Home | History | Annotate | Line # | Download | only in boot32
      1 /*	$NetBSD: boot32.c,v 1.50 2022/05/24 06:27:59 andvar Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  *
     29  * Thanks a bunch for Ben's framework for the bootloader and its supporting
     30  * libs. This file tries to actually boot NetBSD/acorn32 !
     31  *
     32  */
     33 
     34 #include <lib/libsa/stand.h>
     35 #include <lib/libsa/loadfile.h>
     36 #include <lib/libkern/libkern.h>
     37 #include <riscoscalls.h>
     38 #include <srt0.h>
     39 #include <sys/boot_flag.h>
     40 #include <machine/vmparam.h>
     41 #include <arm/arm32/pte.h>
     42 #include <machine/bootconfig.h>
     43 
     44 extern char end[];
     45 
     46 /* debugging flags */
     47 int debug = 1;
     48 
     49 
     50 /* constants */
     51 #define PODRAM_START   (512*1024*1024)		/* XXX Kinetic cards XXX */
     52 
     53 #define MAX_RELOCPAGES	4096
     54 
     55 #define DEFAULT_ROOT	"/dev/wd0a"
     56 
     57 
     58 #define IO_BLOCKS	 16	/* move these to the bootloader structure? */
     59 #define ROM_BLOCKS	 16
     60 #define PODRAM_BLOCKS	 16
     61 
     62 
     63 /* booter variables */
     64 char	 scrap[80], twirl_cnt;		/* misc				*/
     65 char	 booted_file[80];
     66 
     67 struct bootconfig *bconfig;		/* bootconfig passing		*/
     68 u_long	 bconfig_new_phys;		/* physical address its bound	*/
     69 
     70 /* computer knowledge		*/
     71 u_int	 monitor_type, monitor_sync, ioeb_flags, lcd_flags;
     72 u_int	 superio_flags, superio_flags_basic, superio_flags_extra;
     73 
     74 /* sizes			*/
     75 int	 nbpp, memory_table_size, memory_image_size;
     76 /* relocate info		*/
     77 u_long	 reloc_tablesize, *reloc_instruction_table;
     78 u_long	*reloc_pos;			/* current empty entry		*/
     79 int	 reloc_entries;			/* number of relocations	*/
     80 int	 first_mapped_DRAM_page_index;	/* offset in RISC OS blob	*/
     81 int	 first_mapped_PODRAM_page_index;/* offset in RISC OS blob	*/
     82 
     83 struct page_info *mem_pages_info;	/* {nr, virt, phys}*		*/
     84 struct page_info *free_relocation_page;	/* points to the page_info chain*/
     85 struct page_info *relocate_code_page;	/* points to the copied code	*/
     86 struct page_info *bconfig_page;		/* page for passing on settings	*/
     87 
     88 unsigned char *memory_page_types;	/* packed array of 4 bit typeId	*/
     89 
     90 u_long	*initial_page_tables;		/* pagetables to be booted from	*/
     91 
     92 
     93 /* XXX rename *_BLOCKS to MEM_BLOCKS */
     94 /* DRAM/VRAM/ROM/IO info */
     95 /* where the display is		*/
     96 u_long	 videomem_start, videomem_pages, display_size;
     97 
     98 u_long	 pv_offset, top_physdram;	/* kernel_base - phys. diff	*/
     99 u_long	 top_1Mb_dram;			/* the lower mapped top 1Mb	*/
    100 u_long	 new_L1_pages_phys;		/* physical address of L1 pages	*/
    101 
    102 /* for bootconfig passing	*/
    103 u_long	 total_podram_pages, total_dram_pages, total_vram_pages;
    104 int	 dram_blocks, podram_blocks;	/* number of mem. objects/type  */
    105 int	 vram_blocks, rom_blocks, io_blocks;
    106 
    107 u_long	 DRAM_addr[DRAM_BLOCKS],     DRAM_pages[DRAM_BLOCKS];
    108 /* processor only RAM	*/
    109 u_long	 PODRAM_addr[PODRAM_BLOCKS], PODRAM_pages[PODRAM_BLOCKS];
    110 u_long	 VRAM_addr[VRAM_BLOCKS],     VRAM_pages[VRAM_BLOCKS];
    111 u_long	 ROM_addr[ROM_BLOCKS],       ROM_pages[ROM_BLOCKS];
    112 u_long	 IO_addr[IO_BLOCKS],         IO_pages[IO_BLOCKS];
    113 
    114 
    115 /* RISC OS memory pages we claimed */
    116 u_long	 firstpage, lastpage, totalpages; /* RISC OS pagecounters	*/
    117 /* RISC OS memory		*/
    118 char	*memory_image, *bottom_memory, *top_memory;
    119 
    120 /* kernel info */
    121 u_long	 marks[MARK_MAX];		/* loader mark pointers 	*/
    122 u_long	 kernel_physical_start;		/* where does it get relocated	*/
    123 u_long	 kernel_physical_maxsize;	/* Max allowed size of kernel	*/
    124 u_long	 kernel_free_vm_start;		/* where does the free VM start	*/
    125 /* some free space to mess with	*/
    126 u_long	 scratch_virtualbase, scratch_physicalbase;
    127 
    128 
    129 /* bootprogram identifiers */
    130 extern const char bootprog_rev[];
    131 extern const char bootprog_name[];
    132 
    133 /* predefines / prototypes */
    134 void	 init_datastructures(void);
    135 void	 get_memory_configuration(void);
    136 void	 get_memory_map(void);
    137 void	 create_initial_page_tables(void);
    138 void	 add_pagetables_at_top(void);
    139 int	 page_info_cmp(const void *a, const void *);
    140 void	 add_initvectors(void);
    141 void	 create_configuration(int argc, char **argv, int start_args);
    142 void	 prepare_and_check_relocation_system(void);
    143 void	 compact_relocations(void);
    144 void	 twirl(void);
    145 int	 vdu_var(int);
    146 void	 process_args(int argc, char **argv, int *howto, char *file,
    147     int *start_args);
    148 
    149 char		 *sprint0(int width, char prefix, char base, int value);
    150 struct page_info *get_relocated_page(u_long destination, int size);
    151 
    152 extern void start_kernel(
    153 		int relocate_code_page,
    154 		int relocation_pv_offset,
    155 		int configuration_structure_in_flat_physical_space,
    156 		int virtual_address_relocation_table,
    157 		int physical_address_of_new_L1_pages,
    158 		int kernel_entry_point
    159 		);	/* asm */
    160 
    161 
    162 /* the loader itself */
    163 void
    164 init_datastructures(void)
    165 {
    166 
    167 	/* Get number of pages and the memorytablesize */
    168 	osmemory_read_arrangement_table_size(&memory_table_size, &nbpp);
    169 
    170 	/* Allocate 99% - (small fixed amount) of the heap for memory_image */
    171 	memory_image_size = (int)HIMEM - (int)end - 512 * 1024;
    172 	memory_image_size /= 100;
    173 	memory_image_size *= 99;
    174 	if (memory_image_size <= 256*1024)
    175 		panic("Insufficient memory");
    176 
    177 	memory_image = alloc(memory_image_size);
    178 	if (!memory_image)
    179 		panic("Can't alloc get my memory image ?");
    180 
    181 	bottom_memory = memory_image;
    182 	top_memory    = memory_image + memory_image_size;
    183 
    184 	firstpage  = ((int)bottom_memory / nbpp) + 1;	/* safety */
    185 	lastpage   = ((int)top_memory    / nbpp) - 1;
    186 	totalpages = lastpage - firstpage;
    187 
    188 	printf("Allocated %ld memory pages, each of %d kilobytes.\n\n",
    189 			totalpages, nbpp>>10 );
    190 
    191 	/*
    192 	 * Setup the relocation table. Its a simple array of 3 * 32 bit
    193 	 * entries. The first word in the array is the number of relocations
    194 	 * to be done
    195 	 */
    196 	reloc_tablesize = (MAX_RELOCPAGES+1)*3*sizeof(u_long);
    197 	reloc_instruction_table = alloc(reloc_tablesize);
    198 	if (!reloc_instruction_table)
    199 		panic("Can't alloc my relocate instructions pages");
    200 
    201 	reloc_entries = 0;
    202 	reloc_pos     = reloc_instruction_table;
    203 	*reloc_pos++  = 0;
    204 
    205 	/*
    206 	 * Set up the memory translation info structure. We need to allocate
    207 	 * one more for the end of list marker. See get_memory_map.
    208 	 */
    209 	mem_pages_info = alloc((totalpages + 1)*sizeof(struct page_info));
    210 	if (!mem_pages_info)
    211 		panic("Can't alloc my phys->virt page info");
    212 
    213 	/*
    214 	 * Allocate memory for the memory arrangement table. We use this
    215 	 * structure to retrieve memory page properties to clasify them.
    216 	 */
    217 	memory_page_types = alloc(memory_table_size);
    218 	if (!memory_page_types)
    219 		panic("Can't alloc my memory page type block");
    220 
    221 	/*
    222 	 * Initial page tables is 16 kb per definition since only sections are
    223 	 * used.
    224 	 */
    225 	initial_page_tables = alloc(16*1024);
    226 	if (!initial_page_tables)
    227 		panic("Can't alloc my initial page tables");
    228 }
    229 
    230 void
    231 compact_relocations(void)
    232 {
    233 	u_long *reloc_entry, current_length, length;
    234 	u_long  src, destination, current_src, current_destination;
    235 	u_long *current_entry;
    236 
    237 	current_entry = reloc_entry = reloc_instruction_table + 1;
    238 
    239 	/* prime the loop */
    240 	current_src		= reloc_entry[0];
    241 	current_destination	= reloc_entry[1];
    242 	current_length		= reloc_entry[2];
    243 
    244 	reloc_entry += 3;
    245 	while (reloc_entry < reloc_pos) {
    246 		src         = reloc_entry[0];
    247 		destination = reloc_entry[1];
    248 		length      = reloc_entry[2];
    249 
    250 		if (src == (current_src + current_length) &&
    251 		    destination == (current_destination + current_length)) {
    252 			/* can merge */
    253 			current_length += length;
    254 		} else {
    255 			/* nothing else to do, so save the length */
    256 			current_entry[2] = current_length;
    257 			/* fill in next entry */
    258 			current_entry += 3;
    259 			current_src = current_entry[0] = src;
    260 			current_destination = current_entry[1] = destination;
    261 			current_length = length;
    262 		}
    263 		reloc_entry += 3;
    264 	}
    265 	/* save last length */
    266 	current_entry[2] = current_length;
    267 	current_entry += 3;
    268 
    269 	/* workout new count of entries */
    270 	length = current_entry - (reloc_instruction_table + 1);
    271 	printf("Compacted relocations from %d entries to %ld\n",
    272 		       reloc_entries, length/3);
    273 
    274 	/* update table to reflect new size */
    275 	reloc_entries = length/3;
    276 	reloc_instruction_table[0] = length/3;
    277 	reloc_pos = current_entry;
    278 }
    279 
    280 void
    281 get_memory_configuration(void)
    282 {
    283 	int loop, current_page_type, page_count, phys_page;
    284 	int page, count, top_bank, video_bank;
    285 	int mapped_screen_memory;
    286 	int one_mb_pages;
    287 	u_long top;
    288 
    289 	printf("Getting memory configuration ");
    290 
    291 	osmemory_read_arrangement_table(memory_page_types);
    292 
    293 	/* init counters */
    294 	vram_blocks = dram_blocks = rom_blocks = io_blocks = podram_blocks = 0;
    295 
    296 	current_page_type = -1;
    297 	phys_page = 0;			/* physical address in pages	*/
    298 	page_count = 0;			/* page counter in this block	*/
    299 	loop = 0;			/* loop variable over entries	*/
    300 
    301 	/* iterating over a packed array of 2 page types/byte i.e. 8 kb/byte */
    302 	while (loop < 2*memory_table_size) {
    303 		page = memory_page_types[loop / 2];	/* read	twice */
    304 		if (loop & 1) page >>= 4;		/* take other nibble */
    305 
    306 		/*
    307 		 * bits 0-2 give type, bit3 means the bit page is
    308 		 * allocatable
    309 		 */
    310 		page &= 0x7;			/* only take bottom 3 bits */
    311 		if (page != current_page_type) {
    312 			/* passed a boundary ... note this block	   */
    313 			/*
    314 			 * splitting in different vars is for
    315 			 * compatibility reasons
    316 			 */
    317 			switch (current_page_type) {
    318 			case -1:
    319 			case  0:
    320 				break;
    321 			case osmemory_TYPE_DRAM:
    322 				if ((phys_page * nbpp)< PODRAM_START) {
    323 					DRAM_addr[dram_blocks]  =
    324 					    phys_page * nbpp;
    325 					DRAM_pages[dram_blocks] =
    326 					    page_count;
    327 					dram_blocks++;
    328 				} else {
    329 					PODRAM_addr[podram_blocks]  =
    330 					    phys_page * nbpp;
    331 					PODRAM_pages[podram_blocks] =
    332 					    page_count;
    333 					podram_blocks++;
    334 				}
    335 				break;
    336 			case osmemory_TYPE_VRAM:
    337 				VRAM_addr[vram_blocks]  = phys_page * nbpp;
    338 				VRAM_pages[vram_blocks] = page_count;
    339 				vram_blocks++;
    340 				break;
    341 			case osmemory_TYPE_ROM:
    342 				ROM_addr[rom_blocks]  = phys_page * nbpp;
    343 				ROM_pages[rom_blocks] = page_count;
    344 				rom_blocks++;
    345 				break;
    346 			case osmemory_TYPE_IO:
    347 				IO_addr[io_blocks]  = phys_page * nbpp;
    348 				IO_pages[io_blocks] = page_count;
    349 				io_blocks++;
    350 				break;
    351 			default:
    352 				printf("WARNING : found unknown "
    353 				    "memory object %d ", current_page_type);
    354 				printf(" at 0x%s",
    355 				    sprint0(8,'0','x', phys_page * nbpp));
    356 				printf(" for %s k\n",
    357 				    sprint0(5,' ','d', (page_count*nbpp)>>10));
    358 				break;
    359 			}
    360 			current_page_type = page;
    361 			phys_page = loop;
    362 			page_count = 0;
    363 		}
    364 		/*
    365 		 * smallest unit we recognise is one page ... silly
    366 		 * could be upto 64 pages i.e. 256 kb
    367 		 */
    368 		page_count += 1;
    369 		loop       += 1;
    370 		if ((loop & 31) == 0) twirl();
    371 	}
    372 
    373 	printf(" \n\n");
    374 
    375 	if (VRAM_pages[0] == 0) {
    376 		/* map DRAM as video memory */
    377 		display_size	 =
    378 		    vdu_var(os_VDUVAR_TOTAL_SCREEN_SIZE) & ~(nbpp-1);
    379 #if 0
    380 		mapped_screen_memory = 1024 * 1024; /* max allowed on RiscPC */
    381 		videomem_pages   = (mapped_screen_memory / nbpp);
    382 		videomem_start   = DRAM_addr[0];
    383 		DRAM_addr[0]	+= videomem_pages * nbpp;
    384 		DRAM_pages[0]	-= videomem_pages;
    385 #else
    386 		mapped_screen_memory = display_size;
    387 		videomem_pages   = mapped_screen_memory / nbpp;
    388 		one_mb_pages	 = (1024*1024)/nbpp;
    389 
    390 		/*
    391 		 * OK... we need one Mb at the top for compliance with current
    392 		 * kernel structure. This ought to be abolished one day IMHO.
    393 		 * Also we have to take care that the kernel needs to be in
    394 		 * DRAM0a and even has to start there.
    395 		 * XXX one Mb simms are the smallest supported XXX
    396 		 */
    397 		top_bank = dram_blocks-1;
    398 		video_bank = top_bank;
    399 		if (DRAM_pages[top_bank] == one_mb_pages) video_bank--;
    400 
    401 		if (DRAM_pages[video_bank] < videomem_pages)
    402 			panic("Weird memory configuration found; please "
    403 			    "contact acorn32 portmaster.");
    404 
    405 		/* split off the top 1Mb */
    406 		DRAM_addr [top_bank+1]  = DRAM_addr[top_bank] +
    407 		    (DRAM_pages[top_bank] - one_mb_pages)*nbpp;
    408 		DRAM_pages[top_bank+1]  = one_mb_pages;
    409 		DRAM_pages[top_bank  ] -= one_mb_pages;
    410 		dram_blocks++;
    411 
    412 		/* Map video memory at the end of the chosen DIMM */
    413 		videomem_start          = DRAM_addr[video_bank] +
    414 		    (DRAM_pages[video_bank] - videomem_pages)*nbpp;
    415 		DRAM_pages[video_bank] -= videomem_pages;
    416 
    417 		/* sanity */
    418 		if (DRAM_pages[top_bank] == 0) {
    419 			DRAM_addr [top_bank] = DRAM_addr [top_bank+1];
    420 			DRAM_pages[top_bank] = DRAM_pages[top_bank+1];
    421 			dram_blocks--;
    422 		}
    423 #endif
    424 	} else {
    425 		/* use VRAM */
    426 		mapped_screen_memory = 0;
    427 		videomem_start	 = VRAM_addr[0];
    428 		videomem_pages	 = VRAM_pages[0];
    429 		display_size	 = videomem_pages * nbpp;
    430 	}
    431 
    432 	if (mapped_screen_memory) {
    433 		printf("Used %d kb DRAM ", mapped_screen_memory / 1024);
    434 		printf("at 0x%s for video memory\n",
    435 		    sprint0(8,'0','x', videomem_start));
    436 	}
    437 
    438 	/* find top of (PO)DRAM pages */
    439 	top_physdram = 0;
    440 	for (loop = 0; loop < podram_blocks; loop++) {
    441 		top = PODRAM_addr[loop] + PODRAM_pages[loop]*nbpp;
    442 		if (top > top_physdram) top_physdram = top;
    443 	}
    444 	for (loop = 0; loop < dram_blocks; loop++) {
    445 		top = DRAM_addr[loop] + DRAM_pages[loop]*nbpp;
    446 		if (top > top_physdram) top_physdram = top;
    447 	}
    448 	if (top_physdram == 0)
    449 		panic("reality check: No DRAM in this machine?");
    450 	if (((top_physdram >> 20) << 20) != top_physdram)
    451 		panic("Top is not not aligned on a Mb; "
    452 		    "remove very small DIMMS?");
    453 
    454 	/* pretty print the individual page types */
    455 	for (count = 0; count < rom_blocks; count++) {
    456 		printf("Found ROM  (%d)", count);
    457 		printf(" at 0x%s", sprint0(8,'0','x', ROM_addr[count]));
    458 		printf(" for %s k\n",
    459 		    sprint0(5,' ','d', (ROM_pages[count]*nbpp)>>10));
    460 	}
    461 
    462 	for (count = 0; count < io_blocks; count++) {
    463 		printf("Found I/O  (%d)", count);
    464 		printf(" at 0x%s", sprint0(8,'0','x', IO_addr[count]));
    465 		printf(" for %s k\n",
    466 		    sprint0(5,' ','d', (IO_pages[count]*nbpp)>>10));
    467 	}
    468 
    469 	/* for DRAM/VRAM also count the number of pages */
    470 	total_dram_pages = 0;
    471 	for (count = 0; count < dram_blocks; count++) {
    472 		total_dram_pages += DRAM_pages[count];
    473 		printf("Found DRAM (%d)", count);
    474 		printf(" at 0x%s", sprint0(8,'0','x', DRAM_addr[count]));
    475 		printf(" for %s k\n",
    476 		    sprint0(5,' ','d', (DRAM_pages[count]*nbpp)>>10));
    477 	}
    478 
    479 	total_vram_pages = 0;
    480 	for (count = 0; count < vram_blocks; count++) {
    481 		total_vram_pages += VRAM_pages[count];
    482 		printf("Found VRAM (%d)", count);
    483 		printf(" at 0x%s", sprint0(8,'0','x', VRAM_addr[count]));
    484 		printf(" for %s k\n",
    485 		    sprint0(5,' ','d', (VRAM_pages[count]*nbpp)>>10));
    486 	}
    487 
    488 	total_podram_pages = 0;
    489 	for (count = 0; count < podram_blocks; count++) {
    490 		total_podram_pages += PODRAM_pages[count];
    491 		printf("Found Processor only (S)DRAM (%d)", count);
    492 		printf(" at 0x%s", sprint0(8,'0','x', PODRAM_addr[count]));
    493 		printf(" for %s k\n",
    494 		    sprint0(5,' ','d', (PODRAM_pages[count]*nbpp)>>10));
    495 	}
    496 }
    497 
    498 
    499 void
    500 get_memory_map(void)
    501 {
    502 	struct page_info *page_info;
    503 	int	page, inout;
    504 	int	phys_addr;
    505 
    506 	printf("\nGetting actual memorymapping");
    507 	for (page = 0, page_info = mem_pages_info;
    508 	     page < totalpages;
    509 	     page++, page_info++) {
    510 		page_info->pagenumber = 0;	/* not used */
    511 		page_info->logical    = (firstpage + page) * nbpp;
    512 		page_info->physical   = 0;	/* result comes here */
    513 		/* to avoid triggering a `bug' in RISC OS 4, page it in */
    514 		*((int *)page_info->logical) = 0;
    515 	}
    516 	/* close list */
    517 	page_info->pagenumber = -1;
    518 
    519 	inout = osmemory_GIVEN_LOG_ADDR | osmemory_RETURN_PAGE_NO |
    520 	    osmemory_RETURN_PHYS_ADDR;
    521 	osmemory_page_op(inout, mem_pages_info, totalpages);
    522 
    523 	printf(" ; sorting ");
    524 	qsort(mem_pages_info, totalpages, sizeof(struct page_info),
    525 	    &page_info_cmp);
    526 	printf(".\n");
    527 
    528 	/*
    529 	 * get the first DRAM index and show the physical memory
    530 	 * fragments we got
    531 	 */
    532 	printf("\nFound physical memory blocks :\n");
    533 	first_mapped_DRAM_page_index = -1;
    534 	first_mapped_PODRAM_page_index = -1;
    535 	for (page=0; page < totalpages; page++) {
    536 		phys_addr = mem_pages_info[page].physical;
    537 		printf("[0x%x", phys_addr);
    538 		while (mem_pages_info[page+1].physical - phys_addr == nbpp) {
    539 			if (first_mapped_DRAM_page_index < 0 &&
    540 			    phys_addr >= DRAM_addr[0])
    541 				first_mapped_DRAM_page_index = page;
    542 			if (first_mapped_PODRAM_page_index < 0 &&
    543 			    phys_addr >= PODRAM_addr[0])
    544 				first_mapped_PODRAM_page_index = page;
    545 			page++;
    546 			phys_addr = mem_pages_info[page].physical;
    547 		}
    548 		printf("-0x%x]  ", phys_addr + nbpp -1);
    549 	}
    550 	printf("\n\n");
    551 
    552 	if (first_mapped_PODRAM_page_index < 0 && PODRAM_addr[0])
    553 		panic("Found no (S)DRAM mapped in the bootloader");
    554 	if (first_mapped_DRAM_page_index < 0)
    555 		panic("No DRAM mapped in the bootloader");
    556 }
    557 
    558 
    559 void
    560 create_initial_page_tables(void)
    561 {
    562 	u_long page, section, addr, kpage;
    563 
    564 	/* mark a section by the following bits and domain 0, AP=01, CB=0 */
    565 	/*         A         P         C        B        section
    566 	           domain		*/
    567 	section = (0<<11) | (1<<10) | (0<<3) | (0<<2) | (1<<4) | (1<<1) |
    568 	    (0) | (0 << 5);
    569 
    570 	/* first of all a full 1:1 mapping */
    571 	for (page = 0; page < 4*1024; page++)
    572 		initial_page_tables[page] = (page<<20) | section;
    573 
    574 	/*
    575 	 * video memory is mapped 1:1 in the DRAM section or in VRAM
    576 	 * section
    577 	 *
    578 	 * map 1Mb from top of DRAM memory to bottom 1Mb of virtual memmap
    579 	 */
    580 	top_1Mb_dram = (((top_physdram - 1024*1024) >> 20) << 20);
    581 
    582 	initial_page_tables[0] = top_1Mb_dram | section;
    583 
    584 	/*
    585 	 * map 16 Mb of kernel space to KERNEL_BASE
    586 	 * i.e. marks[KERNEL_START]
    587 	 */
    588 	for (page = 0; page < 16; page++) {
    589 		addr  = (kernel_physical_start >> 20) + page;
    590 		kpage = (marks[MARK_START]     >> 20) + page;
    591 		initial_page_tables[kpage] = (addr << 20) | section;
    592 	}
    593 }
    594 
    595 
    596 void
    597 add_pagetables_at_top(void)
    598 {
    599 	int page;
    600 	u_long src, dst, fragaddr;
    601 
    602 	/* Special : destination must be on a 16 Kb boundary */
    603 	/* get 4 pages on the top of the physical memory and copy PT's in it */
    604 	new_L1_pages_phys = top_physdram - 4 * nbpp;
    605 
    606 	/*
    607 	 * If the L1 page tables are not 16 kb aligned, adjust base
    608 	 * until it is
    609 	 */
    610 	while (new_L1_pages_phys & (16*1024-1))
    611 		new_L1_pages_phys -= nbpp;
    612 	if (new_L1_pages_phys & (16*1024-1))
    613 		panic("Paranoia : L1 pages not on 16Kb boundary");
    614 
    615 	dst = new_L1_pages_phys;
    616 	src = (u_long)initial_page_tables;
    617 
    618 	for (page = 0; page < 4; page++) {
    619 		/* get a page for a fragment */
    620 		fragaddr = get_relocated_page(dst, nbpp)->logical;
    621 		memcpy((void *)fragaddr, (void *)src, nbpp);
    622 
    623 		src += nbpp;
    624 		dst += nbpp;
    625 	}
    626 }
    627 
    628 
    629 void
    630 add_initvectors(void)
    631 {
    632 	u_long *pos;
    633 	u_long  vectoraddr, count;
    634 
    635 	/* the top 1Mb of the physical DRAM pages is mapped at address 0 */
    636 	vectoraddr = get_relocated_page(top_1Mb_dram, nbpp)->logical;
    637 
    638 	/* fill the vectors with `movs pc, lr' opcodes */
    639 	pos = (u_long *)vectoraddr; memset(pos, 0, nbpp);
    640 	for (count = 0; count < 128; count++) *pos++ = 0xE1B0F00E;
    641 }
    642 
    643 /*
    644  * Work out the display's vertical sync rate.  One might hope that there
    645  * would be a simpler way than by counting vsync interrupts for a second,
    646  * but if there is, I can't find it.
    647  */
    648 static int
    649 vsync_rate(void)
    650 {
    651 	uint8_t count0;
    652 	unsigned int time0;
    653 
    654 	count0 = osbyte_read(osbyte_VAR_VSYNC_TIMER);
    655 	time0 = os_read_monotonic_time();
    656 	while (os_read_monotonic_time() - time0 < 100)
    657 		continue;
    658 	return (uint8_t)(count0 - osbyte_read(osbyte_VAR_VSYNC_TIMER));
    659 }
    660 
    661 void
    662 create_configuration(int argc, char **argv, int start_args)
    663 {
    664 	int   i, root_specified, id_low, id_high;
    665 	char *pos;
    666 
    667 	bconfig_new_phys = kernel_free_vm_start - pv_offset;
    668 	bconfig_page = get_relocated_page(bconfig_new_phys, nbpp);
    669 	bconfig = (struct bootconfig *)(bconfig_page->logical);
    670 	kernel_free_vm_start += nbpp;
    671 
    672 	/* get some miscelanious info for the bootblock */
    673 	os_readsysinfo_monitor_info(NULL, (int *)&monitor_type, (int *)&monitor_sync);
    674 	os_readsysinfo_chip_presence((int *)&ioeb_flags, (int *)&superio_flags, (int *)&lcd_flags);
    675 	os_readsysinfo_superio_features((int *)&superio_flags_basic,
    676 	    (int *)&superio_flags_extra);
    677 	os_readsysinfo_unique_id(&id_low, &id_high);
    678 
    679 	/* fill in the bootconfig *bconfig structure : generic version II */
    680 	memset(bconfig, 0, sizeof(*bconfig));
    681 	bconfig->magic		= BOOTCONFIG_MAGIC;
    682 	bconfig->version	= BOOTCONFIG_VERSION;
    683 	strcpy(bconfig->kernelname, booted_file);
    684 
    685 	/*
    686 	 * get the kernel base name and update the RiscOS name to a
    687 	 * Unix name
    688 	 */
    689 	i = strlen(booted_file);
    690 	while (i >= 0 && booted_file[i] != '.') i--;
    691 	if (i) {
    692 		strcpy(bconfig->kernelname, "/");
    693 		strcat(bconfig->kernelname, booted_file+i+1);
    694 	}
    695 
    696 	pos = bconfig->kernelname+1;
    697 	while (*pos) {
    698 		if (*pos == '/') *pos = '.';
    699 		pos++;
    700 	}
    701 
    702 	/* set the machine_id */
    703 	memcpy(&(bconfig->machine_id), &id_low, 4);
    704 
    705 	/* check if the `root' is specified */
    706 	root_specified = 0;
    707 	strcpy(bconfig->args, "");
    708 	for (i = start_args; i < argc; i++) {
    709 		if (strncmp(argv[i], "root=",5) ==0) root_specified = 1;
    710 		if (i > start_args)
    711 			strcat(bconfig->args, " ");
    712 		strcat(bconfig->args, argv[i]);
    713 	}
    714 	if (!root_specified) {
    715 		if (start_args < argc)
    716 			strcat(bconfig->args, " ");
    717 		strcat(bconfig->args, "root=");
    718 		strcat(bconfig->args, DEFAULT_ROOT);
    719 	}
    720 
    721 	/* mark kernel pointers */
    722 	bconfig->kernvirtualbase	= marks[MARK_START];
    723 	bconfig->kernphysicalbase	= kernel_physical_start;
    724 	bconfig->kernsize		= kernel_free_vm_start -
    725 					    marks[MARK_START];
    726 	bconfig->ksym_start		= marks[MARK_SYM];
    727 	bconfig->ksym_end		= marks[MARK_SYM] + marks[MARK_NSYM];
    728 
    729 	/* setup display info */
    730 	bconfig->display_phys		= videomem_start;
    731 	bconfig->display_start		= videomem_start;
    732 	bconfig->display_size		= display_size;
    733 	bconfig->width			= vdu_var(os_MODEVAR_XWIND_LIMIT);
    734 	bconfig->height			= vdu_var(os_MODEVAR_YWIND_LIMIT);
    735 	bconfig->log2_bpp		= vdu_var(os_MODEVAR_LOG2_BPP);
    736 	bconfig->framerate		= vsync_rate();
    737 
    738 	/* fill in memory info */
    739 	bconfig->pagesize		= nbpp;
    740 	bconfig->drampages		= total_dram_pages +
    741 					    total_podram_pages;	/* XXX */
    742 	bconfig->vrampages		= total_vram_pages;
    743 	bconfig->dramblocks		= dram_blocks + podram_blocks; /*XXX*/
    744 	bconfig->vramblocks		= vram_blocks;
    745 
    746 	for (i = 0; i < dram_blocks; i++) {
    747 		bconfig->dram[i].address = DRAM_addr[i];
    748 		bconfig->dram[i].pages   = DRAM_pages[i];
    749 		bconfig->dram[i].flags   = PHYSMEM_TYPE_GENERIC;
    750 	}
    751 	for (; i < dram_blocks + podram_blocks; i++) {
    752 		bconfig->dram[i].address = PODRAM_addr[i-dram_blocks];
    753 		bconfig->dram[i].pages   = PODRAM_pages[i-dram_blocks];
    754 		bconfig->dram[i].flags   = PHYSMEM_TYPE_PROCESSOR_ONLY;
    755 	}
    756 	for (i = 0; i < vram_blocks; i++) {
    757 		bconfig->vram[i].address = VRAM_addr[i];
    758 		bconfig->vram[i].pages   = VRAM_pages[i];
    759 		bconfig->vram[i].flags   = PHYSMEM_TYPE_GENERIC;
    760 	}
    761 }
    762 
    763 int get_riscos_ver(void);
    764 
    765 #define ModuleName_UtilityModule "UtilityModule"
    766 
    767 int
    768 get_riscos_ver(void)
    769 {
    770 	int module, section;
    771 	os_error *e;
    772 	char *name;
    773 	int version;
    774 
    775 	version = 0;
    776 	/* Full enumeration */
    777 	module = 0;
    778 	section = -1;
    779 	do {
    780 		e = xosmodule_enumeratewithversion(&module, &section, &name,
    781 		    NULL, NULL, &version);
    782 		if (!strncmp(name, ModuleName_UtilityModule,
    783 		    sizeof (ModuleName_UtilityModule))) {
    784 			return version;
    785 		}
    786 	} while (e == NULL && section == -1);
    787 	return 0;
    788 }
    789 
    790 int main(int, char **);
    791 
    792 int
    793 main(int argc, char **argv)
    794 {
    795 	int howto, start_args, ret;
    796 	int riscosver;
    797 	int class;
    798 
    799 	riscosver = get_riscos_ver();
    800 	/*
    801 	 * RISC OS version is in BCD
    802 	 * Top 16 bits = major version
    803 	 * Bottom 16 bits = fractional part
    804 	 * e.g. 3.71 = 0x00037100
    805 	 */
    806 
    807 	printf("\n\n");
    808 	printf(">> %s, Revision %s\n", bootprog_name, bootprog_rev);
    809 	printf(">> Booting NetBSD/acorn32 on a RiscPC/A7000/NC\n");
    810 	printf(">> RISC OS version: %d.%d%d\n",
    811 	    (riscosver >> 16) & 0xff,
    812 	    (riscosver >> 12) & 0xf,
    813 	    (riscosver >> 8) & 0xf);
    814 	printf("\n");
    815 
    816 	process_args(argc, argv, &howto, booted_file, &start_args);
    817 
    818 	printf("Booting %s (howto = 0x%x)\n", booted_file, howto);
    819 
    820 	init_datastructures();
    821 	get_memory_configuration();
    822 	get_memory_map();
    823 
    824 	/*
    825 	 * point to the first free DRAM page guaranteed to be in
    826 	 * strict order up
    827 	 */
    828 	if (podram_blocks != 0) {
    829 		free_relocation_page =
    830 		    mem_pages_info + first_mapped_PODRAM_page_index;
    831 		kernel_physical_start = PODRAM_addr[0];
    832 		kernel_physical_maxsize = PODRAM_pages[0] * nbpp;
    833 	} else {
    834 		free_relocation_page =
    835 		    mem_pages_info + first_mapped_DRAM_page_index;
    836 		kernel_physical_start = DRAM_addr[0];
    837 		kernel_physical_maxsize = DRAM_pages[0] * nbpp;
    838 	}
    839 
    840 	printf("\nLoading %s ", booted_file);
    841 
    842 	/* first count the kernel to get the markers */
    843 	ret = loadfile(booted_file, marks, COUNT_KERNEL);
    844 	if (ret == -1) panic("Kernel load failed"); /* lie to the user ... */
    845 	close(ret);
    846 
    847 	if (marks[MARK_END] - marks[MARK_START] > kernel_physical_maxsize)
    848 	{
    849 		panic("\nKernel is bigger than the first DRAM module, unable to boot\n");
    850 	}
    851 
    852 	/*
    853 	 * calculate how much the difference is between physical and
    854 	 * virtual space for the kernel
    855 	 */
    856 	pv_offset = ((u_long)marks[MARK_START] - kernel_physical_start);
    857 	/* round on a page	*/
    858 	kernel_free_vm_start = (marks[MARK_END] + nbpp-1) & ~(nbpp-1);
    859 
    860 	/* we seem to be forced to clear the marks[] ? */
    861 	memset(marks, 0, sizeof(marks));
    862 
    863 	/* really load it ! */
    864 	ret = loadfile(booted_file, marks, LOAD_KERNEL);
    865 	if (ret == -1) panic("Kernel load failed");
    866 	close(ret);
    867 
    868 	/* finish off the relocation information */
    869 	create_initial_page_tables();
    870 	add_initvectors();
    871 	add_pagetables_at_top();
    872 	create_configuration(argc, argv, start_args);
    873 
    874 	/*
    875 	 * done relocating and creating information, now update and
    876 	 * check the relocation mechanism
    877 	 */
    878 	compact_relocations();
    879 
    880 	/*
    881 	 * grab a page to copy the bootstrap code into
    882 	 */
    883 	relocate_code_page = free_relocation_page++;
    884 
    885 	printf("\nStarting at 0x%lx, p@0x%lx\n", marks[MARK_ENTRY], kernel_physical_start);
    886 	printf("%ld entries, first one is 0x%lx->0x%lx for %lx bytes\n",
    887 			reloc_instruction_table[0],
    888 			reloc_instruction_table[1],
    889 			reloc_instruction_table[2],
    890 			reloc_instruction_table[3]);
    891 
    892 	printf("Will boot in a few secs due to relocation....\n"
    893 	    "bye bye from RISC OS!");
    894 
    895 	/* dismount all filesystems */
    896 	xosfscontrol_shutdown();
    897 
    898 	/*
    899 	 * OS_ReadSysInfo Platform class reason code not valid
    900 	 * on RISC OS 3.
    901 	 * XXX Don't know about RISC OS 4
    902 	 */
    903 
    904 	if (riscosver >= 0x40000) {
    905 		os_readsysinfo_platform_class(&class, NULL, NULL);
    906 		if (class != osreadsysinfo_Platform_Pace) {
    907 			/* reset devices, well try to anyway */
    908 			service_pre_reset();
    909 		}
    910 	} else {
    911 		service_pre_reset();
    912 	}
    913 
    914 	start_kernel(
    915 		/* r0 relocation code page (V)	*/ relocate_code_page->logical,
    916 		/* r1 relocation pv offset	*/
    917 		relocate_code_page->physical-relocate_code_page->logical,
    918 		/* r2 configuration structure	*/ bconfig_new_phys,
    919 		/* r3 relocation table (l)	*/
    920 		(int)reloc_instruction_table,	/* one piece! */
    921 		/* r4 L1 page descriptor (P)	*/ new_L1_pages_phys,
    922 		/* r5 kernel entry point	*/ marks[MARK_ENTRY]
    923 	);
    924 	return 0;
    925 }
    926 
    927 
    928 ssize_t
    929 boot32_read(int f, void *addr, size_t size)
    930 {
    931 	void *fragaddr;
    932 	size_t fragsize;
    933 	ssize_t bytes_read, total;
    934 
    935 	/* printf("read at %p for %ld bytes\n", addr, size); */
    936 	total = 0;
    937 	while (size > 0) {
    938 		fragsize = nbpp;		/* select one page	*/
    939 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    940 
    941 		/* get a page for a fragment */
    942 		fragaddr = (void *)get_relocated_page((u_long) addr -
    943 		    pv_offset, fragsize)->logical;
    944 
    945 		bytes_read = read(f, fragaddr, fragsize);
    946 		if (bytes_read < 0) return bytes_read;	/* error!	*/
    947 		total += bytes_read;		/* account read bytes	*/
    948 
    949 		if (bytes_read < fragsize)
    950 			return total;		/* does this happen?	*/
    951 
    952 		size -= fragsize;		/* advance		*/
    953 		addr += fragsize;
    954 	}
    955 	return total;
    956 }
    957 
    958 
    959 void *
    960 boot32_memcpy(void *dst, const void *src, size_t size)
    961 {
    962 	void *fragaddr;
    963 	size_t fragsize;
    964 
    965 	/* printf("memcpy to %p from %p for %ld bytes\n", dst, src, size); */
    966 	while (size > 0) {
    967 		fragsize = nbpp;		/* select one page	*/
    968 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    969 
    970 		/* get a page for a fragment */
    971 		fragaddr = (void *)get_relocated_page((u_long) dst -
    972 		    pv_offset, fragsize)->logical;
    973 		memcpy(fragaddr, src, size);
    974 
    975 		src += fragsize;		/* account copy		*/
    976 		dst += fragsize;
    977 		size-= fragsize;
    978 	}
    979 	return dst;
    980 }
    981 
    982 
    983 void *
    984 boot32_memset(void *dst, int c, size_t size)
    985 {
    986 	void *fragaddr;
    987 	size_t fragsize;
    988 
    989 	/* printf("memset %p for %ld bytes with %d\n", dst, size, c); */
    990 	while (size > 0) {
    991 		fragsize = nbpp;		/* select one page	*/
    992 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    993 
    994 		/* get a page for a fragment */
    995 		fragaddr = (void *)get_relocated_page((u_long)dst - pv_offset,
    996 		    fragsize)->logical;
    997 		memset(fragaddr, c, fragsize);
    998 
    999 		dst += fragsize;		/* account memsetting	*/
   1000 		size-= fragsize;
   1001 
   1002 	}
   1003 	return dst;
   1004 }
   1005 
   1006 
   1007 /* We can rely on the fact that two entries never have identical ->physical */
   1008 int
   1009 page_info_cmp(const void *a, const void *b)
   1010 {
   1011 
   1012 	return (((struct page_info *)a)->physical <
   1013 	    ((struct page_info *)b)->physical) ? -1 : 1;
   1014 }
   1015 
   1016 struct page_info *
   1017 get_relocated_page(u_long destination, int size)
   1018 {
   1019 	struct page_info *page;
   1020 
   1021 	/* get a page for a fragment */
   1022 	page = free_relocation_page;
   1023 	if (free_relocation_page->pagenumber < 0) panic("\n\nOut of pages");
   1024 	reloc_entries++;
   1025 	if (reloc_entries >= MAX_RELOCPAGES)
   1026 		panic("\n\nToo many relocations! What are you loading ??");
   1027 
   1028 	/* record the relocation */
   1029 	if (free_relocation_page->physical & 0x3)
   1030 		panic("\n\nphysical address is not aligned!");
   1031 
   1032 	if (destination & 0x3)
   1033 		panic("\n\ndestination address is not aligned!");
   1034 
   1035 	*reloc_pos++ = free_relocation_page->physical;
   1036 	*reloc_pos++ = destination;
   1037 	*reloc_pos++ = size;
   1038 	free_relocation_page++;			/* advance 		*/
   1039 
   1040 	return page;
   1041 }
   1042 
   1043 
   1044 int
   1045 vdu_var(int var)
   1046 {
   1047 	int varlist[2], vallist[2];
   1048 
   1049 	varlist[0] = var;
   1050 	varlist[1] = -1;
   1051 	os_read_vdu_variables(varlist, vallist);
   1052 	return vallist[0];
   1053 }
   1054 
   1055 
   1056 void
   1057 twirl(void)
   1058 {
   1059 
   1060 	printf("%c%c", "|/-\\"[(int) twirl_cnt], 8);
   1061 	twirl_cnt++;
   1062 	twirl_cnt &= 3;
   1063 }
   1064 
   1065 
   1066 void
   1067 process_args(int argc, char **argv, int *howto, char *file, int *start_args)
   1068 {
   1069 	int i, j;
   1070 	static char filename[80];
   1071 
   1072 	*howto = 0;
   1073 	*file = '\0'; *start_args = 1;
   1074 	for (i = 1; i < argc; i++) {
   1075 		if (argv[i][0] == '-')
   1076 			for (j = 1; argv[i][j]; j++)
   1077 				BOOT_FLAG(argv[i][j], *howto);
   1078 		else {
   1079 			if (*file)
   1080 				*start_args = i;
   1081 			else {
   1082 				strcpy(file, argv[i]);
   1083 				*start_args = i+1;
   1084 			}
   1085 			break;
   1086 		}
   1087 	}
   1088 	if (*file == '\0') {
   1089 		if (*howto & RB_ASKNAME) {
   1090 			printf("boot: ");
   1091 			kgets(filename, sizeof(filename));
   1092 			strcpy(file, filename);
   1093 		} else
   1094 			strcpy(file, "netbsd");
   1095 	}
   1096 }
   1097 
   1098 
   1099 char *
   1100 sprint0(int width, char prefix, char base, int value)
   1101 {
   1102 	static char format[50], scrap[50];
   1103 	char *pos;
   1104 	int length;
   1105 
   1106 	for (pos = format, length = 0; length<width; length++) *pos++ = prefix;
   1107 	*pos++ = '%';
   1108 	*pos++ = base;
   1109 	*pos++ = (char) 0;
   1110 
   1111 	snprintf(scrap, sizeof(scrap), format, value);
   1112 	length = strlen(scrap);
   1113 
   1114 	return scrap+length-width;
   1115 }
   1116 
   1117