1 /* $NetBSD: bcm53xx_board.c,v 1.27 2024/02/16 16:28:49 skrll Exp $ */ 2 /*- 3 * Copyright (c) 2012 The NetBSD Foundation, Inc. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to The NetBSD Foundation 7 * by Matt Thomas of 3am Software Foundry. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include "opt_arm_debug.h" 32 #include "opt_broadcom.h" 33 #include "arml2cc.h" 34 35 #define _ARM32_BUS_DMA_PRIVATE 36 37 #include <sys/cdefs.h> 38 39 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.27 2024/02/16 16:28:49 skrll Exp $"); 40 41 #include <sys/param.h> 42 #include <sys/bus.h> 43 #include <sys/cpu.h> 44 #include <sys/device.h> 45 46 #include <prop/proplib.h> 47 48 #include <net/if.h> 49 #include <net/if_ether.h> 50 51 #define CCA_PRIVATE 52 #define CRU_PRIVATE 53 #define DDR_PRIVATE 54 #define DMU_PRIVATE 55 #define ARMCORE_PRIVATE 56 #define SRAB_PRIVATE 57 58 #include <arm/cortex/a9tmr_var.h> 59 #include <arm/cortex/pl310_var.h> 60 #include <arm/mainbus/mainbus.h> 61 62 #include <arm/broadcom/bcm53xx_reg.h> 63 #include <arm/broadcom/bcm53xx_var.h> 64 65 bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag; 66 bus_space_handle_t bcm53xx_ioreg_bsh; 67 bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag; 68 bus_space_handle_t bcm53xx_armcore_bsh; 69 70 static struct cpu_softc cpu_softc; 71 72 struct arm32_dma_range bcm53xx_dma_ranges[] = { 73 #ifdef BCM5301X 74 [0] = { 75 .dr_sysbase = 0x80000000, 76 .dr_busbase = 0x80000000, 77 .dr_len = 0x10000000, 78 }, [1] = { 79 .dr_sysbase = 0x90000000, 80 .dr_busbase = 0x90000000, 81 }, 82 #elif defined(BCM563XX) 83 [0] = { 84 .dr_sysbase = 0x60000000, 85 .dr_busbase = 0x60000000, 86 .dr_len = 0x20000000, 87 }, [1] = { 88 .dr_sysbase = 0x80000000, 89 .dr_busbase = 0x80000000, 90 }, 91 #endif 92 }; 93 94 struct arm32_bus_dma_tag bcm53xx_dma_tag = { 95 ._ranges = bcm53xx_dma_ranges, 96 ._nranges = __arraycount(bcm53xx_dma_ranges), 97 _BUS_DMAMAP_FUNCS, 98 _BUS_DMAMEM_FUNCS, 99 _BUS_DMATAG_FUNCS, 100 }; 101 102 struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = { 103 #ifdef BCM5301X 104 [0] = { 105 .dr_sysbase = 0x80000000, 106 .dr_busbase = 0x80000000, 107 .dr_len = 0x10000000, 108 .dr_flags = _BUS_DMAMAP_COHERENT, 109 }, [1] = { 110 .dr_sysbase = 0x90000000, 111 .dr_busbase = 0x90000000, 112 }, 113 #elif defined(BCM563XX) 114 [0] = { 115 .dr_sysbase = 0x60000000, 116 .dr_busbase = 0x60000000, 117 .dr_len = 0x20000000, 118 .dr_flags = _BUS_DMAMAP_COHERENT, 119 }, [1] = { 120 .dr_sysbase = 0x80000000, 121 .dr_busbase = 0x80000000, 122 }, 123 #endif 124 }; 125 126 struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = { 127 ._ranges = bcm53xx_coherent_dma_ranges, 128 ._nranges = __arraycount(bcm53xx_coherent_dma_ranges), 129 _BUS_DMAMAP_FUNCS, 130 _BUS_DMAMEM_FUNCS, 131 _BUS_DMATAG_FUNCS, 132 }; 133 134 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE 135 struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = { 136 ._ranges = bcm53xx_coherent_dma_ranges, 137 ._nranges = 1, 138 _BUS_DMAMAP_FUNCS, 139 _BUS_DMAMEM_FUNCS, 140 _BUS_DMATAG_FUNCS, 141 }; 142 #endif 143 144 psize_t 145 bcm53xx_memprobe(void) 146 { 147 bus_space_tag_t bst = bcm53xx_ioreg_bst; 148 bus_space_handle_t bsh = bcm53xx_ioreg_bsh; 149 150 /* 151 * First, let's read the magic DDR registers! 152 */ 153 const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01); 154 const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82); 155 const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86); 156 const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87); 157 158 /* 159 * Calculate chip parameters 160 * */ 161 const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW) 162 - __SHIFTOUT(v82, CTL_82_ROW_DIFF); 163 const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL) 164 - __SHIFTOUT(v82, CTL_82_COL_DIFF); 165 const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF); 166 167 /* 168 * For each chip select, increase the chip count if if is enabled. 169 */ 170 const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL); 171 u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP); 172 u_int chips = 0; 173 174 for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) { 175 chips += (cs_map & 1); 176 } 177 178 /* get log2(ddr width) */ 179 180 const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2; 181 182 /* 183 * Let's add up all the things that contribute to the size of a chip. 184 */ 185 const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2; 186 187 /* 188 * Now our memory size is simply the number of chip shifted by the 189 * log2(chip_size). 190 */ 191 return (psize_t) chips << chip_size_log2; 192 } 193 194 static inline uint32_t 195 bcm53xx_freq_calc(struct bcm53xx_clock_info *clk, 196 uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac) 197 { 198 if (ndiv_frac == 0 && pdiv == 1) 199 return ndiv_int * clk->clk_ref; 200 201 uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac; 202 freq64 *= clk->clk_ref; 203 if (pdiv > 1) 204 freq64 /= pdiv; 205 return (uint32_t) (freq64 >> 30); 206 } 207 208 static uint32_t 209 bcm53xx_value_wrap(uint32_t value, uint32_t mask) 210 { 211 /* 212 * n is n except when n is 0 then n = mask + 1. 213 */ 214 return ((__SHIFTOUT(value, mask) - 1) & __SHIFTOUT(mask, mask)) + 1; 215 } 216 217 static void 218 bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5, 219 uint32_t control6, uint32_t control7) 220 { 221 const uint32_t pdiv = bcm53xx_value_wrap(control6, 222 GENPLL_CONTROL6_PDIV); 223 const uint32_t ndiv_int = bcm53xx_value_wrap(control5, 224 GENPLL_CONTROL5_NDIV_INT); 225 const uint32_t ndiv_frac = __SHIFTOUT(control5, 226 GENPLL_CONTROL5_NDIV_FRAC); 227 228 clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac); 229 230 const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6, 231 GENPLL_CONTROL6_CH0_MDIV); 232 const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6, 233 GENPLL_CONTROL6_CH1_MDIV); 234 const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6, 235 GENPLL_CONTROL6_CH2_MDIV); 236 const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7, 237 GENPLL_CONTROL7_CH3_MDIV); 238 239 clk->clk_mac = clk->clk_genpll / ch0_mdiv; // GENPLL CH0 240 clk->clk_robo = clk->clk_genpll / ch1_mdiv; // GENPLL CH1 241 clk->clk_usb2 = clk->clk_genpll / ch2_mdiv; // GENPLL CH2 242 clk->clk_iproc = clk->clk_genpll / ch3_mdiv; // GENPLL CH3 243 } 244 245 static void 246 bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1, 247 uint32_t control2) 248 { 249 const uint32_t pdiv = bcm53xx_value_wrap(control1, 250 LCPLL_CONTROL1_PDIV); 251 const uint32_t ndiv_int = bcm53xx_value_wrap(control1, 252 LCPLL_CONTROL1_NDIV_INT); 253 const uint32_t ndiv_frac = __SHIFTOUT(control1, 254 LCPLL_CONTROL1_NDIV_FRAC); 255 256 clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac); 257 258 const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2, 259 LCPLL_CONTROL2_CH0_MDIV); 260 const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2, 261 LCPLL_CONTROL2_CH1_MDIV); 262 const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2, 263 LCPLL_CONTROL2_CH2_MDIV); 264 const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2, 265 LCPLL_CONTROL2_CH3_MDIV); 266 267 clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv; // LCPLL CH0 268 clk->clk_sdio = clk->clk_lcpll / ch1_mdiv; // LCPLL CH1 269 clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv; // LCPLL CH2 270 clk->clk_axi = clk->clk_lcpll / ch3_mdiv; // LCPLL CH3 271 } 272 273 static void 274 bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control) 275 { 276 const uint32_t pdiv = bcm53xx_value_wrap(usb2_control, 277 USB2_CONTROL_PDIV); 278 const uint32_t ndiv = bcm53xx_value_wrap(usb2_control, 279 USB2_CONTROL_NDIV_INT); 280 281 uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv; 282 if (usb_ref != USB2_REF_CLK) { 283 /* 284 * USB Reference Clock isn't 1.92GHz. So we need to modify 285 * USB2_CONTROL to produce it. 286 */ 287 uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv; 288 usb2_control &= ~USB2_CONTROL_NDIV_INT; 289 usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT); 290 291 // Allow Clocks to be modified 292 bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh, 293 CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC); 294 295 // Update USB2 clock generator 296 bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh, 297 CRU_BASE + CRU_USB2_CONTROL, usb2_control); 298 299 // Prevent Clock modification 300 bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh, 301 CRU_BASE + CRU_CLKSET_KEY, 0); 302 303 usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv; 304 } 305 306 clk->clk_usb_ref = usb_ref; 307 } 308 309 310 static void 311 bcm53xx_clock_init(struct bcm53xx_clock_info *clk) 312 { 313 clk->clk_ref = BCM53XX_REF_CLK; 314 clk->clk_sys = 8*clk->clk_ref; 315 } 316 317 /* 318 * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2) 319 */ 320 static void 321 bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status, 322 uint32_t pll_dividers) 323 { 324 const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0; 325 u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV); 326 u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV); 327 u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV); 328 329 pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1; 330 331 clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ); 332 clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div); 333 } 334 335 /* 336 * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref) 337 */ 338 static void 339 bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk, 340 uint32_t pllarma, uint32_t pllarmb, uint32_t policy) 341 { 342 policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2); 343 344 if (policy == CLK_POLICY_REF_CLK) { 345 clk->clk_cpu = clk->clk_ref; 346 clk->clk_apb = clk->clk_cpu; 347 return; 348 } 349 350 if (policy == CLK_POLICY_SYS_CLK) { 351 clk->clk_cpu = clk->clk_sys; 352 clk->clk_apb = clk->clk_cpu / 4; 353 return; 354 } 355 356 const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV); 357 const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT); 358 const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC); 359 // const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1; 360 361 const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2; 362 363 clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div; 364 clk->clk_apb = clk->clk_cpu / 4; 365 } 366 367 struct bcm53xx_chip_state { 368 uint32_t bcs_lcpll_control1; 369 uint32_t bcs_lcpll_control2; 370 371 uint32_t bcs_genpll_control5; 372 uint32_t bcs_genpll_control6; 373 uint32_t bcs_genpll_control7; 374 375 uint32_t bcs_usb2_control; 376 377 uint32_t bcs_ddr_phy_ctl_pll_status; 378 uint32_t bcs_ddr_phy_ctl_pll_dividers; 379 380 uint32_t bcs_armcore_clk_policy; 381 uint32_t bcs_armcore_clk_pllarma; 382 uint32_t bcs_armcore_clk_pllarmb; 383 }; 384 385 static void 386 bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs, 387 bus_space_tag_t bst, bus_space_handle_t bsh) 388 { 389 bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh, 390 DMU_BASE + DMU_LCPLL_CONTROL1); 391 bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh, 392 DMU_BASE + DMU_LCPLL_CONTROL2); 393 394 bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh, 395 CRU_BASE + CRU_GENPLL_CONTROL5); 396 bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh, 397 CRU_BASE + CRU_GENPLL_CONTROL6); 398 bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh, 399 CRU_BASE + CRU_GENPLL_CONTROL7); 400 401 bcs->bcs_usb2_control = bus_space_read_4(bst, bsh, 402 CRU_BASE + CRU_USB2_CONTROL); 403 404 bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh, 405 DDR_BASE + DDR_PHY_CTL_PLL_STATUS); 406 bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh, 407 DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS); 408 } 409 410 static void 411 bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs, 412 bus_space_tag_t bst, bus_space_handle_t bsh) 413 { 414 bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh, 415 ARMCORE_CLK_POLICY_FREQ); 416 bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh, 417 ARMCORE_CLK_PLLARMA); 418 bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh, 419 ARMCORE_CLK_PLLARMB); 420 } 421 422 void 423 bcm53xx_cpu_softc_init(struct cpu_info *ci) 424 { 425 struct cpu_softc * const cpu = ci->ci_softc; 426 427 cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst; 428 cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh; 429 430 cpu->cpu_armcore_bst = bcm53xx_armcore_bst; 431 cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh; 432 433 const uint32_t chipid = bus_space_read_4(cpu->cpu_ioreg_bst, 434 cpu->cpu_ioreg_bsh, CCA_MISC_BASE + MISC_CHIPID); 435 436 cpu->cpu_chipid = __SHIFTOUT(chipid, CHIPID_ID); 437 } 438 439 void 440 bcm53xx_print_clocks(void) 441 { 442 #if defined(VERBOSE_INIT_ARM) 443 const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk; 444 printf("ref clk = %u (%#x)\n", clk->clk_ref, clk->clk_ref); 445 printf("sys clk = %u (%#x)\n", clk->clk_sys, clk->clk_sys); 446 printf("lcpll clk = %u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll); 447 printf("pcie ref clk = %u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref); 448 printf("sdio clk = %u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio); 449 printf("ddr ref clk = %u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref); 450 printf("axi clk = %u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi); 451 printf("genpll clk = %u (%#x)\n", clk->clk_genpll, clk->clk_genpll); 452 printf("mac clk = %u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac); 453 printf("robo clk = %u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo); 454 printf("usb2 clk = %u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2); 455 printf("iproc clk = %u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc); 456 printf("ddr clk = %u (%#x)\n", clk->clk_ddr, clk->clk_ddr); 457 printf("ddr mhz = %u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz); 458 printf("cpu clk = %u (%#x)\n", clk->clk_cpu, clk->clk_cpu); 459 printf("apb clk = %u (%#x)\n", clk->clk_apb, clk->clk_apb); 460 printf("usb ref clk = %u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref); 461 #endif 462 } 463 464 void 465 bcm53xx_bootstrap(vaddr_t iobase) 466 { 467 struct bcm53xx_chip_state bcs; 468 int error; 469 470 bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase; 471 error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE, 472 BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh); 473 if (error) 474 panic("%s: failed to map BCM53xx %s registers: %d", 475 __func__, "io", error); 476 477 bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE; 478 error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE, 479 BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh); 480 if (error) 481 panic("%s: failed to map BCM53xx %s registers: %d", 482 __func__, "armcore", error); 483 484 curcpu()->ci_softc = &cpu_softc; 485 486 bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh); 487 bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh); 488 489 struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk; 490 491 bcm53xx_clock_init(clk); 492 bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1, 493 bcs.bcs_lcpll_control2); 494 bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5, 495 bcs.bcs_genpll_control6, bcs.bcs_genpll_control7); 496 bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control); 497 bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status, 498 bcs.bcs_ddr_phy_ctl_pll_dividers); 499 bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma, 500 bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy); 501 502 curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu; 503 504 #if NARML2CC > 0 505 arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh, 506 ARMCORE_L2C_BASE); 507 #endif 508 } 509 510 void 511 bcm53xx_dma_bootstrap(psize_t memsize) 512 { 513 if (memsize <= 256*1024*1024) { 514 bcm53xx_dma_ranges[0].dr_len = memsize; 515 bcm53xx_coherent_dma_ranges[0].dr_len = memsize; 516 bcm53xx_dma_tag._nranges = 1; 517 bcm53xx_coherent_dma_tag._nranges = 1; 518 } else { 519 /* 520 * By setting up two ranges, bus_dmamem_alloc will always 521 * try to allocate from range 0 first resulting in allocations 522 * below 256MB which for PCI and GMAC are coherent. 523 */ 524 bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000; 525 bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000; 526 } 527 KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0); 528 KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT); 529 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE 530 KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT); 531 #endif 532 } 533 534 #ifdef MULTIPROCESSOR 535 void 536 bcm53xx_cpu_hatch(struct cpu_info *ci) 537 { 538 a9tmr_init_cpu_clock(ci); 539 } 540 #endif 541 542 void 543 bcm53xx_device_register(device_t self, void *aux) 544 { 545 prop_dictionary_t dict = device_properties(self); 546 547 if (device_is_a(self, "armperiph") 548 && device_is_a(device_parent(self), "mainbus")) { 549 /* 550 * XXX KLUDGE ALERT XXX 551 * The iot mainbus supplies is completely wrong since it scales 552 * addresses by 2. The simplest remedy is to replace with our 553 * bus space used for the armcore registers (which armperiph uses). 554 */ 555 struct mainbus_attach_args * const mb = aux; 556 mb->mb_iot = bcm53xx_armcore_bst; 557 return; 558 } 559 560 /* 561 * We need to tell the A9 Global/Watchdog Timer 562 * what frequency it runs at. 563 */ 564 if (device_is_a(self, "arma9tmr") || device_is_a(self, "a9wdt")) { 565 /* 566 * This clock always runs at (arm_clk div 2) and only goes 567 * to timers that are part of the A9 MP core subsystem. 568 */ 569 prop_dictionary_set_uint32(dict, "frequency", 570 cpu_softc.cpu_clk.clk_cpu / 2); 571 return; 572 } 573 574 if (device_is_a(self, "bcmeth")) { 575 const struct bcmccb_attach_args * const ccbaa = aux; 576 const uint8_t enaddr[ETHER_ADDR_LEN] = { 577 0x00, 0x01, 0x02, 0x03, 0x04, 578 0x05 + 2 * ccbaa->ccbaa_loc.loc_port, 579 }; 580 prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN); 581 KASSERT(pd != NULL); 582 if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) { 583 printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self)); 584 } 585 prop_object_release(pd); 586 } 587 } 588 589 #ifdef SRAB_BASE 590 static kmutex_t srab_lock __cacheline_aligned; 591 592 void 593 bcm53xx_srab_init(void) 594 { 595 mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM); 596 597 bcm53xx_srab_write_4(0x0079, 0x90); // reset switch 598 for (u_int port = 0; port < 8; port++) { 599 /* per port control: no stp */ 600 bcm53xx_srab_write_4(port, 0x00); 601 } 602 bcm53xx_srab_write_4(0x0008, 0x1c); // IMP port (enab UC/MC/BC) 603 bcm53xx_srab_write_4(0x000e, 0xbb); // IMP port force-link 1G 604 bcm53xx_srab_write_4(0x005d, 0x7b); // port5 force-link 1G 605 bcm53xx_srab_write_4(0x005f, 0x7b); // port7 force-link 1G 606 bcm53xx_srab_write_4(0x000b, 0x7); // management mode 607 bcm53xx_srab_write_4(0x0203, 0x0); // disable BRCM tag 608 bcm53xx_srab_write_4(0x0200, 0x80); // enable IMP=port8 609 } 610 611 static inline void 612 bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh) 613 { 614 while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) { 615 delay(10); 616 } 617 } 618 619 uint32_t 620 bcm53xx_srab_read_4(u_int pageoffset) 621 { 622 bus_space_tag_t bst = bcm53xx_ioreg_bst; 623 bus_space_handle_t bsh = bcm53xx_ioreg_bsh; 624 uint32_t rv; 625 626 mutex_spin_enter(&srab_lock); 627 628 bcm53xx_srab_busywait(bst, bsh); 629 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT, 630 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN); 631 bcm53xx_srab_busywait(bst, bsh); 632 rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL); 633 634 mutex_spin_exit(&srab_lock); 635 return rv; 636 } 637 638 uint64_t 639 bcm53xx_srab_read_8(u_int pageoffset) 640 { 641 bus_space_tag_t bst = bcm53xx_ioreg_bst; 642 bus_space_handle_t bsh = bcm53xx_ioreg_bsh; 643 uint64_t rv; 644 645 mutex_spin_enter(&srab_lock); 646 647 bcm53xx_srab_busywait(bst, bsh); 648 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT, 649 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN); 650 bcm53xx_srab_busywait(bst, bsh); 651 rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH); 652 rv <<= 32; 653 rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL); 654 655 mutex_spin_exit(&srab_lock); 656 return rv; 657 } 658 659 void 660 bcm53xx_srab_write_4(u_int pageoffset, uint32_t val) 661 { 662 bus_space_tag_t bst = bcm53xx_ioreg_bst; 663 bus_space_handle_t bsh = bcm53xx_ioreg_bsh; 664 665 mutex_spin_enter(&srab_lock); 666 667 bcm53xx_srab_busywait(bst, bsh); 668 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val); 669 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT, 670 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN); 671 bcm53xx_srab_busywait(bst, bsh); 672 673 mutex_spin_exit(&srab_lock); 674 } 675 676 void 677 bcm53xx_srab_write_8(u_int pageoffset, uint64_t val) 678 { 679 bus_space_tag_t bst = bcm53xx_ioreg_bst; 680 bus_space_handle_t bsh = bcm53xx_ioreg_bsh; 681 682 mutex_spin_enter(&srab_lock); 683 684 bcm53xx_srab_busywait(bst, bsh); 685 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val); 686 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32); 687 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT, 688 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN); 689 bcm53xx_srab_busywait(bst, bsh); 690 mutex_spin_exit(&srab_lock); 691 } 692 #endif 693