gtt_mgr_func;
    112 		man->gpu_offset = adev->gmc.gart_start;
    113 		man->available_caching = TTM_PL_MASK_CACHING;
    114 		man->default_caching = TTM_PL_FLAG_CACHED;
    115 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
    116 		break;
    117 	case TTM_PL_VRAM:
    118 		/* "On-card" video ram */
    119 		man->func = &amdgpu_vram_mgr_func;
    120 		man->gpu_offset = adev->gmc.vram_start;
    121 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
    122 			     TTM_MEMTYPE_FLAG_MAPPABLE;
    123 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
    124 		man->default_caching = TTM_PL_FLAG_WC;
    125 		break;
    126 	case AMDGPU_PL_GDS:
    127 	case AMDGPU_PL_GWS:
    128 	case AMDGPU_PL_OA:
    129 		/* On-chip GDS memory*/
    130 		man->func = &ttm_bo_manager_func;
    131 		man->gpu_offset = 0;
    132 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
    133 		man->available_caching = TTM_PL_FLAG_UNCACHED;
    134 		man->default_caching = TTM_PL_FLAG_UNCACHED;
    135 		break;
    136 	default:
    137 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
    138 		return -EINVAL;
    139 	}
    140 	return 0;
    141 }
    142 
    143 /**
    144  * amdgpu_evict_flags - Compute placement flags
    145  *
    146  * @bo: The buffer object to evict
    147  * @placement: Possible destination(s) for evicted BO
    148  *
    149  * Fill in placement data when ttm_bo_evict() is called
    150  */
    151 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
    152 				struct ttm_placement *placement)
    153 {
    154 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
    155 	struct amdgpu_bo *abo;
    156 	static const struct ttm_place placements = {
    157 		.fpfn = 0,
    158 		.lpfn = 0,
    159 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
    160 	};
    161 
    162 	/* Don't handle scatter gather BOs */
    163 	if (bo->type == ttm_bo_type_sg) {
    164 		placement->num_placement = 0;
    165 		placement->num_busy_placement = 0;
    166 		return;
    167 	}
    168 
    169 	/* Object isn't an AMDGPU object so ignore */
    170 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
    171 		placement->placement = &placements;
    172 		placement->busy_placement = &placements;
    173 		placement->num_placement = 1;
    174 		placement->num_busy_placement = 1;
    175 		return;
    176 	}
    177 
    178 	abo = ttm_to_amdgpu_bo(bo);
    179 	switch (bo->mem.mem_type) {
    180 	case AMDGPU_PL_GDS:
    181 	case AMDGPU_PL_GWS:
    182 	case AMDGPU_PL_OA:
    183 		placement->num_placement = 0;
    184 		placement->num_busy_placement = 0;
    185 		return;
    186 
    187 	case TTM_PL_VRAM:
    188 		if (!adev->mman.buffer_funcs_enabled) {
    189 			/* Move to system memory */
    190 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
    191 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
    192 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
    193 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
    194 
    195 			/* Try evicting to the CPU inaccessible part of VRAM
    196 			 * first, but only set GTT as busy placement, so this
    197 			 * BO will be evicted to GTT rather than causing other
    198 			 * BOs to be evicted from VRAM
    199 			 */
    200 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
    201 							 AMDGPU_GEM_DOMAIN_GTT);
    202 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
    203 			abo->placements[0].lpfn = 0;
    204 			abo->placement.busy_placement = &abo->placements[1];
    205 			abo->placement.num_busy_placement = 1;
    206 		} else {
    207 			/* Move to GTT memory */
    208 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
    209 		}
    210 		break;
    211 	case TTM_PL_TT:
    212 	default:
    213 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
    214 		break;
    215 	}
    216 	*placement = abo->placement;
    217 }
    218 
    219 /**
    220  * amdgpu_verify_access - Verify access for a mmap call
    221  *
    222  * @bo:	The buffer object to map
    223  * @filp: The file pointer from the process performing the mmap
    224  *
    225  * This is called by ttm_bo_mmap() to verify whether a process
    226  * has the right to mmap a BO to their process space.
    227  */
    228 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
    229 {
    230 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
    231 
    232 	/*
    233 	 * Don't verify access for KFD BOs. They don't have a GEM
    234 	 * object associated with them.
    235 	 */
    236 	if (abo->kfd_bo)
    237 		return 0;
    238 
    239 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
    240 		return -EPERM;
    241 #ifdef __NetBSD__
    242 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
    243 					  filp->f_data);
    244 #else
    245 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
    246 					  filp->private_data);
    247 #endif
    248 }
    249 
    250 /**
    251  * amdgpu_move_null - Register memory for a buffer object
    252  *
    253  * @bo: The bo to assign the memory to
    254  * @new_mem: The memory to be assigned.
    255  *
    256  * Assign the memory from new_mem to the memory of the buffer object bo.
    257  */
    258 static void amdgpu_move_null(struct ttm_buffer_object *bo,
    259 			     struct ttm_mem_reg *new_mem)
    260 {
    261 	struct ttm_mem_reg *old_mem = &bo->mem;
    262 
    263 	BUG_ON(old_mem->mm_node != NULL);
    264 	*old_mem = *new_mem;
    265 	new_mem->mm_node = NULL;
    266 }
    267 
    268 /**
    269  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
    270  *
    271  * @bo: The bo to assign the memory to.
    272  * @mm_node: Memory manager node for drm allocator.
    273  * @mem: The region where the bo resides.
    274  *
    275  */
    276 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
    277 				    struct drm_mm_node *mm_node,
    278 				    struct ttm_mem_reg *mem)
    279 {
    280 	uint64_t addr = 0;
    281 
    282 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
    283 		addr = mm_node->start << PAGE_SHIFT;
    284 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
    285 	}
    286 	return addr;
    287 }
    288 
    289 /**
    290  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
    291  * @offset. It also modifies the offset to be within the drm_mm_node returned
    292  *
    293  * @mem: The region where the bo resides.
    294  * @offset: The offset that drm_mm_node is used for finding.
    295  *
    296  */
    297 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
    298 					       unsigned long *offset)
    299 {
    300 	struct drm_mm_node *mm_node = mem->mm_node;
    301 
    302 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
    303 		*offset -= (mm_node->size << PAGE_SHIFT);
    304 		++mm_node;
    305 	}
    306 	return mm_node;
    307 }
    308 
    309 /**
    310  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
    311  *
    312  * The function copies @size bytes from {src->mem + src->offset} to
    313  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
    314  * move and different for a BO to BO copy.
    315  *
    316  * @f: Returns the last fence if multiple jobs are submitted.
    317  */
    318 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
    319 			       struct amdgpu_copy_mem *src,
    320 			       struct amdgpu_copy_mem *dst,
    321 			       uint64_t size,
    322 			       struct dma_resv *resv,
    323 			       struct dma_fence **f)
    324 {
    325 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
    326 	struct drm_mm_node *src_mm, *dst_mm;
    327 	uint64_t src_node_start, dst_node_start, src_node_size,
    328 		 dst_node_size, src_page_offset, dst_page_offset;
    329 	struct dma_fence *fence = NULL;
    330 	int r = 0;
    331 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
    332 					AMDGPU_GPU_PAGE_SIZE);
    333 
    334 	if (!adev->mman.buffer_funcs_enabled) {
    335 		DRM_ERROR("Trying to move memory with ring turned off.\n");
    336 		return -EINVAL;
    337 	}
    338 
    339 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
    340 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
    341 					     src->offset;
    342 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
    343 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
    344 
    345 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
    346 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
    347 					     dst->offset;
    348 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
    349 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
    350 
    351 	mutex_lock(&adev->mman.gtt_window_lock);
    352 
    353 	while (size) {
    354 		unsigned long cur_size;
    355 		uint64_t from = src_node_start, to = dst_node_start;
    356 		struct dma_fence *next;
    357 
    358 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
    359 		 * begins at an offset, then adjust the size accordingly
    360 		 */
    361 		cur_size = min3(min(src_node_size, dst_node_size), size,
    362 				GTT_MAX_BYTES);
    363 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
    364 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
    365 			cur_size -= max(src_page_offset, dst_page_offset);
    366 
    367 		/* Map only what needs to be accessed. Map src to window 0 and
    368 		 * dst to window 1
    369 		 */
    370 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
    371 			r = amdgpu_map_buffer(src->bo, src->mem,
    372 					PFN_UP(cur_size + src_page_offset),
    373 					src_node_start, 0, ring,
    374 					&from);
    375 			if (r)
    376 				goto error;
    377 			/* Adjust the offset because amdgpu_map_buffer returns
    378 			 * start of mapped page
    379 			 */
    380 			from += src_page_offset;
    381 		}
    382 
    383 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
    384 			r = amdgpu_map_buffer(dst->bo, dst->mem,
    385 					PFN_UP(cur_size + dst_page_offset),
    386 					dst_node_start, 1, ring,
    387 					&to);
    388 			if (r)
    389 				goto error;
    390 			to += dst_page_offset;
    391 		}
    392 
    393 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
    394 				       resv, &next, false, true);
    395 		if (r)
    396 			goto error;
    397 
    398 		dma_fence_put(fence);
    399 		fence = next;
    400 
    401 		size -= cur_size;
    402 		if (!size)
    403 			break;
    404 
    405 		src_node_size -= cur_size;
    406 		if (!src_node_size) {
    407 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
    408 							     src->mem);
    409 			src_node_size = (src_mm->size << PAGE_SHIFT);
    410 			src_page_offset = 0;
    411 		} else {
    412 			src_node_start += cur_size;
    413 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
    414 		}
    415 		dst_node_size -= cur_size;
    416 		if (!dst_node_size) {
    417 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
    418 							     dst->mem);
    419 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
    420 			dst_page_offset = 0;
    421 		} else {
    422 			dst_node_start += cur_size;
    423 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
    424 		}
    425 	}
    426 error:
    427 	mutex_unlock(&adev->mman.gtt_window_lock);
    428 	if (f)
    429 		*f = dma_fence_get(fence);
    430 	dma_fence_put(fence);
    431 	return r;
    432 }
    433 
    434 /**
    435  * amdgpu_move_blit - Copy an entire buffer to another buffer
    436  *
    437  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
    438  * help move buffers to and from VRAM.
    439  */
    440 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
    441 			    bool evict, bool no_wait_gpu,
    442 			    struct ttm_mem_reg *new_mem,
    443 			    struct ttm_mem_reg *old_mem)
    444 {
    445 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
    446 	struct amdgpu_copy_mem src, dst;
    447 	struct dma_fence *fence = NULL;
    448 	int r;
    449 
    450 	src.bo = bo;
    451 	dst.bo = bo;
    452 	src.mem = old_mem;
    453 	dst.mem = new_mem;
    454 	src.offset = 0;
    455 	dst.offset = 0;
    456 
    457 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
    458 				       new_mem->num_pages << PAGE_SHIFT,
    459 				       bo->base.resv, &fence);
    460 	if (r)
    461 		goto error;
    462 
    463 	/* clear the space being freed */
    464 	if (old_mem->mem_type == TTM_PL_VRAM &&
    465 	    (ttm_to_amdgpu_bo(bo)->flags &
    466 	     AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
    467 		struct dma_fence *wipe_fence = NULL;
    468 
    469 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
    470 				       NULL, &wipe_fence);
    471 		if (r) {
    472 			goto error;
    473 		} else if (wipe_fence) {
    474 			dma_fence_put(fence);
    475 			fence = wipe_fence;
    476 		}
    477 	}
    478 
    479 	/* Always block for VM page tables before committing the new location */
    480 	if (bo->type == ttm_bo_type_kernel)
    481 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
    482 	else
    483 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
    484 	dma_fence_put(fence);
    485 	return r;
    486 
    487 error:
    488 	if (fence)
    489 		dma_fence_wait(fence, false);
    490 	dma_fence_put(fence);
    491 	return r;
    492 }
    493 
    494 /**
    495  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
    496  *
    497  * Called by amdgpu_bo_move().
    498  */
    499 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
    500 				struct ttm_operation_ctx *ctx,
    501 				struct ttm_mem_reg *new_mem)
    502 {
    503 	struct ttm_mem_reg *old_mem = &bo->mem;
    504 	struct ttm_mem_reg tmp_mem;
    505 	struct ttm_place placements;
    506 	struct ttm_placement placement;
    507 	int r;
    508 
    509 	/* create space/pages for new_mem in GTT space */
    510 	tmp_mem = *new_mem;
    511 	tmp_mem.mm_node = NULL;
    512 	placement.num_placement = 1;
    513 	placement.placement = &placements;
    514 	placement.num_busy_placement = 1;
    515 	placement.busy_placement = &placements;
    516 	placements.fpfn = 0;
    517 	placements.lpfn = 0;
    518 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
    519 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
    520 	if (unlikely(r)) {
    521 		pr_err("Failed to find GTT space for blit from VRAM\n");
    522 		return r;
    523 	}
    524 
    525 	/* set caching flags */
    526 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
    527 	if (unlikely(r)) {
    528 		goto out_cleanup;
    529 	}
    530 
    531 	/* Bind the memory to the GTT space */
    532 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
    533 	if (unlikely(r)) {
    534 		goto out_cleanup;
    535 	}
    536 
    537 	/* blit VRAM to GTT */
    538 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
    539 	if (unlikely(r)) {
    540 		goto out_cleanup;
    541 	}
    542 
    543 	/* move BO (in tmp_mem) to new_mem */
    544 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
    545 out_cleanup:
    546 	ttm_bo_mem_put(bo, &tmp_mem);
    547 	return r;
    548 }
    549 
    550 /**
    551  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
    552  *
    553  * Called by amdgpu_bo_move().
    554  */
    555 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
    556 				struct ttm_operation_ctx *ctx,
    557 				struct ttm_mem_reg *new_mem)
    558 {
    559 	struct ttm_mem_reg *old_mem = &bo->mem;
    560 	struct ttm_mem_reg tmp_mem;
    561 	struct ttm_placement placement;
    562 	struct ttm_place placements;
    563 	int r;
    564 
    565 	/* make space in GTT for old_mem buffer */
    566 	tmp_mem = *new_mem;
    567 	tmp_mem.mm_node = NULL;
    568 	placement.num_placement = 1;
    569 	placement.placement = &placements;
    570 	placement.num_busy_placement = 1;
    571 	placement.busy_placement = &placements;
    572 	placements.fpfn = 0;
    573 	placements.lpfn = 0;
    574 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
    575 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
    576 	if (unlikely(r)) {
    577 		pr_err("Failed to find GTT space for blit to VRAM\n");
    578 		return r;
    579 	}
    580 
    581 	/* move/bind old memory to GTT space */
    582 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
    583 	if (unlikely(r)) {
    584 		goto out_cleanup;
    585 	}
    586 
    587 	/* copy to VRAM */
    588 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
    589 	if (unlikely(r)) {
    590 		goto out_cleanup;
    591 	}
    592 out_cleanup:
    593 	ttm_bo_mem_put(bo, &tmp_mem);
    594 	return r;
    595 }
    596 
    597 /**
    598  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
    599  *
    600  * Called by amdgpu_bo_move()
    601  */
    602 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
    603 			       struct ttm_mem_reg *mem)
    604 {
    605 	struct drm_mm_node *nodes = mem->mm_node;
    606 
    607 	if (mem->mem_type == TTM_PL_SYSTEM ||
    608 	    mem->mem_type == TTM_PL_TT)
    609 		return true;
    610 	if (mem->mem_type != TTM_PL_VRAM)
    611 		return false;
    612 
    613 	/* ttm_mem_reg_ioremap only supports contiguous memory */
    614 	if (nodes->size != mem->num_pages)
    615 		return false;
    616 
    617 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
    618 		<= adev->gmc.visible_vram_size;
    619 }
    620 
    621 /**
    622  * amdgpu_bo_move - Move a buffer object to a new memory location
    623  *
    624  * Called by ttm_bo_handle_move_mem()
    625  */
    626 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
    627 			  struct ttm_operation_ctx *ctx,
    628 			  struct ttm_mem_reg *new_mem)
    629 {
    630 	struct amdgpu_device *adev;
    631 	struct amdgpu_bo *abo;
    632 	struct ttm_mem_reg *old_mem = &bo->mem;
    633 	int r;
    634 
    635 	/* Can't move a pinned BO */
    636 	abo = ttm_to_amdgpu_bo(bo);
    637 	if (WARN_ON_ONCE(abo->pin_count > 0))
    638 		return -EINVAL;
    639 
    640 	adev = amdgpu_ttm_adev(bo->bdev);
    641 
    642 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
    643 		amdgpu_move_null(bo, new_mem);
    644 		return 0;
    645 	}
    646 	if ((old_mem->mem_type == TTM_PL_TT &&
    647 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
    648 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
    649 	     new_mem->mem_type == TTM_PL_TT)) {
    650 		/* bind is enough */
    651 		amdgpu_move_null(bo, new_mem);
    652 		return 0;
    653 	}
    654 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
    655 	    old_mem->mem_type == AMDGPU_PL_GWS ||
    656 	    old_mem->mem_type == AMDGPU_PL_OA ||
    657 	    new_mem->mem_type == AMDGPU_PL_GDS ||
    658 	    new_mem->mem_type == AMDGPU_PL_GWS ||
    659 	    new_mem->mem_type == AMDGPU_PL_OA) {
    660 		/* Nothing to save here */
    661 		amdgpu_move_null(bo, new_mem);
    662 		return 0;
    663 	}
    664 
    665 	if (!adev->mman.buffer_funcs_enabled) {
    666 		r = -ENODEV;
    667 		goto memcpy;
    668 	}
    669 
    670 	if (old_mem->mem_type == TTM_PL_VRAM &&
    671 	    new_mem->mem_type == TTM_PL_SYSTEM) {
    672 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
    673 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
    674 		   new_mem->mem_type == TTM_PL_VRAM) {
    675 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
    676 	} else {
    677 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
    678 				     new_mem, old_mem);
    679 	}
    680 
    681 	if (r) {
    682 memcpy:
    683 		/* Check that all memory is CPU accessible */
    684 		if (!amdgpu_mem_visible(adev, old_mem) ||
    685 		    !amdgpu_mem_visible(adev, new_mem)) {
    686 			pr_err("Move buffer fallback to memcpy unavailable\n");
    687 			return r;
    688 		}
    689 
    690 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
    691 		if (r)
    692 			return r;
    693 	}
    694 
    695 	if (bo->type == ttm_bo_type_device &&
    696 	    new_mem->mem_type == TTM_PL_VRAM &&
    697 	    old_mem->mem_type != TTM_PL_VRAM) {
    698 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
    699 		 * accesses the BO after it's moved.
    700 		 */
    701 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
    702 	}
    703 
    704 	/* update statistics */
    705 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
    706 	return 0;
    707 }
    708 
    709 /**
    710  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
    711  *
    712  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
    713  */
    714 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
    715 {
    716 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
    717 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
    718 	struct drm_mm_node *mm_node = mem->mm_node;
    719 
    720 	mem->bus.addr = NULL;
    721 	mem->bus.offset = 0;
    722 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
    723 	mem->bus.base = 0;
    724 	mem->bus.is_iomem = false;
    725 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
    726 		return -EINVAL;
    727 	switch (mem->mem_type) {
    728 	case TTM_PL_SYSTEM:
    729 		/* system memory */
    730 		return 0;
    731 	case TTM_PL_TT:
    732 		break;
    733 	case TTM_PL_VRAM:
    734 		mem->bus.offset = mem->start << PAGE_SHIFT;
    735 		/* check if it's visible */
    736 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
    737 			return -EINVAL;
    738 		/* Only physically contiguous buffers apply. In a contiguous
    739 		 * buffer, size of the first mm_node would match the number of
    740 		 * pages in ttm_mem_reg.
    741 		 */
    742 		if (adev->mman.aper_base_kaddr &&
    743 		    (mm_node->size == mem->num_pages))
    744 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
    745 					mem->bus.offset;
    746 
    747 		mem->bus.base = adev->gmc.aper_base;
    748 		mem->bus.is_iomem = true;
    749 		break;
    750 	default:
    751 		return -EINVAL;
    752 	}
    753 	return 0;
    754 }
    755 
    756 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
    757 {
    758 }
    759 
    760 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
    761 					   unsigned long page_offset)
    762 {
    763 	struct drm_mm_node *mm;
    764 	unsigned long offset = (page_offset << PAGE_SHIFT);
    765 
    766 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
    767 #ifdef __NetBSD__
    768 	/*
    769 	 * vm_prot and flags are encoded in the pmap cookie, but we
    770 	 * then discard them; the caller will reapply them as
    771 	 * appropriate before it gets to pmap_enter.
    772 	 *
    773 	 * XXX What if the flags determine not just extra bits in the
    774 	 * cookie, but the address itself, in case different mapping
    775 	 * types (like prefetchable) are exposed through different
    776 	 * ranges instead of different page table entry bit?
    777 	 */
    778 	const paddr_t cookie = bus_space_mmap(bo->bdev->memt, bo->mem.bus.base,
    779 	    (mm->start + page_offset) << PAGE_SHIFT, /*vm_prot*/0, /*flags*/0);
    780 	return pmap_phys_address(cookie) >> PAGE_SHIFT;
    781 #else
    782 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
    783 		(offset >> PAGE_SHIFT);
    784 #endif
    785 }
    786 
    787 /*
    788  * TTM backend functions.
    789  */
    790 struct amdgpu_ttm_tt {
    791 	struct ttm_dma_tt	ttm;
    792 	struct drm_gem_object	*gobj;
    793 	u64			offset;
    794 	uint64_t		userptr;
    795 #ifdef __NetBSD__
    796 	struct proc		*usertask;
    797 #else
    798 	struct task_struct	*usertask;
    799 #endif
    800 	uint32_t		userflags;
    801 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
    802 	struct hmm_range	*range;
    803 #endif
    804 };
    805 
    806 #ifdef CONFIG_DRM_AMDGPU_USERPTR
    807 /* flags used by HMM internal, not related to CPU/GPU PTE flags */
    808 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = {
    809 	(1 << 0), /* HMM_PFN_VALID */
    810 	(1 << 1), /* HMM_PFN_WRITE */
    811 	0 /* HMM_PFN_DEVICE_PRIVATE */
    812 };
    813 
    814 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = {
    815 	0xfffffffffffffffeUL, /* HMM_PFN_ERROR */
    816 	0, /* HMM_PFN_NONE */
    817 	0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */
    818 };
    819 
    820 /**
    821  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
    822  * memory and start HMM tracking CPU page table update
    823  *
    824  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
    825  * once afterwards to stop HMM tracking
    826  */
    827 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
    828 {
    829 	struct ttm_tt *ttm = bo->tbo.ttm;
    830 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
    831 	unsigned long start = gtt->userptr;
    832 	struct vm_area_struct *vma;
    833 	struct hmm_range *range;
    834 	unsigned long timeout;
    835 	struct mm_struct *mm;
    836 	unsigned long i;
    837 	int r = 0;
    838 
    839 	mm = bo->notifier.mm;
    840 	if (unlikely(!mm)) {
    841 		DRM_DEBUG_DRIVER("BO is not registered?\n");
    842 		return -EFAULT;
    843 	}
    844 
    845 	/* Another get_user_pages is running at the same time?? */
    846 	if (WARN_ON(gtt->range))
    847 		return -EFAULT;
    848 
    849 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
    850 		return -ESRCH;
    851 
    852 	range = kzalloc(sizeof(*range), GFP_KERNEL);
    853 	if (unlikely(!range)) {
    854 		r = -ENOMEM;
    855 		goto out;
    856 	}
    857 	range->notifier = &bo->notifier;
    858 	range->flags = hmm_range_flags;
    859 	range->values = hmm_range_values;
    860 	range->pfn_shift = PAGE_SHIFT;
    861 	range->start = bo->notifier.interval_tree.start;
    862 	range->end = bo->notifier.interval_tree.last + 1;
    863 	range->default_flags = hmm_range_flags[HMM_PFN_VALID];
    864 	if (!amdgpu_ttm_tt_is_readonly(ttm))
    865 		range->default_flags |= range->flags[HMM_PFN_WRITE];
    866 
    867 	range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns),
    868 				     GFP_KERNEL);
    869 	if (unlikely(!range->pfns)) {
    870 		r = -ENOMEM;
    871 		goto out_free_ranges;
    872 	}
    873 
    874 	down_read(&mm->mmap_sem);
    875 	vma = find_vma(mm, start);
    876 	if (unlikely(!vma || start < vma->vm_start)) {
    877 		r = -EFAULT;
    878 		goto out_unlock;
    879 	}
    880 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
    881 		vma->vm_file)) {
    882 		r = -EPERM;
    883 		goto out_unlock;
    884 	}
    885 	up_read(&mm->mmap_sem);
    886 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
    887 
    888 retry:
    889 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
    890 
    891 	down_read(&mm->mmap_sem);
    892 	r = hmm_range_fault(range, 0);
    893 	up_read(&mm->mmap_sem);
    894 	if (unlikely(r <= 0)) {
    895 		/*
    896 		 * FIXME: This timeout should encompass the retry from
    897 		 * mmu_interval_read_retry() as well.
    898 		 */
    899 		if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout))
    900 			goto retry;
    901 		goto out_free_pfns;
    902 	}
    903 
    904 	for (i = 0; i < ttm->num_pages; i++) {
    905 		/* FIXME: The pages cannot be touched outside the notifier_lock */
    906 		pages[i] = hmm_device_entry_to_page(range, range->pfns[i]);
    907 		if (unlikely(!pages[i])) {
    908 			pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
    909 			       i, range->pfns[i]);
    910 			r = -ENOMEM;
    911 
    912 			goto out_free_pfns;
    913 		}
    914 	}
    915 
    916 	gtt->range = range;
    917 	mmput(mm);
    918 
    919 	return 0;
    920 
    921 out_unlock:
    922 	up_read(&mm->mmap_sem);
    923 out_free_pfns:
    924 	kvfree(range->pfns);
    925 out_free_ranges:
    926 	kfree(range);
    927 out:
    928 	mmput(mm);
    929 	return r;
    930 }
    931 
    932 /**
    933  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
    934  * Check if the pages backing this ttm range have been invalidated
    935  *
    936  * Returns: true if pages are still valid
    937  */
    938 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
    939 {
    940 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
    941 	bool r = false;
    942 
    943 	if (!gtt || !gtt->userptr)
    944 		return false;
    945 
    946 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
    947 		gtt->userptr, ttm->num_pages);
    948 
    949 	WARN_ONCE(!gtt->range || !gtt->range->pfns,
    950 		"No user pages to check\n");
    951 
    952 	if (gtt->range) {
    953 		/*
    954 		 * FIXME: Must always hold notifier_lock for this, and must
    955 		 * not ignore the return code.
    956 		 */
    957 		r = mmu_interval_read_retry(gtt->range->notifier,
    958 					 gtt->range->notifier_seq);
    959 		kvfree(gtt->range->pfns);
    960 		kfree(gtt->range);
    961 		gtt->range = NULL;
    962 	}
    963 
    964 	return !r;
    965 }
    966 #endif
    967 
    968 /**
    969  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
    970  *
    971  * Called by amdgpu_cs_list_validate(). This creates the page list
    972  * that backs user memory and will ultimately be mapped into the device
    973  * address space.
    974  */
    975 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
    976 {
    977 	unsigned long i;
    978 
    979 	for (i = 0; i < ttm->num_pages; ++i)
    980 		ttm->pages[i] = pages ? pages[i] : NULL;
    981 }
    982 
    983 /**
    984  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
    985  *
    986  * Called by amdgpu_ttm_backend_bind()
    987  **/
    988 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
    989 {
    990 #ifdef __NetBSD__		/* XXX amdgpu userptr */
    991 	return -ENODEV;
    992 #else
    993 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
    994 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
    995 	unsigned nents;
    996 	int r;
    997 
    998 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
    999 	enum dma_data_direction direction = write ?
   1000 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
   1001 
   1002 	/* Allocate an SG array and squash pages into it */
   1003 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
   1004 				      ttm->num_pages << PAGE_SHIFT,
   1005 				      GFP_KERNEL);
   1006 	if (r)
   1007 		goto release_sg;
   1008 
   1009 	/* Map SG to device */
   1010 	r = -ENOMEM;
   1011 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
   1012 	if (nents != ttm->sg->nents)
   1013 		goto release_sg;
   1014 
   1015 	/* convert SG to linear array of pages and dma addresses */
   1016 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
   1017 					 gtt->ttm.dma_address, ttm->num_pages);
   1018 
   1019 	return 0;
   1020 
   1021 release_sg:
   1022 	kfree(ttm->sg);
   1023 	return r;
   1024 #endif
   1025 }
   1026 
   1027 /**
   1028  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
   1029  */
   1030 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
   1031 {
   1032 #ifndef __NetBSD__		/* XXX amdgpu userptr */
   1033 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
   1034 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1035 
   1036 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
   1037 	enum dma_data_direction direction = write ?
   1038 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
   1039 
   1040 	/* double check that we don't free the table twice */
   1041 	if (!ttm->sg->sgl)
   1042 		return;
   1043 
   1044 	/* unmap the pages mapped to the device */
   1045 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
   1046 
   1047 	sg_free_table(ttm->sg);
   1048 
   1049 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
   1050 	if (gtt->range) {
   1051 		unsigned long i;
   1052 
   1053 		for (i = 0; i < ttm->num_pages; i++) {
   1054 			if (ttm->pages[i] !=
   1055 				hmm_device_entry_to_page(gtt->range,
   1056 					      gtt->range->pfns[i]))
   1057 				break;
   1058 		}
   1059 
   1060 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
   1061 	}
   1062 #endif
   1063 #endif
   1064 }
   1065 
   1066 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
   1067 				struct ttm_buffer_object *tbo,
   1068 				uint64_t flags)
   1069 {
   1070 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
   1071 	struct ttm_tt *ttm = tbo->ttm;
   1072 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1073 	int r;
   1074 
   1075 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
   1076 		uint64_t page_idx = 1;
   1077 
   1078 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
   1079 				ttm->pages, gtt->ttm.dma_address, flags);
   1080 		if (r)
   1081 			goto gart_bind_fail;
   1082 
   1083 		/* Patch mtype of the second part BO */
   1084 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
   1085 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
   1086 
   1087 		r = amdgpu_gart_bind(adev,
   1088 				gtt->offset + (page_idx << PAGE_SHIFT),
   1089 				ttm->num_pages - page_idx,
   1090 				&ttm->pages[page_idx],
   1091 				&(gtt->ttm.dma_address[page_idx]), flags);
   1092 	} else {
   1093 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
   1094 				     ttm->pages, gtt->ttm.dma_address, flags);
   1095 	}
   1096 
   1097 gart_bind_fail:
   1098 	if (r)
   1099 		DRM_ERROR("failed to bind %lu pages at 0x%08"PRIX64"\n",
   1100 			  ttm->num_pages, gtt->offset);
   1101 
   1102 	return r;
   1103 }
   1104 
   1105 /**
   1106  * amdgpu_ttm_backend_bind - Bind GTT memory
   1107  *
   1108  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
   1109  * This handles binding GTT memory to the device address space.
   1110  */
   1111 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
   1112 				   struct ttm_mem_reg *bo_mem)
   1113 {
   1114 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
   1115 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
   1116 	uint64_t flags;
   1117 	int r = 0;
   1118 
   1119 	if (gtt->userptr) {
   1120 		r = amdgpu_ttm_tt_pin_userptr(ttm);
   1121 		if (r) {
   1122 			DRM_ERROR("failed to pin userptr\n");
   1123 			return r;
   1124 		}
   1125 	}
   1126 	if (!ttm->num_pages) {
   1127 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
   1128 		     ttm->num_pages, bo_mem, ttm);
   1129 	}
   1130 
   1131 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
   1132 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
   1133 	    bo_mem->mem_type == AMDGPU_PL_OA)
   1134 		return -EINVAL;
   1135 
   1136 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
   1137 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
   1138 		return 0;
   1139 	}
   1140 
   1141 	/* compute PTE flags relevant to this BO memory */
   1142 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
   1143 
   1144 	/* bind pages into GART page tables */
   1145 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
   1146 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
   1147 		ttm->pages, gtt->ttm.dma_address, flags);
   1148 
   1149 	if (r)
   1150 		DRM_ERROR("failed to bind %lu pages at 0x%08"PRIX64"\n",
   1151 			  ttm->num_pages, gtt->offset);
   1152 	return r;
   1153 }
   1154 
   1155 /**
   1156  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
   1157  */
   1158 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
   1159 {
   1160 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
   1161 	struct ttm_operation_ctx ctx = { false, false };
   1162 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
   1163 	struct ttm_mem_reg tmp;
   1164 	struct ttm_placement placement;
   1165 	struct ttm_place placements;
   1166 	uint64_t addr, flags;
   1167 	int r;
   1168 
   1169 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
   1170 		return 0;
   1171 
   1172 	addr = amdgpu_gmc_agp_addr(bo);
   1173 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
   1174 		bo->mem.start = addr >> PAGE_SHIFT;
   1175 	} else {
   1176 
   1177 		/* allocate GART space */
   1178 		tmp = bo->mem;
   1179 		tmp.mm_node = NULL;
   1180 		placement.num_placement = 1;
   1181 		placement.placement = &placements;
   1182 		placement.num_busy_placement = 1;
   1183 		placement.busy_placement = &placements;
   1184 		placements.fpfn = 0;
   1185 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
   1186 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
   1187 			TTM_PL_FLAG_TT;
   1188 
   1189 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
   1190 		if (unlikely(r))
   1191 			return r;
   1192 
   1193 		/* compute PTE flags for this buffer object */
   1194 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
   1195 
   1196 		/* Bind pages */
   1197 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
   1198 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
   1199 		if (unlikely(r)) {
   1200 			ttm_bo_mem_put(bo, &tmp);
   1201 			return r;
   1202 		}
   1203 
   1204 		ttm_bo_mem_put(bo, &bo->mem);
   1205 		bo->mem = tmp;
   1206 	}
   1207 
   1208 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
   1209 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
   1210 
   1211 	return 0;
   1212 }
   1213 
   1214 /**
   1215  * amdgpu_ttm_recover_gart - Rebind GTT pages
   1216  *
   1217  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
   1218  * rebind GTT pages during a GPU reset.
   1219  */
   1220 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
   1221 {
   1222 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
   1223 	uint64_t flags;
   1224 	int r;
   1225 
   1226 	if (!tbo->ttm)
   1227 		return 0;
   1228 
   1229 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
   1230 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
   1231 
   1232 	return r;
   1233 }
   1234 
   1235 /**
   1236  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
   1237  *
   1238  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
   1239  * ttm_tt_destroy().
   1240  */
   1241 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
   1242 {
   1243 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
   1244 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1245 	int r;
   1246 
   1247 	/* if the pages have userptr pinning then clear that first */
   1248 	if (gtt->userptr)
   1249 		amdgpu_ttm_tt_unpin_userptr(ttm);
   1250 
   1251 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
   1252 		return 0;
   1253 
   1254 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
   1255 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
   1256 	if (r)
   1257 		DRM_ERROR("failed to unbind %lu pages at 0x%08"PRIX64"\n",
   1258 			  gtt->ttm.ttm.num_pages, gtt->offset);
   1259 	return r;
   1260 }
   1261 
   1262 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
   1263 {
   1264 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1265 
   1266 #ifndef __NetBSD__		/* XXX amdgpu userptr */
   1267 	if (gtt->usertask)
   1268 		put_task_struct(gtt->usertask);
   1269 #endif
   1270 
   1271 	ttm_dma_tt_fini(&gtt->ttm);
   1272 	kfree(gtt);
   1273 }
   1274 
   1275 static struct ttm_backend_func amdgpu_backend_func = {
   1276 	.bind = &amdgpu_ttm_backend_bind,
   1277 	.unbind = &amdgpu_ttm_backend_unbind,
   1278 	.destroy = &amdgpu_ttm_backend_destroy,
   1279 };
   1280 
   1281 /**
   1282  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
   1283  *
   1284  * @bo: The buffer object to create a GTT ttm_tt object around
   1285  *
   1286  * Called by ttm_tt_create().
   1287  */
   1288 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
   1289 					   uint32_t page_flags)
   1290 {
   1291 	struct amdgpu_ttm_tt *gtt;
   1292 
   1293 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
   1294 	if (gtt == NULL) {
   1295 		return NULL;
   1296 	}
   1297 	gtt->ttm.ttm.func = &amdgpu_backend_func;
   1298 	gtt->gobj = &bo->base;
   1299 
   1300 	/* allocate space for the uninitialized page entries */
   1301 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
   1302 		kfree(gtt);
   1303 		return NULL;
   1304 	}
   1305 	return &gtt->ttm.ttm;
   1306 }
   1307 
   1308 /**
   1309  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
   1310  *
   1311  * Map the pages of a ttm_tt object to an address space visible
   1312  * to the underlying device.
   1313  */
   1314 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
   1315 			struct ttm_operation_ctx *ctx)
   1316 {
   1317 #ifndef __NetBSD__
   1318 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
   1319 #endif
   1320 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1321 
   1322 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
   1323 	if (gtt && gtt->userptr) {
   1324 #ifdef __NetBSD__
   1325 		ttm->sg = NULL;
   1326 #else
   1327 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
   1328 		if (!ttm->sg)
   1329 			return -ENOMEM;
   1330 #endif
   1331 
   1332 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
   1333 		ttm->state = tt_unbound;
   1334 		return 0;
   1335 	}
   1336 
   1337 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
   1338 		if (!ttm->sg) {
   1339 			struct dma_buf_attachment *attach;
   1340 			struct sg_table *sgt;
   1341 
   1342 			attach = gtt->gobj->import_attach;
   1343 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
   1344 			if (IS_ERR(sgt))
   1345 				return PTR_ERR(sgt);
   1346 
   1347 			ttm->sg = sgt;
   1348 		}
   1349 
   1350 #ifdef __NetBSD__
   1351 		int r = drm_prime_bus_dmamap_load_sgt(ttm->bdev->dmat,
   1352 		    gtt->ttm.dma_address, ttm->sg);
   1353 		if (r)
   1354 			return r;
   1355 #else
   1356 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
   1357 						 gtt->ttm.dma_address,
   1358 						 ttm->num_pages);
   1359 #endif
   1360 		ttm->state = tt_unbound;
   1361 		return 0;
   1362 	}
   1363 
   1364 #ifdef __NetBSD__
   1365 	/* XXX errno NetBSD->Linux */
   1366 	return ttm_bus_dma_populate(&gtt->ttm);
   1367 #else
   1368 #ifdef CONFIG_SWIOTLB
   1369 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
   1370 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
   1371 	}
   1372 #endif
   1373 
   1374 	/* fall back to generic helper to populate the page array
   1375 	 * and map them to the device */
   1376 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
   1377 #endif
   1378 }
   1379 
   1380 /**
   1381  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
   1382  *
   1383  * Unmaps pages of a ttm_tt object from the device address space and
   1384  * unpopulates the page array backing it.
   1385  */
   1386 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
   1387 {
   1388 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1389 #ifndef __NetBSD__
   1390 	struct amdgpu_device *adev;
   1391 #endif
   1392 
   1393 	if (gtt && gtt->userptr) {
   1394 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
   1395 		kfree(ttm->sg);
   1396 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
   1397 		return;
   1398 	}
   1399 
   1400 	if (ttm->sg && gtt->gobj->import_attach) {
   1401 		struct dma_buf_attachment *attach;
   1402 
   1403 		attach = gtt->gobj->import_attach;
   1404 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
   1405 		ttm->sg = NULL;
   1406 		return;
   1407 	}
   1408 
   1409 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
   1410 		return;
   1411 
   1412 #ifdef __NetBSD__
   1413 	ttm_bus_dma_unpopulate(&gtt->ttm);
   1414 	return;
   1415 #else
   1416 	adev = amdgpu_ttm_adev(ttm->bdev);
   1417 
   1418 #ifdef CONFIG_SWIOTLB
   1419 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
   1420 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
   1421 		return;
   1422 	}
   1423 #endif
   1424 
   1425 	/* fall back to generic helper to unmap and unpopulate array */
   1426 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
   1427 #endif	/* __NetBSD__ */
   1428 }
   1429 
   1430 #ifdef __NetBSD__
   1431 static void amdgpu_ttm_tt_swapout(struct ttm_tt *ttm)
   1432 {
   1433 	struct amdgpu_ttm_tt *gtt = container_of(ttm, struct amdgpu_ttm_tt,
   1434 	    ttm.ttm);
   1435 	struct ttm_dma_tt *ttm_dma = &gtt->ttm;
   1436 
   1437 	ttm_bus_dma_swapout(ttm_dma);
   1438 }
   1439 
   1440 static const struct uvm_pagerops amdgpu_uvm_ops = {
   1441 	.pgo_reference = &ttm_bo_uvm_reference,
   1442 	.pgo_detach = &ttm_bo_uvm_detach,
   1443 	.pgo_fault = &ttm_bo_uvm_fault,
   1444 };
   1445 #endif
   1446 
   1447 /**
   1448  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
   1449  * task
   1450  *
   1451  * @ttm: The ttm_tt object to bind this userptr object to
   1452  * @addr:  The address in the current tasks VM space to use
   1453  * @flags: Requirements of userptr object.
   1454  *
   1455  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
   1456  * to current task
   1457  */
   1458 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
   1459 			      uint32_t flags)
   1460 {
   1461 #ifdef __NetBSD__		/* XXX amdgpu userptr */
   1462 	return -ENODEV;
   1463 #else
   1464 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1465 
   1466 	if (gtt == NULL)
   1467 		return -EINVAL;
   1468 
   1469 	gtt->userptr = addr;
   1470 	gtt->userflags = flags;
   1471 
   1472 	if (gtt->usertask)
   1473 		put_task_struct(gtt->usertask);
   1474 	gtt->usertask = current->group_leader;
   1475 	get_task_struct(gtt->usertask);
   1476 
   1477 	return 0;
   1478 #endif
   1479 }
   1480 
   1481 /**
   1482  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
   1483  */
   1484 #ifdef __NetBSD__
   1485 struct vmspace *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
   1486 #else
   1487 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
   1488 #endif
   1489 {
   1490 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1491 
   1492 	if (gtt == NULL)
   1493 		return NULL;
   1494 
   1495 	if (gtt->usertask == NULL)
   1496 		return NULL;
   1497 
   1498 #ifdef __NetBSD__
   1499 	return gtt->usertask->p_vmspace;
   1500 #else
   1501 	return gtt->usertask->mm;
   1502 #endif
   1503 }
   1504 
   1505 /**
   1506  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
   1507  * address range for the current task.
   1508  *
   1509  */
   1510 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
   1511 				  unsigned long end)
   1512 {
   1513 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1514 	unsigned long size;
   1515 
   1516 	if (gtt == NULL || !gtt->userptr)
   1517 		return false;
   1518 
   1519 	/* Return false if no part of the ttm_tt object lies within
   1520 	 * the range
   1521 	 */
   1522 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
   1523 	if (gtt->userptr > end || gtt->userptr + size <= start)
   1524 		return false;
   1525 
   1526 	return true;
   1527 }
   1528 
   1529 /**
   1530  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
   1531  */
   1532 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
   1533 {
   1534 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1535 
   1536 	if (gtt == NULL || !gtt->userptr)
   1537 		return false;
   1538 
   1539 	return true;
   1540 }
   1541 
   1542 /**
   1543  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
   1544  */
   1545 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
   1546 {
   1547 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1548 
   1549 	if (gtt == NULL)
   1550 		return false;
   1551 
   1552 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
   1553 }
   1554 
   1555 /**
   1556  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
   1557  *
   1558  * @ttm: The ttm_tt object to compute the flags for
   1559  * @mem: The memory registry backing this ttm_tt object
   1560  *
   1561  * Figure out the flags to use for a VM PDE (Page Directory Entry).
   1562  */
   1563 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
   1564 {
   1565 	uint64_t flags = 0;
   1566 
   1567 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
   1568 		flags |= AMDGPU_PTE_VALID;
   1569 
   1570 	if (mem && mem->mem_type == TTM_PL_TT) {
   1571 		flags |= AMDGPU_PTE_SYSTEM;
   1572 
   1573 		if (ttm->caching_state == tt_cached)
   1574 			flags |= AMDGPU_PTE_SNOOPED;
   1575 	}
   1576 
   1577 	return flags;
   1578 }
   1579 
   1580 /**
   1581  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
   1582  *
   1583  * @ttm: The ttm_tt object to compute the flags for
   1584  * @mem: The memory registry backing this ttm_tt object
   1585 
   1586  * Figure out the flags to use for a VM PTE (Page Table Entry).
   1587  */
   1588 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
   1589 				 struct ttm_mem_reg *mem)
   1590 {
   1591 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
   1592 
   1593 	flags |= adev->gart.gart_pte_flags;
   1594 	flags |= AMDGPU_PTE_READABLE;
   1595 
   1596 	if (!amdgpu_ttm_tt_is_readonly(ttm))
   1597 		flags |= AMDGPU_PTE_WRITEABLE;
   1598 
   1599 	return flags;
   1600 }
   1601 
   1602 /**
   1603  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
   1604  * object.
   1605  *
   1606  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
   1607  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
   1608  * it can find space for a new object and by ttm_bo_force_list_clean() which is
   1609  * used to clean out a memory space.
   1610  */
   1611 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
   1612 					    const struct ttm_place *place)
   1613 {
   1614 	unsigned long num_pages = bo->mem.num_pages;
   1615 	struct drm_mm_node *node = bo->mem.mm_node;
   1616 	struct dma_resv_list *flist;
   1617 	struct dma_fence *f;
   1618 	int i;
   1619 
   1620 	if (bo->type == ttm_bo_type_kernel &&
   1621 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
   1622 		return false;
   1623 
   1624 	/* If bo is a KFD BO, check if the bo belongs to the current process.
   1625 	 * If true, then return false as any KFD process needs all its BOs to
   1626 	 * be resident to run successfully
   1627 	 */
   1628 #ifdef __NetBSD__		/* XXX amdgpu kfd */
   1629 	__USE(flist);
   1630 	__USE(f);
   1631 	__USE(i);
   1632 #else
   1633 	flist = dma_resv_get_list(bo->base.resv);
   1634 	if (flist) {
   1635 		for (i = 0; i < flist->shared_count; ++i) {
   1636 			f = rcu_dereference_protected(flist->shared[i],
   1637 				dma_resv_held(bo->base.resv));
   1638 			if (amdkfd_fence_check_mm(f, current->mm))
   1639 				return false;
   1640 		}
   1641 	}
   1642 #endif
   1643 
   1644 	switch (bo->mem.mem_type) {
   1645 	case TTM_PL_TT:
   1646 		return true;
   1647 
   1648 	case TTM_PL_VRAM:
   1649 		/* Check each drm MM node individually */
   1650 		while (num_pages) {
   1651 			if (place->fpfn < (node->start + node->size) &&
   1652 			    !(place->lpfn && place->lpfn <= node->start))
   1653 				return true;
   1654 
   1655 			num_pages -= node->size;
   1656 			++node;
   1657 		}
   1658 		return false;
   1659 
   1660 	default:
   1661 		break;
   1662 	}
   1663 
   1664 	return ttm_bo_eviction_valuable(bo, place);
   1665 }
   1666 
   1667 /**
   1668  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
   1669  *
   1670  * @bo:  The buffer object to read/write
   1671  * @offset:  Offset into buffer object
   1672  * @buf:  Secondary buffer to write/read from
   1673  * @len: Length in bytes of access
   1674  * @write:  true if writing
   1675  *
   1676  * This is used to access VRAM that backs a buffer object via MMIO
   1677  * access for debugging purposes.
   1678  */
   1679 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
   1680 				    unsigned long offset,
   1681 				    void *buf, int len, int write)
   1682 {
   1683 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
   1684 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
   1685 	struct drm_mm_node *nodes;
   1686 	uint32_t value = 0;
   1687 	int ret = 0;
   1688 	uint64_t pos;
   1689 	unsigned long flags;
   1690 
   1691 	if (bo->mem.mem_type != TTM_PL_VRAM)
   1692 		return -EIO;
   1693 
   1694 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
   1695 	pos = (nodes->start << PAGE_SHIFT) + offset;
   1696 
   1697 	while (len && pos < adev->gmc.mc_vram_size) {
   1698 		uint64_t aligned_pos = pos & ~(uint64_t)3;
   1699 		uint32_t bytes = 4 - (pos & 3);
   1700 		uint32_t shift = (pos & 3) * 8;
   1701 		uint32_t mask = 0xffffffff << shift;
   1702 
   1703 		if (len < bytes) {
   1704 			mask &= 0xffffffff >> (bytes - len) * 8;
   1705 			bytes = len;
   1706 		}
   1707 
   1708 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
   1709 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
   1710 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
   1711 		if (!write || mask != 0xffffffff)
   1712 			value = RREG32_NO_KIQ(mmMM_DATA);
   1713 		if (write) {
   1714 			value &= ~mask;
   1715 			value |= (*(uint32_t *)buf << shift) & mask;
   1716 			WREG32_NO_KIQ(mmMM_DATA, value);
   1717 		}
   1718 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
   1719 		if (!write) {
   1720 			value = (value & mask) >> shift;
   1721 			memcpy(buf, &value, bytes);
   1722 		}
   1723 
   1724 		ret += bytes;
   1725 		buf = (uint8_t *)buf + bytes;
   1726 		pos += bytes;
   1727 		len -= bytes;
   1728 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
   1729 			++nodes;
   1730 			pos = (nodes->start << PAGE_SHIFT);
   1731 		}
   1732 	}
   1733 
   1734 	return ret;
   1735 }
   1736 
   1737 static struct ttm_bo_driver amdgpu_bo_driver = {
   1738 	.ttm_tt_create = &amdgpu_ttm_tt_create,
   1739 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
   1740 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
   1741 #ifdef __NetBSD__
   1742 	.ttm_tt_swapout = &amdgpu_ttm_tt_swapout,
   1743 	.ttm_uvm_ops = &amdgpu_uvm_ops,
   1744 #endif
   1745 	.invalidate_caches = &amdgpu_invalidate_caches,
   1746 	.init_mem_type = &amdgpu_init_mem_type,
   1747 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
   1748 	.evict_flags = &amdgpu_evict_flags,
   1749 	.move = &amdgpu_bo_move,
   1750 	.verify_access = &amdgpu_verify_access,
   1751 	.move_notify = &amdgpu_bo_move_notify,
   1752 	.release_notify = &amdgpu_bo_release_notify,
   1753 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
   1754 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
   1755 	.io_mem_free = &amdgpu_ttm_io_mem_free,
   1756 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
   1757 	.access_memory = &amdgpu_ttm_access_memory,
   1758 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
   1759 };
   1760 
   1761 /*
   1762  * Firmware Reservation functions
   1763  */
   1764 /**
   1765  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
   1766  *
   1767  * @adev: amdgpu_device pointer
   1768  *
   1769  * free fw reserved vram if it has been reserved.
   1770  */
   1771 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
   1772 {
   1773 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
   1774 		NULL, &adev->fw_vram_usage.va);
   1775 }
   1776 
   1777 /**
   1778  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
   1779  *
   1780  * @adev: amdgpu_device pointer
   1781  *
   1782  * create bo vram reservation from fw.
   1783  */
   1784 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
   1785 {
   1786 	uint64_t vram_size = adev->gmc.visible_vram_size;
   1787 
   1788 	adev->fw_vram_usage.va = NULL;
   1789 	adev->fw_vram_usage.reserved_bo = NULL;
   1790 
   1791 	if (adev->fw_vram_usage.size == 0 ||
   1792 	    adev->fw_vram_usage.size > vram_size)
   1793 		return 0;
   1794 
   1795 	return amdgpu_bo_create_kernel_at(adev,
   1796 					  adev->fw_vram_usage.start_offset,
   1797 					  adev->fw_vram_usage.size,
   1798 					  AMDGPU_GEM_DOMAIN_VRAM,
   1799 					  &adev->fw_vram_usage.reserved_bo,
   1800 					  &adev->fw_vram_usage.va);
   1801 }
   1802 
   1803 /*
   1804  * Memoy training reservation functions
   1805  */
   1806 
   1807 /**
   1808  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
   1809  *
   1810  * @adev: amdgpu_device pointer
   1811  *
   1812  * free memory training reserved vram if it has been reserved.
   1813  */
   1814 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
   1815 {
   1816 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
   1817 
   1818 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
   1819 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
   1820 	ctx->c2p_bo = NULL;
   1821 
   1822 	return 0;
   1823 }
   1824 
   1825 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
   1826 {
   1827        if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
   1828                vram_size -= SZ_1M;
   1829 
   1830        return ALIGN(vram_size, SZ_1M);
   1831 }
   1832 
   1833 /**
   1834  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
   1835  *
   1836  * @adev: amdgpu_device pointer
   1837  *
   1838  * create bo vram reservation from memory training.
   1839  */
   1840 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
   1841 {
   1842 	int ret;
   1843 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
   1844 
   1845 	memset(ctx, 0, sizeof(*ctx));
   1846 	if (!adev->fw_vram_usage.mem_train_support) {
   1847 		DRM_DEBUG("memory training does not support!\n");
   1848 		return 0;
   1849 	}
   1850 
   1851 	ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
   1852 	ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
   1853 	ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
   1854 
   1855 	DRM_DEBUG("train_data_size:%"PRIx64",p2c_train_data_offset:%"PRIx64",c2p_train_data_offset:%"PRIx64".\n",
   1856 		  ctx->train_data_size,
   1857 		  ctx->p2c_train_data_offset,
   1858 		  ctx->c2p_train_data_offset);
   1859 
   1860 	ret = amdgpu_bo_create_kernel_at(adev,
   1861 					 ctx->c2p_train_data_offset,
   1862 					 ctx->train_data_size,
   1863 					 AMDGPU_GEM_DOMAIN_VRAM,
   1864 					 &ctx->c2p_bo,
   1865 					 NULL);
   1866 	if (ret) {
   1867 		DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
   1868 		amdgpu_ttm_training_reserve_vram_fini(adev);
   1869 		return ret;
   1870 	}
   1871 
   1872 	ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
   1873 	return 0;
   1874 }
   1875 
   1876 /**
   1877  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
   1878  * gtt/vram related fields.
   1879  *
   1880  * This initializes all of the memory space pools that the TTM layer
   1881  * will need such as the GTT space (system memory mapped to the device),
   1882  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
   1883  * can be mapped per VMID.
   1884  */
   1885 int amdgpu_ttm_init(struct amdgpu_device *adev)
   1886 {
   1887 	uint64_t gtt_size;
   1888 	int r;
   1889 	u64 vis_vram_limit;
   1890 	void *stolen_vga_buf;
   1891 
   1892 	mutex_init(&adev->mman.gtt_window_lock);
   1893 
   1894 	/* No others user of address space so set it to 0 */
   1895 	r = ttm_bo_device_init(&adev->mman.bdev,
   1896 			       &amdgpu_bo_driver,
   1897 #ifdef __NetBSD__
   1898 			       adev->ddev->bst,
   1899 			       adev->ddev->dmat,
   1900 #else
   1901 			       adev->ddev->anon_inode->i_mapping,
   1902 #endif
   1903 			       adev->ddev->vma_offset_manager,
   1904 			       dma_addressing_limited(adev->dev));
   1905 	if (r) {
   1906 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
   1907 		return r;
   1908 	}
   1909 	adev->mman.initialized = true;
   1910 
   1911 	/* We opt to avoid OOM on system pages allocations */
   1912 	adev->mman.bdev.no_retry = true;
   1913 
   1914 	/* Initialize VRAM pool with all of VRAM divided into pages */
   1915 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
   1916 				adev->gmc.real_vram_size >> PAGE_SHIFT);
   1917 	if (r) {
   1918 		DRM_ERROR("Failed initializing VRAM heap.\n");
   1919 		return r;
   1920 	}
   1921 
   1922 	/* Reduce size of CPU-visible VRAM if requested */
   1923 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
   1924 	if (amdgpu_vis_vram_limit > 0 &&
   1925 	    vis_vram_limit <= adev->gmc.visible_vram_size)
   1926 		adev->gmc.visible_vram_size = vis_vram_limit;
   1927 
   1928 	/* Change the size here instead of the init above so only lpfn is affected */
   1929 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
   1930 #ifdef __NetBSD__
   1931 #ifdef _LP64
   1932 	if (bus_space_map(adev->gmc.aper_tag, adev->gmc.aper_base,
   1933 		adev->gmc.visible_vram_size,
   1934 		BUS_SPACE_MAP_LINEAR|BUS_SPACE_MAP_PREFETCHABLE,
   1935 		&adev->mman.aper_base_handle)) {
   1936 		return -EIO;
   1937 	}
   1938 	adev->mman.aper_base_kaddr = bus_space_vaddr(adev->gmc.aper_tag,
   1939 	    adev->mman.aper_base_handle);
   1940 	KASSERT(adev->mman.aper_base_kaddr != NULL);
   1941 #endif	/* _LP64 */
   1942 #else	/* __NetBSD__ */
   1943 #ifdef CONFIG_64BIT
   1944 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
   1945 						adev->gmc.visible_vram_size);
   1946 #endif
   1947 #endif
   1948 
   1949 	/*
   1950 	 *The reserved vram for firmware must be pinned to the specified
   1951 	 *place on the VRAM, so reserve it early.
   1952 	 */
   1953 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
   1954 	if (r) {
   1955 		return r;
   1956 	}
   1957 
   1958 	/*
   1959 	 *The reserved vram for memory training must be pinned to the specified
   1960 	 *place on the VRAM, so reserve it early.
   1961 	 */
   1962 	r = amdgpu_ttm_training_reserve_vram_init(adev);
   1963 	if (r)
   1964 		return r;
   1965 
   1966 	/* allocate memory as required for VGA
   1967 	 * This is used for VGA emulation and pre-OS scanout buffers to
   1968 	 * avoid display artifacts while transitioning between pre-OS
   1969 	 * and driver.  */
   1970 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
   1971 				    AMDGPU_GEM_DOMAIN_VRAM,
   1972 				    &adev->stolen_vga_memory,
   1973 				    NULL, &stolen_vga_buf);
   1974 	if (r)
   1975 		return r;
   1976 
   1977 	/*
   1978 	 * reserve one TMR (64K) memory at the top of VRAM which holds
   1979 	 * IP Discovery data and is protected by PSP.
   1980 	 */
   1981 	r = amdgpu_bo_create_kernel_at(adev,
   1982 				       adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
   1983 				       DISCOVERY_TMR_SIZE,
   1984 				       AMDGPU_GEM_DOMAIN_VRAM,
   1985 				       &adev->discovery_memory,
   1986 				       NULL);
   1987 	if (r)
   1988 		return r;
   1989 
   1990 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
   1991 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
   1992 
   1993 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
   1994 	 * or whatever the user passed on module init */
   1995 	if (amdgpu_gtt_size == -1) {
   1996 		struct sysinfo si;
   1997 
   1998 		si_meminfo(&si);
   1999 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
   2000 			       adev->gmc.mc_vram_size),
   2001 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
   2002 	}
   2003 	else
   2004 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
   2005 
   2006 	/* Initialize GTT memory pool */
   2007 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
   2008 	if (r) {
   2009 		DRM_ERROR("Failed initializing GTT heap.\n");
   2010 		return r;
   2011 	}
   2012 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
   2013 		 (unsigned)(gtt_size / (1024 * 1024)));
   2014 
   2015 	/* Initialize various on-chip memory pools */
   2016 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
   2017 			   adev->gds.gds_size);
   2018 	if (r) {
   2019 		DRM_ERROR("Failed initializing GDS heap.\n");
   2020 		return r;
   2021 	}
   2022 
   2023 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
   2024 			   adev->gds.gws_size);
   2025 	if (r) {
   2026 		DRM_ERROR("Failed initializing gws heap.\n");
   2027 		return r;
   2028 	}
   2029 
   2030 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
   2031 			   adev->gds.oa_size);
   2032 	if (r) {
   2033 		DRM_ERROR("Failed initializing oa heap.\n");
   2034 		return r;
   2035 	}
   2036 
   2037 	/* Register debugfs entries for amdgpu_ttm */
   2038 	r = amdgpu_ttm_debugfs_init(adev);
   2039 	if (r) {
   2040 		DRM_ERROR("Failed to init debugfs\n");
   2041 		return r;
   2042 	}
   2043 	return 0;
   2044 }
   2045 
   2046 /**
   2047  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
   2048  */
   2049 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
   2050 {
   2051 	void *stolen_vga_buf;
   2052 	/* return the VGA stolen memory (if any) back to VRAM */
   2053 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
   2054 }
   2055 
   2056 /**
   2057  * amdgpu_ttm_fini - De-initialize the TTM memory pools
   2058  */
   2059 void amdgpu_ttm_fini(struct amdgpu_device *adev)
   2060 {
   2061 	if (!adev->mman.initialized)
   2062 		return;
   2063 
   2064 	amdgpu_ttm_debugfs_fini(adev);
   2065 	amdgpu_ttm_training_reserve_vram_fini(adev);
   2066 	/* return the IP Discovery TMR memory back to VRAM */
   2067 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
   2068 	amdgpu_ttm_fw_reserve_vram_fini(adev);
   2069 
   2070 #ifdef __NetBSD__
   2071 	if (adev->mman.aper_base_handle) {
   2072 		bus_space_unmap(adev->gmc.aper_tag,
   2073 		    adev->mman.aper_base_handle, adev->gmc.visible_vram_size);
   2074 	}
   2075 #else
   2076 	if (adev->mman.aper_base_kaddr)
   2077 		iounmap(adev->mman.aper_base_kaddr);
   2078 #endif
   2079 	adev->mman.aper_base_kaddr = NULL;
   2080 
   2081 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
   2082 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
   2083 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
   2084 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
   2085 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
   2086 	ttm_bo_device_release(&adev->mman.bdev);
   2087 	adev->mman.initialized = false;
   2088 	mutex_destroy(&adev->mman.gtt_window_lock);
   2089 	DRM_INFO("amdgpu: ttm finalized\n");
   2090 }
   2091 
   2092 /**
   2093  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
   2094  *
   2095  * @adev: amdgpu_device pointer
   2096  * @enable: true when we can use buffer functions.
   2097  *
   2098  * Enable/disable use of buffer functions during suspend/resume. This should
   2099  * only be called at bootup or when userspace isn't running.
   2100  */
   2101 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
   2102 {
   2103 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
   2104 	uint64_t size;
   2105 	int r;
   2106 
   2107 	if (!adev->mman.initialized || adev->in_gpu_reset ||
   2108 	    adev->mman.buffer_funcs_enabled == enable)
   2109 		return;
   2110 
   2111 	if (enable) {
   2112 		struct amdgpu_ring *ring;
   2113 		struct drm_gpu_scheduler *sched;
   2114 
   2115 		ring = adev->mman.buffer_funcs_ring;
   2116 		sched = &ring->sched;
   2117 		r = drm_sched_entity_init(&adev->mman.entity,
   2118 				          DRM_SCHED_PRIORITY_KERNEL, &sched,
   2119 					  1, NULL);
   2120 		if (r) {
   2121 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
   2122 				  r);
   2123 			return;
   2124 		}
   2125 	} else {
   2126 		drm_sched_entity_destroy(&adev->mman.entity);
   2127 		dma_fence_put(man->move);
   2128 		man->move = NULL;
   2129 	}
   2130 
   2131 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
   2132 	if (enable)
   2133 		size = adev->gmc.real_vram_size;
   2134 	else
   2135 		size = adev->gmc.visible_vram_size;
   2136 	man->size = size >> PAGE_SHIFT;
   2137 	adev->mman.buffer_funcs_enabled = enable;
   2138 }
   2139 
   2140 #ifdef __NetBSD__
   2141 
   2142 int
   2143 amdgpu_mmap_object(struct drm_device *dev, off_t offset, size_t size,
   2144     vm_prot_t prot, struct uvm_object **uobjp, voff_t *uoffsetp,
   2145     struct file *file)
   2146 {
   2147 	struct amdgpu_device *adev = dev->dev_private;
   2148 
   2149 	KASSERT(0 == (offset & (PAGE_SIZE - 1)));
   2150 
   2151 	if (__predict_false(adev == NULL))	/* XXX How?? */
   2152 		return -EINVAL;
   2153 
   2154 	return ttm_bo_mmap_object(&adev->mman.bdev, offset, size, prot,
   2155 	    uobjp, uoffsetp, file);
   2156 }
   2157 
   2158 #else  /* __NetBSD__ */
   2159 
   2160 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
   2161 {
   2162 	struct drm_file *file_priv = filp->private_data;
   2163 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
   2164 
   2165 	if (adev == NULL)
   2166 		return -EINVAL;
   2167 
   2168 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
   2169 }
   2170 
   2171 #endif	/* __NetBSD__ */
   2172 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
   2173 			     struct ttm_mem_reg *mem, unsigned num_pages,
   2174 			     uint64_t offset, unsigned window,
   2175 			     struct amdgpu_ring *ring,
   2176 			     uint64_t *addr)
   2177 {
   2178 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
   2179 	struct amdgpu_device *adev = ring->adev;
   2180 	struct ttm_tt *ttm = bo->ttm;
   2181 	struct amdgpu_job *job;
   2182 	unsigned num_dw, num_bytes;
   2183 	dma_addr_t *dma_address;
   2184 	struct dma_fence *fence;
   2185 	uint64_t src_addr, dst_addr;
   2186 	uint64_t flags;
   2187 	int r;
   2188 
   2189 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
   2190 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
   2191 
   2192 	*addr = adev->gmc.gart_start;
   2193 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
   2194 		AMDGPU_GPU_PAGE_SIZE;
   2195 
   2196 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
   2197 	num_bytes = num_pages * 8;
   2198 
   2199 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
   2200 	if (r)
   2201 		return r;
   2202 
   2203 	src_addr = num_dw * 4;
   2204 	src_addr += job->ibs[0].gpu_addr;
   2205 
   2206 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
   2207 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
   2208 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
   2209 				dst_addr, num_bytes);
   2210 
   2211 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
   2212 	WARN_ON(job->ibs[0].length_dw > num_dw);
   2213 
   2214 #ifdef __NetBSD__
   2215 	__USE(dma_address);
   2216 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
   2217 	r = amdgpu_gart_map(adev, 0, num_pages, offset, gtt->ttm.dma_address,
   2218 	    flags, &job->ibs[0].ptr[num_dw]);
   2219 #else
   2220 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
   2221 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
   2222 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
   2223 			    &job->ibs[0].ptr[num_dw]);
   2224 #endif
   2225 	if (r)
   2226 		goto error_free;
   2227 
   2228 	r = amdgpu_job_submit(job, &adev->mman.entity,
   2229 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
   2230 	if (r)
   2231 		goto error_free;
   2232 
   2233 	dma_fence_put(fence);
   2234 
   2235 	return r;
   2236 
   2237 error_free:
   2238 	amdgpu_job_free(job);
   2239 	return r;
   2240 }
   2241 
   2242 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
   2243 		       uint64_t dst_offset, uint32_t byte_count,
   2244 		       struct dma_resv *resv,
   2245 		       struct dma_fence **fence, bool direct_submit,
   2246 		       bool vm_needs_flush)
   2247 {
   2248 	struct amdgpu_device *adev = ring->adev;
   2249 	struct amdgpu_job *job;
   2250 
   2251 	uint32_t max_bytes;
   2252 	unsigned num_loops, num_dw;
   2253 	unsigned i;
   2254 	int r;
   2255 
   2256 	if (direct_submit && !ring->sched.ready) {
   2257 		DRM_ERROR("Trying to move memory with ring turned off.\n");
   2258 		return -EINVAL;
   2259 	}
   2260 
   2261 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
   2262 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
   2263 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
   2264 
   2265 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
   2266 	if (r)
   2267 		return r;
   2268 
   2269 	if (vm_needs_flush) {
   2270 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
   2271 		job->vm_needs_flush = true;
   2272 	}
   2273 	if (resv) {
   2274 		r = amdgpu_sync_resv(adev, &job->sync, resv,
   2275 				     AMDGPU_FENCE_OWNER_UNDEFINED,
   2276 				     false);
   2277 		if (r) {
   2278 			DRM_ERROR("sync failed (%d).\n", r);
   2279 			goto error_free;
   2280 		}
   2281 	}
   2282 
   2283 	for (i = 0; i < num_loops; i++) {
   2284 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
   2285 
   2286 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
   2287 					dst_offset, cur_size_in_bytes);
   2288 
   2289 		src_offset += cur_size_in_bytes;
   2290 		dst_offset += cur_size_in_bytes;
   2291 		byte_count -= cur_size_in_bytes;
   2292 	}
   2293 
   2294 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
   2295 	WARN_ON(job->ibs[0].length_dw > num_dw);
   2296 	if (direct_submit)
   2297 		r = amdgpu_job_submit_direct(job, ring, fence);
   2298 	else
   2299 		r = amdgpu_job_submit(job, &adev->mman.entity,
   2300 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
   2301 	if (r)
   2302 		goto error_free;
   2303 
   2304 	return r;
   2305 
   2306 error_free:
   2307 	amdgpu_job_free(job);
   2308 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
   2309 	return r;
   2310 }
   2311 
   2312 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
   2313 		       uint32_t src_data,
   2314 		       struct dma_resv *resv,
   2315 		       struct dma_fence **fence)
   2316 {
   2317 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
   2318 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
   2319 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
   2320 
   2321 	struct drm_mm_node *mm_node;
   2322 	unsigned long num_pages;
   2323 	unsigned int num_loops, num_dw;
   2324 
   2325 	struct amdgpu_job *job;
   2326 	int r;
   2327 
   2328 	if (!adev->mman.buffer_funcs_enabled) {
   2329 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
   2330 		return -EINVAL;
   2331 	}
   2332 
   2333 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
   2334 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
   2335 		if (r)
   2336 			return r;
   2337 	}
   2338 
   2339 	num_pages = bo->tbo.num_pages;
   2340 	mm_node = bo->tbo.mem.mm_node;
   2341 	num_loops = 0;
   2342 	while (num_pages) {
   2343 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
   2344 
   2345 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
   2346 		num_pages -= mm_node->size;
   2347 		++mm_node;
   2348 	}
   2349 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
   2350 
   2351 	/* for IB padding */
   2352 	num_dw += 64;
   2353 
   2354 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
   2355 	if (r)
   2356 		return r;
   2357 
   2358 	if (resv) {
   2359 		r = amdgpu_sync_resv(adev, &job->sync, resv,
   2360 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
   2361 		if (r) {
   2362 			DRM_ERROR("sync failed (%d).\n", r);
   2363 			goto error_free;
   2364 		}
   2365 	}
   2366 
   2367 	num_pages = bo->tbo.num_pages;
   2368 	mm_node = bo->tbo.mem.mm_node;
   2369 
   2370 	while (num_pages) {
   2371 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
   2372 		uint64_t dst_addr;
   2373 
   2374 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
   2375 		while (byte_count) {
   2376 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
   2377 							   max_bytes);
   2378 
   2379 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
   2380 						dst_addr, cur_size_in_bytes);
   2381 
   2382 			dst_addr += cur_size_in_bytes;
   2383 			byte_count -= cur_size_in_bytes;
   2384 		}
   2385 
   2386 		num_pages -= mm_node->size;
   2387 		++mm_node;
   2388 	}
   2389 
   2390 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
   2391 	WARN_ON(job->ibs[0].length_dw > num_dw);
   2392 	r = amdgpu_job_submit(job, &adev->mman.entity,
   2393 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
   2394 	if (r)
   2395 		goto error_free;
   2396 
   2397 	return 0;
   2398 
   2399 error_free:
   2400 	amdgpu_job_free(job);
   2401 	return r;
   2402 }
   2403 
   2404 #if defined(CONFIG_DEBUG_FS)
   2405 
   2406 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
   2407 {
   2408 	struct drm_info_node *node = (struct drm_info_node *)m->private;
   2409 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
   2410 	struct drm_device *dev = node->minor->dev;
   2411 	struct amdgpu_device *adev = dev->dev_private;
   2412 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
   2413 	struct drm_printer p = drm_seq_file_printer(m);
   2414 
   2415 	man->func->debug(man, &p);
   2416 	return 0;
   2417 }
   2418 
   2419 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
   2420 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
   2421 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
   2422 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
   2423 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
   2424 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
   2425 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
   2426 #ifdef CONFIG_SWIOTLB
   2427 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
   2428 #endif
   2429 };
   2430 
   2431 /**
   2432  * amdgpu_ttm_vram_read - Linear read access to VRAM
   2433  *
   2434  * Accesses VRAM via MMIO for debugging purposes.
   2435  */
   2436 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
   2437 				    size_t size, loff_t *pos)
   2438 {
   2439 	struct amdgpu_device *adev = file_inode(f)->i_private;
   2440 	ssize_t result = 0;
   2441 	int r;
   2442 
   2443 	if (size & 0x3 || *pos & 0x3)
   2444 		return -EINVAL;
   2445 
   2446 	if (*pos >= adev->gmc.mc_vram_size)
   2447 		return -ENXIO;
   2448 
   2449 	while (size) {
   2450 		unsigned long flags;
   2451 		uint32_t value;
   2452 
   2453 		if (*pos >= adev->gmc.mc_vram_size)
   2454 			return result;
   2455 
   2456 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
   2457 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
   2458 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
   2459 		value = RREG32_NO_KIQ(mmMM_DATA);
   2460 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
   2461 
   2462 		r = put_user(value, (uint32_t *)buf);
   2463 		if (r)
   2464 			return r;
   2465 
   2466 		result += 4;
   2467 		buf += 4;
   2468 		*pos += 4;
   2469 		size -= 4;
   2470 	}
   2471 
   2472 	return result;
   2473 }
   2474 
   2475 /**
   2476  * amdgpu_ttm_vram_write - Linear write access to VRAM
   2477  *
   2478  * Accesses VRAM via MMIO for debugging purposes.
   2479  */
   2480 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
   2481 				    size_t size, loff_t *pos)
   2482 {
   2483 	struct amdgpu_device *adev = file_inode(f)->i_private;
   2484 	ssize_t result = 0;
   2485 	int r;
   2486 
   2487 	if (size & 0x3 || *pos & 0x3)
   2488 		return -EINVAL;
   2489 
   2490 	if (*pos >= adev->gmc.mc_vram_size)
   2491 		return -ENXIO;
   2492 
   2493 	while (size) {
   2494 		unsigned long flags;
   2495 		uint32_t value;
   2496 
   2497 		if (*pos >= adev->gmc.mc_vram_size)
   2498 			return result;
   2499 
   2500 		r = get_user(value, (uint32_t *)buf);
   2501 		if (r)
   2502 			return r;
   2503 
   2504 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
   2505 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
   2506 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
   2507 		WREG32_NO_KIQ(mmMM_DATA, value);
   2508 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
   2509 
   2510 		result += 4;
   2511 		buf += 4;
   2512 		*pos += 4;
   2513 		size -= 4;
   2514 	}
   2515 
   2516 	return result;
   2517 }
   2518 
   2519 static const struct file_operations amdgpu_ttm_vram_fops = {
   2520 	.owner = THIS_MODULE,
   2521 	.read = amdgpu_ttm_vram_read,
   2522 	.write = amdgpu_ttm_vram_write,
   2523 	.llseek = default_llseek,
   2524 };
   2525 
   2526 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
   2527 
   2528 /**
   2529  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
   2530  */
   2531 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
   2532 				   size_t size, loff_t *pos)
   2533 {
   2534 	struct amdgpu_device *adev = file_inode(f)->i_private;
   2535 	ssize_t result = 0;
   2536 	int r;
   2537 
   2538 	while (size) {
   2539 		loff_t p = *pos / PAGE_SIZE;
   2540 		unsigned off = *pos & ~PAGE_MASK;
   2541 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
   2542 		struct page *page;
   2543 		void *ptr;
   2544 
   2545 		if (p >= adev->gart.num_cpu_pages)
   2546 			return result;
   2547 
   2548 		page = adev->gart.pages[p];
   2549 		if (page) {
   2550 			ptr = kmap(page);
   2551 			ptr += off;
   2552 
   2553 			r = copy_to_user(buf, ptr, cur_size);
   2554 			kunmap(adev->gart.pages[p]);
   2555 		} else
   2556 			r = clear_user(buf, cur_size);
   2557 
   2558 		if (r)
   2559 			return -EFAULT;
   2560 
   2561 		result += cur_size;
   2562 		buf += cur_size;
   2563 		*pos += cur_size;
   2564 		size -= cur_size;
   2565 	}
   2566 
   2567 	return result;
   2568 }
   2569 
   2570 static const struct file_operations amdgpu_ttm_gtt_fops = {
   2571 	.owner = THIS_MODULE,
   2572 	.read = amdgpu_ttm_gtt_read,
   2573 	.llseek = default_llseek
   2574 };
   2575 
   2576 #endif
   2577 
   2578 /**
   2579  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
   2580  *
   2581  * This function is used to read memory that has been mapped to the
   2582  * GPU and the known addresses are not physical addresses but instead
   2583  * bus addresses (e.g., what you'd put in an IB or ring buffer).
   2584  */
   2585 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
   2586 				 size_t size, loff_t *pos)
   2587 {
   2588 	struct amdgpu_device *adev = file_inode(f)->i_private;
   2589 	struct iommu_domain *dom;
   2590 	ssize_t result = 0;
   2591 	int r;
   2592 
   2593 	/* retrieve the IOMMU domain if any for this device */
   2594 	dom = iommu_get_domain_for_dev(adev->dev);
   2595 
   2596 	while (size) {
   2597 		phys_addr_t addr = *pos & PAGE_MASK;
   2598 		loff_t off = *pos & ~PAGE_MASK;
   2599 		size_t bytes = PAGE_SIZE - off;
   2600 		unsigned long pfn;
   2601 		struct page *p;
   2602 		void *ptr;
   2603 
   2604 		bytes = bytes < size ? bytes : size;
   2605 
   2606 		/* Translate the bus address to a physical address.  If
   2607 		 * the domain is NULL it means there is no IOMMU active
   2608 		 * and the address translation is the identity
   2609 		 */
   2610 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
   2611 
   2612 		pfn = addr >> PAGE_SHIFT;
   2613 		if (!pfn_valid(pfn))
   2614 			return -EPERM;
   2615 
   2616 		p = pfn_to_page(pfn);
   2617 		if (p->mapping != adev->mman.bdev.dev_mapping)
   2618 			return -EPERM;
   2619 
   2620 		ptr = kmap(p);
   2621 		r = copy_to_user(buf, ptr + off, bytes);
   2622 		kunmap(p);
   2623 		if (r)
   2624 			return -EFAULT;
   2625 
   2626 		size -= bytes;
   2627 		*pos += bytes;
   2628 		result += bytes;
   2629 	}
   2630 
   2631 	return result;
   2632 }
   2633 
   2634 /**
   2635  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
   2636  *
   2637  * This function is used to write memory that has been mapped to the
   2638  * GPU and the known addresses are not physical addresses but instead
   2639  * bus addresses (e.g., what you'd put in an IB or ring buffer).
   2640  */
   2641 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
   2642 				 size_t size, loff_t *pos)
   2643 {
   2644 	struct amdgpu_device *adev = file_inode(f)->i_private;
   2645 	struct iommu_domain *dom;
   2646 	ssize_t result = 0;
   2647 	int r;
   2648 
   2649 	dom = iommu_get_domain_for_dev(adev->dev);
   2650 
   2651 	while (size) {
   2652 		phys_addr_t addr = *pos & PAGE_MASK;
   2653 		loff_t off = *pos & ~PAGE_MASK;
   2654 		size_t bytes = PAGE_SIZE - off;
   2655 		unsigned long pfn;
   2656 		struct page *p;
   2657 		void *ptr;
   2658 
   2659 		bytes = bytes < size ? bytes : size;
   2660 
   2661 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
   2662 
   2663 		pfn = addr >> PAGE_SHIFT;
   2664 		if (!pfn_valid(pfn))
   2665 			return -EPERM;
   2666 
   2667 		p = pfn_to_page(pfn);
   2668 		if (p->mapping != adev->mman.bdev.dev_mapping)
   2669 			return -EPERM;
   2670 
   2671 		ptr = kmap(p);
   2672 		r = copy_from_user(ptr + off, buf, bytes);
   2673 		kunmap(p);
   2674 		if (r)
   2675 			return -EFAULT;
   2676 
   2677 		size -= bytes;
   2678 		*pos += bytes;
   2679 		result += bytes;
   2680 	}
   2681 
   2682 	return result;
   2683 }
   2684 
   2685 static const struct file_operations amdgpu_ttm_iomem_fops = {
   2686 	.owner = THIS_MODULE,
   2687 	.read = amdgpu_iomem_read,
   2688 	.write = amdgpu_iomem_write,
   2689 	.llseek = default_llseek
   2690 };
   2691 
   2692 static const struct {
   2693 	char *name;
   2694 	const struct file_operations *fops;
   2695 	int domain;
   2696 } ttm_debugfs_entries[] = {
   2697 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
   2698 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
   2699 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
   2700 #endif
   2701 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
   2702 };
   2703 
   2704 #endif
   2705 
   2706 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
   2707 {
   2708 #if defined(CONFIG_DEBUG_FS)
   2709 	unsigned count;
   2710 
   2711 	struct drm_minor *minor = adev->ddev->primary;
   2712 	struct dentry *ent, *root = minor->debugfs_root;
   2713 
   2714 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
   2715 		ent = debugfs_create_file(
   2716 				ttm_debugfs_entries[count].name,
   2717 				S_IFREG | S_IRUGO, root,
   2718 				adev,
   2719 				ttm_debugfs_entries[count].fops);
   2720 		if (IS_ERR(ent))
   2721 			return PTR_ERR(ent);
   2722 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
   2723 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
   2724 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
   2725 			i_size_write(ent->d_inode, adev->gmc.gart_size);
   2726 		adev->mman.debugfs_entries[count] = ent;
   2727 	}
   2728 
   2729 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
   2730 
   2731 #ifdef CONFIG_SWIOTLB
   2732 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
   2733 		--count;
   2734 #endif
   2735 
   2736 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
   2737 #else
   2738 	return 0;
   2739 #endif
   2740 }
   2741 
   2742 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
   2743 {
   2744 #if defined(CONFIG_DEBUG_FS)
   2745 	unsigned i;
   2746 
   2747 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
   2748 		debugfs_remove(adev->mman.debugfs_entries[i]);
   2749 #endif
   2750 }
   2751