1 /* $NetBSD: arn9287.c,v 1.4 2022/09/25 18:43:32 thorpej Exp $ */ 2 /* $OpenBSD: ar9287.c,v 1.17 2012/06/10 21:23:36 kettenis Exp $ */ 3 4 /*- 5 * Copyright (c) 2009 Damien Bergamini <damien.bergamini (at) free.fr> 6 * Copyright (c) 2008-2009 Atheros Communications Inc. 7 * 8 * Permission to use, copy, modify, and/or distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * Driver for Atheros 802.11a/g/n chipsets. 23 * Routines for AR9227 and AR9287 chipsets. 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: arn9287.c,v 1.4 2022/09/25 18:43:32 thorpej Exp $"); 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/queue.h> 36 #include <sys/callout.h> 37 #include <sys/conf.h> 38 #include <sys/device.h> 39 40 #include <sys/bus.h> 41 #include <sys/endian.h> 42 #include <sys/intr.h> 43 44 #include <net/bpf.h> 45 #include <net/if.h> 46 #include <net/if_arp.h> 47 #include <net/if_dl.h> 48 #include <net/if_ether.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 52 #include <netinet/in.h> 53 #include <netinet/in_systm.h> 54 #include <netinet/in_var.h> 55 #include <netinet/ip.h> 56 57 #include <net80211/ieee80211_var.h> 58 #include <net80211/ieee80211_amrr.h> 59 #include <net80211/ieee80211_radiotap.h> 60 61 #include <dev/ic/athnreg.h> 62 #include <dev/ic/athnvar.h> 63 64 #include <dev/ic/arn5008reg.h> 65 #include <dev/ic/arn9280reg.h> 66 #include <dev/ic/arn9287reg.h> 67 68 #include <dev/ic/arn5008.h> 69 #include <dev/ic/arn9280.h> 70 #include <dev/ic/arn9287.h> 71 72 #define Static static 73 74 Static void ar9287_get_pdadcs(struct athn_softc *, 75 struct ieee80211_channel *, int, int, uint8_t, uint8_t *, 76 uint8_t *); 77 Static const struct ar_spur_chan * 78 ar9287_get_spur_chans(struct athn_softc *, int); 79 Static void ar9287_init_from_rom(struct athn_softc *, 80 struct ieee80211_channel *, struct ieee80211_channel *); 81 Static void ar9287_olpc_get_pdgain(struct athn_softc *, 82 struct ieee80211_channel *, int, int8_t *); 83 Static void ar9287_olpc_init(struct athn_softc *); 84 Static void ar9287_olpc_temp_compensation(struct athn_softc *); 85 Static void ar9287_set_power_calib(struct athn_softc *, 86 struct ieee80211_channel *); 87 Static void ar9287_set_txpower(struct athn_softc *, 88 struct ieee80211_channel *, struct ieee80211_channel *); 89 Static void ar9287_setup(struct athn_softc *); 90 Static void ar9287_swap_rom(struct athn_softc *); 91 92 PUBLIC int 93 ar9287_attach(struct athn_softc *sc) 94 { 95 96 sc->sc_eep_base = AR9287_EEP_START_LOC; 97 sc->sc_eep_size = sizeof(struct ar9287_eeprom); 98 sc->sc_def_nf = AR9287_PHY_CCA_MAX_GOOD_VALUE; 99 sc->sc_ngpiopins = (sc->sc_flags & ATHN_FLAG_USB) ? 16 : 11; 100 sc->sc_led_pin = 8; 101 sc->sc_workaround = AR9285_WA_DEFAULT; 102 sc->sc_ops.setup = ar9287_setup; 103 sc->sc_ops.swap_rom = ar9287_swap_rom; 104 sc->sc_ops.init_from_rom = ar9287_init_from_rom; 105 sc->sc_ops.set_txpower = ar9287_set_txpower; 106 sc->sc_ops.set_synth = ar9280_set_synth; 107 sc->sc_ops.spur_mitigate = ar9280_spur_mitigate; 108 sc->sc_ops.get_spur_chans = ar9287_get_spur_chans; 109 sc->sc_ops.olpc_init = ar9287_olpc_init; 110 sc->sc_ops.olpc_temp_compensation = ar9287_olpc_temp_compensation; 111 sc->sc_ini = &ar9287_1_1_ini; 112 sc->sc_serdes = &ar9280_2_0_serdes; 113 114 return ar5008_attach(sc); 115 } 116 117 Static void 118 ar9287_setup(struct athn_softc *sc) 119 { 120 const struct ar9287_eeprom *eep = sc->sc_eep; 121 122 /* Determine if open loop power control should be used. */ 123 if (eep->baseEepHeader.openLoopPwrCntl) 124 sc->sc_flags |= ATHN_FLAG_OLPC; 125 126 sc->sc_rx_gain = &ar9287_1_1_rx_gain; 127 sc->sc_tx_gain = &ar9287_1_1_tx_gain; 128 } 129 130 Static void 131 ar9287_swap_rom(struct athn_softc *sc) 132 { 133 struct ar9287_eeprom *eep = sc->sc_eep; 134 int i; 135 136 eep->modalHeader.antCtrlCommon = 137 bswap32(eep->modalHeader.antCtrlCommon); 138 139 for (i = 0; i < AR9287_MAX_CHAINS; i++) { 140 eep->modalHeader.antCtrlChain[i] = 141 bswap32(eep->modalHeader.antCtrlChain[i]); 142 } 143 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 144 eep->modalHeader.spurChans[i].spurChan = 145 bswap16(eep->modalHeader.spurChans[i].spurChan); 146 } 147 } 148 149 Static const struct ar_spur_chan * 150 ar9287_get_spur_chans(struct athn_softc *sc, int is2ghz) 151 { 152 const struct ar9287_eeprom *eep = sc->sc_eep; 153 154 KASSERT(is2ghz); 155 return eep->modalHeader.spurChans; 156 } 157 158 Static void 159 ar9287_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c, 160 struct ieee80211_channel *extc) 161 { 162 const struct ar9287_eeprom *eep = sc->sc_eep; 163 const struct ar9287_modal_eep_header *modal = &eep->modalHeader; 164 uint32_t reg, offset; 165 int i; 166 167 AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon); 168 169 for (i = 0; i < AR9287_MAX_CHAINS; i++) { 170 offset = i * 0x1000; 171 172 AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset, 173 modal->antCtrlChain[i]); 174 175 reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset); 176 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, 177 modal->iqCalICh[i]); 178 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, 179 modal->iqCalQCh[i]); 180 AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg); 181 182 reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset); 183 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, 184 modal->bswMargin[i]); 185 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB, 186 modal->bswAtten[i]); 187 AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg); 188 189 reg = AR_READ(sc, AR_PHY_RXGAIN + offset); 190 reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, 191 modal->rxTxMarginCh[i]); 192 reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, 193 modal->txRxAttenCh[i]); 194 AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg); 195 } 196 197 reg = AR_READ(sc, AR_PHY_SETTLING); 198 #ifndef IEEE80211_NO_HT 199 if (extc != NULL) 200 reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40); 201 else 202 #endif 203 reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling); 204 AR_WRITE(sc, AR_PHY_SETTLING, reg); 205 206 reg = AR_READ(sc, AR_PHY_DESIRED_SZ); 207 reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize); 208 AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); 209 210 reg = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff); 211 reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff); 212 reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn); 213 reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn); 214 AR_WRITE(sc, AR_PHY_RF_CTL4, reg); 215 216 reg = AR_READ(sc, AR_PHY_RF_CTL3); 217 reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn); 218 AR_WRITE(sc, AR_PHY_RF_CTL3, reg); 219 220 reg = AR_READ(sc, AR_PHY_CCA(0)); 221 reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62); 222 AR_WRITE(sc, AR_PHY_CCA(0), reg); 223 224 reg = AR_READ(sc, AR_PHY_EXT_CCA0); 225 reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62); 226 AR_WRITE(sc, AR_PHY_EXT_CCA0, reg); 227 228 reg = AR_READ(sc, AR9287_AN_RF2G3_CH0); 229 reg = RW(reg, AR9287_AN_RF2G3_DB1, modal->db1); 230 reg = RW(reg, AR9287_AN_RF2G3_DB2, modal->db2); 231 reg = RW(reg, AR9287_AN_RF2G3_OB_CCK, modal->ob_cck); 232 reg = RW(reg, AR9287_AN_RF2G3_OB_PSK, modal->ob_psk); 233 reg = RW(reg, AR9287_AN_RF2G3_OB_QAM, modal->ob_qam); 234 reg = RW(reg, AR9287_AN_RF2G3_OB_PAL_OFF, modal->ob_pal_off); 235 AR_WRITE(sc, AR9287_AN_RF2G3_CH0, reg); 236 AR_WRITE_BARRIER(sc); 237 DELAY(100); 238 239 reg = AR_READ(sc, AR9287_AN_RF2G3_CH1); 240 reg = RW(reg, AR9287_AN_RF2G3_DB1, modal->db1); 241 reg = RW(reg, AR9287_AN_RF2G3_DB2, modal->db2); 242 reg = RW(reg, AR9287_AN_RF2G3_OB_CCK, modal->ob_cck); 243 reg = RW(reg, AR9287_AN_RF2G3_OB_PSK, modal->ob_psk); 244 reg = RW(reg, AR9287_AN_RF2G3_OB_QAM, modal->ob_qam); 245 reg = RW(reg, AR9287_AN_RF2G3_OB_PAL_OFF, modal->ob_pal_off); 246 AR_WRITE(sc, AR9287_AN_RF2G3_CH1, reg); 247 AR_WRITE_BARRIER(sc); 248 DELAY(100); 249 250 reg = AR_READ(sc, AR_PHY_RF_CTL2); 251 reg = RW(reg, AR_PHY_TX_END_DATA_START, modal->txFrameToDataStart); 252 reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn); 253 AR_WRITE(sc, AR_PHY_RF_CTL2, reg); 254 255 reg = AR_READ(sc, AR9287_AN_TOP2); 256 reg = RW(reg, AR9287_AN_TOP2_XPABIAS_LVL, modal->xpaBiasLvl); 257 AR_WRITE(sc, AR9287_AN_TOP2, reg); 258 AR_WRITE_BARRIER(sc); 259 DELAY(100); 260 } 261 262 Static void 263 ar9287_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c, 264 int chain, int nxpdgains, uint8_t overlap, uint8_t *boundaries, 265 uint8_t *pdadcs) 266 { 267 const struct ar9287_eeprom *eep = sc->sc_eep; 268 const struct ar9287_cal_data_per_freq *pierdata; 269 const uint8_t *pierfreq; 270 struct athn_pier lopier, hipier; 271 int16_t delta; 272 uint8_t fbin; 273 int i, lo, hi, npiers; 274 275 pierfreq = eep->calFreqPier2G; 276 pierdata = (const struct ar9287_cal_data_per_freq *) 277 eep->calPierData2G[chain]; 278 npiers = AR9287_NUM_2G_CAL_PIERS; 279 280 /* Find channel in ROM pier table. */ 281 fbin = athn_chan2fbin(c); 282 athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi); 283 284 lopier.fbin = pierfreq[lo]; 285 hipier.fbin = pierfreq[hi]; 286 for (i = 0; i < nxpdgains; i++) { 287 lopier.pwr[i] = pierdata[lo].pwrPdg[i]; 288 lopier.vpd[i] = pierdata[lo].vpdPdg[i]; 289 hipier.pwr[i] = pierdata[lo].pwrPdg[i]; 290 hipier.vpd[i] = pierdata[lo].vpdPdg[i]; 291 } 292 ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains, 293 AR9287_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs); 294 295 delta = (eep->baseEepHeader.pwrTableOffset - 296 AR_PWR_TABLE_OFFSET_DB) * 2; /* In half dB. */ 297 if (delta != 0) { 298 /* Shift the PDADC table to start at the new offset. */ 299 /* XXX Our padding value differs from Linux. */ 300 for (i = 0; i < AR_NUM_PDADC_VALUES; i++) 301 pdadcs[i] = pdadcs[MIN(i + delta, 302 AR_NUM_PDADC_VALUES - 1)]; 303 } 304 } 305 306 Static void 307 ar9287_olpc_get_pdgain(struct athn_softc *sc, struct ieee80211_channel *c, 308 int chain, int8_t *pwr) 309 { 310 const struct ar9287_eeprom *eep = sc->sc_eep; 311 const struct ar_cal_data_per_freq_olpc *pierdata; 312 const uint8_t *pierfreq; 313 uint8_t fbin; 314 int lo, hi, npiers; 315 316 pierfreq = eep->calFreqPier2G; 317 pierdata = (const struct ar_cal_data_per_freq_olpc *) 318 eep->calPierData2G[chain]; 319 npiers = AR9287_NUM_2G_CAL_PIERS; 320 321 /* Find channel in ROM pier table. */ 322 fbin = athn_chan2fbin(c); 323 athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi); 324 #if 0 325 *pwr = athn_interpolate(fbin, 326 pierfreq[lo], pierdata[lo].pwrPdg[0][0], 327 pierfreq[hi], pierdata[hi].pwrPdg[0][0]); 328 #else 329 *pwr = (pierdata[lo].pwrPdg[0][0] + pierdata[hi].pwrPdg[0][0]) / 2; 330 #endif 331 } 332 333 Static void 334 ar9287_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c) 335 { 336 const struct ar9287_eeprom *eep = sc->sc_eep; 337 uint8_t boundaries[AR_PD_GAINS_IN_MASK]; 338 uint8_t pdadcs[AR_NUM_PDADC_VALUES]; 339 uint8_t xpdgains[AR9287_NUM_PD_GAINS]; 340 int8_t txpower; 341 uint8_t overlap; 342 uint32_t reg, offset; 343 int i, j, nxpdgains; 344 345 if (sc->sc_eep_rev < AR_EEP_MINOR_VER_2) { 346 overlap = MS(AR_READ(sc, AR_PHY_TPCRG5), 347 AR_PHY_TPCRG5_PD_GAIN_OVERLAP); 348 } 349 else 350 overlap = eep->modalHeader.pdGainOverlap; 351 352 if (sc->sc_flags & ATHN_FLAG_OLPC) { 353 /* XXX not here. */ 354 sc->sc_pdadc = 355 ((const struct ar_cal_data_per_freq_olpc *) 356 eep->calPierData2G[0])->vpdPdg[0][0]; 357 } 358 359 nxpdgains = 0; 360 memset(xpdgains, 0, sizeof(xpdgains)); 361 for (i = AR9287_PD_GAINS_IN_MASK - 1; i >= 0; i--) { 362 if (nxpdgains >= AR9287_NUM_PD_GAINS) 363 break; /* Can't happen. */ 364 if (eep->modalHeader.xpdGain & (1 << i)) 365 xpdgains[nxpdgains++] = i; 366 } 367 reg = AR_READ(sc, AR_PHY_TPCRG1); 368 reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1); 369 reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]); 370 reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]); 371 AR_WRITE(sc, AR_PHY_TPCRG1, reg); 372 AR_WRITE_BARRIER(sc); 373 374 for (i = 0; i < AR9287_MAX_CHAINS; i++) { 375 if (!(sc->sc_txchainmask & (1 << i))) 376 continue; 377 378 offset = i * 0x1000; 379 380 if (sc->sc_flags & ATHN_FLAG_OLPC) { 381 ar9287_olpc_get_pdgain(sc, c, i, &txpower); 382 383 reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_0); 384 reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); 385 AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_0, reg); 386 387 reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_1); 388 reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); 389 AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_1, reg); 390 391 /* NB: txpower is in half dB. */ 392 reg = AR_READ(sc, AR_PHY_CH0_TX_PWRCTRL11 + offset); 393 reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_PWR, txpower); 394 AR_WRITE(sc, AR_PHY_CH0_TX_PWRCTRL11 + offset, reg); 395 396 AR_WRITE_BARRIER(sc); 397 continue; /* That's it for open loop mode. */ 398 } 399 400 /* Closed loop power control. */ 401 ar9287_get_pdadcs(sc, c, i, nxpdgains, overlap, 402 boundaries, pdadcs); 403 404 /* Write boundaries. */ 405 if (i == 0) { 406 reg = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP, 407 overlap); 408 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1, 409 boundaries[0]); 410 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2, 411 boundaries[1]); 412 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3, 413 boundaries[2]); 414 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4, 415 boundaries[3]); 416 AR_WRITE(sc, AR_PHY_TPCRG5 + offset, reg); 417 } 418 /* Write PDADC values. */ 419 for (j = 0; j < AR_NUM_PDADC_VALUES; j += 4) { 420 AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + offset + j, 421 pdadcs[j + 0] << 0 | 422 pdadcs[j + 1] << 8 | 423 pdadcs[j + 2] << 16 | 424 pdadcs[j + 3] << 24); 425 } 426 AR_WRITE_BARRIER(sc); 427 } 428 } 429 430 Static void 431 ar9287_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c, 432 struct ieee80211_channel *extc) 433 { 434 const struct ar9287_eeprom *eep = sc->sc_eep; 435 #ifdef notyet 436 const struct ar9287_modal_eep_header *modal = &eep->modalHeader; 437 #endif 438 uint8_t tpow_cck[4], tpow_ofdm[4]; 439 #ifndef IEEE80211_NO_HT 440 uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4]; 441 uint8_t tpow_ht20[8], tpow_ht40[8]; 442 uint8_t ht40inc; 443 #endif 444 int16_t pwr = 0, power[ATHN_POWER_COUNT]; 445 int i; 446 447 ar9287_set_power_calib(sc, c); 448 449 #ifdef notyet 450 /* Compute transmit power reduction due to antenna gain. */ 451 uint16_t max_ant_gain = MAX(modal->antennaGainCh[0], modal->antennaGainCh[1]); 452 /* XXX */ 453 #endif 454 455 /* 456 * Reduce scaled power by number of active chains to get per-chain 457 * transmit power level. 458 */ 459 if (sc->sc_ntxchains == 2) 460 pwr -= AR_PWR_DECREASE_FOR_2_CHAIN; 461 if (pwr < 0) 462 pwr = 0; 463 464 /* Get CCK target powers. */ 465 ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck, 466 AR9287_NUM_2G_CCK_TARGET_POWERS, tpow_cck); 467 468 /* Get OFDM target powers. */ 469 ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G, 470 AR9287_NUM_2G_20_TARGET_POWERS, tpow_ofdm); 471 472 #ifndef IEEE80211_NO_HT 473 /* Get HT-20 target powers. */ 474 ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20, eep->calTargetPower2GHT20, 475 AR9287_NUM_2G_20_TARGET_POWERS, tpow_ht20); 476 477 if (extc != NULL) { 478 /* Get HT-40 target powers. */ 479 ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40, 480 eep->calTargetPower2GHT40, AR9287_NUM_2G_40_TARGET_POWERS, 481 tpow_ht40); 482 483 /* Get secondary channel CCK target powers. */ 484 ar5008_get_lg_tpow(sc, extc, AR_CTL_11B, 485 eep->calTargetPowerCck, AR9287_NUM_2G_CCK_TARGET_POWERS, 486 tpow_cck_ext); 487 488 /* Get secondary channel OFDM target powers. */ 489 ar5008_get_lg_tpow(sc, extc, AR_CTL_11G, 490 eep->calTargetPower2G, AR9287_NUM_2G_20_TARGET_POWERS, 491 tpow_ofdm_ext); 492 } 493 #endif 494 495 memset(power, 0, sizeof(power)); 496 /* Shuffle target powers accross transmit rates. */ 497 power[ATHN_POWER_OFDM6 ] = 498 power[ATHN_POWER_OFDM9 ] = 499 power[ATHN_POWER_OFDM12 ] = 500 power[ATHN_POWER_OFDM18 ] = 501 power[ATHN_POWER_OFDM24 ] = tpow_ofdm[0]; 502 power[ATHN_POWER_OFDM36 ] = tpow_ofdm[1]; 503 power[ATHN_POWER_OFDM48 ] = tpow_ofdm[2]; 504 power[ATHN_POWER_OFDM54 ] = tpow_ofdm[3]; 505 power[ATHN_POWER_XR ] = tpow_ofdm[0]; 506 power[ATHN_POWER_CCK1_LP ] = tpow_cck[0]; 507 power[ATHN_POWER_CCK2_LP ] = 508 power[ATHN_POWER_CCK2_SP ] = tpow_cck[1]; 509 power[ATHN_POWER_CCK55_LP] = 510 power[ATHN_POWER_CCK55_SP] = tpow_cck[2]; 511 power[ATHN_POWER_CCK11_LP] = 512 power[ATHN_POWER_CCK11_SP] = tpow_cck[3]; 513 #ifndef IEEE80211_NO_HT 514 for (i = 0; i < nitems(tpow_ht20); i++) 515 power[ATHN_POWER_HT20(i)] = tpow_ht20[i]; 516 if (extc != NULL) { 517 /* Correct PAR difference between HT40 and HT20/Legacy. */ 518 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) 519 ht40inc = modal->ht40PowerIncForPdadc; 520 else 521 ht40inc = AR_HT40_POWER_INC_FOR_PDADC; 522 for (i = 0; i < nitems(tpow_ht40); i++) 523 power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc; 524 power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0]; 525 power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0]; 526 power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0]; 527 if (IEEE80211_IS_CHAN_2GHZ(c)) 528 power[ATHN_POWER_CCK_EXT] = tpow_cck_ext[0]; 529 } 530 #endif 531 532 for (i = 0; i < ATHN_POWER_COUNT; i++) { 533 power[i] -= AR_PWR_TABLE_OFFSET_DB * 2; /* In half dB. */ 534 if (power[i] > AR_MAX_RATE_POWER) 535 power[i] = AR_MAX_RATE_POWER; 536 } 537 /* Commit transmit power values to hardware. */ 538 ar5008_write_txpower(sc, power); 539 } 540 541 Static void 542 ar9287_olpc_init(struct athn_softc *sc) 543 { 544 uint32_t reg; 545 546 AR_SETBITS(sc, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL); 547 548 reg = AR_READ(sc, AR9287_AN_TXPC0); 549 reg = RW(reg, AR9287_AN_TXPC0_TXPCMODE, 550 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE); 551 AR_WRITE(sc, AR9287_AN_TXPC0, reg); 552 AR_WRITE_BARRIER(sc); 553 DELAY(100); 554 } 555 556 Static void 557 ar9287_olpc_temp_compensation(struct athn_softc *sc) 558 { 559 const struct ar9287_eeprom *eep = sc->sc_eep; 560 int8_t pdadc, slope, tcomp; 561 uint32_t reg; 562 563 reg = AR_READ(sc, AR_PHY_TX_PWRCTRL4); 564 pdadc = MS(reg, AR_PHY_TX_PWRCTRL_PD_AVG_OUT); 565 DPRINTFN(DBG_RF, sc, "PD Avg Out=%d\n", pdadc); 566 567 if (sc->sc_pdadc == 0 || pdadc == 0) 568 return; /* No frames transmitted yet. */ 569 570 /* Compute Tx gain temperature compensation. */ 571 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) 572 slope = eep->baseEepHeader.tempSensSlope; 573 else 574 slope = 0; 575 if (slope != 0) /* Prevents division by zero. */ 576 tcomp = ((pdadc - sc->sc_pdadc) * 4) / slope; 577 else 578 tcomp = 0; 579 DPRINTFN(DBG_RF, sc, "OLPC temp compensation=%d\n", tcomp); 580 581 /* Write compensation value for both Tx chains. */ 582 reg = AR_READ(sc, AR_PHY_CH0_TX_PWRCTRL11); 583 reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, tcomp); 584 AR_WRITE(sc, AR_PHY_CH0_TX_PWRCTRL11, reg); 585 586 reg = AR_READ(sc, AR_PHY_CH1_TX_PWRCTRL11); 587 reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, tcomp); 588 AR_WRITE(sc, AR_PHY_CH1_TX_PWRCTRL11, reg); 589 AR_WRITE_BARRIER(sc); 590 } 591 592 PUBLIC void 593 ar9287_1_3_enable_async_fifo(struct athn_softc *sc) 594 { 595 596 /* Enable ASYNC FIFO. */ 597 AR_SETBITS(sc, AR_MAC_PCU_ASYNC_FIFO_REG3, 598 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL); 599 AR_SETBITS(sc, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO); 600 AR_CLRBITS(sc, AR_MAC_PCU_ASYNC_FIFO_REG3, 601 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); 602 AR_SETBITS(sc, AR_MAC_PCU_ASYNC_FIFO_REG3, 603 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); 604 AR_WRITE_BARRIER(sc); 605 } 606 607 PUBLIC void 608 ar9287_1_3_setup_async_fifo(struct athn_softc *sc) 609 { 610 uint32_t reg; 611 612 /* 613 * MAC runs at 117MHz (instead of 88/44MHz) when ASYNC FIFO is 614 * enabled, so the following counters have to be changed. 615 */ 616 AR_WRITE(sc, AR_D_GBL_IFS_SIFS, AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR); 617 AR_WRITE(sc, AR_D_GBL_IFS_SLOT, AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR); 618 AR_WRITE(sc, AR_D_GBL_IFS_EIFS, AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR); 619 620 AR_WRITE(sc, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR); 621 AR_WRITE(sc, AR_USEC, AR_USEC_ASYNC_FIFO_DUR); 622 623 AR_SETBITS(sc, AR_MAC_PCU_LOGIC_ANALYZER, 624 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); 625 626 reg = AR_READ(sc, AR_AHB_MODE); 627 reg = RW(reg, AR_AHB_CUSTOM_BURST, AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); 628 AR_WRITE(sc, AR_AHB_MODE, reg); 629 630 AR_SETBITS(sc, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_ENABLE_AGGWEP); 631 AR_WRITE_BARRIER(sc); 632 } 633