Home | History | Annotate | Line # | Download | only in hwmgr
      1 /*	$NetBSD: amdgpu_ppatomctrl.c,v 1.3 2021/12/19 12:21:29 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2015 Advanced Micro Devices, Inc.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     22  * OTHER DEALINGS IN THE SOFTWARE.
     23  *
     24  */
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: amdgpu_ppatomctrl.c,v 1.3 2021/12/19 12:21:29 riastradh Exp $");
     27 
     28 #include "pp_debug.h"
     29 #include <linux/module.h>
     30 #include <linux/slab.h>
     31 #include <linux/delay.h>
     32 #include "atom.h"
     33 #include "ppatomctrl.h"
     34 #include "atombios.h"
     35 #include "cgs_common.h"
     36 #include "ppevvmath.h"
     37 
     38 #define MEM_ID_MASK           0xff000000
     39 #define MEM_ID_SHIFT          24
     40 #define CLOCK_RANGE_MASK      0x00ffffff
     41 #define CLOCK_RANGE_SHIFT     0
     42 #define LOW_NIBBLE_MASK       0xf
     43 #define DATA_EQU_PREV         0
     44 #define DATA_FROM_TABLE       4
     45 
     46 union voltage_object_info {
     47 	struct _ATOM_VOLTAGE_OBJECT_INFO v1;
     48 	struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
     49 	struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
     50 };
     51 
     52 static int atomctrl_retrieve_ac_timing(
     53 		uint8_t index,
     54 		ATOM_INIT_REG_BLOCK *reg_block,
     55 		pp_atomctrl_mc_reg_table *table)
     56 {
     57 	uint32_t i, j;
     58 	uint8_t tmem_id;
     59 	ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
     60 		((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
     61 
     62 	uint8_t num_ranges = 0;
     63 
     64 	while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
     65 			num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
     66 		tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
     67 
     68 		if (index == tmem_id) {
     69 			table->mc_reg_table_entry[num_ranges].mclk_max =
     70 				(uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
     71 						CLOCK_RANGE_SHIFT);
     72 
     73 			for (i = 0, j = 1; i < table->last; i++) {
     74 				if ((table->mc_reg_address[i].uc_pre_reg_data &
     75 							LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
     76 					table->mc_reg_table_entry[num_ranges].mc_data[i] =
     77 						(uint32_t)*((uint32_t *)reg_data + j);
     78 					j++;
     79 				} else if ((table->mc_reg_address[i].uc_pre_reg_data &
     80 							LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
     81 					table->mc_reg_table_entry[num_ranges].mc_data[i] =
     82 						table->mc_reg_table_entry[num_ranges].mc_data[i-1];
     83 				}
     84 			}
     85 			num_ranges++;
     86 		}
     87 
     88 		reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
     89 			((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
     90 	}
     91 
     92 	PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
     93 			"Invalid VramInfo table.", return -1);
     94 	table->num_entries = num_ranges;
     95 
     96 	return 0;
     97 }
     98 
     99 /**
    100  * Get memory clock AC timing registers index from VBIOS table
    101  * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
    102  * @param    reg_block the address ATOM_INIT_REG_BLOCK
    103  * @param    table the address of MCRegTable
    104  * @return   0
    105  */
    106 static int atomctrl_set_mc_reg_address_table(
    107 		ATOM_INIT_REG_BLOCK *reg_block,
    108 		pp_atomctrl_mc_reg_table *table)
    109 {
    110 	uint8_t i = 0;
    111 	uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
    112 			/ sizeof(ATOM_INIT_REG_INDEX_FORMAT));
    113 	ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
    114 
    115 	num_entries--;        /* subtract 1 data end mark entry */
    116 
    117 	PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
    118 			"Invalid VramInfo table.", return -1);
    119 
    120 	/* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
    121 	while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
    122 			(i < num_entries)) {
    123 		table->mc_reg_address[i].s1 =
    124 			(uint16_t)(le16_to_cpu(format->usRegIndex));
    125 		table->mc_reg_address[i].uc_pre_reg_data =
    126 			format->ucPreRegDataLength;
    127 
    128 		i++;
    129 		format = (ATOM_INIT_REG_INDEX_FORMAT *)
    130 			((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
    131 	}
    132 
    133 	table->last = i;
    134 	return 0;
    135 }
    136 
    137 int atomctrl_initialize_mc_reg_table(
    138 		struct pp_hwmgr *hwmgr,
    139 		uint8_t module_index,
    140 		pp_atomctrl_mc_reg_table *table)
    141 {
    142 	ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
    143 	ATOM_INIT_REG_BLOCK *reg_block;
    144 	int result = 0;
    145 	u8 frev, crev;
    146 	u16 size;
    147 
    148 	vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
    149 		smu_atom_get_data_table(hwmgr->adev,
    150 				GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
    151 
    152 	if (module_index >= vram_info->ucNumOfVRAMModule) {
    153 		pr_err("Invalid VramInfo table.");
    154 		result = -1;
    155 	} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
    156 		pr_err("Invalid VramInfo table.");
    157 		result = -1;
    158 	}
    159 
    160 	if (0 == result) {
    161 		reg_block = (ATOM_INIT_REG_BLOCK *)
    162 			((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
    163 		result = atomctrl_set_mc_reg_address_table(reg_block, table);
    164 	}
    165 
    166 	if (0 == result) {
    167 		result = atomctrl_retrieve_ac_timing(module_index,
    168 					reg_block, table);
    169 	}
    170 
    171 	return result;
    172 }
    173 
    174 /**
    175  * Set DRAM timings based on engine clock and memory clock.
    176  */
    177 int atomctrl_set_engine_dram_timings_rv770(
    178 		struct pp_hwmgr *hwmgr,
    179 		uint32_t engine_clock,
    180 		uint32_t memory_clock)
    181 {
    182 	struct amdgpu_device *adev = hwmgr->adev;
    183 
    184 	SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
    185 
    186 	/* They are both in 10KHz Units. */
    187 	engine_clock_parameters.ulTargetEngineClock =
    188 		cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
    189 			    ((COMPUTE_ENGINE_PLL_PARAM << 24)));
    190 
    191 	/* in 10 khz units.*/
    192 	engine_clock_parameters.sReserved.ulClock =
    193 		cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
    194 
    195 	return amdgpu_atom_execute_table(adev->mode_info.atom_context,
    196 			GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
    197 			(uint32_t *)&engine_clock_parameters);
    198 }
    199 
    200 /**
    201  * Private Function to get the PowerPlay Table Address.
    202  * WARNING: The tabled returned by this function is in
    203  * dynamically allocated memory.
    204  * The caller has to release if by calling kfree.
    205  */
    206 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
    207 {
    208 	int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
    209 	u8 frev, crev;
    210 	u16 size;
    211 	union voltage_object_info *voltage_info;
    212 
    213 	voltage_info = (union voltage_object_info *)
    214 		smu_atom_get_data_table(device, index,
    215 			&size, &frev, &crev);
    216 
    217 	if (voltage_info != NULL)
    218 		return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
    219 	else
    220 		return NULL;
    221 }
    222 
    223 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
    224 		const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
    225 		uint8_t voltage_type, uint8_t voltage_mode)
    226 {
    227 	unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
    228 	unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
    229 	const uint8_t *start = (const uint8_t *)voltage_object_info_table;
    230 
    231 	while (offset < size) {
    232 		const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
    233 			(const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
    234 
    235 		if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
    236 			voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
    237 			return voltage_object;
    238 
    239 		offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
    240 	}
    241 
    242 	return NULL;
    243 }
    244 
    245 /** atomctrl_get_memory_pll_dividers_si().
    246  *
    247  * @param hwmgr                 input parameter: pointer to HwMgr
    248  * @param clock_value             input parameter: memory clock
    249  * @param dividers                 output parameter: memory PLL dividers
    250  * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
    251  */
    252 int atomctrl_get_memory_pll_dividers_si(
    253 		struct pp_hwmgr *hwmgr,
    254 		uint32_t clock_value,
    255 		pp_atomctrl_memory_clock_param *mpll_param,
    256 		bool strobe_mode)
    257 {
    258 	struct amdgpu_device *adev = hwmgr->adev;
    259 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
    260 	int result;
    261 
    262 	mpll_parameters.ulClock = cpu_to_le32(clock_value);
    263 	mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
    264 
    265 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
    266 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
    267 		(uint32_t *)&mpll_parameters);
    268 
    269 	if (0 == result) {
    270 		mpll_param->mpll_fb_divider.clk_frac =
    271 			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
    272 		mpll_param->mpll_fb_divider.cl_kf =
    273 			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
    274 		mpll_param->mpll_post_divider =
    275 			(uint32_t)mpll_parameters.ucPostDiv;
    276 		mpll_param->vco_mode =
    277 			(uint32_t)(mpll_parameters.ucPllCntlFlag &
    278 					MPLL_CNTL_FLAG_VCO_MODE_MASK);
    279 		mpll_param->yclk_sel =
    280 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
    281 						MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
    282 		mpll_param->qdr =
    283 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
    284 						MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
    285 		mpll_param->half_rate =
    286 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
    287 						MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
    288 		mpll_param->dll_speed =
    289 			(uint32_t)(mpll_parameters.ucDllSpeed);
    290 		mpll_param->bw_ctrl =
    291 			(uint32_t)(mpll_parameters.ucBWCntl);
    292 	}
    293 
    294 	return result;
    295 }
    296 
    297 /** atomctrl_get_memory_pll_dividers_vi().
    298  *
    299  * @param hwmgr                 input parameter: pointer to HwMgr
    300  * @param clock_value             input parameter: memory clock
    301  * @param dividers               output parameter: memory PLL dividers
    302  */
    303 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
    304 		uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
    305 {
    306 	struct amdgpu_device *adev = hwmgr->adev;
    307 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
    308 	int result;
    309 
    310 	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
    311 
    312 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
    313 			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
    314 			(uint32_t *)&mpll_parameters);
    315 
    316 	if (!result)
    317 		mpll_param->mpll_post_divider =
    318 				(uint32_t)mpll_parameters.ulClock.ucPostDiv;
    319 
    320 	return result;
    321 }
    322 
    323 int atomctrl_get_memory_pll_dividers_ai(struct pp_hwmgr *hwmgr,
    324 					uint32_t clock_value,
    325 					pp_atomctrl_memory_clock_param_ai *mpll_param)
    326 {
    327 	struct amdgpu_device *adev = hwmgr->adev;
    328 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_3 mpll_parameters = {{0}, 0, 0};
    329 	int result;
    330 
    331 	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
    332 
    333 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
    334 			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
    335 			(uint32_t *)&mpll_parameters);
    336 
    337 	/* VEGAM's mpll takes sometime to finish computing */
    338 	udelay(10);
    339 
    340 	if (!result) {
    341 		mpll_param->ulMclk_fcw_int =
    342 			le16_to_cpu(mpll_parameters.usMclk_fcw_int);
    343 		mpll_param->ulMclk_fcw_frac =
    344 			le16_to_cpu(mpll_parameters.usMclk_fcw_frac);
    345 		mpll_param->ulClock =
    346 			le32_to_cpu(mpll_parameters.ulClock.ulClock);
    347 		mpll_param->ulPostDiv = mpll_parameters.ulClock.ucPostDiv;
    348 	}
    349 
    350 	return result;
    351 }
    352 
    353 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
    354 					  uint32_t clock_value,
    355 					  pp_atomctrl_clock_dividers_kong *dividers)
    356 {
    357 	struct amdgpu_device *adev = hwmgr->adev;
    358 	COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
    359 	int result;
    360 
    361 	pll_parameters.ulClock = cpu_to_le32(clock_value);
    362 
    363 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
    364 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
    365 		(uint32_t *)&pll_parameters);
    366 
    367 	if (0 == result) {
    368 		dividers->pll_post_divider = pll_parameters.ucPostDiv;
    369 		dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
    370 	}
    371 
    372 	return result;
    373 }
    374 
    375 int atomctrl_get_engine_pll_dividers_vi(
    376 		struct pp_hwmgr *hwmgr,
    377 		uint32_t clock_value,
    378 		pp_atomctrl_clock_dividers_vi *dividers)
    379 {
    380 	struct amdgpu_device *adev = hwmgr->adev;
    381 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
    382 	int result;
    383 
    384 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
    385 	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
    386 
    387 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
    388 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
    389 		(uint32_t *)&pll_patameters);
    390 
    391 	if (0 == result) {
    392 		dividers->pll_post_divider =
    393 			pll_patameters.ulClock.ucPostDiv;
    394 		dividers->real_clock =
    395 			le32_to_cpu(pll_patameters.ulClock.ulClock);
    396 
    397 		dividers->ul_fb_div.ul_fb_div_frac =
    398 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
    399 		dividers->ul_fb_div.ul_fb_div =
    400 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
    401 
    402 		dividers->uc_pll_ref_div =
    403 			pll_patameters.ucPllRefDiv;
    404 		dividers->uc_pll_post_div =
    405 			pll_patameters.ucPllPostDiv;
    406 		dividers->uc_pll_cntl_flag =
    407 			pll_patameters.ucPllCntlFlag;
    408 	}
    409 
    410 	return result;
    411 }
    412 
    413 int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
    414 		uint32_t clock_value,
    415 		pp_atomctrl_clock_dividers_ai *dividers)
    416 {
    417 	struct amdgpu_device *adev = hwmgr->adev;
    418 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
    419 	int result;
    420 
    421 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
    422 	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
    423 
    424 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
    425 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
    426 		(uint32_t *)&pll_patameters);
    427 
    428 	if (0 == result) {
    429 		dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
    430 		dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
    431 		dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
    432 		dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
    433 		dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
    434 		dividers->ucSscEnable         = pll_patameters.ucSscEnable;
    435 		dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
    436 		dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
    437 		dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
    438 		dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
    439 		dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
    440 	}
    441 	return result;
    442 }
    443 
    444 int atomctrl_get_dfs_pll_dividers_vi(
    445 		struct pp_hwmgr *hwmgr,
    446 		uint32_t clock_value,
    447 		pp_atomctrl_clock_dividers_vi *dividers)
    448 {
    449 	struct amdgpu_device *adev = hwmgr->adev;
    450 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
    451 	int result;
    452 
    453 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
    454 	pll_patameters.ulClock.ucPostDiv =
    455 		COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
    456 
    457 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
    458 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
    459 		(uint32_t *)&pll_patameters);
    460 
    461 	if (0 == result) {
    462 		dividers->pll_post_divider =
    463 			pll_patameters.ulClock.ucPostDiv;
    464 		dividers->real_clock =
    465 			le32_to_cpu(pll_patameters.ulClock.ulClock);
    466 
    467 		dividers->ul_fb_div.ul_fb_div_frac =
    468 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
    469 		dividers->ul_fb_div.ul_fb_div =
    470 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
    471 
    472 		dividers->uc_pll_ref_div =
    473 			pll_patameters.ucPllRefDiv;
    474 		dividers->uc_pll_post_div =
    475 			pll_patameters.ucPllPostDiv;
    476 		dividers->uc_pll_cntl_flag =
    477 			pll_patameters.ucPllCntlFlag;
    478 	}
    479 
    480 	return result;
    481 }
    482 
    483 /**
    484  * Get the reference clock in 10KHz
    485  */
    486 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
    487 {
    488 	ATOM_FIRMWARE_INFO *fw_info;
    489 	u8 frev, crev;
    490 	u16 size;
    491 	uint32_t clock;
    492 
    493 	fw_info = (ATOM_FIRMWARE_INFO *)
    494 		smu_atom_get_data_table(hwmgr->adev,
    495 			GetIndexIntoMasterTable(DATA, FirmwareInfo),
    496 			&size, &frev, &crev);
    497 
    498 	if (fw_info == NULL)
    499 		clock = 2700;
    500 	else
    501 		clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
    502 
    503 	return clock;
    504 }
    505 
    506 /**
    507  * Returns true if the given voltage type is controlled by GPIO pins.
    508  * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
    509  * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
    510  * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
    511  */
    512 bool atomctrl_is_voltage_controlled_by_gpio_v3(
    513 		struct pp_hwmgr *hwmgr,
    514 		uint8_t voltage_type,
    515 		uint8_t voltage_mode)
    516 {
    517 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
    518 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
    519 	bool ret;
    520 
    521 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
    522 			"Could not find Voltage Table in BIOS.", return false;);
    523 
    524 	ret = (NULL != atomctrl_lookup_voltage_type_v3
    525 			(voltage_info, voltage_type, voltage_mode)) ? true : false;
    526 
    527 	return ret;
    528 }
    529 
    530 int atomctrl_get_voltage_table_v3(
    531 		struct pp_hwmgr *hwmgr,
    532 		uint8_t voltage_type,
    533 		uint8_t voltage_mode,
    534 		pp_atomctrl_voltage_table *voltage_table)
    535 {
    536 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
    537 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
    538 	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
    539 	unsigned int i;
    540 
    541 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
    542 			"Could not find Voltage Table in BIOS.", return -1;);
    543 
    544 	voltage_object = atomctrl_lookup_voltage_type_v3
    545 		(voltage_info, voltage_type, voltage_mode);
    546 
    547 	if (voltage_object == NULL)
    548 		return -1;
    549 
    550 	PP_ASSERT_WITH_CODE(
    551 			(voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
    552 			PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
    553 			"Too many voltage entries!",
    554 			return -1;
    555 			);
    556 
    557 	for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
    558 		voltage_table->entries[i].value =
    559 			le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
    560 		voltage_table->entries[i].smio_low =
    561 			le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
    562 	}
    563 
    564 	voltage_table->mask_low    =
    565 		le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
    566 	voltage_table->count      =
    567 		voltage_object->asGpioVoltageObj.ucGpioEntryNum;
    568 	voltage_table->phase_delay =
    569 		voltage_object->asGpioVoltageObj.ucPhaseDelay;
    570 
    571 	return 0;
    572 }
    573 
    574 static bool atomctrl_lookup_gpio_pin(
    575 		ATOM_GPIO_PIN_LUT * gpio_lookup_table,
    576 		const uint32_t pinId,
    577 		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
    578 {
    579 	unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
    580 	unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
    581 	uint8_t *start = (uint8_t *)gpio_lookup_table;
    582 
    583 	while (offset < size) {
    584 		const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
    585 			(const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
    586 
    587 		if (pinId == pin_assignment->ucGPIO_ID) {
    588 			gpio_pin_assignment->uc_gpio_pin_bit_shift =
    589 				pin_assignment->ucGpioPinBitShift;
    590 			gpio_pin_assignment->us_gpio_pin_aindex =
    591 				le16_to_cpu(pin_assignment->usGpioPin_AIndex);
    592 			return true;
    593 		}
    594 
    595 		offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
    596 	}
    597 
    598 	return false;
    599 }
    600 
    601 /**
    602  * Private Function to get the PowerPlay Table Address.
    603  * WARNING: The tabled returned by this function is in
    604  * dynamically allocated memory.
    605  * The caller has to release if by calling kfree.
    606  */
    607 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
    608 {
    609 	u8 frev, crev;
    610 	u16 size;
    611 	void *table_address;
    612 
    613 	table_address = (ATOM_GPIO_PIN_LUT *)
    614 		smu_atom_get_data_table(device,
    615 				GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
    616 				&size, &frev, &crev);
    617 
    618 	PP_ASSERT_WITH_CODE((NULL != table_address),
    619 			"Error retrieving BIOS Table Address!", return NULL;);
    620 
    621 	return (ATOM_GPIO_PIN_LUT *)table_address;
    622 }
    623 
    624 /**
    625  * Returns 1 if the given pin id find in lookup table.
    626  */
    627 bool atomctrl_get_pp_assign_pin(
    628 		struct pp_hwmgr *hwmgr,
    629 		const uint32_t pinId,
    630 		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
    631 {
    632 	bool bRet = false;
    633 	ATOM_GPIO_PIN_LUT *gpio_lookup_table =
    634 		get_gpio_lookup_table(hwmgr->adev);
    635 
    636 	PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
    637 			"Could not find GPIO lookup Table in BIOS.", return false);
    638 
    639 	bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
    640 		gpio_pin_assignment);
    641 
    642 	return bRet;
    643 }
    644 
    645 int atomctrl_calculate_voltage_evv_on_sclk(
    646 		struct pp_hwmgr *hwmgr,
    647 		uint8_t voltage_type,
    648 		uint32_t sclk,
    649 		uint16_t virtual_voltage_Id,
    650 		uint16_t *voltage,
    651 		uint16_t dpm_level,
    652 		bool debug)
    653 {
    654 	ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
    655 	struct amdgpu_device *adev = hwmgr->adev;
    656 	EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
    657 	EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
    658 	EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
    659 	EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
    660 	EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
    661 	EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
    662 	EFUSE_INPUT_PARAMETER sInput_FuseValues;
    663 	READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
    664 
    665 	uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
    666 	fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
    667 	fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
    668 	fInt fLkg_FT, repeat;
    669 	fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
    670 	fInt fRLL_LoadLine, fPowerDPMx __unused, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
    671 	fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
    672 	fInt fSclk_margin, fSclk, fEVV_V;
    673 	fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
    674 	uint32_t ul_FT_Lkg_V0NORM;
    675 	fInt fLn_MaxDivMin, fMin, fAverage, fRange;
    676 	fInt fRoots[2];
    677 	fInt fStepSize = GetScaledFraction(625, 100000);
    678 
    679 	int result;
    680 
    681 	getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
    682 			smu_atom_get_data_table(hwmgr->adev,
    683 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
    684 					NULL, NULL, NULL);
    685 
    686 	if (!getASICProfilingInfo)
    687 		return -1;
    688 
    689 	if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
    690 	    (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
    691 	     getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
    692 		return -1;
    693 
    694 	/*-----------------------------------------------------------
    695 	 *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
    696 	 *-----------------------------------------------------------
    697 	 */
    698 	fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
    699 
    700 	switch (dpm_level) {
    701 	case 1:
    702 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1));
    703 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
    704 		break;
    705 	case 2:
    706 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2));
    707 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
    708 		break;
    709 	case 3:
    710 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3));
    711 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
    712 		break;
    713 	case 4:
    714 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4));
    715 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
    716 		break;
    717 	case 5:
    718 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5));
    719 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
    720 		break;
    721 	case 6:
    722 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6));
    723 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
    724 		break;
    725 	case 7:
    726 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7));
    727 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
    728 		break;
    729 	default:
    730 		pr_err("DPM Level not supported\n");
    731 		fPowerDPMx = Convert_ULONG_ToFraction(1);
    732 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
    733 	}
    734 
    735 	/*-------------------------
    736 	 * DECODING FUSE VALUES
    737 	 * ------------------------
    738 	 */
    739 	/*Decode RO_Fused*/
    740 	sRO_fuse = getASICProfilingInfo->sRoFuse;
    741 
    742 	sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
    743 	sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
    744 	sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
    745 
    746 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
    747 
    748 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
    749 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
    750 			(uint32_t *)&sOutput_FuseValues);
    751 
    752 	if (result)
    753 		return result;
    754 
    755 	/* Finally, the actual fuse value */
    756 	ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
    757 	fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
    758 	fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
    759 	fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
    760 
    761 	sCACm_fuse = getASICProfilingInfo->sCACm;
    762 
    763 	sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
    764 	sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
    765 	sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
    766 
    767 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
    768 
    769 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
    770 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
    771 			(uint32_t *)&sOutput_FuseValues);
    772 
    773 	if (result)
    774 		return result;
    775 
    776 	ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
    777 	fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
    778 	fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
    779 
    780 	fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
    781 
    782 	sCACb_fuse = getASICProfilingInfo->sCACb;
    783 
    784 	sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
    785 	sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
    786 	sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
    787 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
    788 
    789 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
    790 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
    791 			(uint32_t *)&sOutput_FuseValues);
    792 
    793 	if (result)
    794 		return result;
    795 
    796 	ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
    797 	fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
    798 	fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
    799 
    800 	fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
    801 
    802 	sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
    803 
    804 	sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
    805 	sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
    806 	sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
    807 
    808 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
    809 
    810 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
    811 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
    812 			(uint32_t *)&sOutput_FuseValues);
    813 
    814 	if (result)
    815 		return result;
    816 
    817 	ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
    818 	fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
    819 	fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
    820 
    821 	fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
    822 			fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
    823 
    824 	sKv_m_fuse = getASICProfilingInfo->sKv_m;
    825 
    826 	sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
    827 	sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
    828 	sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
    829 
    830 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
    831 
    832 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
    833 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
    834 			(uint32_t *)&sOutput_FuseValues);
    835 	if (result)
    836 		return result;
    837 
    838 	ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
    839 	fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
    840 	fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
    841 	fRange = fMultiply(fRange, ConvertToFraction(-1));
    842 
    843 	fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
    844 			fAverage, fRange, sKv_m_fuse.ucEfuseLength);
    845 
    846 	sKv_b_fuse = getASICProfilingInfo->sKv_b;
    847 
    848 	sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
    849 	sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
    850 	sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
    851 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
    852 
    853 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
    854 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
    855 			(uint32_t *)&sOutput_FuseValues);
    856 
    857 	if (result)
    858 		return result;
    859 
    860 	ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
    861 	fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
    862 	fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
    863 
    864 	fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
    865 			fAverage, fRange, sKv_b_fuse.ucEfuseLength);
    866 
    867 	/* Decoding the Leakage - No special struct container */
    868 	/*
    869 	 * usLkgEuseIndex=56
    870 	 * ucLkgEfuseBitLSB=6
    871 	 * ucLkgEfuseLength=10
    872 	 * ulLkgEncodeLn_MaxDivMin=69077
    873 	 * ulLkgEncodeMax=1000000
    874 	 * ulLkgEncodeMin=1000
    875 	 * ulEfuseLogisticAlpha=13
    876 	 */
    877 
    878 	sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
    879 	sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
    880 	sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
    881 
    882 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
    883 
    884 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
    885 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
    886 			(uint32_t *)&sOutput_FuseValues);
    887 
    888 	if (result)
    889 		return result;
    890 
    891 	ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
    892 	fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
    893 	fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
    894 
    895 	fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
    896 			fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
    897 	fLkg_FT = fFT_Lkg_V0NORM;
    898 
    899 	/*-------------------------------------------
    900 	 * PART 2 - Grabbing all required values
    901 	 *-------------------------------------------
    902 	 */
    903 	fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
    904 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
    905 	fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
    906 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
    907 	fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
    908 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
    909 	fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
    910 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
    911 	fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
    912 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
    913 	fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
    914 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
    915 	fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
    916 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
    917 	fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
    918 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
    919 
    920 	fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
    921 	fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
    922 	fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
    923 
    924 	fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
    925 
    926 	fMargin_FMAX_mean = GetScaledFraction(
    927 		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
    928 	fMargin_Plat_mean = GetScaledFraction(
    929 		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
    930 	fMargin_FMAX_sigma = GetScaledFraction(
    931 		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
    932 	fMargin_Plat_sigma = GetScaledFraction(
    933 		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
    934 
    935 	fMargin_DC_sigma = GetScaledFraction(
    936 		le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
    937 	fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
    938 
    939 	fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
    940 	fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
    941 	fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
    942 	fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
    943 	fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
    944 
    945 	fSclk = GetScaledFraction(sclk, 100);
    946 
    947 	fV_max = fDivide(GetScaledFraction(
    948 				 le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
    949 	fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
    950 	fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
    951 	fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
    952 	fV_FT = fDivide(GetScaledFraction(
    953 				le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
    954 	fV_min = fDivide(GetScaledFraction(
    955 				 le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
    956 
    957 	/*-----------------------
    958 	 * PART 3
    959 	 *-----------------------
    960 	 */
    961 
    962 	fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
    963 	fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
    964 	fC_Term = fAdd(fMargin_RO_c,
    965 			fAdd(fMultiply(fSM_A0, fLkg_FT),
    966 			fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
    967 			fAdd(fMultiply(fSM_A3, fSclk),
    968 			fSubtract(fSM_A7, fRO_fused)))));
    969 
    970 	fVDDC_base = fSubtract(fRO_fused,
    971 			fSubtract(fMargin_RO_c,
    972 					fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
    973 	fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
    974 
    975 	repeat = fSubtract(fVDDC_base,
    976 			fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
    977 
    978 	fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
    979 			fGetSquare(repeat)),
    980 			fAdd(fMultiply(fMargin_RO_b, repeat),
    981 			fMargin_RO_c));
    982 
    983 	fDC_SCLK = fSubtract(fRO_fused,
    984 			fSubtract(fRO_DC_margin,
    985 			fSubtract(fSM_A3,
    986 			fMultiply(fSM_A2, repeat))));
    987 	fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
    988 
    989 	fSigma_DC = fSubtract(fSclk, fDC_SCLK);
    990 
    991 	fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
    992 	fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
    993 	fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
    994 	fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
    995 
    996 	fSquared_Sigma_DC = fGetSquare(fSigma_DC);
    997 	fSquared_Sigma_CR = fGetSquare(fSigma_CR);
    998 	fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
    999 
   1000 	fSclk_margin = fAdd(fMicro_FMAX,
   1001 			fAdd(fMicro_CR,
   1002 			fAdd(fMargin_fixed,
   1003 			fSqrt(fAdd(fSquared_Sigma_FMAX,
   1004 			fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
   1005 	/*
   1006 	 fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
   1007 	 fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
   1008 	 fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
   1009 	 */
   1010 
   1011 	fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
   1012 	fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
   1013 	fC_Term = fAdd(fRO_DC_margin,
   1014 			fAdd(fMultiply(fSM_A0, fLkg_FT),
   1015 			fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
   1016 			fAdd(fSclk, fSclk_margin)),
   1017 			fAdd(fMultiply(fSM_A3,
   1018 			fAdd(fSclk, fSclk_margin)),
   1019 			fSubtract(fSM_A7, fRO_fused)))));
   1020 
   1021 	SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
   1022 
   1023 	if (GreaterThan(fRoots[0], fRoots[1]))
   1024 		fEVV_V = fRoots[1];
   1025 	else
   1026 		fEVV_V = fRoots[0];
   1027 
   1028 	if (GreaterThan(fV_min, fEVV_V))
   1029 		fEVV_V = fV_min;
   1030 	else if (GreaterThan(fEVV_V, fV_max))
   1031 		fEVV_V = fSubtract(fV_max, fStepSize);
   1032 
   1033 	fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
   1034 
   1035 	/*-----------------
   1036 	 * PART 4
   1037 	 *-----------------
   1038 	 */
   1039 
   1040 	fV_x = fV_min;
   1041 
   1042 	while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
   1043 		fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
   1044 				fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
   1045 				fGetSquare(fV_x)), fDerateTDP);
   1046 
   1047 		fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
   1048 				fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
   1049 				fT_prod), fKv_b_fused), fV_x)), fV_x)));
   1050 		fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
   1051 				fKt_Beta_fused, fT_prod)));
   1052 		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
   1053 				fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
   1054 		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
   1055 				fKt_Beta_fused, fT_FT)));
   1056 
   1057 		fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
   1058 
   1059 		fTDP_Current = fDivide(fTDP_Power, fV_x);
   1060 
   1061 		fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
   1062 				ConvertToFraction(10)));
   1063 
   1064 		fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
   1065 
   1066 		if (GreaterThan(fV_max, fV_NL) &&
   1067 			(GreaterThan(fV_NL, fEVV_V) ||
   1068 			Equal(fV_NL, fEVV_V))) {
   1069 			fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
   1070 
   1071 			*voltage = (uint16_t)fV_NL.partial.real;
   1072 			break;
   1073 		} else
   1074 			fV_x = fAdd(fV_x, fStepSize);
   1075 	}
   1076 
   1077 	return result;
   1078 }
   1079 
   1080 /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
   1081  * @param hwmgr	input: pointer to hwManager
   1082  * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
   1083  * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
   1084  *		which is define in PPTable SCLK/VDDC dependence
   1085  *				table associated with this virtual_voltage_Id
   1086  * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
   1087  * @param voltage		       output: real voltage level in unit of mv
   1088  */
   1089 int atomctrl_get_voltage_evv_on_sclk(
   1090 		struct pp_hwmgr *hwmgr,
   1091 		uint8_t voltage_type,
   1092 		uint32_t sclk, uint16_t virtual_voltage_Id,
   1093 		uint16_t *voltage)
   1094 {
   1095 	struct amdgpu_device *adev = hwmgr->adev;
   1096 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
   1097 	int result;
   1098 
   1099 	get_voltage_info_param_space.ucVoltageType   =
   1100 		voltage_type;
   1101 	get_voltage_info_param_space.ucVoltageMode   =
   1102 		ATOM_GET_VOLTAGE_EVV_VOLTAGE;
   1103 	get_voltage_info_param_space.usVoltageLevel  =
   1104 		cpu_to_le16(virtual_voltage_Id);
   1105 	get_voltage_info_param_space.ulSCLKFreq      =
   1106 		cpu_to_le32(sclk);
   1107 
   1108 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
   1109 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
   1110 			(uint32_t *)&get_voltage_info_param_space);
   1111 
   1112 	*voltage = result ? 0 :
   1113 			le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
   1114 				(&get_voltage_info_param_space))->usVoltageLevel);
   1115 
   1116 	return result;
   1117 }
   1118 
   1119 /**
   1120  * atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table.
   1121  * @param hwmgr	input: pointer to hwManager
   1122  * @param virtual_voltage_id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
   1123  * @param voltage		       output: real voltage level in unit of mv
   1124  */
   1125 int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
   1126 			     uint16_t virtual_voltage_id,
   1127 			     uint16_t *voltage)
   1128 {
   1129 	struct amdgpu_device *adev = hwmgr->adev;
   1130 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
   1131 	int result;
   1132 	int entry_id;
   1133 
   1134 	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
   1135 	for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
   1136 		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
   1137 			/* found */
   1138 			break;
   1139 		}
   1140 	}
   1141 
   1142 	if (entry_id >= hwmgr->dyn_state.vddc_dependency_on_sclk->count) {
   1143 	        pr_debug("Can't find requested voltage id in vddc_dependency_on_sclk table!\n");
   1144 	        return -EINVAL;
   1145 	}
   1146 
   1147 	get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
   1148 	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
   1149 	get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
   1150 	get_voltage_info_param_space.ulSCLKFreq =
   1151 		cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
   1152 
   1153 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
   1154 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
   1155 			(uint32_t *)&get_voltage_info_param_space);
   1156 
   1157 	if (0 != result)
   1158 		return result;
   1159 
   1160 	*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
   1161 				(&get_voltage_info_param_space))->usVoltageLevel);
   1162 
   1163 	return result;
   1164 }
   1165 
   1166 /**
   1167  * Get the mpll reference clock in 10KHz
   1168  */
   1169 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
   1170 {
   1171 	ATOM_COMMON_TABLE_HEADER *fw_info;
   1172 	uint32_t clock;
   1173 	u8 frev, crev;
   1174 	u16 size;
   1175 
   1176 	fw_info = (ATOM_COMMON_TABLE_HEADER *)
   1177 		smu_atom_get_data_table(hwmgr->adev,
   1178 				GetIndexIntoMasterTable(DATA, FirmwareInfo),
   1179 				&size, &frev, &crev);
   1180 
   1181 	if (fw_info == NULL)
   1182 		clock = 2700;
   1183 	else {
   1184 		if ((fw_info->ucTableFormatRevision == 2) &&
   1185 			(le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
   1186 			ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
   1187 				(ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
   1188 			clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
   1189 		} else {
   1190 			ATOM_FIRMWARE_INFO *fwInfo_0_0 =
   1191 				(ATOM_FIRMWARE_INFO *)fw_info;
   1192 			clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
   1193 		}
   1194 	}
   1195 
   1196 	return clock;
   1197 }
   1198 
   1199 /**
   1200  * Get the asic internal spread spectrum table
   1201  */
   1202 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
   1203 {
   1204 	ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
   1205 	u8 frev, crev;
   1206 	u16 size;
   1207 
   1208 	table = (ATOM_ASIC_INTERNAL_SS_INFO *)
   1209 		smu_atom_get_data_table(device,
   1210 			GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
   1211 			&size, &frev, &crev);
   1212 
   1213 	return table;
   1214 }
   1215 
   1216 /**
   1217  * Get the asic internal spread spectrum assignment
   1218  */
   1219 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
   1220 		const uint8_t clockSource,
   1221 		const uint32_t clockSpeed,
   1222 		pp_atomctrl_internal_ss_info *ssEntry)
   1223 {
   1224 	ATOM_ASIC_INTERNAL_SS_INFO *table;
   1225 	ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
   1226 	int entry_found = 0;
   1227 
   1228 	memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
   1229 
   1230 	table = asic_internal_ss_get_ss_table(hwmgr->adev);
   1231 
   1232 	if (NULL == table)
   1233 		return -1;
   1234 
   1235 	ssInfo = &table->asSpreadSpectrum[0];
   1236 
   1237 	while (((uint8_t *)ssInfo - (uint8_t *)table) <
   1238 		le16_to_cpu(table->sHeader.usStructureSize)) {
   1239 		if ((clockSource == ssInfo->ucClockIndication) &&
   1240 			((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
   1241 			entry_found = 1;
   1242 			break;
   1243 		}
   1244 
   1245 		ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
   1246 				sizeof(ATOM_ASIC_SS_ASSIGNMENT));
   1247 	}
   1248 
   1249 	if (entry_found) {
   1250 		ssEntry->speed_spectrum_percentage =
   1251 			le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
   1252 		ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
   1253 
   1254 		if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
   1255 			(GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
   1256 			(GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
   1257 			ssEntry->speed_spectrum_rate /= 100;
   1258 		}
   1259 
   1260 		switch (ssInfo->ucSpreadSpectrumMode) {
   1261 		case 0:
   1262 			ssEntry->speed_spectrum_mode =
   1263 				pp_atomctrl_spread_spectrum_mode_down;
   1264 			break;
   1265 		case 1:
   1266 			ssEntry->speed_spectrum_mode =
   1267 				pp_atomctrl_spread_spectrum_mode_center;
   1268 			break;
   1269 		default:
   1270 			ssEntry->speed_spectrum_mode =
   1271 				pp_atomctrl_spread_spectrum_mode_down;
   1272 			break;
   1273 		}
   1274 	}
   1275 
   1276 	return entry_found ? 0 : 1;
   1277 }
   1278 
   1279 /**
   1280  * Get the memory clock spread spectrum info
   1281  */
   1282 int atomctrl_get_memory_clock_spread_spectrum(
   1283 		struct pp_hwmgr *hwmgr,
   1284 		const uint32_t memory_clock,
   1285 		pp_atomctrl_internal_ss_info *ssInfo)
   1286 {
   1287 	return asic_internal_ss_get_ss_asignment(hwmgr,
   1288 			ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
   1289 }
   1290 /**
   1291  * Get the engine clock spread spectrum info
   1292  */
   1293 int atomctrl_get_engine_clock_spread_spectrum(
   1294 		struct pp_hwmgr *hwmgr,
   1295 		const uint32_t engine_clock,
   1296 		pp_atomctrl_internal_ss_info *ssInfo)
   1297 {
   1298 	return asic_internal_ss_get_ss_asignment(hwmgr,
   1299 			ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
   1300 }
   1301 
   1302 int atomctrl_read_efuse(struct pp_hwmgr *hwmgr, uint16_t start_index,
   1303 		uint16_t end_index, uint32_t mask, uint32_t *efuse)
   1304 {
   1305 	struct amdgpu_device *adev = hwmgr->adev;
   1306 	int result;
   1307 	READ_EFUSE_VALUE_PARAMETER efuse_param;
   1308 
   1309 	efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
   1310 	efuse_param.sEfuse.ucBitShift = (uint8_t)
   1311 			(start_index - ((start_index / 32) * 32));
   1312 	efuse_param.sEfuse.ucBitLength  = (uint8_t)
   1313 			((end_index - start_index) + 1);
   1314 
   1315 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
   1316 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
   1317 			(uint32_t *)&efuse_param);
   1318 	*efuse = result ? 0 : le32_to_cpu(efuse_param.ulEfuseValue) & mask;
   1319 
   1320 	return result;
   1321 }
   1322 
   1323 int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
   1324 			      uint8_t level)
   1325 {
   1326 	struct amdgpu_device *adev = hwmgr->adev;
   1327 	DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
   1328 	int result;
   1329 
   1330 	memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
   1331 		memory_clock & SET_CLOCK_FREQ_MASK;
   1332 	memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
   1333 		ADJUST_MC_SETTING_PARAM;
   1334 	memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
   1335 
   1336 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
   1337 		 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
   1338 		(uint32_t *)&memory_clock_parameters);
   1339 
   1340 	return result;
   1341 }
   1342 
   1343 int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
   1344 				uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
   1345 {
   1346 	struct amdgpu_device *adev = hwmgr->adev;
   1347 	int result;
   1348 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
   1349 
   1350 	get_voltage_info_param_space.ucVoltageType = voltage_type;
   1351 	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
   1352 	get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
   1353 	get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
   1354 
   1355 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
   1356 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
   1357 			(uint32_t *)&get_voltage_info_param_space);
   1358 
   1359 	*voltage = result ? 0 :
   1360 		le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel);
   1361 
   1362 	return result;
   1363 }
   1364 
   1365 int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
   1366 {
   1367 
   1368 	int i;
   1369 	u8 frev, crev;
   1370 	u16 size;
   1371 
   1372 	ATOM_SMU_INFO_V2_1 *psmu_info =
   1373 		(ATOM_SMU_INFO_V2_1 *)smu_atom_get_data_table(hwmgr->adev,
   1374 			GetIndexIntoMasterTable(DATA, SMU_Info),
   1375 			&size, &frev, &crev);
   1376 
   1377 
   1378 	for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
   1379 		table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
   1380 		table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
   1381 		table->entry[i].usFcw_pcc =
   1382 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
   1383 		table->entry[i].usFcw_trans_upper =
   1384 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
   1385 		table->entry[i].usRcw_trans_lower =
   1386 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
   1387 	}
   1388 
   1389 	return 0;
   1390 }
   1391 
   1392 int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
   1393 				  struct pp_atom_ctrl__avfs_parameters *param)
   1394 {
   1395 	ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
   1396 
   1397 	if (param == NULL)
   1398 		return -EINVAL;
   1399 
   1400 	profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
   1401 			smu_atom_get_data_table(hwmgr->adev,
   1402 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
   1403 					NULL, NULL, NULL);
   1404 	if (!profile)
   1405 		return -1;
   1406 
   1407 	param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
   1408 	param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
   1409 	param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
   1410 	param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
   1411 	param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
   1412 	param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
   1413 	param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
   1414 	param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
   1415 	param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
   1416 	param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
   1417 	param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
   1418 	param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
   1419 	param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
   1420 	param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
   1421 	param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
   1422 	param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
   1423 	param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
   1424 	param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
   1425 	param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
   1426 	param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
   1427 	param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
   1428 	param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
   1429 	param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
   1430 	param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
   1431 	param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
   1432 
   1433 	return 0;
   1434 }
   1435 
   1436 int  atomctrl_get_svi2_info(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
   1437 				uint8_t *svd_gpio_id, uint8_t *svc_gpio_id,
   1438 				uint16_t *load_line)
   1439 {
   1440 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
   1441 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
   1442 
   1443 	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
   1444 
   1445 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
   1446 			"Could not find Voltage Table in BIOS.", return -EINVAL);
   1447 
   1448 	voltage_object = atomctrl_lookup_voltage_type_v3
   1449 		(voltage_info, voltage_type,  VOLTAGE_OBJ_SVID2);
   1450 
   1451 	*svd_gpio_id = voltage_object->asSVID2Obj.ucSVDGpioId;
   1452 	*svc_gpio_id = voltage_object->asSVID2Obj.ucSVCGpioId;
   1453 	*load_line = voltage_object->asSVID2Obj.usLoadLine_PSI;
   1454 
   1455 	return 0;
   1456 }
   1457 
   1458 int atomctrl_get_leakage_id_from_efuse(struct pp_hwmgr *hwmgr, uint16_t *virtual_voltage_id)
   1459 {
   1460 	struct amdgpu_device *adev = hwmgr->adev;
   1461 	SET_VOLTAGE_PS_ALLOCATION allocation;
   1462 	SET_VOLTAGE_PARAMETERS_V1_3 *voltage_parameters =
   1463 			(SET_VOLTAGE_PARAMETERS_V1_3 *)&allocation.sASICSetVoltage;
   1464 	int result;
   1465 
   1466 	voltage_parameters->ucVoltageMode = ATOM_GET_LEAKAGE_ID;
   1467 
   1468 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
   1469 			GetIndexIntoMasterTable(COMMAND, SetVoltage),
   1470 			(uint32_t *)voltage_parameters);
   1471 
   1472 	*virtual_voltage_id = voltage_parameters->usVoltageLevel;
   1473 
   1474 	return result;
   1475 }
   1476 
   1477 int atomctrl_get_leakage_vddc_base_on_leakage(struct pp_hwmgr *hwmgr,
   1478 					uint16_t *vddc, uint16_t *vddci,
   1479 					uint16_t virtual_voltage_id,
   1480 					uint16_t efuse_voltage_id)
   1481 {
   1482 	int i, j;
   1483 	int ix;
   1484 	u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf;
   1485 	ATOM_ASIC_PROFILING_INFO_V2_1 *profile;
   1486 
   1487 	*vddc = 0;
   1488 	*vddci = 0;
   1489 
   1490 	ix = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo);
   1491 
   1492 	profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *)
   1493 			smu_atom_get_data_table(hwmgr->adev,
   1494 					ix,
   1495 					NULL, NULL, NULL);
   1496 	if (!profile)
   1497 		return -EINVAL;
   1498 
   1499 	if ((profile->asHeader.ucTableFormatRevision >= 2) &&
   1500 		(profile->asHeader.ucTableContentRevision >= 1) &&
   1501 		(profile->asHeader.usStructureSize >= sizeof(ATOM_ASIC_PROFILING_INFO_V2_1))) {
   1502 		leakage_bin = (u16 *)((char *)profile + profile->usLeakageBinArrayOffset);
   1503 		vddc_id_buf = (u16 *)((char *)profile + profile->usElbVDDC_IdArrayOffset);
   1504 		vddc_buf = (u16 *)((char *)profile + profile->usElbVDDC_LevelArrayOffset);
   1505 		if (profile->ucElbVDDC_Num > 0) {
   1506 			for (i = 0; i < profile->ucElbVDDC_Num; i++) {
   1507 				if (vddc_id_buf[i] == virtual_voltage_id) {
   1508 					for (j = 0; j < profile->ucLeakageBinNum; j++) {
   1509 						if (efuse_voltage_id <= leakage_bin[j]) {
   1510 							*vddc = vddc_buf[j * profile->ucElbVDDC_Num + i];
   1511 							break;
   1512 						}
   1513 					}
   1514 					break;
   1515 				}
   1516 			}
   1517 		}
   1518 
   1519 		vddci_id_buf = (u16 *)((char *)profile + profile->usElbVDDCI_IdArrayOffset);
   1520 		vddci_buf   = (u16 *)((char *)profile + profile->usElbVDDCI_LevelArrayOffset);
   1521 		if (profile->ucElbVDDCI_Num > 0) {
   1522 			for (i = 0; i < profile->ucElbVDDCI_Num; i++) {
   1523 				if (vddci_id_buf[i] == virtual_voltage_id) {
   1524 					for (j = 0; j < profile->ucLeakageBinNum; j++) {
   1525 						if (efuse_voltage_id <= leakage_bin[j]) {
   1526 							*vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i];
   1527 							break;
   1528 						}
   1529 					}
   1530 					break;
   1531 				}
   1532 			}
   1533 		}
   1534 	}
   1535 
   1536 	return 0;
   1537 }
   1538 
   1539 void atomctrl_get_voltage_range(struct pp_hwmgr *hwmgr, uint32_t *max_vddc,
   1540 							uint32_t *min_vddc)
   1541 {
   1542 	void *profile;
   1543 
   1544 	profile = smu_atom_get_data_table(hwmgr->adev,
   1545 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
   1546 					NULL, NULL, NULL);
   1547 
   1548 	if (profile) {
   1549 		switch (hwmgr->chip_id) {
   1550 		case CHIP_TONGA:
   1551 		case CHIP_FIJI:
   1552 			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMaxVddc) / 4;
   1553 			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMinVddc) / 4;
   1554 			return;
   1555 		case CHIP_POLARIS11:
   1556 		case CHIP_POLARIS10:
   1557 		case CHIP_POLARIS12:
   1558 			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMaxVddc) / 100;
   1559 			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMinVddc) / 100;
   1560 			return;
   1561 		default:
   1562 			break;
   1563 		}
   1564 	}
   1565 	*max_vddc = 0;
   1566 	*min_vddc = 0;
   1567 }
   1568