1 /* $NetBSD: arn9380.c,v 1.4 2022/09/25 18:43:32 thorpej Exp $ */ 2 /* $OpenBSD: ar9380.c,v 1.17 2012/10/20 09:54:20 stsp Exp $ */ 3 4 /*- 5 * Copyright (c) 2011 Damien Bergamini <damien.bergamini (at) free.fr> 6 * Copyright (c) 2010 Atheros Communications Inc. 7 * 8 * Permission to use, copy, modify, and/or distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * Driver for Atheros 802.11a/g/n chipsets. 23 * Routines for AR9380 and AR9485 chipsets. 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: arn9380.c,v 1.4 2022/09/25 18:43:32 thorpej Exp $"); 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/queue.h> 36 #include <sys/conf.h> 37 #include <sys/device.h> 38 39 #include <sys/bus.h> 40 #include <sys/endian.h> 41 42 #include <net/bpf.h> 43 #include <net/if.h> 44 #include <net/if_arp.h> 45 #include <net/if_dl.h> 46 #include <net/if_ether.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 50 #include <netinet/in.h> 51 #include <netinet/in_systm.h> 52 #include <netinet/in_var.h> 53 54 #include <net80211/ieee80211_var.h> 55 #include <net80211/ieee80211_amrr.h> 56 #include <net80211/ieee80211_radiotap.h> 57 58 #include <dev/ic/athnreg.h> 59 #include <dev/ic/athnvar.h> 60 61 #include <dev/ic/arn9003reg.h> 62 #include <dev/ic/arn9380reg.h> 63 64 #include <dev/ic/arn9003.h> 65 #include <dev/ic/arn9380.h> 66 67 #define Static static 68 69 Static void ar9380_get_correction(struct athn_softc *, 70 struct ieee80211_channel *, int, int *, int *); 71 Static void ar9380_get_paprd_masks(struct athn_softc *, 72 struct ieee80211_channel *, uint32_t *, uint32_t *); 73 Static const uint8_t * 74 ar9380_get_rom_template(struct athn_softc *, uint8_t); 75 Static void ar9380_init_from_rom(struct athn_softc *, 76 struct ieee80211_channel *, struct ieee80211_channel *); 77 Static void ar9380_set_correction(struct athn_softc *, 78 struct ieee80211_channel *); 79 Static int ar9380_set_synth(struct athn_softc *, 80 struct ieee80211_channel *, struct ieee80211_channel *); 81 Static void ar9380_set_txpower(struct athn_softc *, 82 struct ieee80211_channel *, struct ieee80211_channel *); 83 Static void ar9380_setup(struct athn_softc *); 84 Static void ar9380_spur_mitigate(struct athn_softc *, 85 struct ieee80211_channel *, struct ieee80211_channel *); 86 Static void ar9380_spur_mitigate_cck(struct athn_softc *, 87 struct ieee80211_channel *, struct ieee80211_channel *); 88 Static void ar9380_spur_mitigate_ofdm(struct athn_softc *, 89 struct ieee80211_channel *, struct ieee80211_channel *); 90 Static void ar9380_swap_rom(struct athn_softc *); 91 92 Static void ar9485_init_swreg(struct athn_softc *); 93 #define ar9485_pmu_read AR_READ 94 Static int ar9485_pmu_write(struct athn_softc *, uint32_t, uint32_t); 95 96 #ifdef notused 97 Static void ar9380_init_swreg(struct athn_softc *); 98 #endif /* notused */ 99 100 PUBLIC int 101 ar9380_attach(struct athn_softc *sc) 102 { 103 104 sc->sc_ngpiopins = 17; 105 sc->sc_ops.setup = ar9380_setup; 106 sc->sc_ops.get_rom_template = ar9380_get_rom_template; 107 sc->sc_ops.swap_rom = ar9380_swap_rom; 108 sc->sc_ops.init_from_rom = ar9380_init_from_rom; 109 sc->sc_ops.set_txpower = ar9380_set_txpower; 110 sc->sc_ops.set_synth = ar9380_set_synth; 111 sc->sc_ops.spur_mitigate = ar9380_spur_mitigate; 112 sc->sc_ops.get_paprd_masks = ar9380_get_paprd_masks; 113 sc->sc_cca_min_2g = AR9380_PHY_CCA_MIN_GOOD_VAL_2GHZ; 114 sc->sc_cca_max_2g = AR9380_PHY_CCA_MAX_GOOD_VAL_2GHZ; 115 sc->sc_cca_min_5g = AR9380_PHY_CCA_MIN_GOOD_VAL_5GHZ; 116 sc->sc_cca_max_5g = AR9380_PHY_CCA_MAX_GOOD_VAL_5GHZ; 117 if (AR_SREV_9485(sc)) { 118 sc->sc_ini = &ar9485_1_1_ini; 119 sc->sc_serdes = &ar9485_1_1_serdes; 120 } 121 else { 122 sc->sc_ini = &ar9380_2_2_ini; 123 sc->sc_serdes = &ar9380_2_2_serdes; 124 } 125 126 return ar9003_attach(sc); 127 } 128 129 Static void 130 ar9380_setup(struct athn_softc *sc) 131 { 132 struct ieee80211com *ic = &sc->sc_ic; 133 struct ar9380_eeprom *eep = sc->sc_eep; 134 struct ar9380_base_eep_hdr *base = &eep->baseEepHeader; 135 uint8_t type; 136 137 if (base->opFlags & AR_OPFLAGS_11A) 138 sc->sc_flags |= ATHN_FLAG_11A; 139 if (base->opFlags & AR_OPFLAGS_11G) 140 sc->sc_flags |= ATHN_FLAG_11G; 141 if (base->opFlags & AR_OPFLAGS_11N) 142 sc->sc_flags |= ATHN_FLAG_11N; 143 144 IEEE80211_ADDR_COPY(ic->ic_myaddr, eep->macAddr); 145 sc->sc_led_pin = base->wlanLedGpio; 146 147 /* Check if we have a hardware radio switch. */ 148 if (base->rfSilent & AR_EEP_RFSILENT_ENABLED) { 149 sc->sc_flags |= ATHN_FLAG_RFSILENT; 150 /* Get GPIO pin used by hardware radio switch. */ 151 sc->sc_rfsilent_pin = MS(base->rfSilent, 152 AR_EEP_RFSILENT_GPIO_SEL); 153 /* Get polarity of hardware radio switch. */ 154 if (base->rfSilent & AR_EEP_RFSILENT_POLARITY) 155 sc->sc_flags |= ATHN_FLAG_RFSILENT_REVERSED; 156 } 157 158 /* Set the number of HW key cache entries. */ 159 sc->sc_kc_entries = AR_KEYTABLE_SIZE; 160 161 sc->sc_txchainmask = MS(base->txrxMask, AR_EEP_TX_MASK); 162 sc->sc_rxchainmask = MS(base->txrxMask, AR_EEP_RX_MASK); 163 164 /* Fast PLL clock is always supported. */ 165 sc->sc_flags |= ATHN_FLAG_FAST_PLL_CLOCK; 166 167 /* Enable PA predistortion if supported. */ 168 if (base->featureEnable & AR_EEP_PAPRD) 169 sc->sc_flags |= ATHN_FLAG_PAPRD; 170 /* 171 * Some 3-stream chips may exceed the PCIe power requirements, 172 * requiring to reduce the number of Tx chains in some cases. 173 */ 174 if ((base->miscConfiguration & AR_EEP_CHAIN_MASK_REDUCE) && 175 sc->sc_txchainmask == 0x7) 176 sc->sc_flags |= ATHN_FLAG_3TREDUCE_CHAIN; 177 178 /* Select initialization values based on ROM. */ 179 type = MS(eep->baseEepHeader.txrxgain, AR_EEP_RX_GAIN); 180 if (!AR_SREV_9485(sc)) { 181 if (type == AR_EEP_RX_GAIN_WO_XLNA) 182 sc->sc_rx_gain = &ar9380_2_2_rx_gain_wo_xlna; 183 else 184 sc->sc_rx_gain = &ar9380_2_2_rx_gain; 185 } 186 else 187 sc->sc_rx_gain = &ar9485_1_1_rx_gain; 188 189 /* Select initialization values based on ROM. */ 190 type = MS(eep->baseEepHeader.txrxgain, AR_EEP_TX_GAIN); 191 if (!AR_SREV_9485(sc)) { 192 if (type == AR_EEP_TX_GAIN_HIGH_OB_DB) 193 sc->sc_tx_gain = &ar9380_2_2_tx_gain_high_ob_db; 194 else if (type == AR_EEP_TX_GAIN_LOW_OB_DB) 195 sc->sc_tx_gain = &ar9380_2_2_tx_gain_low_ob_db; 196 else if (type == AR_EEP_TX_GAIN_HIGH_POWER) 197 sc->sc_tx_gain = &ar9380_2_2_tx_gain_high_power; 198 else 199 sc->sc_tx_gain = &ar9380_2_2_tx_gain; 200 } 201 else 202 sc->sc_tx_gain = &ar9485_1_1_tx_gain; 203 } 204 205 Static const uint8_t * 206 ar9380_get_rom_template(struct athn_softc *sc, uint8_t ref) 207 { 208 size_t i; 209 210 /* Retrieve template ROM image for given reference. */ 211 for (i = 0; i < __arraycount(ar9380_rom_templates); i++) 212 if (ar9380_rom_templates[i][1] == ref) 213 return ar9380_rom_templates[i]; 214 return NULL; 215 } 216 217 Static void 218 ar9380_swap_rom(struct athn_softc *sc) 219 { 220 #if BYTE_ORDER == BIG_ENDIAN 221 struct ar9380_eeprom *eep = sc->sc_eep; 222 struct ar9380_base_eep_hdr *base = &eep->baseEepHeader; 223 struct ar9380_modal_eep_header *modal; 224 int i; 225 226 base->regDmn[0] = bswap16(base->regDmn[0]); 227 base->regDmn[1] = bswap16(base->regDmn[1]); 228 base->swreg = bswap32(base->swreg); 229 230 modal = &eep->modalHeader2G; 231 modal->antCtrlCommon = bswap32(modal->antCtrlCommon); 232 modal->antCtrlCommon2 = bswap32(modal->antCtrlCommon2); 233 modal->papdRateMaskHt20 = bswap32(modal->papdRateMaskHt20); 234 modal->papdRateMaskHt40 = bswap32(modal->papdRateMaskHt40); 235 for (i = 0; i < AR9380_MAX_CHAINS; i++) 236 modal->antCtrlChain[i] = bswap16(modal->antCtrlChain[i]); 237 238 modal = &eep->modalHeader5G; 239 modal->antCtrlCommon = bswap32(modal->antCtrlCommon); 240 modal->antCtrlCommon2 = bswap32(modal->antCtrlCommon2); 241 modal->papdRateMaskHt20 = bswap32(modal->papdRateMaskHt20); 242 modal->papdRateMaskHt40 = bswap32(modal->papdRateMaskHt40); 243 for (i = 0; i < AR9380_MAX_CHAINS; i++) 244 modal->antCtrlChain[i] = bswap16(modal->antCtrlChain[i]); 245 #endif 246 } 247 248 Static void 249 ar9380_get_paprd_masks(struct athn_softc *sc, struct ieee80211_channel *c, 250 uint32_t *ht20mask, uint32_t *ht40mask) 251 { 252 const struct ar9380_eeprom *eep = sc->sc_eep; 253 const struct ar9380_modal_eep_header *modal; 254 255 if (IEEE80211_IS_CHAN_2GHZ(c)) 256 modal = &eep->modalHeader2G; 257 else 258 modal = &eep->modalHeader5G; 259 *ht20mask = modal->papdRateMaskHt20; 260 *ht40mask = modal->papdRateMaskHt40; 261 } 262 263 Static int 264 ar9380_set_synth(struct athn_softc *sc, struct ieee80211_channel *c, 265 struct ieee80211_channel *extc) 266 { 267 uint32_t freq = c->ic_freq; 268 uint32_t chansel, phy; 269 270 if (IEEE80211_IS_CHAN_2GHZ(c)) { 271 if (AR_SREV_9485(sc)) 272 chansel = ((freq << 16) - 215) / 15; 273 else 274 chansel = (freq << 16) / 15; 275 AR_WRITE(sc, AR_PHY_SYNTH_CONTROL, AR9380_BMODE); 276 } 277 else { 278 chansel = (freq << 15) / 15; 279 chansel >>= 1; 280 AR_WRITE(sc, AR_PHY_SYNTH_CONTROL, 0); 281 } 282 283 /* Enable Long Shift Select for synthesizer. */ 284 AR_SETBITS(sc, AR_PHY_65NM_CH0_SYNTH4, 285 AR_PHY_SYNTH4_LONG_SHIFT_SELECT); 286 AR_WRITE_BARRIER(sc); 287 288 /* Program synthesizer. */ 289 phy = (chansel << 2) | AR9380_FRACMODE; 290 DPRINTFN(DBG_RF, sc, "AR_PHY_65NM_CH0_SYNTH7=0x%08x\n", phy); 291 AR_WRITE(sc, AR_PHY_65NM_CH0_SYNTH7, phy); 292 AR_WRITE_BARRIER(sc); 293 /* Toggle Load Synth Channel bit. */ 294 AR_WRITE(sc, AR_PHY_65NM_CH0_SYNTH7, phy | AR9380_LOAD_SYNTH); 295 AR_WRITE_BARRIER(sc); 296 return 0; 297 } 298 299 Static void 300 ar9380_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c, 301 struct ieee80211_channel *extc) 302 { 303 const struct ar9380_eeprom *eep = sc->sc_eep; 304 const struct ar9380_modal_eep_header *modal; 305 uint8_t db, margin, ant_div_ctrl; 306 uint32_t reg; 307 int i, maxchains; 308 309 if (IEEE80211_IS_CHAN_2GHZ(c)) 310 modal = &eep->modalHeader2G; 311 else 312 modal = &eep->modalHeader5G; 313 314 /* Apply XPA bias level. */ 315 if (AR_SREV_9485(sc)) { 316 reg = AR_READ(sc, AR9485_PHY_65NM_CH0_TOP2); 317 reg = RW(reg, AR9485_PHY_65NM_CH0_TOP2_XPABIASLVL, 318 modal->xpaBiasLvl); 319 AR_WRITE(sc, AR9485_PHY_65NM_CH0_TOP2, reg); 320 } 321 else { 322 reg = AR_READ(sc, AR_PHY_65NM_CH0_TOP); 323 reg = RW(reg, AR_PHY_65NM_CH0_TOP_XPABIASLVL, 324 modal->xpaBiasLvl & 0x3); 325 AR_WRITE(sc, AR_PHY_65NM_CH0_TOP, reg); 326 reg = AR_READ(sc, AR_PHY_65NM_CH0_THERM); 327 reg = RW(reg, AR_PHY_65NM_CH0_THERM_XPABIASLVL_MSB, 328 modal->xpaBiasLvl >> 2); 329 reg |= AR_PHY_65NM_CH0_THERM_XPASHORT2GND; 330 AR_WRITE(sc, AR_PHY_65NM_CH0_THERM, reg); 331 } 332 333 /* Apply antenna control. */ 334 reg = AR_READ(sc, AR_PHY_SWITCH_COM); 335 reg = RW(reg, AR_SWITCH_TABLE_COM_ALL, modal->antCtrlCommon); 336 AR_WRITE(sc, AR_PHY_SWITCH_COM, reg); 337 reg = AR_READ(sc, AR_PHY_SWITCH_COM_2); 338 reg = RW(reg, AR_SWITCH_TABLE_COM_2_ALL, modal->antCtrlCommon2); 339 AR_WRITE(sc, AR_PHY_SWITCH_COM_2, reg); 340 341 maxchains = AR_SREV_9485(sc) ? 1 : AR9380_MAX_CHAINS; 342 for (i = 0; i < maxchains; i++) { 343 reg = AR_READ(sc, AR_PHY_SWITCH_CHAIN(i)); 344 reg = RW(reg, AR_SWITCH_TABLE_ALL, modal->antCtrlChain[i]); 345 AR_WRITE(sc, AR_PHY_SWITCH_CHAIN(i), reg); 346 } 347 348 if (AR_SREV_9485(sc)) { 349 ant_div_ctrl = eep->base_ext1.ant_div_control; 350 reg = AR_READ(sc, AR_PHY_MC_GAIN_CTRL); 351 reg = RW(reg, AR_PHY_MC_GAIN_CTRL_ANT_DIV_CTRL_ALL, 352 MS(ant_div_ctrl, AR_EEP_ANT_DIV_CTRL_ALL)); 353 if (ant_div_ctrl & AR_EEP_ANT_DIV_CTRL_ANT_DIV) 354 reg |= AR_PHY_MC_GAIN_CTRL_ENABLE_ANT_DIV; 355 else 356 reg &= ~AR_PHY_MC_GAIN_CTRL_ENABLE_ANT_DIV; 357 AR_WRITE(sc, AR_PHY_MC_GAIN_CTRL, reg); 358 reg = AR_READ(sc, AR_PHY_CCK_DETECT); 359 if (ant_div_ctrl & AR_EEP_ANT_DIV_CTRL_FAST_DIV) 360 reg |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; 361 else 362 reg &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; 363 AR_WRITE(sc, AR_PHY_CCK_DETECT, reg); 364 } 365 366 if (eep->baseEepHeader.miscConfiguration & AR_EEP_DRIVE_STRENGTH) { 367 /* Apply drive strength. */ 368 reg = AR_READ(sc, AR_PHY_65NM_CH0_BIAS1); 369 reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_0, 5); 370 reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_1, 5); 371 reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_2, 5); 372 reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_3, 5); 373 reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_4, 5); 374 reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_5, 5); 375 AR_WRITE(sc, AR_PHY_65NM_CH0_BIAS1, reg); 376 377 reg = AR_READ(sc, AR_PHY_65NM_CH0_BIAS2); 378 reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_0, 5); 379 reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_1, 5); 380 reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_2, 5); 381 reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_3, 5); 382 reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_4, 5); 383 reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_5, 5); 384 reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_6, 5); 385 reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_7, 5); 386 reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_8, 5); 387 AR_WRITE(sc, AR_PHY_65NM_CH0_BIAS2, reg); 388 389 reg = AR_READ(sc, AR_PHY_65NM_CH0_BIAS4); 390 reg = RW(reg, AR_PHY_65NM_CH0_BIAS4_0, 5); 391 reg = RW(reg, AR_PHY_65NM_CH0_BIAS4_1, 5); 392 reg = RW(reg, AR_PHY_65NM_CH0_BIAS4_2, 5); 393 AR_WRITE(sc, AR_PHY_65NM_CH0_BIAS4, reg); 394 } 395 396 /* Apply attenuation settings. */ 397 maxchains = AR_SREV_9485(sc) ? 1 : AR9380_MAX_CHAINS; 398 for (i = 0; i < maxchains; i++) { 399 if (IEEE80211_IS_CHAN_5GHZ(c) && 400 eep->base_ext2.xatten1DBLow[i] != 0) { 401 if (c->ic_freq <= 5500) { 402 db = athn_interpolate(c->ic_freq, 403 5180, eep->base_ext2.xatten1DBLow[i], 404 5500, modal->xatten1DB[i]); 405 } 406 else { 407 db = athn_interpolate(c->ic_freq, 408 5500, modal->xatten1DB[i], 409 5785, eep->base_ext2.xatten1DBHigh[i]); 410 } 411 } 412 else 413 db = modal->xatten1DB[i]; 414 if (IEEE80211_IS_CHAN_5GHZ(c) && 415 eep->base_ext2.xatten1MarginLow[i] != 0) { 416 if (c->ic_freq <= 5500) { 417 margin = athn_interpolate(c->ic_freq, 418 5180, eep->base_ext2.xatten1MarginLow[i], 419 5500, modal->xatten1Margin[i]); 420 } 421 else { 422 margin = athn_interpolate(c->ic_freq, 423 5500, modal->xatten1Margin[i], 424 5785, eep->base_ext2.xatten1MarginHigh[i]); 425 } 426 } 427 else 428 margin = modal->xatten1Margin[i]; 429 reg = AR_READ(sc, AR_PHY_EXT_ATTEN_CTL(i)); 430 reg = RW(reg, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, db); 431 reg = RW(reg, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, margin); 432 AR_WRITE(sc, AR_PHY_EXT_ATTEN_CTL(i), reg); 433 } 434 435 /* Initialize switching regulator. */ 436 if (AR_SREV_9485(sc)) 437 ar9485_init_swreg(sc); 438 else 439 ar9485_init_swreg(sc); 440 441 /* Apply tuning capabilities. */ 442 if (AR_SREV_9485(sc) && 443 (eep->baseEepHeader.featureEnable & AR_EEP_TUNING_CAPS)) { 444 reg = AR_READ(sc, AR9485_PHY_CH0_XTAL); 445 reg = RW(reg, AR9485_PHY_CH0_XTAL_CAPINDAC, 446 eep->baseEepHeader.params_for_tuning_caps[0]); 447 reg = RW(reg, AR9485_PHY_CH0_XTAL_CAPOUTDAC, 448 eep->baseEepHeader.params_for_tuning_caps[0]); 449 AR_WRITE(sc, AR9485_PHY_CH0_XTAL, reg); 450 } 451 AR_WRITE_BARRIER(sc); 452 } 453 454 #ifdef notused 455 Static void 456 ar9380_init_swreg(struct athn_softc *sc) 457 { 458 const struct ar9380_eeprom *eep = sc->sc_eep; 459 460 if (eep->baseEepHeader.featureEnable & AR_EEP_INTERNAL_REGULATOR) { 461 /* Internal regulator is ON. */ 462 AR_CLRBITS(sc, AR_RTC_REG_CONTROL1, 463 AR_RTC_REG_CONTROL1_SWREG_PROGRAM); 464 AR_WRITE(sc, AR_RTC_REG_CONTROL0, eep->baseEepHeader.swreg); 465 AR_SETBITS(sc, AR_RTC_REG_CONTROL1, 466 AR_RTC_REG_CONTROL1_SWREG_PROGRAM); 467 } 468 else 469 AR_SETBITS(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_SWREG_PRD); 470 AR_WRITE_BARRIER(sc); 471 } 472 #endif /* notused */ 473 474 Static int 475 ar9485_pmu_write(struct athn_softc *sc, uint32_t addr, uint32_t val) 476 { 477 int ntries; 478 479 AR_WRITE(sc, addr, val); 480 /* Wait for write to complete. */ 481 for (ntries = 0; ntries < 100; ntries++) { 482 if (AR_READ(sc, addr) == val) 483 return 0; 484 AR_WRITE(sc, addr, val); /* Insist. */ 485 AR_WRITE_BARRIER(sc); 486 DELAY(10); 487 } 488 return ETIMEDOUT; 489 } 490 491 Static void 492 ar9485_init_swreg(struct athn_softc *sc) 493 { 494 const struct ar9380_eeprom *eep = sc->sc_eep; 495 uint32_t reg; 496 497 ar9485_pmu_write(sc, AR_PHY_PMU2, 498 ar9485_pmu_read(sc, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM); 499 500 if (eep->baseEepHeader.featureEnable & AR_EEP_INTERNAL_REGULATOR) { 501 ar9485_pmu_write(sc, AR_PHY_PMU1, 0x131dc17a); 502 503 reg = ar9485_pmu_read(sc, AR_PHY_PMU2); 504 reg = (reg & ~0xffc00000) | 0x10000000; 505 ar9485_pmu_write(sc, AR_PHY_PMU2, reg); 506 } 507 else { 508 ar9485_pmu_write(sc, AR_PHY_PMU1, 509 ar9485_pmu_read(sc, AR_PHY_PMU1) | AR_PHY_PMU1_PWD); 510 } 511 512 ar9485_pmu_write(sc, AR_PHY_PMU2, 513 ar9485_pmu_read(sc, AR_PHY_PMU2) | AR_PHY_PMU2_PGM); 514 } 515 516 /* 517 * NB: It is safe to call this function for 5GHz channels. 518 */ 519 Static void 520 ar9380_spur_mitigate_cck(struct athn_softc *sc, struct ieee80211_channel *c, 521 struct ieee80211_channel *extc) 522 { 523 static const int16_t freqs[] = { 2420, 2440, 2464, 2480 }; 524 size_t i; 525 int spur, freq; 526 uint32_t reg; 527 528 for (i = 0; i < __arraycount(freqs); i++) { 529 spur = freqs[i] - c->ic_freq; 530 if (abs(spur) < 10) /* +/- 10MHz range. */ 531 break; 532 } 533 if (i == __arraycount(freqs)) { 534 /* Disable CCK spur mitigation. */ 535 reg = AR_READ(sc, AR_PHY_AGC_CONTROL); 536 reg = RW(reg, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5); 537 AR_WRITE(sc, AR_PHY_AGC_CONTROL, reg); 538 reg = AR_READ(sc, AR_PHY_CCK_SPUR_MIT); 539 reg = RW(reg, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0); 540 reg &= ~AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT; 541 AR_WRITE(sc, AR_PHY_CCK_SPUR_MIT, reg); 542 AR_WRITE_BARRIER(sc); 543 return; 544 } 545 freq = (spur * 524288) / 11; 546 547 reg = AR_READ(sc, AR_PHY_AGC_CONTROL); 548 reg = RW(reg, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7); 549 AR_WRITE(sc, AR_PHY_AGC_CONTROL, reg); 550 551 reg = AR_READ(sc, AR_PHY_CCK_SPUR_MIT); 552 reg = RW(reg, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, freq); 553 reg = RW(reg, AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f); 554 reg = RW(reg, AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE, 0x2); 555 reg |= AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT; 556 AR_WRITE(sc, AR_PHY_CCK_SPUR_MIT, reg); 557 AR_WRITE_BARRIER(sc); 558 } 559 560 Static void 561 ar9380_spur_mitigate_ofdm(struct athn_softc *sc, struct ieee80211_channel *c, 562 struct ieee80211_channel *extc) 563 { 564 const struct ar9380_eeprom *eep = sc->sc_eep; 565 const uint8_t *spurchans; 566 uint32_t reg; 567 int idx, spur_delta_phase, spur_off, range, i; 568 int freq, spur, spur_freq_sd, spur_subchannel_sd; 569 570 if (IEEE80211_IS_CHAN_2GHZ(c)) 571 spurchans = eep->modalHeader2G.spurChans; 572 else 573 spurchans = eep->modalHeader5G.spurChans; 574 if (spurchans[0] == 0) 575 return; 576 577 /* Disable OFDM spur mitigation. */ 578 AR_CLRBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER); 579 580 reg = AR_READ(sc, AR_PHY_TIMING11); 581 reg = RW(reg, AR_PHY_TIMING11_SPUR_FREQ_SD, 0); 582 reg = RW(reg, AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0); 583 reg &= ~AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC; 584 reg &= ~AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR; 585 AR_WRITE(sc, AR_PHY_TIMING11, reg); 586 587 AR_CLRBITS(sc, AR_PHY_SFCORR_EXT, 588 AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD); 589 590 AR_CLRBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI); 591 592 reg = AR_READ(sc, AR_PHY_SPUR_REG); 593 reg = RW(reg, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0); 594 reg &= ~AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI; 595 reg &= ~AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT; 596 reg &= ~AR_PHY_SPUR_REG_ENABLE_MASK_PPM; 597 AR_WRITE(sc, AR_PHY_SPUR_REG, reg); 598 AR_WRITE_BARRIER(sc); 599 600 freq = c->ic_freq; 601 #ifndef IEEE80211_NO_HT 602 if (extc != NULL) { 603 range = 19; /* +/- 19MHz range. */ 604 if (AR_READ(sc, AR_PHY_GEN_CTRL) & AR_PHY_GC_DYN2040_PRI_CH) 605 freq += 10; 606 else 607 freq -= 10; 608 } 609 else 610 #endif 611 range = 10; /* +/- 10MHz range. */ 612 for (i = 0; i < AR9380_EEPROM_MODAL_SPURS; i++) { 613 spur = spurchans[i]; 614 if (spur == 0) 615 return; 616 /* Convert to frequency. */ 617 if (IEEE80211_IS_CHAN_2GHZ(c)) 618 spur = 2300 + spur; 619 else 620 spur = 4900 + (spur * 5); 621 spur -= freq; 622 if (abs(spur) < range) 623 break; 624 } 625 if (i == AR9380_EEPROM_MODAL_SPURS) 626 return; 627 628 /* Enable OFDM spur mitigation. */ 629 #ifndef IEEE80211_NO_HT 630 if (extc != NULL) { 631 spur_delta_phase = (spur * 131072) / 5; 632 reg = AR_READ(sc, AR_PHY_GEN_CTRL); 633 if (spur < 0) { 634 spur_subchannel_sd = 635 (reg & AR_PHY_GC_DYN2040_PRI_CH) == 0; 636 spur_off = spur + 10; 637 } 638 else { 639 spur_subchannel_sd = 640 (reg & AR_PHY_GC_DYN2040_PRI_CH) != 0; 641 spur_off = spur - 10; 642 } 643 } 644 else 645 #endif 646 { 647 spur_delta_phase = (spur * 262144) / 5; 648 spur_subchannel_sd = 0; 649 spur_off = spur; 650 } 651 spur_freq_sd = (spur_off * 512) / 11; 652 653 AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER); 654 655 reg = AR_READ(sc, AR_PHY_TIMING11); 656 reg = RW(reg, AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd); 657 reg = RW(reg, AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase); 658 reg |= AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC; 659 reg |= AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR; 660 AR_WRITE(sc, AR_PHY_TIMING11, reg); 661 662 reg = AR_READ(sc, AR_PHY_SFCORR_EXT); 663 if (spur_subchannel_sd) 664 reg |= AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD; 665 else 666 reg &= ~AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD; 667 AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg); 668 669 AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI); 670 671 reg = AR_READ(sc, AR_PHY_SPUR_REG); 672 reg = RW(reg, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff); 673 reg = RW(reg, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34); 674 reg |= AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI; 675 if (AR_READ(sc, AR_PHY_MODE) & AR_PHY_MODE_DYNAMIC) 676 reg |= AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT; 677 reg |= AR_PHY_SPUR_REG_ENABLE_MASK_PPM; 678 AR_WRITE(sc, AR_PHY_SPUR_REG, reg); 679 680 idx = (spur * 16) / 5; 681 if (idx < 0) 682 idx--; 683 684 /* Write pilot mask. */ 685 AR_SETBITS(sc, AR_PHY_TIMING4, 686 AR_PHY_TIMING4_ENABLE_PILOT_MASK | 687 AR_PHY_TIMING4_ENABLE_CHAN_MASK); 688 689 reg = AR_READ(sc, AR_PHY_PILOT_SPUR_MASK); 690 reg = RW(reg, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, idx); 691 reg = RW(reg, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0x0c); 692 AR_WRITE(sc, AR_PHY_PILOT_SPUR_MASK, reg); 693 694 reg = AR_READ(sc, AR_PHY_SPUR_MASK_A); 695 reg = RW(reg, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, idx); 696 reg = RW(reg, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0); 697 AR_WRITE(sc, AR_PHY_SPUR_MASK_A, reg); 698 699 reg = AR_READ(sc, AR_PHY_CHAN_SPUR_MASK); 700 reg = RW(reg, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, idx); 701 reg = RW(reg, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0x0c); 702 AR_WRITE(sc, AR_PHY_CHAN_SPUR_MASK, reg); 703 AR_WRITE_BARRIER(sc); 704 } 705 706 Static void 707 ar9380_spur_mitigate(struct athn_softc *sc, struct ieee80211_channel *c, 708 struct ieee80211_channel *extc) 709 { 710 711 /* NB: We call spur_mitigate_cck for 5GHz too, just to disable it. */ 712 ar9380_spur_mitigate_cck(sc, c, extc); 713 ar9380_spur_mitigate_ofdm(sc, c, extc); 714 } 715 716 Static void 717 ar9380_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c, 718 struct ieee80211_channel *extc) 719 { 720 const struct ar9380_eeprom *eep = sc->sc_eep; 721 uint8_t tpow_cck[4], tpow_ofdm[4]; 722 uint8_t tpow_ht20[14], tpow_ht40[14]; 723 int16_t power[ATHN_POWER_COUNT]; 724 725 if (IEEE80211_IS_CHAN_2GHZ(c)) { 726 /* Get CCK target powers. */ 727 ar9003_get_lg_tpow(sc, c, AR_CTL_11B, 728 eep->calTargetFbinCck, eep->calTargetPowerCck, 729 AR9380_NUM_2G_CCK_TARGET_POWERS, tpow_cck); 730 731 /* Get OFDM target powers. */ 732 ar9003_get_lg_tpow(sc, c, AR_CTL_11G, 733 eep->calTargetFbin2G, eep->calTargetPower2G, 734 AR9380_NUM_2G_20_TARGET_POWERS, tpow_ofdm); 735 736 /* Get HT-20 target powers. */ 737 ar9003_get_ht_tpow(sc, c, AR_CTL_2GHT20, 738 eep->calTargetFbin2GHT20, eep->calTargetPower2GHT20, 739 AR9380_NUM_2G_20_TARGET_POWERS, tpow_ht20); 740 741 if (extc != NULL) { 742 /* Get HT-40 target powers. */ 743 ar9003_get_ht_tpow(sc, c, AR_CTL_2GHT40, 744 eep->calTargetFbin2GHT40, 745 eep->calTargetPower2GHT40, 746 AR9380_NUM_2G_40_TARGET_POWERS, tpow_ht40); 747 } 748 } 749 else { 750 /* Get OFDM target powers. */ 751 ar9003_get_lg_tpow(sc, c, AR_CTL_11A, 752 eep->calTargetFbin5G, eep->calTargetPower5G, 753 AR9380_NUM_5G_20_TARGET_POWERS, tpow_ofdm); 754 755 /* Get HT-20 target powers. */ 756 ar9003_get_ht_tpow(sc, c, AR_CTL_5GHT20, 757 eep->calTargetFbin5GHT20, eep->calTargetPower5GHT20, 758 AR9380_NUM_5G_20_TARGET_POWERS, tpow_ht20); 759 760 if (extc != NULL) { 761 /* Get HT-40 target powers. */ 762 ar9003_get_ht_tpow(sc, c, AR_CTL_5GHT40, 763 eep->calTargetFbin5GHT40, 764 eep->calTargetPower5GHT40, 765 AR9380_NUM_5G_40_TARGET_POWERS, tpow_ht40); 766 } 767 } 768 769 memset(power, 0, sizeof(power)); 770 /* Shuffle target powers accross transmit rates. */ 771 power[ATHN_POWER_OFDM6 ] = 772 power[ATHN_POWER_OFDM9 ] = 773 power[ATHN_POWER_OFDM12] = 774 power[ATHN_POWER_OFDM18] = 775 power[ATHN_POWER_OFDM24] = tpow_ofdm[0]; 776 power[ATHN_POWER_OFDM36] = tpow_ofdm[1]; 777 power[ATHN_POWER_OFDM48] = tpow_ofdm[2]; 778 power[ATHN_POWER_OFDM54] = tpow_ofdm[3]; 779 if (IEEE80211_IS_CHAN_2GHZ(c)) { 780 power[ATHN_POWER_CCK1_LP ] = 781 power[ATHN_POWER_CCK2_LP ] = 782 power[ATHN_POWER_CCK2_SP ] = 783 power[ATHN_POWER_CCK55_LP] = tpow_cck[0]; 784 power[ATHN_POWER_CCK55_SP] = tpow_cck[1]; 785 power[ATHN_POWER_CCK11_LP] = tpow_cck[2]; 786 power[ATHN_POWER_CCK11_SP] = tpow_cck[3]; 787 } 788 /* Next entry covers MCS0, MCS8 and MCS16. */ 789 power[ATHN_POWER_HT20( 0)] = tpow_ht20[ 0]; 790 /* Next entry covers MCS1-3, MCS9-11 and MCS17-19. */ 791 power[ATHN_POWER_HT20( 1)] = tpow_ht20[ 1]; 792 power[ATHN_POWER_HT20( 4)] = tpow_ht20[ 2]; 793 power[ATHN_POWER_HT20( 5)] = tpow_ht20[ 3]; 794 power[ATHN_POWER_HT20( 6)] = tpow_ht20[ 4]; 795 power[ATHN_POWER_HT20( 7)] = tpow_ht20[ 5]; 796 power[ATHN_POWER_HT20(12)] = tpow_ht20[ 6]; 797 power[ATHN_POWER_HT20(13)] = tpow_ht20[ 7]; 798 power[ATHN_POWER_HT20(14)] = tpow_ht20[ 8]; 799 power[ATHN_POWER_HT20(15)] = tpow_ht20[ 9]; 800 power[ATHN_POWER_HT20(20)] = tpow_ht20[10]; 801 power[ATHN_POWER_HT20(21)] = tpow_ht20[11]; 802 power[ATHN_POWER_HT20(22)] = tpow_ht20[12]; 803 power[ATHN_POWER_HT20(23)] = tpow_ht20[13]; 804 if (extc != NULL) { 805 /* Next entry covers MCS0, MCS8 and MCS16. */ 806 power[ATHN_POWER_HT40( 0)] = tpow_ht40[ 0]; 807 /* Next entry covers MCS1-3, MCS9-11 and MCS17-19. */ 808 power[ATHN_POWER_HT40( 1)] = tpow_ht40[ 1]; 809 power[ATHN_POWER_HT40( 4)] = tpow_ht40[ 2]; 810 power[ATHN_POWER_HT40( 5)] = tpow_ht40[ 3]; 811 power[ATHN_POWER_HT40( 6)] = tpow_ht40[ 4]; 812 power[ATHN_POWER_HT40( 7)] = tpow_ht40[ 5]; 813 power[ATHN_POWER_HT40(12)] = tpow_ht40[ 6]; 814 power[ATHN_POWER_HT40(13)] = tpow_ht40[ 7]; 815 power[ATHN_POWER_HT40(14)] = tpow_ht40[ 8]; 816 power[ATHN_POWER_HT40(15)] = tpow_ht40[ 9]; 817 power[ATHN_POWER_HT40(20)] = tpow_ht40[10]; 818 power[ATHN_POWER_HT40(21)] = tpow_ht40[11]; 819 power[ATHN_POWER_HT40(22)] = tpow_ht40[12]; 820 power[ATHN_POWER_HT40(23)] = tpow_ht40[13]; 821 } 822 823 /* Write transmit power values to hardware. */ 824 ar9003_write_txpower(sc, power); 825 826 /* Apply transmit power correction. */ 827 ar9380_set_correction(sc, c); 828 } 829 830 Static void 831 ar9380_get_correction(struct athn_softc *sc, struct ieee80211_channel *c, 832 int chain, int *corr, int *temp) 833 { 834 const struct ar9380_eeprom *eep = sc->sc_eep; 835 const struct ar9380_cal_data_per_freq_op_loop *pierdata; 836 const uint8_t *pierfreq; 837 uint8_t fbin; 838 int lo, hi, npiers; 839 840 if (IEEE80211_IS_CHAN_2GHZ(c)) { 841 pierfreq = eep->calFreqPier2G; 842 pierdata = eep->calPierData2G[chain]; 843 npiers = AR9380_NUM_2G_CAL_PIERS; 844 } 845 else { 846 pierfreq = eep->calFreqPier5G; 847 pierdata = eep->calPierData5G[chain]; 848 npiers = AR9380_NUM_5G_CAL_PIERS; 849 } 850 /* Find channel in ROM pier table. */ 851 fbin = athn_chan2fbin(c); 852 athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi); 853 854 *corr = athn_interpolate(fbin, 855 pierfreq[lo], pierdata[lo].refPower, 856 pierfreq[hi], pierdata[hi].refPower); 857 *temp = athn_interpolate(fbin, 858 pierfreq[lo], pierdata[lo].tempMeas, 859 pierfreq[hi], pierdata[hi].tempMeas); 860 } 861 862 Static void 863 ar9380_set_correction(struct athn_softc *sc, struct ieee80211_channel *c) 864 { 865 const struct ar9380_eeprom *eep = sc->sc_eep; 866 const struct ar9380_modal_eep_header *modal; 867 uint32_t reg; 868 int8_t slope; 869 int i, corr, temp, temp0; 870 871 if (IEEE80211_IS_CHAN_2GHZ(c)) 872 modal = &eep->modalHeader2G; 873 else 874 modal = &eep->modalHeader5G; 875 876 temp0 = 0; /* XXX: gcc */ 877 for (i = 0; i < AR9380_MAX_CHAINS; i++) { 878 ar9380_get_correction(sc, c, i, &corr, &temp); 879 if (i == 0) 880 temp0 = temp; 881 882 reg = AR_READ(sc, AR_PHY_TPC_11_B(i)); 883 reg = RW(reg, AR_PHY_TPC_11_OLPC_GAIN_DELTA, corr); 884 AR_WRITE(sc, AR_PHY_TPC_11_B(i), reg); 885 886 /* Enable open loop power control. */ 887 reg = AR_READ(sc, AR_PHY_TPC_6_B(i)); 888 reg = RW(reg, AR_PHY_TPC_6_ERROR_EST_MODE, 3); 889 AR_WRITE(sc, AR_PHY_TPC_6_B(i), reg); 890 } 891 892 /* Enable temperature compensation. */ 893 if (IEEE80211_IS_CHAN_5GHZ(c) && 894 eep->base_ext2.tempSlopeLow != 0) { 895 if (c->ic_freq <= 5500) { 896 slope = athn_interpolate(c->ic_freq, 897 5180, eep->base_ext2.tempSlopeLow, 898 5500, modal->tempSlope); 899 } 900 else { 901 slope = athn_interpolate(c->ic_freq, 902 5500, modal->tempSlope, 903 5785, eep->base_ext2.tempSlopeHigh); 904 } 905 } 906 else 907 slope = modal->tempSlope; 908 909 reg = AR_READ(sc, AR_PHY_TPC_19); 910 reg = RW(reg, AR_PHY_TPC_19_ALPHA_THERM, slope); 911 AR_WRITE(sc, AR_PHY_TPC_19, reg); 912 913 reg = AR_READ(sc, AR_PHY_TPC_18); 914 reg = RW(reg, AR_PHY_TPC_18_THERM_CAL, temp0); 915 AR_WRITE(sc, AR_PHY_TPC_18, reg); 916 AR_WRITE_BARRIER(sc); 917 } 918