Home | History | Annotate | Line # | Download | only in ar5416
      1 /*
      2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4  *
      5  * Permission to use, copy, modify, and/or distribute this software for any
      6  * purpose with or without fee is hereby granted, provided that the above
      7  * copyright notice and this permission notice appear in all copies.
      8  *
      9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  *
     17  * $Id: ar5416_reset.c,v 1.6 2012/02/12 13:55:27 wiz Exp $
     18  */
     19 #include "opt_ah.h"
     20 
     21 #include "ah.h"
     22 #include "ah_internal.h"
     23 #include "ah_devid.h"
     24 
     25 #include "ah_eeprom_v14.h"
     26 
     27 #include "ar5416/ar5416.h"
     28 #include "ar5416/ar5416reg.h"
     29 #include "ar5416/ar5416phy.h"
     30 
     31 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
     32 #define	EEP_MINOR(_ah) \
     33 	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
     34 #define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
     35 #define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
     36 
     37 /* Additional Time delay to wait after activiting the Base band */
     38 #define BASE_ACTIVATE_DELAY	100	/* 100 usec */
     39 #define PLL_SETTLE_DELAY	300	/* 300 usec */
     40 #define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
     41 
     42 static void ar5416InitDMA(struct ath_hal *ah);
     43 static void ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan);
     44 static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
     45 static void ar5416InitQoS(struct ath_hal *ah);
     46 static void ar5416InitUserSettings(struct ath_hal *ah);
     47 
     48 static HAL_BOOL _ar5416SetTransmitPower(struct ath_hal *ah,
     49 	HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain);
     50 
     51 #if 0
     52 static HAL_BOOL	ar5416ChannelChange(struct ath_hal *, HAL_CHANNEL *);
     53 #endif
     54 static void ar5416SetDeltaSlope(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
     55 
     56 static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
     57 static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
     58 static void ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan);
     59 static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
     60 	struct ar5416eeprom *pEepData,
     61 	HAL_CHANNEL_INTERNAL *chan, int16_t *ratesArray,
     62 	uint16_t cfgCtl, uint16_t AntennaReduction,
     63 	uint16_t twiceMaxRegulatoryPower,
     64 	uint16_t powerLimit);
     65 static HAL_BOOL ar5416SetPowerCalTable(struct ath_hal *ah,
     66 	struct ar5416eeprom *pEepData,
     67 	HAL_CHANNEL_INTERNAL *chan,
     68 	int16_t *pTxPowerIndexOffset);
     69 static uint16_t ar5416GetMaxEdgePower(uint16_t freq,
     70 	CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz);
     71 
     72 static int16_t interpolate(uint16_t target, uint16_t srcLeft,
     73 	uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
     74 static void ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan);
     75 static void ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
     76 	HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
     77 	uint8_t * bChans, uint16_t availPiers,
     78 	uint16_t tPdGainOverlap, int16_t *pMinCalPower,
     79 	uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
     80 	uint16_t numXpdGains);
     81 static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
     82 	uint16_t listSize,  uint16_t *indexL, uint16_t *indexR);
     83 static HAL_BOOL ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax,
     84 	uint8_t *pPwrList, uint8_t *pVpdList,
     85 	uint16_t numIntercepts, uint8_t *pRetVpdList);
     86 
     87 /*
     88  * Places the device in and out of reset and then places sane
     89  * values in the registers based on EEPROM config, initialization
     90  * vectors (as determined by the mode), and station configuration
     91  *
     92  * bChannelChange is used to preserve DMA/PCU registers across
     93  * a HW Reset during channel change.
     94  */
     95 HAL_BOOL
     96 ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
     97 	HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
     98 {
     99 #define	N(a)	(sizeof (a) / sizeof (a[0]))
    100 #define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
    101 	struct ath_hal_5212 *ahp = AH5212(ah);
    102 	HAL_CHANNEL_INTERNAL *ichan;
    103 	uint32_t saveDefAntenna, saveLedState;
    104 	uint32_t macStaId1;
    105 	uint16_t rfXpdGain[2];
    106 	HAL_STATUS ecode;
    107 	uint32_t powerVal, rssiThrReg;
    108 	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
    109 	int i;
    110 
    111 	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
    112 #define	IS(_c,_f)	(((_c)->channelFlags & _f) || 0)
    113 	if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan, CHANNEL_5GHZ)) == 0) {
    114 		HALDEBUG(ah, HAL_DEBUG_ANY,
    115 		    "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
    116 		    __func__, chan->channel, chan->channelFlags);
    117 		FAIL(HAL_EINVAL);
    118 	}
    119 	if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
    120 		HALDEBUG(ah, HAL_DEBUG_ANY,
    121 		    "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
    122 		    __func__, chan->channel, chan->channelFlags);
    123 		FAIL(HAL_EINVAL);
    124 	}
    125 #undef IS
    126 
    127 	/* Bring out of sleep mode */
    128 	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
    129 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
    130 		    __func__);
    131 		FAIL(HAL_EIO);
    132 	}
    133 
    134 	/*
    135 	 * Map public channel to private.
    136 	 */
    137 	ichan = ath_hal_checkchannel(ah, chan);
    138 	if (ichan == AH_NULL) {
    139 		HALDEBUG(ah, HAL_DEBUG_ANY,
    140 		    "%s: invalid channel %u/0x%x; no mapping\n",
    141 		    __func__, chan->channel, chan->channelFlags);
    142 		FAIL(HAL_EINVAL);
    143 	} else {
    144 		HALDEBUG(ah, HAL_DEBUG_RESET,
    145 		    "%s: Ch=%u Max=%d Min=%d\n",__func__,
    146 		    ichan->channel, ichan->maxTxPower, ichan->minTxPower);
    147 	}
    148 	switch (opmode) {
    149 	case HAL_M_STA:
    150 	case HAL_M_IBSS:
    151 	case HAL_M_HOSTAP:
    152 	case HAL_M_MONITOR:
    153 		break;
    154 	default:
    155 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
    156 		    __func__, opmode);
    157 		FAIL(HAL_EINVAL);
    158 		break;
    159 	}
    160 	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
    161 
    162 	/* XXX Turn on fast channel change for 5416 */
    163 	/*
    164 	 * Preserve the bmiss rssi threshold and count threshold
    165 	 * across resets
    166 	 */
    167 	rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
    168 	/* If reg is zero, first time thru set to default val */
    169 	if (rssiThrReg == 0)
    170 		rssiThrReg = INIT_RSSI_THR;
    171 
    172 	/*
    173 	 * Preserve the antenna on a channel change
    174 	 */
    175 	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
    176 	if (saveDefAntenna == 0)		/* XXX magic constants */
    177 		saveDefAntenna = 1;
    178 
    179 	/* Save hardware flag before chip reset clears the register */
    180 	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
    181 		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
    182 
    183 	/* Save led state from pci config register */
    184 	saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
    185 		(AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
    186 		 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
    187 
    188 	if (!ar5416ChipReset(ah, chan)) {
    189 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
    190 		FAIL(HAL_EIO);
    191 	}
    192 
    193 	/* Restore bmiss rssi & count thresholds */
    194 	OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
    195 
    196 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
    197 	if (AR_SREV_MERLIN_10_OR_LATER(ah))
    198 		OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
    199 
    200 	if (AR_SREV_KITE(ah)) {
    201 		uint32_t val;
    202 		val = OS_REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
    203 		val &= ~AR_PHY_RIFS_INIT_DELAY;
    204 		OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
    205 	}
    206 
    207 	AH5416(ah)->ah_writeIni(ah, (HAL_CHANNEL_INTERNAL *)chan);
    208 
    209 	/* Setup 11n MAC/Phy mode registers */
    210 	ar5416Set11nRegs(ah, chan);
    211 
    212 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
    213 
    214 	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
    215 		__func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
    216 	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
    217 		__func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
    218 
    219 	/* Set the mute mask to the correct default */
    220 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2)
    221 		OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
    222 
    223 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
    224 		/* Clear reg to alllow RX_CLEAR line debug */
    225 		OS_REG_WRITE(ah, AR_PHY_BLUETOOTH,  0);
    226 	}
    227 	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
    228 #ifdef notyet
    229 		/* Enable burst prefetch for the data queues */
    230 		OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
    231 		/* Enable double-buffering */
    232 		OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
    233 #endif
    234 	}
    235 
    236 	/* Set ADC/DAC select values */
    237 	OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
    238 
    239 	if (AH5416(ah)->ah_rx_chainmask == 0x5 ||
    240 	    AH5416(ah)->ah_tx_chainmask == 0x5)
    241 		OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
    242 	/* Setup Chain Masks */
    243 	OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
    244 	OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
    245 	OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
    246 
    247 	/* Setup the transmit power values. */
    248 	if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
    249 		HALDEBUG(ah, HAL_DEBUG_ANY,
    250 		    "%s: error init'ing transmit power\n", __func__);
    251 		FAIL(HAL_EIO);
    252 	}
    253 
    254 	/* Write the analog registers */
    255 	if (!ahp->ah_rfHal->setRfRegs(ah, ichan,
    256 	    IS_CHAN_2GHZ(chan) ? 2 : 1, rfXpdGain)) {
    257 		HALDEBUG(ah, HAL_DEBUG_ANY,
    258 		    "%s: ar5212SetRfRegs failed\n", __func__);
    259 		FAIL(HAL_EIO);
    260 	}
    261 
    262 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
    263 	if (IS_CHAN_OFDM(chan)|| IS_CHAN_HT(chan))
    264 		ar5416SetDeltaSlope(ah, ichan);
    265 
    266 	AH5416(ah)->ah_spurMitigate(ah, (HAL_CHANNEL_INTERNAL *)chan);
    267 
    268 	/* Setup board specific options for EEPROM version 3 */
    269 	if (!ah->ah_setBoardValues(ah, chan)) {
    270 		HALDEBUG(ah, HAL_DEBUG_ANY,
    271 		    "%s: error setting board options\n", __func__);
    272 		FAIL(HAL_EIO);
    273 	}
    274 
    275 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
    276 
    277 	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
    278 	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
    279 		| macStaId1
    280 		| AR_STA_ID1_RTS_USE_DEF
    281 		| ahp->ah_staId1Defaults
    282 	);
    283 	ar5212SetOperatingMode(ah, opmode);
    284 
    285 	/* Set Venice BSSID mask according to current state */
    286 	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
    287 	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
    288 
    289 	/* Restore previous led state */
    290 	OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | saveLedState);
    291 	/* Restore previous antenna */
    292 	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
    293 
    294 	/* then our BSSID */
    295 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
    296 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
    297 
    298 	/* Restore bmiss rssi & count thresholds */
    299 	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
    300 
    301 	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
    302 
    303 	if (!ar5212SetChannel(ah, ichan))
    304 		FAIL(HAL_EIO);
    305 
    306 	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
    307 
    308 	/* Set 1:1 QCU to DCU mapping for all queues */
    309 	for (i = 0; i < AR_NUM_DCU; i++)
    310 		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
    311 
    312 	ahp->ah_intrTxqs = 0;
    313 	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
    314 		ar5212ResetTxQueue(ah, i);
    315 
    316 	ar5416InitIMR(ah, opmode);
    317 	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
    318 	ar5416InitQoS(ah);
    319 	ar5416InitUserSettings(ah);
    320 
    321 	/*
    322 	 * disable seq number generation in hw
    323 	 */
    324 	 OS_REG_WRITE(ah, AR_STA_ID1,
    325 	     OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
    326 
    327 	ar5416InitDMA(ah);
    328 
    329 	/*
    330 	 * program OBS bus to see MAC interrupts
    331 	 */
    332 	OS_REG_WRITE(ah, AR_OBS, 8);
    333 
    334 #ifdef AR5416_INT_MITIGATION
    335 	OS_REG_WRITE(ah, AR_MIRT, 0);
    336 	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
    337 	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
    338 #endif
    339 
    340 	ar5416InitBB(ah, chan);
    341 
    342 	/* Setup compression registers */
    343 	ar5212SetCompRegs(ah);		/* XXX not needed? */
    344 
    345 	/*
    346 	 * 5416 baseband will check the per rate power table
    347 	 * and select the lower of the two
    348 	 */
    349 	ackTpcPow = 63;
    350 	ctsTpcPow = 63;
    351 	chirpTpcPow = 63;
    352 	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
    353 		SM(ctsTpcPow, AR_TPC_CTS) |
    354 		SM(chirpTpcPow, AR_TPC_CHIRP);
    355 	OS_REG_WRITE(ah, AR_TPC, powerVal);
    356 
    357 	if (!ar5416InitCal(ah, chan))
    358 		FAIL(HAL_ESELFTEST);
    359 
    360 	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
    361 
    362 	if (bChannelChange) {
    363 		if (!(ichan->privFlags & CHANNEL_DFS))
    364 			ichan->privFlags &= ~CHANNEL_INTERFERENCE;
    365 		chan->channelFlags = ichan->channelFlags;
    366 		chan->privFlags = ichan->privFlags;
    367 		chan->maxRegTxPower = ichan->maxRegTxPower;
    368 		chan->maxTxPower = ichan->maxTxPower;
    369 		chan->minTxPower = ichan->minTxPower;
    370 	}
    371 
    372 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
    373 
    374 	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
    375 
    376 	return AH_TRUE;
    377 bad:
    378 	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
    379 	if (status != AH_NULL)
    380 		*status = ecode;
    381 	return AH_FALSE;
    382 #undef FAIL
    383 #undef N
    384 }
    385 
    386 #if 0
    387 /*
    388  * This channel change evaluates whether the selected hardware can
    389  * perform a synthesizer-only channel change (no reset).  If the
    390  * TX is not stopped, or the RFBus cannot be granted in the given
    391  * time, the function returns false as a reset is necessary
    392  */
    393 HAL_BOOL
    394 ar5416ChannelChange(struct ath_hal *ah, HAL_CHANNEL *chan)
    395 {
    396 	uint32_t       ulCount;
    397 	uint32_t   data, synthDelay, qnum;
    398 	uint16_t   rfXpdGain[4];
    399 	struct ath_hal_5212 *ahp = AH5212(ah);
    400 	HAL_CHANNEL_INTERNAL *ichan;
    401 
    402 	/*
    403 	 * Map public channel to private.
    404 	 */
    405 	ichan = ath_hal_checkchannel(ah, chan);
    406 
    407 	/* TX must be stopped or RF Bus grant will not work */
    408 	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
    409 		if (ar5212NumTxPending(ah, qnum)) {
    410 			HALDEBUG(ah, HAL_DEBUG_ANY,
    411 			    "%s: frames pending on queue %d\n", __func__, qnum);
    412 			return AH_FALSE;
    413 		}
    414 	}
    415 
    416 	/*
    417 	 * Kill last Baseband Rx Frame - Request analog bus grant
    418 	 */
    419 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
    420 	if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
    421 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
    422 		    __func__);
    423 		return AH_FALSE;
    424 	}
    425 
    426 	ar5416Set11nRegs(ah, chan);	/* NB: setup 5416-specific regs */
    427 
    428 	/* Change the synth */
    429 	if (!ar5212SetChannel(ah, ichan))
    430 		return AH_FALSE;
    431 
    432 	/* Setup the transmit power values. */
    433 	if (!_ar5416SetTransmitPower(ah, ichan, rfXpdGain)) {
    434 		HALDEBUG(ah, HAL_DEBUG_ANY,
    435 		    "%s: error init'ing transmit power\n", __func__);
    436 		return AH_FALSE;
    437 	}
    438 
    439 	/*
    440 	 * Wait for the frequency synth to settle (synth goes on
    441 	 * via PHY_ACTIVE_EN).  Read the phy active delay register.
    442 	 * Value is in 100ns increments.
    443 	 */
    444 	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
    445 	if (IS_CHAN_CCK(ichan)) {
    446 		synthDelay = (4 * data) / 22;
    447 	} else {
    448 		synthDelay = data / 10;
    449 	}
    450 
    451 	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
    452 
    453 	/* Release the RFBus Grant */
    454 	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
    455 
    456 	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
    457 	if (IS_CHAN_OFDM(ichan)|| IS_CHAN_HT(chan)) {
    458 		if (ahp->ah_eeprom.ee_version >= AR_EEPROM_VER5_3 &&
    459 		    !IS_CHAN_B(chan))
    460 			ar5212SetSpurMitigation(ah, ichan);
    461 		ar5416SetDeltaSlope(ah, ichan);
    462 	}
    463 
    464 	/* XXX spur mitigation for Melin */
    465 
    466 	/* Copy over internal channel flags to public hal channel */
    467 
    468 	if (!(ichan->privFlags & CHANNEL_DFS))
    469 		ichan->privFlags &= ~CHANNEL_INTERFERENCE;
    470 	chan->channelFlags = ichan->channelFlags;
    471 	chan->privFlags = ichan->privFlags;
    472 	chan->maxRegTxPower = ichan->maxRegTxPower;
    473 	chan->maxTxPower = ichan->maxTxPower;
    474 	chan->minTxPower = ichan->minTxPower;
    475 	AH_PRIVATE(ah)->ah_curchan->ah_channel_time=0;
    476 	AH_PRIVATE(ah)->ah_curchan->ah_tsf_last = ar5212GetTsf64(ah);
    477 	ar5212TxEnable(ah,AH_TRUE);
    478 	return AH_TRUE;
    479 }
    480 #endif
    481 
    482 static void
    483 ar5416InitDMA(struct ath_hal *ah)
    484 {
    485 	struct ath_hal_5212 *ahp = AH5212(ah);
    486 
    487 	/*
    488 	 * set AHB_MODE not to do cacheline prefetches
    489 	 */
    490 	OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
    491 
    492 	/*
    493 	 * let mac dma reads be in 128 byte chunks
    494 	 */
    495 	OS_REG_WRITE(ah, AR_TXCFG,
    496 		(OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
    497 
    498 	/*
    499 	 * let mac dma writes be in 128 byte chunks
    500 	 */
    501 	OS_REG_WRITE(ah, AR_RXCFG,
    502 		(OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
    503 
    504 	/*
    505 	 * restore TX trigger level
    506 	 */
    507 	OS_REG_WRITE(ah, AR_TXCFG,
    508 		(OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
    509 		    SM(ahp->ah_txTrigLev, AR_FTRIG));
    510 
    511 	/*
    512 	 * Setup receive FIFO threshold to hold off TX activities
    513 	 */
    514 	OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
    515 
    516 	/*
    517 	 * reduce the number of usable entries in PCU TXBUF to avoid
    518 	 * wrap around.
    519 	 */
    520 	OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
    521 }
    522 
    523 static void
    524 ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan)
    525 {
    526 	uint32_t synthDelay;
    527 
    528 	/*
    529 	 * Wait for the frequency synth to settle (synth goes on
    530 	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
    531 	 * Value is in 100ns increments.
    532 	  */
    533 	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
    534 	if (IS_CHAN_CCK(chan)) {
    535 		synthDelay = (4 * synthDelay) / 22;
    536 	} else {
    537 		synthDelay /= 10;
    538 	}
    539 
    540 	/* Turn on PLL on 5416 */
    541 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
    542 	    __func__, IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
    543 	ar5416InitPLL(ah, chan);
    544 
    545 	/* Activate the PHY (includes baseband activate and synthesizer on) */
    546 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
    547 
    548 	/*
    549 	 * If the AP starts the calibration before the base band timeout
    550 	 * completes  we could get rx_clear false triggering.  Add an
    551 	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
    552 	 * does not happen.
    553 	 */
    554 	if (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
    555 		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
    556 	} else if (IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
    557 		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
    558 	} else {
    559 		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
    560 	}
    561 }
    562 
    563 static void
    564 ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
    565 {
    566 	struct ath_hal_5212 *ahp = AH5212(ah);
    567 
    568 	/*
    569 	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
    570 	 * manipulates the secondary IMR's as queues are enabled
    571 	 * and disabled.  This is done with RMW ops to insure the
    572 	 * settings we make here are preserved.
    573 	 */
    574         ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
    575 			| AR_IMR_RXERR | AR_IMR_RXORN
    576                         | AR_IMR_BCNMISC;
    577 
    578 #ifdef AR5416_INT_MITIGATION
    579        	ahp->ah_maskReg |= AR_IMR_TXINTM | AR_IMR_RXINTM
    580 			|  AR_IMR_TXMINTR | AR_IMR_RXMINTR;
    581 #else
    582         ahp->ah_maskReg |= AR_IMR_TXOK | AR_IMR_RXOK;
    583 #endif
    584 	if (opmode == HAL_M_HOSTAP)
    585 		ahp->ah_maskReg |= AR_IMR_MIB;
    586 	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
    587 	/* Enable bus errors that are OR'd to set the HIUERR bit */
    588 
    589 #if 0
    590 	OS_REG_WRITE(ah, AR_IMR_S2,
    591 	    	OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
    592 #endif
    593 }
    594 
    595 static void
    596 ar5416InitQoS(struct ath_hal *ah)
    597 {
    598 	/* QoS support */
    599 	OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
    600 	OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
    601 
    602 	/* Turn on NOACK Support for QoS packets */
    603 	OS_REG_WRITE(ah, AR_NOACK,
    604 		SM(2, AR_NOACK_2BIT_VALUE) |
    605 		SM(5, AR_NOACK_BIT_OFFSET) |
    606 		SM(0, AR_NOACK_BYTE_OFFSET));
    607 
    608     	/*
    609     	 * initialize TXOP for all TIDs
    610     	 */
    611 	OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
    612 	OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
    613 	OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
    614 	OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
    615 	OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
    616 }
    617 
    618 static void
    619 ar5416InitUserSettings(struct ath_hal *ah)
    620 {
    621 	struct ath_hal_5212 *ahp = AH5212(ah);
    622 
    623 	/* Restore user-specified settings */
    624 	if (ahp->ah_miscMode != 0)
    625 		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
    626 	if (ahp->ah_sifstime != (u_int) -1)
    627 		ar5212SetSifsTime(ah, ahp->ah_sifstime);
    628 	if (ahp->ah_slottime != (u_int) -1)
    629 		ar5212SetSlotTime(ah, ahp->ah_slottime);
    630 	if (ahp->ah_acktimeout != (u_int) -1)
    631 		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
    632 	if (ahp->ah_ctstimeout != (u_int) -1)
    633 		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
    634 	if (AH_PRIVATE(ah)->ah_diagreg != 0)
    635 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
    636 #if 0 /* XXX Todo */
    637 	if (ahp->ah_globaltxtimeout != (u_int) -1)
    638         	ar5416SetGlobalTxTimeout(ah, ahp->ah_globaltxtimeout);
    639 #endif
    640 }
    641 
    642 /*
    643  * Places the hardware into reset and then pulls it out of reset
    644  */
    645 HAL_BOOL
    646 ar5416ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
    647 {
    648 	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->channel : 0);
    649 	/*
    650 	 * Warm reset is optimistic.
    651 	 */
    652 	if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
    653 	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
    654 		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
    655 			return AH_FALSE;
    656 	} else {
    657 		if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
    658 			return AH_FALSE;
    659 	}
    660 
    661 	/* Bring out of sleep mode (AGAIN) */
    662 	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
    663 	       return AH_FALSE;
    664 
    665 	ar5416InitPLL(ah, chan);
    666 
    667 	/*
    668 	 * Perform warm reset before the mode/PLL/turbo registers
    669 	 * are changed in order to deactivate the radio.  Mode changes
    670 	 * with an active radio can result in corrupted shifts to the
    671 	 * radio device.
    672 	 */
    673 	if (chan != AH_NULL) {
    674 		uint32_t rfMode;
    675 
    676 		/* treat channel B as channel G , no  B mode suport in owl */
    677 		rfMode = (IS_CHAN_G(chan) || IS_CHAN_B(chan)) ?
    678 			AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
    679 		if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
    680 			/* phy mode bits for 5GHz channels require Fast Clock */
    681 			rfMode |= AR_PHY_MODE_DYNAMIC
    682 			       |  AR_PHY_MODE_DYN_CCK_DISABLE;
    683 		} else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
    684 			rfMode |= (IS_CHAN_5GHZ(chan)) ?
    685 				AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
    686 		}
    687 		OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
    688 	}
    689 	return AH_TRUE;
    690 }
    691 
    692 /*
    693  * Delta slope coefficient computation.
    694  * Required for OFDM operation.
    695  */
    696 static void
    697 ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
    698                           uint32_t *coef_mantissa, uint32_t *coef_exponent)
    699 {
    700 #define COEF_SCALE_S 24
    701     uint32_t coef_exp, coef_man;
    702     /*
    703      * ALGO -> coef_exp = 14-floor(log2(coef));
    704      * floor(log2(x)) is the highest set bit position
    705      */
    706     for (coef_exp = 31; coef_exp > 0; coef_exp--)
    707             if ((coef_scaled >> coef_exp) & 0x1)
    708                     break;
    709     /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
    710     HALASSERT(coef_exp);
    711     coef_exp = 14 - (coef_exp - COEF_SCALE_S);
    712 
    713     /*
    714      * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
    715      * The coefficient is already shifted up for scaling
    716      */
    717     coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
    718 
    719     *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
    720     *coef_exponent = coef_exp - 16;
    721 
    722 #undef COEF_SCALE_S
    723 }
    724 
    725 void
    726 ar5416SetDeltaSlope(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
    727 {
    728 #define INIT_CLOCKMHZSCALED	0x64000000
    729 	uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
    730 	uint32_t clockMhzScaled = INIT_CLOCKMHZSCALED;
    731 
    732 	CHAN_CENTERS centers;
    733 
    734 	if (IS_CHAN_TURBO(chan))
    735 		clockMhzScaled *= 2;
    736 	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
    737 	/* scale for selected channel bandwidth */
    738 	if (IS_CHAN_HALF_RATE(chan)) {
    739 		clockMhzScaled = clockMhzScaled >> 1;
    740 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
    741 		clockMhzScaled = clockMhzScaled >> 2;
    742 	}
    743 
    744 	/*
    745 	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
    746 	 * scaled coef to provide precision for this floating calculation
    747 	 */
    748 	ar5416GetChannelCenters(ah, chan, &centers);
    749 	coef_scaled = clockMhzScaled / centers.synth_center;
    750 
    751  	ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
    752 
    753 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
    754 		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
    755 	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
    756 		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
    757 
    758         /*
    759          * For Short GI,
    760          * scaled coeff is 9/10 that of normal coeff
    761          */
    762         coef_scaled = (9 * coef_scaled)/10;
    763 
    764         ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
    765 
    766         /* for short gi */
    767         OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
    768                 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
    769         OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
    770                 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
    771 #undef INIT_CLOCKMHZSCALED
    772 }
    773 
    774 /*
    775  * Set a limit on the overall output power.  Used for dynamic
    776  * transmit power control and the like.
    777  *
    778  * NB: limit is in units of 0.5 dbM.
    779  */
    780 HAL_BOOL
    781 ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
    782 {
    783 	uint16_t dummyXpdGains[2];
    784 
    785 	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
    786 	return _ar5416SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
    787 			dummyXpdGains);
    788 }
    789 
    790 HAL_BOOL
    791 ar5416GetChipPowerLimits(struct ath_hal *ah, HAL_CHANNEL *chans, uint32_t nchans)
    792 {
    793 	struct ath_hal_5212 *ahp = AH5212(ah);
    794 	int16_t minPower, maxPower;
    795 	HAL_CHANNEL *chan;
    796 	int i;
    797 
    798 	/*
    799 	 * Get Pier table max and min powers.
    800 	 */
    801 	for (i = 0; i < nchans; i++) {
    802 		chan = &chans[i];
    803 		if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
    804 			/* NB: rf code returns 1/4 dBm units, convert */
    805 			chan->maxTxPower = maxPower / 2;
    806 			chan->minTxPower = minPower / 2;
    807 		} else {
    808 			HALDEBUG(ah, HAL_DEBUG_ANY,
    809 			    "%s: no min/max power for %u/0x%x\n",
    810 			    __func__, chan->channel, chan->channelFlags);
    811 			chan->maxTxPower = AR5416_MAX_RATE_POWER;
    812 			chan->minTxPower = 0;
    813 		}
    814 	}
    815 #ifdef AH_DEBUG
    816 	for (i=0; i<nchans; i++) {
    817 		HALDEBUG(ah, HAL_DEBUG_RESET,
    818 		    "Chan %d: MaxPow = %d MinPow = %d\n",
    819 		    chans[i].channel,chans[i].maxTxPower, chans[i].minTxPower);
    820 	}
    821 #endif
    822 	return AH_TRUE;
    823 }
    824 
    825 /* XXX gag, this is sick */
    826 typedef enum Ar5416_Rates {
    827 	rate6mb,  rate9mb,  rate12mb, rate18mb,
    828 	rate24mb, rate36mb, rate48mb, rate54mb,
    829 	rate1l,   rate2l,   rate2s,   rate5_5l,
    830 	rate5_5s, rate11l,  rate11s,  rateXr,
    831 	rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
    832 	rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
    833 	rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
    834 	rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
    835 	rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
    836 	Ar5416RateSize
    837 } AR5416_RATES;
    838 
    839 /**************************************************************
    840  * ar5416SetTransmitPower
    841  *
    842  * Set the transmit power in the baseband for the given
    843  * operating channel and mode.
    844  */
    845 static HAL_BOOL
    846 _ar5416SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain)
    847 {
    848 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
    849 #define N(a)            (sizeof (a) / sizeof (a[0]))
    850 
    851     MODAL_EEP_HEADER	*pModal;
    852     struct ath_hal_5212 *ahp = AH5212(ah);
    853     int16_t		ratesArray[Ar5416RateSize];
    854     int16_t		txPowerIndexOffset = 0;
    855     uint8_t		ht40PowerIncForPdadc = 2;
    856     int			i;
    857 
    858     uint16_t		cfgCtl;
    859     uint16_t		powerLimit;
    860     uint16_t		twiceAntennaReduction;
    861     uint16_t		twiceMaxRegulatoryPower;
    862     int16_t		maxPower;
    863     HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
    864     struct ar5416eeprom	*pEepData = &ee->ee_base;
    865 
    866     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
    867 
    868     /* Setup info for the actual eeprom */
    869     ath_hal_memzero(ratesArray, sizeof(ratesArray));
    870     cfgCtl = ath_hal_getctl(ah, (HAL_CHANNEL *)chan);
    871     powerLimit = chan->maxRegTxPower * 2;
    872     twiceAntennaReduction = chan->antennaMax;
    873     twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
    874     pModal = &pEepData->modalHeader[IS_CHAN_2GHZ(chan)];
    875     HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
    876 	__func__,chan->channel, cfgCtl );
    877 
    878     if (IS_EEP_MINOR_V2(ah)) {
    879         ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
    880     }
    881 
    882     if (!ar5416SetPowerPerRateTable(ah, pEepData,  chan,
    883                                     &ratesArray[0],cfgCtl,
    884                                     twiceAntennaReduction,
    885 				    twiceMaxRegulatoryPower, powerLimit)) {
    886         HALDEBUG(ah, HAL_DEBUG_ANY,
    887 	    "%s: unable to set tx power per rate table\n", __func__);
    888         return AH_FALSE;
    889     }
    890 
    891     if (!ar5416SetPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
    892         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
    893 	    __func__);
    894         return AH_FALSE;
    895     }
    896 
    897     maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
    898 
    899     if (IS_CHAN_2GHZ(chan)) {
    900         maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
    901     }
    902 
    903     if (IS_CHAN_HT40(chan)) {
    904         maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
    905     }
    906 
    907     ahp->ah_tx6PowerInHalfDbm = maxPower;
    908     AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
    909     ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
    910 
    911     /*
    912      * txPowerIndexOffset is set by the SetPowerTable() call -
    913      *  adjust the rate table (0 offset if rates EEPROM not loaded)
    914      */
    915     for (i = 0; i < N(ratesArray); i++) {
    916         ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
    917         if (ratesArray[i] > AR5416_MAX_RATE_POWER)
    918             ratesArray[i] = AR5416_MAX_RATE_POWER;
    919     }
    920 
    921 #ifdef AH_EEPROM_DUMP
    922     ar5416PrintPowerPerRate(ah, ratesArray);
    923 #endif
    924 
    925     /* Write the OFDM power per rate set */
    926     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
    927         POW_SM(ratesArray[rate18mb], 24)
    928           | POW_SM(ratesArray[rate12mb], 16)
    929           | POW_SM(ratesArray[rate9mb], 8)
    930           | POW_SM(ratesArray[rate6mb], 0)
    931     );
    932     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
    933         POW_SM(ratesArray[rate54mb], 24)
    934           | POW_SM(ratesArray[rate48mb], 16)
    935           | POW_SM(ratesArray[rate36mb], 8)
    936           | POW_SM(ratesArray[rate24mb], 0)
    937     );
    938 
    939     if (IS_CHAN_2GHZ(chan)) {
    940         /* Write the CCK power per rate set */
    941         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
    942             POW_SM(ratesArray[rate2s], 24)
    943               | POW_SM(ratesArray[rate2l],  16)
    944               | POW_SM(ratesArray[rateXr],  8) /* XR target power */
    945               | POW_SM(ratesArray[rate1l],   0)
    946         );
    947         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
    948             POW_SM(ratesArray[rate11s], 24)
    949               | POW_SM(ratesArray[rate11l], 16)
    950               | POW_SM(ratesArray[rate5_5s], 8)
    951               | POW_SM(ratesArray[rate5_5l], 0)
    952         );
    953     HALDEBUG(ah, HAL_DEBUG_RESET,
    954 	"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
    955 	    __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
    956 	    OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
    957     }
    958 
    959     /* Write the HT20 power per rate set */
    960     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
    961         POW_SM(ratesArray[rateHt20_3], 24)
    962           | POW_SM(ratesArray[rateHt20_2], 16)
    963           | POW_SM(ratesArray[rateHt20_1], 8)
    964           | POW_SM(ratesArray[rateHt20_0], 0)
    965     );
    966     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
    967         POW_SM(ratesArray[rateHt20_7], 24)
    968           | POW_SM(ratesArray[rateHt20_6], 16)
    969           | POW_SM(ratesArray[rateHt20_5], 8)
    970           | POW_SM(ratesArray[rateHt20_4], 0)
    971     );
    972 
    973     if (IS_CHAN_HT40(chan)) {
    974         /* Write the HT40 power per rate set */
    975 	/* Correct PAR difference between HT40 and HT20/LEGACY */
    976         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
    977             POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
    978               | POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
    979               | POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
    980               | POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
    981         );
    982         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
    983             POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
    984               | POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
    985               | POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
    986               | POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
    987         );
    988         /* Write the Dup/Ext 40 power per rate set */
    989         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
    990             POW_SM(ratesArray[rateExtOfdm], 24)
    991               | POW_SM(ratesArray[rateExtCck], 16)
    992               | POW_SM(ratesArray[rateDupOfdm], 8)
    993               | POW_SM(ratesArray[rateDupCck], 0)
    994         );
    995     }
    996 
    997     /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
    998     OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
    999         POW_SM(pModal->pwrDecreaseFor3Chain, 6)
   1000           | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
   1001     );
   1002     return AH_TRUE;
   1003 #undef POW_SM
   1004 #undef N
   1005 }
   1006 
   1007 HAL_BOOL
   1008 ar5416SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL *chan,
   1009 	uint16_t *rfXpdGain)
   1010 {
   1011 	return _ar5416SetTransmitPower(ah, ath_hal_checkchannel(ah, chan),
   1012 	    rfXpdGain);
   1013 }
   1014 
   1015 /*
   1016  * Exported call to check for a recent gain reading and return
   1017  * the current state of the thermal calibration gain engine.
   1018  */
   1019 HAL_RFGAIN
   1020 ar5416GetRfgain(struct ath_hal *ah)
   1021 {
   1022 	return HAL_RFGAIN_INACTIVE;
   1023 }
   1024 
   1025 /*
   1026  * Places all of hardware into reset
   1027  */
   1028 HAL_BOOL
   1029 ar5416Disable(struct ath_hal *ah)
   1030 {
   1031 	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
   1032 		return AH_FALSE;
   1033 	return ar5416SetResetReg(ah, HAL_RESET_COLD);
   1034 }
   1035 
   1036 /*
   1037  * Places the PHY and Radio chips into reset.  A full reset
   1038  * must be called to leave this state.  The PCI/MAC/PCU are
   1039  * not placed into reset as we must receive interrupt to
   1040  * re-enable the hardware.
   1041  */
   1042 HAL_BOOL
   1043 ar5416PhyDisable(struct ath_hal *ah)
   1044 {
   1045 	return ar5416SetResetReg(ah, HAL_RESET_WARM);
   1046 }
   1047 
   1048 /*
   1049  * Write the given reset bit mask into the reset register
   1050  */
   1051 HAL_BOOL
   1052 ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
   1053 {
   1054 	switch (type) {
   1055 	case HAL_RESET_POWER_ON:
   1056 		return ar5416SetResetPowerOn(ah);
   1057 	case HAL_RESET_WARM:
   1058 	case HAL_RESET_COLD:
   1059 		return ar5416SetReset(ah, type);
   1060 	default:
   1061 		HALASSERT(AH_FALSE);
   1062 		return AH_FALSE;
   1063 	}
   1064 }
   1065 
   1066 static HAL_BOOL
   1067 ar5416SetResetPowerOn(struct ath_hal *ah)
   1068 {
   1069     /* Power On Reset (Hard Reset) */
   1070 
   1071     /*
   1072      * Set force wake
   1073      *
   1074      * If the MAC was running, previously calling
   1075      * reset will wake up the MAC but it may go back to sleep
   1076      * before we can start polling.
   1077      * Set force wake  stops that
   1078      * This must be called before initiating a hard reset.
   1079      */
   1080     OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
   1081             AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
   1082 
   1083     /*
   1084      * RTC reset and clear
   1085      */
   1086     OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
   1087     OS_REG_WRITE(ah, AR_RTC_RESET, 0);
   1088     OS_DELAY(20);
   1089     OS_REG_WRITE(ah, AR_RC, 0);
   1090 
   1091     OS_REG_WRITE(ah, AR_RTC_RESET, 1);
   1092 
   1093     /*
   1094      * Poll till RTC is ON
   1095      */
   1096     if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
   1097         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
   1098         return AH_FALSE;
   1099     }
   1100 
   1101     return ar5416SetReset(ah, HAL_RESET_COLD);
   1102 }
   1103 
   1104 static HAL_BOOL
   1105 ar5416SetReset(struct ath_hal *ah, int type)
   1106 {
   1107     uint32_t tmpReg;
   1108 
   1109     /*
   1110      * Force wake
   1111      */
   1112     OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
   1113 	AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
   1114 
   1115     /*
   1116      * Reset AHB
   1117      */
   1118     tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
   1119     if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
   1120 	OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
   1121 	OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
   1122     } else {
   1123 	OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
   1124     }
   1125 
   1126     /*
   1127      * Set Mac(BB,Phy) Warm Reset
   1128      */
   1129     switch (type) {
   1130     case HAL_RESET_WARM:
   1131             OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM);
   1132             break;
   1133     case HAL_RESET_COLD:
   1134             OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM|AR_RTC_RC_MAC_COLD);
   1135             break;
   1136     default:
   1137             HALASSERT(AH_FALSE);
   1138             break;
   1139     }
   1140 
   1141     /*
   1142      * Clear resets and force wakeup
   1143      */
   1144     OS_REG_WRITE(ah, AR_RTC_RC, 0);
   1145     if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
   1146         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
   1147         return AH_FALSE;
   1148     }
   1149 
   1150     /* Clear AHB reset */
   1151     OS_REG_WRITE(ah, AR_RC, 0);
   1152 
   1153    /* Set register and descriptor swapping on
   1154     * Bigendian platforms on cold reset
   1155     */
   1156     if (type == HAL_RESET_COLD) {
   1157 #ifdef __BIG_ENDIAN__
   1158     		uint32_t	mask;
   1159 
   1160 		HALDEBUG(ah, HAL_DEBUG_RESET,
   1161 		    "%s Applying descriptor swap\n", __func__);
   1162 
   1163 		mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
   1164 #ifndef AH_NEED_DESC_SWAP
   1165 		mask |= AR_CFG_SWTD;
   1166 #endif
   1167 		OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
   1168 #else
   1169 		OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
   1170 #endif
   1171 	}
   1172 
   1173     ar5416InitPLL(ah, AH_NULL);
   1174 
   1175     return AH_TRUE;
   1176 }
   1177 
   1178 #ifndef IS_5GHZ_FAST_CLOCK_EN
   1179 #define	IS_5GHZ_FAST_CLOCK_EN(ah, chan)	AH_FALSE
   1180 #endif
   1181 
   1182 static void
   1183 ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan)
   1184 {
   1185 	uint32_t pll;
   1186 
   1187 	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
   1188 		pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
   1189 
   1190 		if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
   1191 			pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
   1192 		} else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
   1193 			pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
   1194 		}
   1195 		if (AR_SREV_MERLIN_20(ah) &&
   1196 		    chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
   1197 			pll |= SM(0x28, AR_RTC_SOWL_PLL_DIV);
   1198 
   1199 			/*
   1200 			 * PLL WAR for Merlin 2.0/2.1
   1201 			 * When doing fast clock, set PLL to 0x142c
   1202 			 * Else, set PLL to 0x2850 to prevent reset-to-reset variation
   1203 			 */
   1204 			if (AR_SREV_MERLIN_20(ah)) {
   1205 				if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
   1206 					pll = 0x142c;
   1207 				} else {
   1208 					pll = 0x2850;
   1209 				}
   1210 			}
   1211 		} else {
   1212 			pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
   1213 		}
   1214 	} else if (AR_SREV_SOWL_10_OR_LATER(ah)) {
   1215 		pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
   1216 
   1217 		if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
   1218 			pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
   1219 		} else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
   1220 			pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
   1221 		}
   1222 		if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
   1223 			pll |= SM(0x50, AR_RTC_SOWL_PLL_DIV);
   1224 		} else {
   1225 			pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
   1226 		}
   1227 	} else {
   1228 		pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
   1229 
   1230 		if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
   1231 			pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
   1232 		} else if (chan != AH_NULL && IS_CHAN_QUARTER_RATE(chan)) {
   1233 			pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
   1234 		}
   1235 		if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
   1236 			pll |= SM(0xa, AR_RTC_PLL_DIV);
   1237 		} else {
   1238 			pll |= SM(0xb, AR_RTC_PLL_DIV);
   1239 		}
   1240 	}
   1241 	OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
   1242 
   1243 	/* TODO:
   1244 	* For multi-band owl, switch between bands by reiniting the PLL.
   1245 	*/
   1246 
   1247 	OS_DELAY(RTC_PLL_SETTLE_DELAY);
   1248 
   1249 	OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
   1250 }
   1251 
   1252 /*
   1253  * Read EEPROM header info and program the device for correct operation
   1254  * given the channel value.
   1255  */
   1256 HAL_BOOL
   1257 ar5416SetBoardValues(struct ath_hal *ah, HAL_CHANNEL *_chan)
   1258 {
   1259     HAL_CHANNEL_INTERNAL *chan;
   1260     const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
   1261     const struct ar5416eeprom *eep = &ee->ee_base;
   1262     const MODAL_EEP_HEADER *pModal;
   1263     int			i, regChainOffset;
   1264     uint8_t		txRxAttenLocal;    /* workaround for eeprom versions <= 14.2 */
   1265 
   1266     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
   1267 
   1268     chan = ath_hal_checkchannel(ah, _chan);
   1269     pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
   1270 
   1271     txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;    /* workaround for eeprom versions <= 14.2 */
   1272 
   1273     OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
   1274     for (i = 0; i < AR5416_MAX_CHAINS; i++) {
   1275 	   if (AR_SREV_MERLIN(ah)) {
   1276 		if (i >= 2) break;
   1277 	   }
   1278        	   if (AR_SREV_OWL_20_OR_LATER(ah) &&
   1279             (AH5416(ah)->ah_rx_chainmask == 0x5 ||
   1280 	     AH5416(ah)->ah_tx_chainmask == 0x5) && i != 0) {
   1281             /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
   1282              * only chains 0 and 2 populated
   1283              */
   1284             regChainOffset = (i == 1) ? 0x2000 : 0x1000;
   1285         } else {
   1286             regChainOffset = i * 0x1000;
   1287         }
   1288 
   1289         OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
   1290         OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
   1291         	(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
   1292         	~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
   1293         	SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
   1294         	SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
   1295 
   1296         /*
   1297          * Large signal upgrade.
   1298 	 * XXX update
   1299          */
   1300 
   1301         if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
   1302             OS_REG_WRITE(ah, AR_PHY_RXGAIN + regChainOffset,
   1303 		(OS_REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) & ~AR_PHY_RXGAIN_TXRX_ATTEN) |
   1304 			SM(IS_EEP_MINOR_V3(ah)  ? pModal->txRxAttenCh[i] : txRxAttenLocal,
   1305 				AR_PHY_RXGAIN_TXRX_ATTEN));
   1306 
   1307             OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
   1308 	    	(OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
   1309 			SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
   1310         }
   1311     }
   1312 
   1313     OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
   1314     OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
   1315     OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
   1316     OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
   1317         SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
   1318         | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
   1319         | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
   1320         | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
   1321 
   1322     OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
   1323 
   1324     if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
   1325 	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
   1326 	    pModal->thresh62);
   1327 	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
   1328 	    pModal->thresh62);
   1329     } else {
   1330 	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
   1331 	    pModal->thresh62);
   1332 	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA_THRESH62,
   1333 	    pModal->thresh62);
   1334     }
   1335 
   1336     /* Minor Version Specific application */
   1337     if (IS_EEP_MINOR_V2(ah)) {
   1338         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,  AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
   1339         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,  AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
   1340     }
   1341 
   1342     if (IS_EEP_MINOR_V3(ah)) {
   1343 	if (IS_CHAN_HT40(chan)) {
   1344 		/* Overwrite switch settling with HT40 value */
   1345 		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
   1346 	}
   1347 
   1348         if ((AR_SREV_OWL_20_OR_LATER(ah)) &&
   1349             (  AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5)){
   1350             /* Reg Offsets are swapped for logical mapping */
   1351 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
   1352 			SM(pModal->bswMargin[2], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
   1353 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
   1354 			SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
   1355 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
   1356 			SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
   1357 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
   1358 			SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
   1359         } else {
   1360 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
   1361 			SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
   1362 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
   1363 			SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
   1364 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
   1365 			SM(pModal->bswMargin[2],AR_PHY_GAIN_2GHZ_BSW_MARGIN));
   1366 		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
   1367 			SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
   1368         }
   1369         OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_MARGIN, pModal->bswMargin[0]);
   1370         OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_ATTEN, pModal->bswAtten[0]);
   1371     }
   1372     return AH_TRUE;
   1373 }
   1374 
   1375 /*
   1376  * Helper functions common for AP/CB/XB
   1377  */
   1378 
   1379 /*
   1380  * ar5416SetPowerPerRateTable
   1381  *
   1382  * Sets the transmit power in the baseband for the given
   1383  * operating channel and mode.
   1384  */
   1385 static HAL_BOOL
   1386 ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
   1387                            HAL_CHANNEL_INTERNAL *chan,
   1388                            int16_t *ratesArray, uint16_t cfgCtl,
   1389                            uint16_t AntennaReduction,
   1390                            uint16_t twiceMaxRegulatoryPower,
   1391                            uint16_t powerLimit)
   1392 {
   1393 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1394 /* Local defines to distinguish between extension and control CTL's */
   1395 #define EXT_ADDITIVE (0x8000)
   1396 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
   1397 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
   1398 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
   1399 
   1400 	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
   1401 	int i;
   1402 	int16_t  twiceLargestAntenna;
   1403 	CAL_CTL_DATA *rep;
   1404 	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
   1405 	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
   1406 	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
   1407 	int16_t scaledPower, minCtlPower;
   1408 
   1409 #define SUB_NUM_CTL_MODES_AT_5G_40 2   /* excluding HT40, EXT-OFDM */
   1410 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
   1411 	static const uint16_t ctlModesFor11a[] = {
   1412 	   CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
   1413 	};
   1414 	static const uint16_t ctlModesFor11g[] = {
   1415 	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
   1416 	};
   1417 	const uint16_t *pCtlMode;
   1418 	uint16_t numCtlModes, ctlMode, freq;
   1419 	CHAN_CENTERS centers;
   1420 
   1421 	ar5416GetChannelCenters(ah,  chan, &centers);
   1422 
   1423 	/* Compute TxPower reduction due to Antenna Gain */
   1424 
   1425 	twiceLargestAntenna = AH_MAX(AH_MAX(pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0],
   1426 					pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
   1427 					pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
   1428 #if 0
   1429 	/* Turn it back on if we need to calculate per chain antenna gain reduction */
   1430 	/* Use only if the expected gain > 6dbi */
   1431 	/* Chain 0 is always used */
   1432 	twiceLargestAntenna = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0];
   1433 
   1434 	/* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
   1435 	if (ahp->ah_tx_chainmask & 0x2)
   1436 		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
   1437 			pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
   1438 
   1439 	if (ahp->ah_tx_chainmask & 0x4)
   1440 		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
   1441 			pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
   1442 #endif
   1443 	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
   1444 
   1445 	/* XXX setup for 5212 use (really used?) */
   1446 	ath_hal_eepromSet(ah,
   1447 	    IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
   1448 	    twiceLargestAntenna);
   1449 
   1450 	/*
   1451 	 * scaledPower is the minimum of the user input power level and
   1452 	 * the regulatory allowed power level
   1453 	 */
   1454 	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
   1455 
   1456 	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
   1457 	/* TODO: better value than these? */
   1458 	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
   1459 	case 1:
   1460 		break;
   1461 	case 2:
   1462 		scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
   1463 		break;
   1464 	case 3:
   1465 		scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
   1466 		break;
   1467 	default:
   1468 		return AH_FALSE; /* Unsupported number of chains */
   1469 	}
   1470 
   1471 	scaledPower = AH_MAX(0, scaledPower);
   1472 
   1473 	/* Get target powers from EEPROM - our baseline for TX Power */
   1474 	if (IS_CHAN_2GHZ(chan)) {
   1475 		/* Setup for CTL modes */
   1476 		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
   1477 		pCtlMode = ctlModesFor11g;
   1478 
   1479 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
   1480 				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
   1481 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
   1482 				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
   1483 		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
   1484 				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
   1485 
   1486 		if (IS_CHAN_HT40(chan)) {
   1487 			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
   1488 
   1489 			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
   1490 				AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
   1491 			/* Get target powers for extension channels */
   1492 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
   1493 				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
   1494 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
   1495 				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
   1496 		}
   1497 	} else {
   1498 		/* Setup for CTL modes */
   1499 		numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
   1500 		pCtlMode = ctlModesFor11a;
   1501 
   1502 		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
   1503 				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
   1504 		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT20,
   1505 				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
   1506 
   1507 		if (IS_CHAN_HT40(chan)) {
   1508 			numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
   1509 
   1510 			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT40,
   1511 				AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
   1512 			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
   1513 				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
   1514 		}
   1515 	}
   1516 
   1517 	/*
   1518 	 * For MIMO, need to apply regulatory caps individually across dynamically
   1519 	 * running modes: CCK, OFDM, HT20, HT40
   1520 	 *
   1521 	 * The outer loop walks through each possible applicable runtime mode.
   1522 	 * The inner loop walks through each ctlIndex entry in EEPROM.
   1523 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
   1524 	 *
   1525 	 */
   1526 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
   1527 
   1528 		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
   1529 								 (pCtlMode[ctlMode] == CTL_2GHT40);
   1530 		if (isHt40CtlMode) {
   1531 			freq = centers.ctl_center;
   1532 		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
   1533 			freq = centers.ext_center;
   1534 		} else {
   1535 			freq = centers.ctl_center;
   1536 		}
   1537 
   1538 		/* walk through each CTL index stored in EEPROM */
   1539 		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
   1540 			uint16_t twiceMinEdgePower;
   1541 
   1542 			/* compare test group from regulatory channel list with test mode from pCtlMode list */
   1543 			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
   1544 				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
   1545 				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
   1546 				rep = &(pEepData->ctlData[i]);
   1547 				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
   1548 							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
   1549 							IS_CHAN_2GHZ(chan));
   1550 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
   1551 					/* Find the minimum of all CTL edge powers that apply to this channel */
   1552 					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
   1553 				} else {
   1554 					/* specific */
   1555 					twiceMaxEdgePower = twiceMinEdgePower;
   1556 					break;
   1557 				}
   1558 			}
   1559 		}
   1560 		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
   1561 		/* Apply ctl mode to correct target power set */
   1562 		switch(pCtlMode[ctlMode]) {
   1563 		case CTL_11B:
   1564 			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
   1565 				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
   1566 			}
   1567 			break;
   1568 		case CTL_11A:
   1569 		case CTL_11G:
   1570 			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
   1571 				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
   1572 			}
   1573 			break;
   1574 		case CTL_5GHT20:
   1575 		case CTL_2GHT20:
   1576 			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
   1577 				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
   1578 			}
   1579 			break;
   1580 		case CTL_11B_EXT:
   1581 			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
   1582 			break;
   1583 		case CTL_11A_EXT:
   1584 		case CTL_11G_EXT:
   1585 			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
   1586 			break;
   1587 		case CTL_5GHT40:
   1588 		case CTL_2GHT40:
   1589 			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
   1590 				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
   1591 			}
   1592 			break;
   1593 		default:
   1594 			return AH_FALSE;
   1595 			break;
   1596 		}
   1597 	} /* end ctl mode checking */
   1598 
   1599 	/* Set rates Array from collected data */
   1600 	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
   1601 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
   1602 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
   1603 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
   1604 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
   1605 
   1606 	for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
   1607 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
   1608 	}
   1609 
   1610 	if (IS_CHAN_2GHZ(chan)) {
   1611 		ratesArray[rate1l]  = targetPowerCck.tPow2x[0];
   1612 		ratesArray[rate2s] = ratesArray[rate2l]  = targetPowerCck.tPow2x[1];
   1613 		ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
   1614 		ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
   1615 	}
   1616 	if (IS_CHAN_HT40(chan)) {
   1617 		for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
   1618 			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
   1619 		}
   1620 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
   1621 		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
   1622 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
   1623 		if (IS_CHAN_2GHZ(chan)) {
   1624 			ratesArray[rateExtCck]  = targetPowerCckExt.tPow2x[0];
   1625 		}
   1626 	}
   1627 	return AH_TRUE;
   1628 #undef EXT_ADDITIVE
   1629 #undef CTL_11A_EXT
   1630 #undef CTL_11G_EXT
   1631 #undef CTL_11B_EXT
   1632 #undef SUB_NUM_CTL_MODES_AT_5G_40
   1633 #undef SUB_NUM_CTL_MODES_AT_2G_40
   1634 #undef N
   1635 }
   1636 
   1637 /**************************************************************************
   1638  * fbin2freq
   1639  *
   1640  * Get channel value from binary representation held in eeprom
   1641  * RETURNS: the frequency in MHz
   1642  */
   1643 static uint16_t
   1644 fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
   1645 {
   1646     /*
   1647      * Reserved value 0xFF provides an empty definition both as
   1648      * an fbin and as a frequency - do not convert
   1649      */
   1650     if (fbin == AR5416_BCHAN_UNUSED) {
   1651         return fbin;
   1652     }
   1653 
   1654     return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
   1655 }
   1656 
   1657 /*
   1658  * ar5416GetMaxEdgePower
   1659  *
   1660  * Find the maximum conformance test limit for the given channel and CTL info
   1661  */
   1662 static uint16_t
   1663 ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
   1664 {
   1665     uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
   1666     int      i;
   1667 
   1668     /* Get the edge power */
   1669     for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
   1670         /*
   1671          * If there's an exact channel match or an inband flag set
   1672          * on the lower channel use the given rdEdgePower
   1673          */
   1674         if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
   1675             twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
   1676             break;
   1677         } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
   1678             if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
   1679                 twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
   1680             }
   1681             /* Leave loop - no more affecting edges possible in this monotonic increasing list */
   1682             break;
   1683         }
   1684     }
   1685     HALASSERT(twiceMaxEdgePower > 0);
   1686     return twiceMaxEdgePower;
   1687 }
   1688 
   1689 /**************************************************************
   1690  * ar5416GetTargetPowers
   1691  *
   1692  * Return the rates of target power for the given target power table
   1693  * channel, and number of channels
   1694  */
   1695 void
   1696 ar5416GetTargetPowers(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan,
   1697                       CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
   1698                       CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
   1699                       HAL_BOOL isHt40Target)
   1700 {
   1701     uint16_t clo, chi;
   1702     int i;
   1703     int matchIndex = -1, lowIndex = -1;
   1704     uint16_t freq;
   1705     CHAN_CENTERS centers;
   1706 
   1707     ar5416GetChannelCenters(ah,  chan, &centers);
   1708     freq = isHt40Target ? centers.synth_center : centers.ctl_center;
   1709 
   1710     /* Copy the target powers into the temp channel list */
   1711     if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
   1712         matchIndex = 0;
   1713     } else {
   1714         for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
   1715             if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
   1716                 matchIndex = i;
   1717                 break;
   1718             } else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
   1719                        (freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
   1720             {
   1721                 lowIndex = i - 1;
   1722                 break;
   1723             }
   1724         }
   1725         if ((matchIndex == -1) && (lowIndex == -1)) {
   1726             HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
   1727             matchIndex = i - 1;
   1728         }
   1729     }
   1730 
   1731     if (matchIndex != -1) {
   1732         OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
   1733     } else {
   1734         HALASSERT(lowIndex != -1);
   1735         /*
   1736          * Get the lower and upper channels, target powers,
   1737          * and interpolate between them.
   1738          */
   1739         clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
   1740         chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
   1741 
   1742         for (i = 0; i < numRates; i++) {
   1743             pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
   1744                                    powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
   1745         }
   1746     }
   1747 }
   1748 /**************************************************************
   1749  * ar5416GetTargetPowersLeg
   1750  *
   1751  * Return the four rates of target power for the given target power table
   1752  * channel, and number of channels
   1753  */
   1754 void
   1755 ar5416GetTargetPowersLeg(struct ath_hal *ah,
   1756                          HAL_CHANNEL_INTERNAL *chan,
   1757                          CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
   1758                          CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
   1759 			 HAL_BOOL isExtTarget)
   1760 {
   1761     uint16_t clo, chi;
   1762     int i;
   1763     int matchIndex = -1, lowIndex = -1;
   1764     uint16_t freq;
   1765     CHAN_CENTERS centers;
   1766 
   1767     ar5416GetChannelCenters(ah,  chan, &centers);
   1768     freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
   1769 
   1770     /* Copy the target powers into the temp channel list */
   1771     if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
   1772         matchIndex = 0;
   1773     } else {
   1774         for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
   1775             if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
   1776                 matchIndex = i;
   1777                 break;
   1778             } else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
   1779                        (freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
   1780             {
   1781                 lowIndex = i - 1;
   1782                 break;
   1783             }
   1784         }
   1785         if ((matchIndex == -1) && (lowIndex == -1)) {
   1786             HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
   1787             matchIndex = i - 1;
   1788         }
   1789     }
   1790 
   1791     if (matchIndex != -1) {
   1792         OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
   1793     } else {
   1794         HALASSERT(lowIndex != -1);
   1795         /*
   1796          * Get the lower and upper channels, target powers,
   1797          * and interpolate between them.
   1798          */
   1799         clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
   1800         chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
   1801 
   1802         for (i = 0; i < numRates; i++) {
   1803             pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
   1804                                    powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
   1805         }
   1806     }
   1807 }
   1808 
   1809 /**************************************************************
   1810  * ar5416SetPowerCalTable
   1811  *
   1812  * Pull the PDADC piers from cal data and interpolate them across the given
   1813  * points as well as from the nearest pier(s) to get a power detector
   1814  * linear voltage to power level table.
   1815  */
   1816 static HAL_BOOL
   1817 ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, HAL_CHANNEL_INTERNAL *chan, int16_t *pTxPowerIndexOffset)
   1818 {
   1819     CAL_DATA_PER_FREQ *pRawDataset;
   1820     uint8_t  *pCalBChans = AH_NULL;
   1821     uint16_t pdGainOverlap_t2;
   1822     static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
   1823     uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
   1824     uint16_t numPiers, i, j;
   1825     int16_t  tMinCalPower;
   1826     uint16_t numXpdGain, xpdMask;
   1827     uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
   1828     uint32_t reg32, regOffset, regChainOffset;
   1829 
   1830     ath_hal_memzero(xpdGainValues, sizeof(xpdGainValues));
   1831 
   1832     xpdMask = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].xpdGain;
   1833 
   1834     if (IS_EEP_MINOR_V2(ah)) {
   1835         pdGainOverlap_t2 = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pdGainOverlap;
   1836     } else {
   1837     	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
   1838     }
   1839 
   1840     if (IS_CHAN_2GHZ(chan)) {
   1841         pCalBChans = pEepData->calFreqPier2G;
   1842         numPiers = AR5416_NUM_2G_CAL_PIERS;
   1843     } else {
   1844         pCalBChans = pEepData->calFreqPier5G;
   1845         numPiers = AR5416_NUM_5G_CAL_PIERS;
   1846     }
   1847 
   1848     numXpdGain = 0;
   1849     /* Calculate the value of xpdgains from the xpdGain Mask */
   1850     for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
   1851         if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
   1852             if (numXpdGain >= AR5416_NUM_PD_GAINS) {
   1853                 HALASSERT(0);
   1854                 break;
   1855             }
   1856             xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
   1857             numXpdGain++;
   1858         }
   1859     }
   1860 
   1861     /* Write the detector gain biases and their number */
   1862     OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
   1863     	~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
   1864 	SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
   1865 	SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(xpdGainValues[2],  AR_PHY_TPCRG1_PD_GAIN_3));
   1866 
   1867     for (i = 0; i < AR5416_MAX_CHAINS; i++) {
   1868 
   1869             if (AR_SREV_OWL_20_OR_LATER(ah) &&
   1870             ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
   1871             /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
   1872              * only chains 0 and 2 populated
   1873              */
   1874             regChainOffset = (i == 1) ? 0x2000 : 0x1000;
   1875         } else {
   1876             regChainOffset = i * 0x1000;
   1877         }
   1878 
   1879         if (pEepData->baseEepHeader.txMask & (1 << i)) {
   1880             if (IS_CHAN_2GHZ(chan)) {
   1881                 pRawDataset = pEepData->calPierData2G[i];
   1882             } else {
   1883                 pRawDataset = pEepData->calPierData5G[i];
   1884             }
   1885 
   1886             ar5416GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
   1887                                              pCalBChans, numPiers,
   1888                                              pdGainOverlap_t2,
   1889                                              &tMinCalPower, gainBoundaries,
   1890                                              pdadcValues, numXpdGain);
   1891 
   1892             if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
   1893                 /*
   1894                  * Note the pdadc table may not start at 0 dBm power, could be
   1895                  * negative or greater than 0.  Need to offset the power
   1896                  * values by the amount of minPower for griffin
   1897                  */
   1898 
   1899                 OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
   1900                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
   1901                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)  |
   1902                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)  |
   1903                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)  |
   1904                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
   1905             }
   1906 
   1907             /* Write the power values into the baseband power table */
   1908             regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
   1909 
   1910             for (j = 0; j < 32; j++) {
   1911                 reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)  |
   1912                     ((pdadcValues[4*j + 1] & 0xFF) << 8)  |
   1913                     ((pdadcValues[4*j + 2] & 0xFF) << 16) |
   1914                     ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
   1915                 OS_REG_WRITE(ah, regOffset, reg32);
   1916 
   1917 #ifdef PDADC_DUMP
   1918 		ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
   1919 			       i,
   1920 			       4*j, pdadcValues[4*j],
   1921 			       4*j+1, pdadcValues[4*j + 1],
   1922 			       4*j+2, pdadcValues[4*j + 2],
   1923 			       4*j+3, pdadcValues[4*j + 3]);
   1924 #endif
   1925                 regOffset += 4;
   1926             }
   1927         }
   1928     }
   1929     *pTxPowerIndexOffset = 0;
   1930 
   1931     return AH_TRUE;
   1932 }
   1933 
   1934 /**************************************************************
   1935  * ar5416GetGainBoundariesAndPdadcs
   1936  *
   1937  * Uses the data points read from EEPROM to reconstruct the pdadc power table
   1938  * Called by ar5416SetPowerCalTable only.
   1939  */
   1940 static void
   1941 ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
   1942                                  HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
   1943                                  uint8_t * bChans,  uint16_t availPiers,
   1944                                  uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
   1945                                  uint8_t * pPDADCValues, uint16_t numXpdGains)
   1946 {
   1947 
   1948     int       i, j, k;
   1949     int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
   1950     uint16_t  idxL = 0, idxR = 0, numPiers; /* Pier indexes */
   1951 
   1952     /* filled out Vpd table for all pdGains (chanL) */
   1953     static uint8_t   vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
   1954 
   1955     /* filled out Vpd table for all pdGains (chanR) */
   1956     static uint8_t   vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
   1957 
   1958     /* filled out Vpd table for all pdGains (interpolated) */
   1959     static uint8_t   vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
   1960 
   1961     uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
   1962     uint8_t   minPwrT4[AR5416_NUM_PD_GAINS];
   1963     uint8_t   maxPwrT4[AR5416_NUM_PD_GAINS];
   1964     int16_t   vpdStep;
   1965     int16_t   tmpVal;
   1966     uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
   1967     HAL_BOOL    match;
   1968     int16_t  minDelta = 0;
   1969     CHAN_CENTERS centers;
   1970 
   1971     ar5416GetChannelCenters(ah, chan, &centers);
   1972 
   1973     /* Trim numPiers for the number of populated channel Piers */
   1974     for (numPiers = 0; numPiers < availPiers; numPiers++) {
   1975         if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
   1976             break;
   1977         }
   1978     }
   1979 
   1980     /* Find pier indexes around the current channel */
   1981     match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
   1982 			bChans, numPiers, &idxL, &idxR);
   1983 
   1984     if (match) {
   1985         /* Directly fill both vpd tables from the matching index */
   1986         for (i = 0; i < numXpdGains; i++) {
   1987             minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
   1988             maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
   1989             ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
   1990                                pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
   1991         }
   1992     } else {
   1993         for (i = 0; i < numXpdGains; i++) {
   1994             pVpdL = pRawDataSet[idxL].vpdPdg[i];
   1995             pPwrL = pRawDataSet[idxL].pwrPdg[i];
   1996             pVpdR = pRawDataSet[idxR].vpdPdg[i];
   1997             pPwrR = pRawDataSet[idxR].pwrPdg[i];
   1998 
   1999             /* Start Vpd interpolation from the max of the minimum powers */
   2000             minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
   2001 
   2002             /* End Vpd interpolation from the min of the max powers */
   2003             maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
   2004             HALASSERT(maxPwrT4[i] > minPwrT4[i]);
   2005 
   2006             /* Fill pier Vpds */
   2007             ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
   2008             ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
   2009 
   2010             /* Interpolate the final vpd */
   2011             for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
   2012                 vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
   2013                     bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
   2014             }
   2015         }
   2016     }
   2017     *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
   2018 
   2019     k = 0; /* index for the final table */
   2020     for (i = 0; i < numXpdGains; i++) {
   2021         if (i == (numXpdGains - 1)) {
   2022             pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
   2023         } else {
   2024             pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
   2025         }
   2026 
   2027         pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
   2028 
   2029 	/* NB: only applies to owl 1.0 */
   2030         if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
   2031 	    /*
   2032              * fix the gain delta, but get a delta that can be applied to min to
   2033              * keep the upper power values accurate, don't think max needs to
   2034              * be adjusted because should not be at that area of the table?
   2035 	     */
   2036             minDelta = pPdGainBoundaries[0] - 23;
   2037             pPdGainBoundaries[0] = 23;
   2038         }
   2039         else {
   2040             minDelta = 0;
   2041         }
   2042 
   2043         /* Find starting index for this pdGain */
   2044         if (i == 0) {
   2045             ss = 0; /* for the first pdGain, start from index 0 */
   2046         } else {
   2047 	    /* need overlap entries extrapolated below. */
   2048             ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
   2049         }
   2050         vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
   2051         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
   2052         /*
   2053          *-ve ss indicates need to extrapolate data below for this pdGain
   2054          */
   2055         while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
   2056             tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
   2057             pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
   2058             ss++;
   2059         }
   2060 
   2061         sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
   2062         tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
   2063         maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
   2064 
   2065         while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
   2066             pPDADCValues[k++] = vpdTableI[i][ss++];
   2067         }
   2068 
   2069         vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
   2070         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
   2071         /*
   2072          * for last gain, pdGainBoundary == Pmax_t2, so will
   2073          * have to extrapolate
   2074          */
   2075         if (tgtIndex > maxIndex) {  /* need to extrapolate above */
   2076             while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
   2077                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
   2078                           (ss - maxIndex +1) * vpdStep));
   2079                 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
   2080                 ss++;
   2081             }
   2082         }               /* extrapolated above */
   2083     }                   /* for all pdGainUsed */
   2084 
   2085     /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
   2086     while (i < AR5416_PD_GAINS_IN_MASK) {
   2087         pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
   2088         i++;
   2089     }
   2090 
   2091     while (k < AR5416_NUM_PDADC_VALUES) {
   2092         pPDADCValues[k] = pPDADCValues[k-1];
   2093         k++;
   2094     }
   2095     return;
   2096 }
   2097 
   2098 /**************************************************************
   2099  * getLowerUppderIndex
   2100  *
   2101  * Return indices surrounding the value in sorted integer lists.
   2102  * Requirement: the input list must be monotonically increasing
   2103  *     and populated up to the list size
   2104  * Returns: match is set if an index in the array matches exactly
   2105  *     or a the target is before or after the range of the array.
   2106  */
   2107 HAL_BOOL
   2108 getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
   2109                    uint16_t *indexL, uint16_t *indexR)
   2110 {
   2111     uint16_t i;
   2112 
   2113     /*
   2114      * Check first and last elements for beyond ordered array cases.
   2115      */
   2116     if (target <= pList[0]) {
   2117         *indexL = *indexR = 0;
   2118         return AH_TRUE;
   2119     }
   2120     if (target >= pList[listSize-1]) {
   2121         *indexL = *indexR = (uint16_t)(listSize - 1);
   2122         return AH_TRUE;
   2123     }
   2124 
   2125     /* look for value being near or between 2 values in list */
   2126     for (i = 0; i < listSize - 1; i++) {
   2127         /*
   2128          * If value is close to the current value of the list
   2129          * then target is not between values, it is one of the values
   2130          */
   2131         if (pList[i] == target) {
   2132             *indexL = *indexR = i;
   2133             return AH_TRUE;
   2134         }
   2135         /*
   2136          * Look for value being between current value and next value
   2137          * if so return these 2 values
   2138          */
   2139         if (target < pList[i + 1]) {
   2140             *indexL = i;
   2141             *indexR = (uint16_t)(i + 1);
   2142             return AH_FALSE;
   2143         }
   2144     }
   2145     HALASSERT(0);
   2146     return AH_FALSE;
   2147 }
   2148 
   2149 /**************************************************************
   2150  * ar5416FillVpdTable
   2151  *
   2152  * Fill the Vpdlist for indices Pmax-Pmin
   2153  * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
   2154  */
   2155 static HAL_BOOL
   2156 ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
   2157                    uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
   2158 {
   2159     uint16_t  i, k;
   2160     uint8_t   currPwr = pwrMin;
   2161     uint16_t  idxL = 0, idxR = 0;
   2162 
   2163     HALASSERT(pwrMax > pwrMin);
   2164     for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
   2165         getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
   2166                            &(idxL), &(idxR));
   2167         if (idxR < 1)
   2168             idxR = 1;           /* extrapolate below */
   2169         if (idxL == numIntercepts - 1)
   2170             idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
   2171         if (pPwrList[idxL] == pPwrList[idxR])
   2172             k = pVpdList[idxL];
   2173         else
   2174             k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
   2175                   (pPwrList[idxR] - pPwrList[idxL]) );
   2176         HALASSERT(k < 256);
   2177         pRetVpdList[i] = (uint8_t)k;
   2178         currPwr += 2;               /* half dB steps */
   2179     }
   2180 
   2181     return AH_TRUE;
   2182 }
   2183 
   2184 /**************************************************************************
   2185  * interpolate
   2186  *
   2187  * Returns signed interpolated or the scaled up interpolated value
   2188  */
   2189 static int16_t
   2190 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
   2191             int16_t targetLeft, int16_t targetRight)
   2192 {
   2193     int16_t rv;
   2194 
   2195     if (srcRight == srcLeft) {
   2196         rv = targetLeft;
   2197     } else {
   2198         rv = (int16_t)( ((target - srcLeft) * targetRight +
   2199               (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
   2200     }
   2201     return rv;
   2202 }
   2203 
   2204 static void
   2205 ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan)
   2206 {
   2207 	uint32_t phymode;
   2208 	HAL_HT_MACMODE macmode;		/* MAC - 20/40 mode */
   2209 
   2210 	if (!IS_CHAN_HT(chan))
   2211 		return;
   2212 
   2213 	/* Enable 11n HT, 20 MHz */
   2214 	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
   2215 		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
   2216 
   2217 	/* Configure baseband for dynamic 20/40 operation */
   2218 	if (IS_CHAN_HT40(chan)) {
   2219 		phymode |= AR_PHY_FC_DYN2040_EN | AR_PHY_FC_SHORT_GI_40;
   2220 
   2221 		/* Configure control (primary) channel at +-10MHz */
   2222 		if ((chan->channelFlags & CHANNEL_HT40PLUS))
   2223 			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
   2224 #if 0
   2225 		/* Configure 20/25 spacing */
   2226 		if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
   2227 			phymode |= AR_PHY_FC_DYN2040_EXT_CH;
   2228 #endif
   2229 		macmode = HAL_HT_MACMODE_2040;
   2230 	} else
   2231 		macmode = HAL_HT_MACMODE_20;
   2232 	OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
   2233 
   2234 	/* Configure MAC for 20/40 operation */
   2235 	ar5416Set11nMac2040(ah, macmode);
   2236 
   2237 	/* global transmit timeout (25 TUs default)*/
   2238 	/* XXX - put this elsewhere??? */
   2239 	OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
   2240 
   2241 	/* carrier sense timeout */
   2242 	OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
   2243 	OS_REG_WRITE(ah, AR_CST, 1 << AR_CST_TIMEOUT_LIMIT_S);
   2244 }
   2245 
   2246 void
   2247 ar5416GetChannelCenters(struct ath_hal *ah,
   2248 	HAL_CHANNEL_INTERNAL *chan, CHAN_CENTERS *centers)
   2249 {
   2250 	centers->ctl_center = chan->channel;
   2251 	centers->synth_center = chan->channel;
   2252 	/*
   2253 	 * In 20/40 phy mode, the center frequency is
   2254 	 * "between" the control and extension channels.
   2255 	 */
   2256 	if (chan->channelFlags & CHANNEL_HT40PLUS) {
   2257 		centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
   2258 		centers->ext_center =
   2259 		    centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
   2260 	} else if (chan->channelFlags & CHANNEL_HT40MINUS) {
   2261 		centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
   2262 		centers->ext_center =
   2263 		    centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
   2264 	} else {
   2265 		centers->ext_center = chan->channel;
   2266 	}
   2267 }
   2268