Home | History | Annotate | Line # | Download | only in net
      1 /*	$NetBSD: bpfjit.c,v 1.48 2020/02/01 02:54:02 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2011-2015 Alexander Nasonov.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in
     15  *    the documentation and/or other materials provided with the
     16  *    distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     21  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     22  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     23  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     27  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     28  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 #ifdef _KERNEL
     34 __KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.48 2020/02/01 02:54:02 riastradh Exp $");
     35 #else
     36 __RCSID("$NetBSD: bpfjit.c,v 1.48 2020/02/01 02:54:02 riastradh Exp $");
     37 #endif
     38 
     39 #include <sys/types.h>
     40 #include <sys/queue.h>
     41 
     42 #ifndef _KERNEL
     43 #include <assert.h>
     44 #define BJ_ASSERT(c) assert(c)
     45 #else
     46 #define BJ_ASSERT(c) KASSERT(c)
     47 #endif
     48 
     49 #ifndef _KERNEL
     50 #include <stdlib.h>
     51 #define BJ_ALLOC(sz) malloc(sz)
     52 #define BJ_FREE(p, sz) free(p)
     53 #else
     54 #include <sys/kmem.h>
     55 #define BJ_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
     56 #define BJ_FREE(p, sz) kmem_free(p, sz)
     57 #endif
     58 
     59 #ifndef _KERNEL
     60 #include <limits.h>
     61 #include <stdbool.h>
     62 #include <stddef.h>
     63 #include <stdint.h>
     64 #include <string.h>
     65 #else
     66 #include <sys/atomic.h>
     67 #include <sys/module.h>
     68 #endif
     69 
     70 #define	__BPF_PRIVATE
     71 #include <net/bpf.h>
     72 #include <net/bpfjit.h>
     73 #include <sljitLir.h>
     74 
     75 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
     76 #include <stdio.h> /* for stderr */
     77 #endif
     78 
     79 /*
     80  * Number of saved registers to pass to sljit_emit_enter() function.
     81  */
     82 #define NSAVEDS		3
     83 
     84 /*
     85  * Arguments of generated bpfjit_func_t.
     86  * The first argument is reassigned upon entry
     87  * to a more frequently used buf argument.
     88  */
     89 #define BJ_CTX_ARG	SLJIT_S0
     90 #define BJ_ARGS		SLJIT_S1
     91 
     92 /*
     93  * Permanent register assignments.
     94  */
     95 #define BJ_BUF		SLJIT_S0
     96 //#define BJ_ARGS	SLJIT_S1
     97 #define BJ_BUFLEN	SLJIT_S2
     98 #define BJ_AREG		SLJIT_R0
     99 #define BJ_TMP1REG	SLJIT_R1
    100 #define BJ_TMP2REG	SLJIT_R2
    101 #define BJ_XREG		SLJIT_R3
    102 #define BJ_TMP3REG	SLJIT_R4
    103 
    104 #ifdef _KERNEL
    105 #define MAX_MEMWORDS BPF_MAX_MEMWORDS
    106 #else
    107 #define MAX_MEMWORDS BPF_MEMWORDS
    108 #endif
    109 
    110 #define BJ_INIT_NOBITS  ((bpf_memword_init_t)0)
    111 #define BJ_INIT_MBIT(k) BPF_MEMWORD_INIT(k)
    112 #define BJ_INIT_ABIT    BJ_INIT_MBIT(MAX_MEMWORDS)
    113 #define BJ_INIT_XBIT    BJ_INIT_MBIT(MAX_MEMWORDS + 1)
    114 
    115 /*
    116  * Get a number of memwords and external memwords from a bpf_ctx object.
    117  */
    118 #define GET_EXTWORDS(bc) ((bc) ? (bc)->extwords : 0)
    119 #define GET_MEMWORDS(bc) (GET_EXTWORDS(bc) ? GET_EXTWORDS(bc) : BPF_MEMWORDS)
    120 
    121 /*
    122  * Optimization hints.
    123  */
    124 typedef unsigned int bpfjit_hint_t;
    125 #define BJ_HINT_ABS  0x01 /* packet read at absolute offset   */
    126 #define BJ_HINT_IND  0x02 /* packet read at variable offset   */
    127 #define BJ_HINT_MSH  0x04 /* BPF_MSH instruction              */
    128 #define BJ_HINT_COP  0x08 /* BPF_COP or BPF_COPX instruction  */
    129 #define BJ_HINT_COPX 0x10 /* BPF_COPX instruction             */
    130 #define BJ_HINT_XREG 0x20 /* BJ_XREG is needed                */
    131 #define BJ_HINT_LDX  0x40 /* BPF_LDX instruction              */
    132 #define BJ_HINT_PKT  (BJ_HINT_ABS|BJ_HINT_IND|BJ_HINT_MSH)
    133 
    134 /*
    135  * Datatype for Array Bounds Check Elimination (ABC) pass.
    136  */
    137 typedef uint64_t bpfjit_abc_length_t;
    138 #define MAX_ABC_LENGTH (UINT32_MAX + UINT64_C(4)) /* max. width is 4 */
    139 
    140 struct bpfjit_stack
    141 {
    142 	bpf_ctx_t *ctx;
    143 	uint32_t *extmem; /* pointer to external memory store */
    144 	uint32_t reg; /* saved A or X register */
    145 #ifdef _KERNEL
    146 	int err; /* 3rd argument for m_xword/m_xhalf/m_xbyte function call */
    147 #endif
    148 	uint32_t mem[BPF_MEMWORDS]; /* internal memory store */
    149 };
    150 
    151 /*
    152  * Data for BPF_JMP instruction.
    153  * Forward declaration for struct bpfjit_jump.
    154  */
    155 struct bpfjit_jump_data;
    156 
    157 /*
    158  * Node of bjumps list.
    159  */
    160 struct bpfjit_jump {
    161 	struct sljit_jump *sjump;
    162 	SLIST_ENTRY(bpfjit_jump) entries;
    163 	struct bpfjit_jump_data *jdata;
    164 };
    165 
    166 /*
    167  * Data for BPF_JMP instruction.
    168  */
    169 struct bpfjit_jump_data {
    170 	/*
    171 	 * These entries make up bjumps list:
    172 	 * jtf[0] - when coming from jt path,
    173 	 * jtf[1] - when coming from jf path.
    174 	 */
    175 	struct bpfjit_jump jtf[2];
    176 	/*
    177 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    178 	 */
    179 	bpfjit_abc_length_t abc_length;
    180 	/*
    181 	 * Length checked by the last out-of-bounds check.
    182 	 */
    183 	bpfjit_abc_length_t checked_length;
    184 };
    185 
    186 /*
    187  * Data for "read from packet" instructions.
    188  * See also read_pkt_insn() function below.
    189  */
    190 struct bpfjit_read_pkt_data {
    191 	/*
    192 	 * Length calculated by Array Bounds Check Elimination (ABC) pass.
    193 	 */
    194 	bpfjit_abc_length_t abc_length;
    195 	/*
    196 	 * If positive, emit "if (buflen < check_length) return 0"
    197 	 * out-of-bounds check.
    198 	 * Values greater than UINT32_MAX generate unconditional "return 0".
    199 	 */
    200 	bpfjit_abc_length_t check_length;
    201 };
    202 
    203 /*
    204  * Additional (optimization-related) data for bpf_insn.
    205  */
    206 struct bpfjit_insn_data {
    207 	/* List of jumps to this insn. */
    208 	SLIST_HEAD(, bpfjit_jump) bjumps;
    209 
    210 	union {
    211 		struct bpfjit_jump_data     jdata;
    212 		struct bpfjit_read_pkt_data rdata;
    213 	} u;
    214 
    215 	bpf_memword_init_t invalid;
    216 	bool unreachable;
    217 };
    218 
    219 #ifdef _KERNEL
    220 
    221 uint32_t m_xword(const struct mbuf *, uint32_t, int *);
    222 uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
    223 uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
    224 
    225 MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
    226 
    227 static int
    228 bpfjit_modcmd(modcmd_t cmd, void *arg)
    229 {
    230 
    231 	switch (cmd) {
    232 	case MODULE_CMD_INIT:
    233 		bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
    234 		atomic_store_release(&bpfjit_module_ops.bj_generate_code,
    235 		    &bpfjit_generate_code);
    236 		return 0;
    237 
    238 	case MODULE_CMD_FINI:
    239 		return EOPNOTSUPP;
    240 
    241 	default:
    242 		return ENOTTY;
    243 	}
    244 }
    245 #endif
    246 
    247 /*
    248  * Return a number of scratch registers to pass
    249  * to sljit_emit_enter() function.
    250  */
    251 static sljit_s32
    252 nscratches(bpfjit_hint_t hints)
    253 {
    254 	sljit_s32 rv = 2;
    255 
    256 #ifdef _KERNEL
    257 	if (hints & BJ_HINT_PKT)
    258 		rv = 3; /* xcall with three arguments */
    259 #endif
    260 
    261 	if (hints & BJ_HINT_IND)
    262 		rv = 3; /* uses BJ_TMP2REG */
    263 
    264 	if (hints & BJ_HINT_COP)
    265 		rv = 3; /* calls copfunc with three arguments */
    266 
    267 	if (hints & BJ_HINT_XREG)
    268 		rv = 4; /* uses BJ_XREG */
    269 
    270 #ifdef _KERNEL
    271 	if (hints & BJ_HINT_LDX)
    272 		rv = 5; /* uses BJ_TMP3REG */
    273 #endif
    274 
    275 	if (hints & BJ_HINT_COPX)
    276 		rv = 5; /* uses BJ_TMP3REG */
    277 
    278 	return rv;
    279 }
    280 
    281 static uint32_t
    282 read_width(const struct bpf_insn *pc)
    283 {
    284 
    285 	switch (BPF_SIZE(pc->code)) {
    286 	case BPF_W: return 4;
    287 	case BPF_H: return 2;
    288 	case BPF_B: return 1;
    289 	default:    return 0;
    290 	}
    291 }
    292 
    293 /*
    294  * Copy buf and buflen members of bpf_args from BJ_ARGS
    295  * pointer to BJ_BUF and BJ_BUFLEN registers.
    296  */
    297 static int
    298 load_buf_buflen(struct sljit_compiler *compiler)
    299 {
    300 	int status;
    301 
    302 	status = sljit_emit_op1(compiler,
    303 	    SLJIT_MOV_P,
    304 	    BJ_BUF, 0,
    305 	    SLJIT_MEM1(BJ_ARGS),
    306 	    offsetof(struct bpf_args, pkt));
    307 	if (status != SLJIT_SUCCESS)
    308 		return status;
    309 
    310 	status = sljit_emit_op1(compiler,
    311 	    SLJIT_MOV, /* size_t source */
    312 	    BJ_BUFLEN, 0,
    313 	    SLJIT_MEM1(BJ_ARGS),
    314 	    offsetof(struct bpf_args, buflen));
    315 
    316 	return status;
    317 }
    318 
    319 static bool
    320 grow_jumps(struct sljit_jump ***jumps, size_t *size)
    321 {
    322 	struct sljit_jump **newptr;
    323 	const size_t elemsz = sizeof(struct sljit_jump *);
    324 	size_t old_size = *size;
    325 	size_t new_size = 2 * old_size;
    326 
    327 	if (new_size < old_size || new_size > SIZE_MAX / elemsz)
    328 		return false;
    329 
    330 	newptr = BJ_ALLOC(new_size * elemsz);
    331 	if (newptr == NULL)
    332 		return false;
    333 
    334 	memcpy(newptr, *jumps, old_size * elemsz);
    335 	BJ_FREE(*jumps, old_size * elemsz);
    336 
    337 	*jumps = newptr;
    338 	*size = new_size;
    339 	return true;
    340 }
    341 
    342 static bool
    343 append_jump(struct sljit_jump *jump, struct sljit_jump ***jumps,
    344     size_t *size, size_t *max_size)
    345 {
    346 	if (*size == *max_size && !grow_jumps(jumps, max_size))
    347 		return false;
    348 
    349 	(*jumps)[(*size)++] = jump;
    350 	return true;
    351 }
    352 
    353 /*
    354  * Emit code for BPF_LD+BPF_B+BPF_ABS    A <- P[k:1].
    355  */
    356 static int
    357 emit_read8(struct sljit_compiler *compiler, sljit_s32 src, uint32_t k)
    358 {
    359 
    360 	return sljit_emit_op1(compiler,
    361 	    SLJIT_MOV_U8,
    362 	    BJ_AREG, 0,
    363 	    SLJIT_MEM1(src), k);
    364 }
    365 
    366 /*
    367  * Emit code for BPF_LD+BPF_H+BPF_ABS    A <- P[k:2].
    368  */
    369 static int
    370 emit_read16(struct sljit_compiler *compiler, sljit_s32 src, uint32_t k)
    371 {
    372 	int status;
    373 
    374 	BJ_ASSERT(k <= UINT32_MAX - 1);
    375 
    376 	/* A = buf[k]; */
    377 	status = sljit_emit_op1(compiler,
    378 	    SLJIT_MOV_U8,
    379 	    BJ_AREG, 0,
    380 	    SLJIT_MEM1(src), k);
    381 	if (status != SLJIT_SUCCESS)
    382 		return status;
    383 
    384 	/* tmp1 = buf[k+1]; */
    385 	status = sljit_emit_op1(compiler,
    386 	    SLJIT_MOV_U8,
    387 	    BJ_TMP1REG, 0,
    388 	    SLJIT_MEM1(src), k+1);
    389 	if (status != SLJIT_SUCCESS)
    390 		return status;
    391 
    392 	/* A = A << 8; */
    393 	status = sljit_emit_op2(compiler,
    394 	    SLJIT_SHL,
    395 	    BJ_AREG, 0,
    396 	    BJ_AREG, 0,
    397 	    SLJIT_IMM, 8);
    398 	if (status != SLJIT_SUCCESS)
    399 		return status;
    400 
    401 	/* A = A + tmp1; */
    402 	status = sljit_emit_op2(compiler,
    403 	    SLJIT_ADD,
    404 	    BJ_AREG, 0,
    405 	    BJ_AREG, 0,
    406 	    BJ_TMP1REG, 0);
    407 	return status;
    408 }
    409 
    410 /*
    411  * Emit code for BPF_LD+BPF_W+BPF_ABS    A <- P[k:4].
    412  */
    413 static int
    414 emit_read32(struct sljit_compiler *compiler, sljit_s32 src, uint32_t k)
    415 {
    416 	int status;
    417 
    418 	BJ_ASSERT(k <= UINT32_MAX - 3);
    419 
    420 	/* A = buf[k]; */
    421 	status = sljit_emit_op1(compiler,
    422 	    SLJIT_MOV_U8,
    423 	    BJ_AREG, 0,
    424 	    SLJIT_MEM1(src), k);
    425 	if (status != SLJIT_SUCCESS)
    426 		return status;
    427 
    428 	/* tmp1 = buf[k+1]; */
    429 	status = sljit_emit_op1(compiler,
    430 	    SLJIT_MOV_U8,
    431 	    BJ_TMP1REG, 0,
    432 	    SLJIT_MEM1(src), k+1);
    433 	if (status != SLJIT_SUCCESS)
    434 		return status;
    435 
    436 	/* A = A << 8; */
    437 	status = sljit_emit_op2(compiler,
    438 	    SLJIT_SHL,
    439 	    BJ_AREG, 0,
    440 	    BJ_AREG, 0,
    441 	    SLJIT_IMM, 8);
    442 	if (status != SLJIT_SUCCESS)
    443 		return status;
    444 
    445 	/* A = A + tmp1; */
    446 	status = sljit_emit_op2(compiler,
    447 	    SLJIT_ADD,
    448 	    BJ_AREG, 0,
    449 	    BJ_AREG, 0,
    450 	    BJ_TMP1REG, 0);
    451 	if (status != SLJIT_SUCCESS)
    452 		return status;
    453 
    454 	/* tmp1 = buf[k+2]; */
    455 	status = sljit_emit_op1(compiler,
    456 	    SLJIT_MOV_U8,
    457 	    BJ_TMP1REG, 0,
    458 	    SLJIT_MEM1(src), k+2);
    459 	if (status != SLJIT_SUCCESS)
    460 		return status;
    461 
    462 	/* A = A << 8; */
    463 	status = sljit_emit_op2(compiler,
    464 	    SLJIT_SHL,
    465 	    BJ_AREG, 0,
    466 	    BJ_AREG, 0,
    467 	    SLJIT_IMM, 8);
    468 	if (status != SLJIT_SUCCESS)
    469 		return status;
    470 
    471 	/* A = A + tmp1; */
    472 	status = sljit_emit_op2(compiler,
    473 	    SLJIT_ADD,
    474 	    BJ_AREG, 0,
    475 	    BJ_AREG, 0,
    476 	    BJ_TMP1REG, 0);
    477 	if (status != SLJIT_SUCCESS)
    478 		return status;
    479 
    480 	/* tmp1 = buf[k+3]; */
    481 	status = sljit_emit_op1(compiler,
    482 	    SLJIT_MOV_U8,
    483 	    BJ_TMP1REG, 0,
    484 	    SLJIT_MEM1(src), k+3);
    485 	if (status != SLJIT_SUCCESS)
    486 		return status;
    487 
    488 	/* A = A << 8; */
    489 	status = sljit_emit_op2(compiler,
    490 	    SLJIT_SHL,
    491 	    BJ_AREG, 0,
    492 	    BJ_AREG, 0,
    493 	    SLJIT_IMM, 8);
    494 	if (status != SLJIT_SUCCESS)
    495 		return status;
    496 
    497 	/* A = A + tmp1; */
    498 	status = sljit_emit_op2(compiler,
    499 	    SLJIT_ADD,
    500 	    BJ_AREG, 0,
    501 	    BJ_AREG, 0,
    502 	    BJ_TMP1REG, 0);
    503 	return status;
    504 }
    505 
    506 #ifdef _KERNEL
    507 /*
    508  * Emit code for m_xword/m_xhalf/m_xbyte call.
    509  *
    510  * @pc BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    511  *     BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    512  *     BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    513  *     BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    514  *     BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    515  *     BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    516  *     BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
    517  */
    518 static int
    519 emit_xcall(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    520     const struct bpf_insn *pc, int dst, struct sljit_jump ***ret0,
    521     size_t *ret0_size, size_t *ret0_maxsize,
    522     uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
    523 {
    524 #if BJ_XREG == SLJIT_RETURN_REG   || \
    525     BJ_XREG == SLJIT_R0 || \
    526     BJ_XREG == SLJIT_R1 || \
    527     BJ_XREG == SLJIT_R2
    528 #error "Not supported assignment of registers."
    529 #endif
    530 	struct sljit_jump *jump;
    531 	sljit_s32 save_reg;
    532 	int status;
    533 
    534 	save_reg = (BPF_CLASS(pc->code) == BPF_LDX) ? BJ_AREG : BJ_XREG;
    535 
    536 	if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
    537 		/* save A or X */
    538 		status = sljit_emit_op1(compiler,
    539 		    SLJIT_MOV_U32,
    540 		    SLJIT_MEM1(SLJIT_SP),
    541 		    offsetof(struct bpfjit_stack, reg),
    542 		    save_reg, 0);
    543 		if (status != SLJIT_SUCCESS)
    544 			return status;
    545 	}
    546 
    547 	/*
    548 	 * Prepare registers for fn(mbuf, k, &err) call.
    549 	 */
    550 	status = sljit_emit_op1(compiler,
    551 	    SLJIT_MOV,
    552 	    SLJIT_R0, 0,
    553 	    BJ_BUF, 0);
    554 	if (status != SLJIT_SUCCESS)
    555 		return status;
    556 
    557 	if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
    558 		if (pc->k == 0) {
    559 			/* k = X; */
    560 			status = sljit_emit_op1(compiler,
    561 			    SLJIT_MOV,
    562 			    SLJIT_R1, 0,
    563 			    BJ_XREG, 0);
    564 			if (status != SLJIT_SUCCESS)
    565 				return status;
    566 		} else {
    567 			/* if (X > UINT32_MAX - pc->k) return 0; */
    568 			jump = sljit_emit_cmp(compiler,
    569 			    SLJIT_GREATER,
    570 			    BJ_XREG, 0,
    571 			    SLJIT_IMM, UINT32_MAX - pc->k);
    572 			if (jump == NULL)
    573 				return SLJIT_ERR_ALLOC_FAILED;
    574 			if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    575 				return SLJIT_ERR_ALLOC_FAILED;
    576 
    577 			/* k = X + pc->k; */
    578 			status = sljit_emit_op2(compiler,
    579 			    SLJIT_ADD,
    580 			    SLJIT_R1, 0,
    581 			    BJ_XREG, 0,
    582 			    SLJIT_IMM, (uint32_t)pc->k);
    583 			if (status != SLJIT_SUCCESS)
    584 				return status;
    585 		}
    586 	} else {
    587 		/* k = pc->k */
    588 		status = sljit_emit_op1(compiler,
    589 		    SLJIT_MOV,
    590 		    SLJIT_R1, 0,
    591 		    SLJIT_IMM, (uint32_t)pc->k);
    592 		if (status != SLJIT_SUCCESS)
    593 			return status;
    594 	}
    595 
    596 	/*
    597 	 * The third argument of fn is an address on stack.
    598 	 */
    599 	status = sljit_get_local_base(compiler,
    600 	    SLJIT_R2, 0,
    601 	    offsetof(struct bpfjit_stack, err));
    602 	if (status != SLJIT_SUCCESS)
    603 		return status;
    604 
    605 	/* fn(buf, k, &err); */
    606 	status = sljit_emit_ijump(compiler,
    607 	    SLJIT_CALL3,
    608 	    SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
    609 	if (status != SLJIT_SUCCESS)
    610 		return status;
    611 
    612 	if (dst != SLJIT_RETURN_REG) {
    613 		/* move return value to dst */
    614 		status = sljit_emit_op1(compiler,
    615 		    SLJIT_MOV,
    616 		    dst, 0,
    617 		    SLJIT_RETURN_REG, 0);
    618 		if (status != SLJIT_SUCCESS)
    619 			return status;
    620 	}
    621 
    622 	/* if (*err != 0) return 0; */
    623 	jump = sljit_emit_cmp(compiler,
    624 	    SLJIT_NOT_EQUAL|SLJIT_I32_OP,
    625 	    SLJIT_MEM1(SLJIT_SP),
    626 	    offsetof(struct bpfjit_stack, err),
    627 	    SLJIT_IMM, 0);
    628 	if (jump == NULL)
    629 		return SLJIT_ERR_ALLOC_FAILED;
    630 
    631 	if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    632 		return SLJIT_ERR_ALLOC_FAILED;
    633 
    634 	if (save_reg == BJ_AREG || (hints & BJ_HINT_XREG)) {
    635 		/* restore A or X */
    636 		status = sljit_emit_op1(compiler,
    637 		    SLJIT_MOV_U32,
    638 		    save_reg, 0,
    639 		    SLJIT_MEM1(SLJIT_SP),
    640 		    offsetof(struct bpfjit_stack, reg));
    641 		if (status != SLJIT_SUCCESS)
    642 			return status;
    643 	}
    644 
    645 	return SLJIT_SUCCESS;
    646 }
    647 #endif
    648 
    649 /*
    650  * Emit code for BPF_COP and BPF_COPX instructions.
    651  */
    652 static int
    653 emit_cop(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    654     const bpf_ctx_t *bc, const struct bpf_insn *pc,
    655     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    656 {
    657 #if BJ_XREG    == SLJIT_RETURN_REG   || \
    658     BJ_XREG    == SLJIT_R0 || \
    659     BJ_XREG    == SLJIT_R1 || \
    660     BJ_XREG    == SLJIT_R2 || \
    661     BJ_TMP3REG == SLJIT_R0 || \
    662     BJ_TMP3REG == SLJIT_R1 || \
    663     BJ_TMP3REG == SLJIT_R2
    664 #error "Not supported assignment of registers."
    665 #endif
    666 
    667 	struct sljit_jump *jump;
    668 	sljit_s32 call_reg;
    669 	sljit_sw call_off;
    670 	int status;
    671 
    672 	BJ_ASSERT(bc != NULL && bc->copfuncs != NULL);
    673 
    674 	if (hints & BJ_HINT_LDX) {
    675 		/* save X */
    676 		status = sljit_emit_op1(compiler,
    677 		    SLJIT_MOV_U32,
    678 		    SLJIT_MEM1(SLJIT_SP),
    679 		    offsetof(struct bpfjit_stack, reg),
    680 		    BJ_XREG, 0);
    681 		if (status != SLJIT_SUCCESS)
    682 			return status;
    683 	}
    684 
    685 	if (BPF_MISCOP(pc->code) == BPF_COP) {
    686 		call_reg = SLJIT_IMM;
    687 		call_off = SLJIT_FUNC_OFFSET(bc->copfuncs[pc->k]);
    688 	} else {
    689 		/* if (X >= bc->nfuncs) return 0; */
    690 		jump = sljit_emit_cmp(compiler,
    691 		    SLJIT_GREATER_EQUAL,
    692 		    BJ_XREG, 0,
    693 		    SLJIT_IMM, bc->nfuncs);
    694 		if (jump == NULL)
    695 			return SLJIT_ERR_ALLOC_FAILED;
    696 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    697 			return SLJIT_ERR_ALLOC_FAILED;
    698 
    699 		/* tmp1 = ctx; */
    700 		status = sljit_emit_op1(compiler,
    701 		    SLJIT_MOV_P,
    702 		    BJ_TMP1REG, 0,
    703 		    SLJIT_MEM1(SLJIT_SP),
    704 		    offsetof(struct bpfjit_stack, ctx));
    705 		if (status != SLJIT_SUCCESS)
    706 			return status;
    707 
    708 		/* tmp1 = ctx->copfuncs; */
    709 		status = sljit_emit_op1(compiler,
    710 		    SLJIT_MOV_P,
    711 		    BJ_TMP1REG, 0,
    712 		    SLJIT_MEM1(BJ_TMP1REG),
    713 		    offsetof(struct bpf_ctx, copfuncs));
    714 		if (status != SLJIT_SUCCESS)
    715 			return status;
    716 
    717 		/* tmp2 = X; */
    718 		status = sljit_emit_op1(compiler,
    719 		    SLJIT_MOV,
    720 		    BJ_TMP2REG, 0,
    721 		    BJ_XREG, 0);
    722 		if (status != SLJIT_SUCCESS)
    723 			return status;
    724 
    725 		/* tmp3 = ctx->copfuncs[tmp2]; */
    726 		call_reg = BJ_TMP3REG;
    727 		call_off = 0;
    728 		status = sljit_emit_op1(compiler,
    729 		    SLJIT_MOV_P,
    730 		    call_reg, call_off,
    731 		    SLJIT_MEM2(BJ_TMP1REG, BJ_TMP2REG),
    732 		    SLJIT_WORD_SHIFT);
    733 		if (status != SLJIT_SUCCESS)
    734 			return status;
    735 	}
    736 
    737 	/*
    738 	 * Copy bpf_copfunc_t arguments to registers.
    739 	 */
    740 #if BJ_AREG != SLJIT_R2
    741 	status = sljit_emit_op1(compiler,
    742 	    SLJIT_MOV_U32,
    743 	    SLJIT_R2, 0,
    744 	    BJ_AREG, 0);
    745 	if (status != SLJIT_SUCCESS)
    746 		return status;
    747 #endif
    748 
    749 	status = sljit_emit_op1(compiler,
    750 	    SLJIT_MOV_P,
    751 	    SLJIT_R0, 0,
    752 	    SLJIT_MEM1(SLJIT_SP),
    753 	    offsetof(struct bpfjit_stack, ctx));
    754 	if (status != SLJIT_SUCCESS)
    755 		return status;
    756 
    757 	status = sljit_emit_op1(compiler,
    758 	    SLJIT_MOV_P,
    759 	    SLJIT_R1, 0,
    760 	    BJ_ARGS, 0);
    761 	if (status != SLJIT_SUCCESS)
    762 		return status;
    763 
    764 	status = sljit_emit_ijump(compiler,
    765 	    SLJIT_CALL3, call_reg, call_off);
    766 	if (status != SLJIT_SUCCESS)
    767 		return status;
    768 
    769 #if BJ_AREG != SLJIT_RETURN_REG
    770 	status = sljit_emit_op1(compiler,
    771 	    SLJIT_MOV,
    772 	    BJ_AREG, 0,
    773 	    SLJIT_RETURN_REG, 0);
    774 	if (status != SLJIT_SUCCESS)
    775 		return status;
    776 #endif
    777 
    778 	if (hints & BJ_HINT_LDX) {
    779 		/* restore X */
    780 		status = sljit_emit_op1(compiler,
    781 		    SLJIT_MOV_U32,
    782 		    BJ_XREG, 0,
    783 		    SLJIT_MEM1(SLJIT_SP),
    784 		    offsetof(struct bpfjit_stack, reg));
    785 		if (status != SLJIT_SUCCESS)
    786 			return status;
    787 	}
    788 
    789 	return SLJIT_SUCCESS;
    790 }
    791 
    792 /*
    793  * Generate code for
    794  * BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
    795  * BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
    796  * BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
    797  * BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
    798  * BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
    799  * BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
    800  */
    801 static int
    802 emit_pkt_read(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    803     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    804     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    805 {
    806 	int status = SLJIT_ERR_ALLOC_FAILED;
    807 	uint32_t width;
    808 	sljit_s32 ld_reg;
    809 	struct sljit_jump *jump;
    810 #ifdef _KERNEL
    811 	struct sljit_label *label;
    812 	struct sljit_jump *over_mchain_jump;
    813 	const bool check_zero_buflen = (to_mchain_jump != NULL);
    814 #endif
    815 	const uint32_t k = pc->k;
    816 
    817 #ifdef _KERNEL
    818 	if (to_mchain_jump == NULL) {
    819 		to_mchain_jump = sljit_emit_cmp(compiler,
    820 		    SLJIT_EQUAL,
    821 		    BJ_BUFLEN, 0,
    822 		    SLJIT_IMM, 0);
    823 		if (to_mchain_jump == NULL)
    824 			return SLJIT_ERR_ALLOC_FAILED;
    825 	}
    826 #endif
    827 
    828 	ld_reg = BJ_BUF;
    829 	width = read_width(pc);
    830 	if (width == 0)
    831 		return SLJIT_ERR_ALLOC_FAILED;
    832 
    833 	if (BPF_MODE(pc->code) == BPF_IND) {
    834 		/* tmp1 = buflen - (pc->k + width); */
    835 		status = sljit_emit_op2(compiler,
    836 		    SLJIT_SUB,
    837 		    BJ_TMP1REG, 0,
    838 		    BJ_BUFLEN, 0,
    839 		    SLJIT_IMM, k + width);
    840 		if (status != SLJIT_SUCCESS)
    841 			return status;
    842 
    843 		/* ld_reg = buf + X; */
    844 		ld_reg = BJ_TMP2REG;
    845 		status = sljit_emit_op2(compiler,
    846 		    SLJIT_ADD,
    847 		    ld_reg, 0,
    848 		    BJ_BUF, 0,
    849 		    BJ_XREG, 0);
    850 		if (status != SLJIT_SUCCESS)
    851 			return status;
    852 
    853 		/* if (tmp1 < X) return 0; */
    854 		jump = sljit_emit_cmp(compiler,
    855 		    SLJIT_LESS,
    856 		    BJ_TMP1REG, 0,
    857 		    BJ_XREG, 0);
    858 		if (jump == NULL)
    859 			return SLJIT_ERR_ALLOC_FAILED;
    860 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    861 			return SLJIT_ERR_ALLOC_FAILED;
    862 	}
    863 
    864 	/*
    865 	 * Don't emit wrapped-around reads. They're dead code but
    866 	 * dead code elimination logic isn't smart enough to figure
    867 	 * it out.
    868 	 */
    869 	if (k <= UINT32_MAX - width + 1) {
    870 		switch (width) {
    871 		case 4:
    872 			status = emit_read32(compiler, ld_reg, k);
    873 			break;
    874 		case 2:
    875 			status = emit_read16(compiler, ld_reg, k);
    876 			break;
    877 		case 1:
    878 			status = emit_read8(compiler, ld_reg, k);
    879 			break;
    880 		}
    881 
    882 		if (status != SLJIT_SUCCESS)
    883 			return status;
    884 	}
    885 
    886 #ifdef _KERNEL
    887 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
    888 	if (over_mchain_jump == NULL)
    889 		return SLJIT_ERR_ALLOC_FAILED;
    890 
    891 	/* entry point to mchain handler */
    892 	label = sljit_emit_label(compiler);
    893 	if (label == NULL)
    894 		return SLJIT_ERR_ALLOC_FAILED;
    895 	sljit_set_label(to_mchain_jump, label);
    896 
    897 	if (check_zero_buflen) {
    898 		/* if (buflen != 0) return 0; */
    899 		jump = sljit_emit_cmp(compiler,
    900 		    SLJIT_NOT_EQUAL,
    901 		    BJ_BUFLEN, 0,
    902 		    SLJIT_IMM, 0);
    903 		if (jump == NULL)
    904 			return SLJIT_ERR_ALLOC_FAILED;
    905 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
    906 			return SLJIT_ERR_ALLOC_FAILED;
    907 	}
    908 
    909 	switch (width) {
    910 	case 4:
    911 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    912 		    ret0, ret0_size, ret0_maxsize, &m_xword);
    913 		break;
    914 	case 2:
    915 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    916 		    ret0, ret0_size, ret0_maxsize, &m_xhalf);
    917 		break;
    918 	case 1:
    919 		status = emit_xcall(compiler, hints, pc, BJ_AREG,
    920 		    ret0, ret0_size, ret0_maxsize, &m_xbyte);
    921 		break;
    922 	}
    923 
    924 	if (status != SLJIT_SUCCESS)
    925 		return status;
    926 
    927 	label = sljit_emit_label(compiler);
    928 	if (label == NULL)
    929 		return SLJIT_ERR_ALLOC_FAILED;
    930 	sljit_set_label(over_mchain_jump, label);
    931 #endif
    932 
    933 	return SLJIT_SUCCESS;
    934 }
    935 
    936 static int
    937 emit_memload(struct sljit_compiler *compiler,
    938     sljit_s32 dst, uint32_t k, size_t extwords)
    939 {
    940 	int status;
    941 	sljit_s32 src;
    942 	sljit_sw srcw;
    943 
    944 	srcw = k * sizeof(uint32_t);
    945 
    946 	if (extwords == 0) {
    947 		src = SLJIT_MEM1(SLJIT_SP);
    948 		srcw += offsetof(struct bpfjit_stack, mem);
    949 	} else {
    950 		/* copy extmem pointer to the tmp1 register */
    951 		status = sljit_emit_op1(compiler,
    952 		    SLJIT_MOV_P,
    953 		    BJ_TMP1REG, 0,
    954 		    SLJIT_MEM1(SLJIT_SP),
    955 		    offsetof(struct bpfjit_stack, extmem));
    956 		if (status != SLJIT_SUCCESS)
    957 			return status;
    958 		src = SLJIT_MEM1(BJ_TMP1REG);
    959 	}
    960 
    961 	return sljit_emit_op1(compiler, SLJIT_MOV_U32, dst, 0, src, srcw);
    962 }
    963 
    964 static int
    965 emit_memstore(struct sljit_compiler *compiler,
    966     sljit_s32 src, uint32_t k, size_t extwords)
    967 {
    968 	int status;
    969 	sljit_s32 dst;
    970 	sljit_sw dstw;
    971 
    972 	dstw = k * sizeof(uint32_t);
    973 
    974 	if (extwords == 0) {
    975 		dst = SLJIT_MEM1(SLJIT_SP);
    976 		dstw += offsetof(struct bpfjit_stack, mem);
    977 	} else {
    978 		/* copy extmem pointer to the tmp1 register */
    979 		status = sljit_emit_op1(compiler,
    980 		    SLJIT_MOV_P,
    981 		    BJ_TMP1REG, 0,
    982 		    SLJIT_MEM1(SLJIT_SP),
    983 		    offsetof(struct bpfjit_stack, extmem));
    984 		if (status != SLJIT_SUCCESS)
    985 			return status;
    986 		dst = SLJIT_MEM1(BJ_TMP1REG);
    987 	}
    988 
    989 	return sljit_emit_op1(compiler, SLJIT_MOV_U32, dst, dstw, src, 0);
    990 }
    991 
    992 /*
    993  * Emit code for BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf).
    994  */
    995 static int
    996 emit_msh(struct sljit_compiler *compiler, bpfjit_hint_t hints,
    997     const struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
    998     struct sljit_jump ***ret0, size_t *ret0_size, size_t *ret0_maxsize)
    999 {
   1000 	int status;
   1001 #ifdef _KERNEL
   1002 	struct sljit_label *label;
   1003 	struct sljit_jump *jump, *over_mchain_jump;
   1004 	const bool check_zero_buflen = (to_mchain_jump != NULL);
   1005 #endif
   1006 	const uint32_t k = pc->k;
   1007 
   1008 #ifdef _KERNEL
   1009 	if (to_mchain_jump == NULL) {
   1010 		to_mchain_jump = sljit_emit_cmp(compiler,
   1011 		    SLJIT_EQUAL,
   1012 		    BJ_BUFLEN, 0,
   1013 		    SLJIT_IMM, 0);
   1014 		if (to_mchain_jump == NULL)
   1015 			return SLJIT_ERR_ALLOC_FAILED;
   1016 	}
   1017 #endif
   1018 
   1019 	/* tmp1 = buf[k] */
   1020 	status = sljit_emit_op1(compiler,
   1021 	    SLJIT_MOV_U8,
   1022 	    BJ_TMP1REG, 0,
   1023 	    SLJIT_MEM1(BJ_BUF), k);
   1024 	if (status != SLJIT_SUCCESS)
   1025 		return status;
   1026 
   1027 #ifdef _KERNEL
   1028 	over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1029 	if (over_mchain_jump == NULL)
   1030 		return SLJIT_ERR_ALLOC_FAILED;
   1031 
   1032 	/* entry point to mchain handler */
   1033 	label = sljit_emit_label(compiler);
   1034 	if (label == NULL)
   1035 		return SLJIT_ERR_ALLOC_FAILED;
   1036 	sljit_set_label(to_mchain_jump, label);
   1037 
   1038 	if (check_zero_buflen) {
   1039 		/* if (buflen != 0) return 0; */
   1040 		jump = sljit_emit_cmp(compiler,
   1041 		    SLJIT_NOT_EQUAL,
   1042 		    BJ_BUFLEN, 0,
   1043 		    SLJIT_IMM, 0);
   1044 		if (jump == NULL)
   1045 			return SLJIT_ERR_ALLOC_FAILED;
   1046 		if (!append_jump(jump, ret0, ret0_size, ret0_maxsize))
   1047 			return SLJIT_ERR_ALLOC_FAILED;
   1048 	}
   1049 
   1050 	status = emit_xcall(compiler, hints, pc, BJ_TMP1REG,
   1051 	    ret0, ret0_size, ret0_maxsize, &m_xbyte);
   1052 	if (status != SLJIT_SUCCESS)
   1053 		return status;
   1054 
   1055 	label = sljit_emit_label(compiler);
   1056 	if (label == NULL)
   1057 		return SLJIT_ERR_ALLOC_FAILED;
   1058 	sljit_set_label(over_mchain_jump, label);
   1059 #endif
   1060 
   1061 	/* tmp1 &= 0xf */
   1062 	status = sljit_emit_op2(compiler,
   1063 	    SLJIT_AND,
   1064 	    BJ_TMP1REG, 0,
   1065 	    BJ_TMP1REG, 0,
   1066 	    SLJIT_IMM, 0xf);
   1067 	if (status != SLJIT_SUCCESS)
   1068 		return status;
   1069 
   1070 	/* X = tmp1 << 2 */
   1071 	status = sljit_emit_op2(compiler,
   1072 	    SLJIT_SHL,
   1073 	    BJ_XREG, 0,
   1074 	    BJ_TMP1REG, 0,
   1075 	    SLJIT_IMM, 2);
   1076 	if (status != SLJIT_SUCCESS)
   1077 		return status;
   1078 
   1079 	return SLJIT_SUCCESS;
   1080 }
   1081 
   1082 /*
   1083  * Emit code for A = A / k or A = A % k when k is a power of 2.
   1084  * @pc BPF_DIV or BPF_MOD instruction.
   1085  */
   1086 static int
   1087 emit_pow2_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
   1088 {
   1089 	uint32_t k = pc->k;
   1090 	int status = SLJIT_SUCCESS;
   1091 
   1092 	BJ_ASSERT(k != 0 && (k & (k - 1)) == 0);
   1093 
   1094 	if (BPF_OP(pc->code) == BPF_MOD) {
   1095 		status = sljit_emit_op2(compiler,
   1096 		    SLJIT_AND,
   1097 		    BJ_AREG, 0,
   1098 		    BJ_AREG, 0,
   1099 		    SLJIT_IMM, k - 1);
   1100 	} else {
   1101 		int shift = 0;
   1102 
   1103 		/*
   1104 		 * Do shift = __builtin_ctz(k).
   1105 		 * The loop is slower, but that's ok.
   1106 		 */
   1107 		while (k > 1) {
   1108 			k >>= 1;
   1109 			shift++;
   1110 		}
   1111 
   1112 		if (shift != 0) {
   1113 			status = sljit_emit_op2(compiler,
   1114 			    SLJIT_LSHR|SLJIT_I32_OP,
   1115 			    BJ_AREG, 0,
   1116 			    BJ_AREG, 0,
   1117 			    SLJIT_IMM, shift);
   1118 		}
   1119 	}
   1120 
   1121 	return status;
   1122 }
   1123 
   1124 #if !defined(BPFJIT_USE_UDIV)
   1125 static sljit_uw
   1126 divide(sljit_uw x, sljit_uw y)
   1127 {
   1128 
   1129 	return (uint32_t)x / (uint32_t)y;
   1130 }
   1131 
   1132 static sljit_uw
   1133 modulus(sljit_uw x, sljit_uw y)
   1134 {
   1135 
   1136 	return (uint32_t)x % (uint32_t)y;
   1137 }
   1138 #endif
   1139 
   1140 /*
   1141  * Emit code for A = A / div or A = A % div.
   1142  * @pc BPF_DIV or BPF_MOD instruction.
   1143  */
   1144 static int
   1145 emit_moddiv(struct sljit_compiler *compiler, const struct bpf_insn *pc)
   1146 {
   1147 	int status;
   1148 	const bool xdiv = BPF_OP(pc->code) == BPF_DIV;
   1149 	const bool xreg = BPF_SRC(pc->code) == BPF_X;
   1150 
   1151 #if BJ_XREG == SLJIT_RETURN_REG   || \
   1152     BJ_XREG == SLJIT_R0 || \
   1153     BJ_XREG == SLJIT_R1 || \
   1154     BJ_AREG == SLJIT_R1
   1155 #error "Not supported assignment of registers."
   1156 #endif
   1157 
   1158 #if BJ_AREG != SLJIT_R0
   1159 	status = sljit_emit_op1(compiler,
   1160 	    SLJIT_MOV,
   1161 	    SLJIT_R0, 0,
   1162 	    BJ_AREG, 0);
   1163 	if (status != SLJIT_SUCCESS)
   1164 		return status;
   1165 #endif
   1166 
   1167 	status = sljit_emit_op1(compiler,
   1168 	    SLJIT_MOV,
   1169 	    SLJIT_R1, 0,
   1170 	    xreg ? BJ_XREG : SLJIT_IMM,
   1171 	    xreg ? 0 : (uint32_t)pc->k);
   1172 	if (status != SLJIT_SUCCESS)
   1173 		return status;
   1174 
   1175 #if defined(BPFJIT_USE_UDIV)
   1176 	status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_I32_OP);
   1177 
   1178 	if (BPF_OP(pc->code) == BPF_DIV) {
   1179 #if BJ_AREG != SLJIT_R0
   1180 		status = sljit_emit_op1(compiler,
   1181 		    SLJIT_MOV,
   1182 		    BJ_AREG, 0,
   1183 		    SLJIT_R0, 0);
   1184 #endif
   1185 	} else {
   1186 #if BJ_AREG != SLJIT_R1
   1187 		/* Remainder is in SLJIT_R1. */
   1188 		status = sljit_emit_op1(compiler,
   1189 		    SLJIT_MOV,
   1190 		    BJ_AREG, 0,
   1191 		    SLJIT_R1, 0);
   1192 #endif
   1193 	}
   1194 
   1195 	if (status != SLJIT_SUCCESS)
   1196 		return status;
   1197 #else
   1198 	status = sljit_emit_ijump(compiler,
   1199 	    SLJIT_CALL2,
   1200 	    SLJIT_IMM, xdiv ? SLJIT_FUNC_OFFSET(divide) :
   1201 		SLJIT_FUNC_OFFSET(modulus));
   1202 
   1203 #if BJ_AREG != SLJIT_RETURN_REG
   1204 	status = sljit_emit_op1(compiler,
   1205 	    SLJIT_MOV,
   1206 	    BJ_AREG, 0,
   1207 	    SLJIT_RETURN_REG, 0);
   1208 	if (status != SLJIT_SUCCESS)
   1209 		return status;
   1210 #endif
   1211 #endif
   1212 
   1213 	return status;
   1214 }
   1215 
   1216 /*
   1217  * Return true if pc is a "read from packet" instruction.
   1218  * If length is not NULL and return value is true, *length will
   1219  * be set to a safe length required to read a packet.
   1220  */
   1221 static bool
   1222 read_pkt_insn(const struct bpf_insn *pc, bpfjit_abc_length_t *length)
   1223 {
   1224 	bool rv;
   1225 	bpfjit_abc_length_t width = 0; /* XXXuninit */
   1226 
   1227 	switch (BPF_CLASS(pc->code)) {
   1228 	default:
   1229 		rv = false;
   1230 		break;
   1231 
   1232 	case BPF_LD:
   1233 		rv = BPF_MODE(pc->code) == BPF_ABS ||
   1234 		     BPF_MODE(pc->code) == BPF_IND;
   1235 		if (rv) {
   1236 			width = read_width(pc);
   1237 			rv = (width != 0);
   1238 		}
   1239 		break;
   1240 
   1241 	case BPF_LDX:
   1242 		rv = BPF_MODE(pc->code) == BPF_MSH &&
   1243 		     BPF_SIZE(pc->code) == BPF_B;
   1244 		width = 1;
   1245 		break;
   1246 	}
   1247 
   1248 	if (rv && length != NULL) {
   1249 		/*
   1250 		 * Values greater than UINT32_MAX will generate
   1251 		 * unconditional "return 0".
   1252 		 */
   1253 		*length = (uint32_t)pc->k + width;
   1254 	}
   1255 
   1256 	return rv;
   1257 }
   1258 
   1259 static void
   1260 optimize_init(struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1261 {
   1262 	size_t i;
   1263 
   1264 	for (i = 0; i < insn_count; i++) {
   1265 		SLIST_INIT(&insn_dat[i].bjumps);
   1266 		insn_dat[i].invalid = BJ_INIT_NOBITS;
   1267 	}
   1268 }
   1269 
   1270 /*
   1271  * The function divides instructions into blocks. Destination of a jump
   1272  * instruction starts a new block. BPF_RET and BPF_JMP instructions
   1273  * terminate a block. Blocks are linear, that is, there are no jumps out
   1274  * from the middle of a block and there are no jumps in to the middle of
   1275  * a block.
   1276  *
   1277  * The function also sets bits in *initmask for memwords that
   1278  * need to be initialized to zero. Note that this set should be empty
   1279  * for any valid kernel filter program.
   1280  */
   1281 static bool
   1282 optimize_pass1(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1283     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1284     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1285 {
   1286 	struct bpfjit_jump *jtf;
   1287 	size_t i;
   1288 	uint32_t jt, jf;
   1289 	bpfjit_abc_length_t length;
   1290 	bpf_memword_init_t invalid; /* borrowed from bpf_filter() */
   1291 	bool unreachable;
   1292 
   1293 	const size_t memwords = GET_MEMWORDS(bc);
   1294 
   1295 	*hints = 0;
   1296 	*initmask = BJ_INIT_NOBITS;
   1297 
   1298 	unreachable = false;
   1299 	invalid = ~BJ_INIT_NOBITS;
   1300 
   1301 	for (i = 0; i < insn_count; i++) {
   1302 		if (!SLIST_EMPTY(&insn_dat[i].bjumps))
   1303 			unreachable = false;
   1304 		insn_dat[i].unreachable = unreachable;
   1305 
   1306 		if (unreachable)
   1307 			continue;
   1308 
   1309 		invalid |= insn_dat[i].invalid;
   1310 
   1311 		if (read_pkt_insn(&insns[i], &length) && length > UINT32_MAX)
   1312 			unreachable = true;
   1313 
   1314 		switch (BPF_CLASS(insns[i].code)) {
   1315 		case BPF_RET:
   1316 			if (BPF_RVAL(insns[i].code) == BPF_A)
   1317 				*initmask |= invalid & BJ_INIT_ABIT;
   1318 
   1319 			unreachable = true;
   1320 			continue;
   1321 
   1322 		case BPF_LD:
   1323 			if (BPF_MODE(insns[i].code) == BPF_ABS)
   1324 				*hints |= BJ_HINT_ABS;
   1325 
   1326 			if (BPF_MODE(insns[i].code) == BPF_IND) {
   1327 				*hints |= BJ_HINT_IND | BJ_HINT_XREG;
   1328 				*initmask |= invalid & BJ_INIT_XBIT;
   1329 			}
   1330 
   1331 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1332 			    (uint32_t)insns[i].k < memwords) {
   1333 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1334 			}
   1335 
   1336 			invalid &= ~BJ_INIT_ABIT;
   1337 			continue;
   1338 
   1339 		case BPF_LDX:
   1340 			*hints |= BJ_HINT_XREG | BJ_HINT_LDX;
   1341 
   1342 			if (BPF_MODE(insns[i].code) == BPF_MEM &&
   1343 			    (uint32_t)insns[i].k < memwords) {
   1344 				*initmask |= invalid & BJ_INIT_MBIT(insns[i].k);
   1345 			}
   1346 
   1347 			if (BPF_MODE(insns[i].code) == BPF_MSH &&
   1348 			    BPF_SIZE(insns[i].code) == BPF_B) {
   1349 				*hints |= BJ_HINT_MSH;
   1350 			}
   1351 
   1352 			invalid &= ~BJ_INIT_XBIT;
   1353 			continue;
   1354 
   1355 		case BPF_ST:
   1356 			*initmask |= invalid & BJ_INIT_ABIT;
   1357 
   1358 			if ((uint32_t)insns[i].k < memwords)
   1359 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1360 
   1361 			continue;
   1362 
   1363 		case BPF_STX:
   1364 			*hints |= BJ_HINT_XREG;
   1365 			*initmask |= invalid & BJ_INIT_XBIT;
   1366 
   1367 			if ((uint32_t)insns[i].k < memwords)
   1368 				invalid &= ~BJ_INIT_MBIT(insns[i].k);
   1369 
   1370 			continue;
   1371 
   1372 		case BPF_ALU:
   1373 			*initmask |= invalid & BJ_INIT_ABIT;
   1374 
   1375 			if (insns[i].code != (BPF_ALU|BPF_NEG) &&
   1376 			    BPF_SRC(insns[i].code) == BPF_X) {
   1377 				*hints |= BJ_HINT_XREG;
   1378 				*initmask |= invalid & BJ_INIT_XBIT;
   1379 			}
   1380 
   1381 			invalid &= ~BJ_INIT_ABIT;
   1382 			continue;
   1383 
   1384 		case BPF_MISC:
   1385 			switch (BPF_MISCOP(insns[i].code)) {
   1386 			case BPF_TAX: // X <- A
   1387 				*hints |= BJ_HINT_XREG;
   1388 				*initmask |= invalid & BJ_INIT_ABIT;
   1389 				invalid &= ~BJ_INIT_XBIT;
   1390 				continue;
   1391 
   1392 			case BPF_TXA: // A <- X
   1393 				*hints |= BJ_HINT_XREG;
   1394 				*initmask |= invalid & BJ_INIT_XBIT;
   1395 				invalid &= ~BJ_INIT_ABIT;
   1396 				continue;
   1397 
   1398 			case BPF_COPX:
   1399 				*hints |= BJ_HINT_XREG | BJ_HINT_COPX;
   1400 				/* FALLTHROUGH */
   1401 
   1402 			case BPF_COP:
   1403 				*hints |= BJ_HINT_COP;
   1404 				*initmask |= invalid & BJ_INIT_ABIT;
   1405 				invalid &= ~BJ_INIT_ABIT;
   1406 				continue;
   1407 			}
   1408 
   1409 			continue;
   1410 
   1411 		case BPF_JMP:
   1412 			/* Initialize abc_length for ABC pass. */
   1413 			insn_dat[i].u.jdata.abc_length = MAX_ABC_LENGTH;
   1414 
   1415 			*initmask |= invalid & BJ_INIT_ABIT;
   1416 
   1417 			if (BPF_SRC(insns[i].code) == BPF_X) {
   1418 				*hints |= BJ_HINT_XREG;
   1419 				*initmask |= invalid & BJ_INIT_XBIT;
   1420 			}
   1421 
   1422 			if (BPF_OP(insns[i].code) == BPF_JA) {
   1423 				jt = jf = insns[i].k;
   1424 			} else {
   1425 				jt = insns[i].jt;
   1426 				jf = insns[i].jf;
   1427 			}
   1428 
   1429 			if (jt >= insn_count - (i + 1) ||
   1430 			    jf >= insn_count - (i + 1)) {
   1431 				return false;
   1432 			}
   1433 
   1434 			if (jt > 0 && jf > 0)
   1435 				unreachable = true;
   1436 
   1437 			jt += i + 1;
   1438 			jf += i + 1;
   1439 
   1440 			jtf = insn_dat[i].u.jdata.jtf;
   1441 
   1442 			jtf[0].jdata = &insn_dat[i].u.jdata;
   1443 			SLIST_INSERT_HEAD(&insn_dat[jt].bjumps,
   1444 			    &jtf[0], entries);
   1445 
   1446 			if (jf != jt) {
   1447 				jtf[1].jdata = &insn_dat[i].u.jdata;
   1448 				SLIST_INSERT_HEAD(&insn_dat[jf].bjumps,
   1449 				    &jtf[1], entries);
   1450 			}
   1451 
   1452 			insn_dat[jf].invalid |= invalid;
   1453 			insn_dat[jt].invalid |= invalid;
   1454 			invalid = 0;
   1455 
   1456 			continue;
   1457 		}
   1458 	}
   1459 
   1460 	return true;
   1461 }
   1462 
   1463 /*
   1464  * Array Bounds Check Elimination (ABC) pass.
   1465  */
   1466 static void
   1467 optimize_pass2(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1468     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1469 {
   1470 	struct bpfjit_jump *jmp;
   1471 	const struct bpf_insn *pc;
   1472 	struct bpfjit_insn_data *pd;
   1473 	size_t i;
   1474 	bpfjit_abc_length_t length, abc_length = 0;
   1475 
   1476 	const size_t extwords = GET_EXTWORDS(bc);
   1477 
   1478 	for (i = insn_count; i != 0; i--) {
   1479 		pc = &insns[i-1];
   1480 		pd = &insn_dat[i-1];
   1481 
   1482 		if (pd->unreachable)
   1483 			continue;
   1484 
   1485 		switch (BPF_CLASS(pc->code)) {
   1486 		case BPF_RET:
   1487 			/*
   1488 			 * It's quite common for bpf programs to
   1489 			 * check packet bytes in increasing order
   1490 			 * and return zero if bytes don't match
   1491 			 * specified critetion. Such programs disable
   1492 			 * ABC optimization completely because for
   1493 			 * every jump there is a branch with no read
   1494 			 * instruction.
   1495 			 * With no side effects, BPF_STMT(BPF_RET+BPF_K, 0)
   1496 			 * is indistinguishable from out-of-bound load.
   1497 			 * Therefore, abc_length can be set to
   1498 			 * MAX_ABC_LENGTH and enable ABC for many
   1499 			 * bpf programs.
   1500 			 * If this optimization encounters any
   1501 			 * instruction with a side effect, it will
   1502 			 * reset abc_length.
   1503 			 */
   1504 			if (BPF_RVAL(pc->code) == BPF_K && pc->k == 0)
   1505 				abc_length = MAX_ABC_LENGTH;
   1506 			else
   1507 				abc_length = 0;
   1508 			break;
   1509 
   1510 		case BPF_MISC:
   1511 			if (BPF_MISCOP(pc->code) == BPF_COP ||
   1512 			    BPF_MISCOP(pc->code) == BPF_COPX) {
   1513 				/* COP instructions can have side effects. */
   1514 				abc_length = 0;
   1515 			}
   1516 			break;
   1517 
   1518 		case BPF_ST:
   1519 		case BPF_STX:
   1520 			if (extwords != 0) {
   1521 				/* Write to memory is visible after a call. */
   1522 				abc_length = 0;
   1523 			}
   1524 			break;
   1525 
   1526 		case BPF_JMP:
   1527 			abc_length = pd->u.jdata.abc_length;
   1528 			break;
   1529 
   1530 		default:
   1531 			if (read_pkt_insn(pc, &length)) {
   1532 				if (abc_length < length)
   1533 					abc_length = length;
   1534 				pd->u.rdata.abc_length = abc_length;
   1535 			}
   1536 			break;
   1537 		}
   1538 
   1539 		SLIST_FOREACH(jmp, &pd->bjumps, entries) {
   1540 			if (jmp->jdata->abc_length > abc_length)
   1541 				jmp->jdata->abc_length = abc_length;
   1542 		}
   1543 	}
   1544 }
   1545 
   1546 static void
   1547 optimize_pass3(const struct bpf_insn *insns,
   1548     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1549 {
   1550 	struct bpfjit_jump *jmp;
   1551 	size_t i;
   1552 	bpfjit_abc_length_t checked_length = 0;
   1553 
   1554 	for (i = 0; i < insn_count; i++) {
   1555 		if (insn_dat[i].unreachable)
   1556 			continue;
   1557 
   1558 		SLIST_FOREACH(jmp, &insn_dat[i].bjumps, entries) {
   1559 			if (jmp->jdata->checked_length < checked_length)
   1560 				checked_length = jmp->jdata->checked_length;
   1561 		}
   1562 
   1563 		if (BPF_CLASS(insns[i].code) == BPF_JMP) {
   1564 			insn_dat[i].u.jdata.checked_length = checked_length;
   1565 		} else if (read_pkt_insn(&insns[i], NULL)) {
   1566 			struct bpfjit_read_pkt_data *rdata =
   1567 			    &insn_dat[i].u.rdata;
   1568 			rdata->check_length = 0;
   1569 			if (checked_length < rdata->abc_length) {
   1570 				checked_length = rdata->abc_length;
   1571 				rdata->check_length = checked_length;
   1572 			}
   1573 		}
   1574 	}
   1575 }
   1576 
   1577 static bool
   1578 optimize(const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1579     struct bpfjit_insn_data *insn_dat, size_t insn_count,
   1580     bpf_memword_init_t *initmask, bpfjit_hint_t *hints)
   1581 {
   1582 
   1583 	optimize_init(insn_dat, insn_count);
   1584 
   1585 	if (!optimize_pass1(bc, insns, insn_dat, insn_count, initmask, hints))
   1586 		return false;
   1587 
   1588 	optimize_pass2(bc, insns, insn_dat, insn_count);
   1589 	optimize_pass3(insns, insn_dat, insn_count);
   1590 
   1591 	return true;
   1592 }
   1593 
   1594 /*
   1595  * Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
   1596  */
   1597 static bool
   1598 alu_to_op(const struct bpf_insn *pc, int *res)
   1599 {
   1600 	const uint32_t k = pc->k;
   1601 
   1602 	/*
   1603 	 * Note: all supported 64bit arches have 32bit multiply
   1604 	 * instruction so SLJIT_I32_OP doesn't have any overhead.
   1605 	 */
   1606 	switch (BPF_OP(pc->code)) {
   1607 	case BPF_ADD:
   1608 		*res = SLJIT_ADD;
   1609 		return true;
   1610 	case BPF_SUB:
   1611 		*res = SLJIT_SUB;
   1612 		return true;
   1613 	case BPF_MUL:
   1614 		*res = SLJIT_MUL|SLJIT_I32_OP;
   1615 		return true;
   1616 	case BPF_OR:
   1617 		*res = SLJIT_OR;
   1618 		return true;
   1619 	case BPF_XOR:
   1620 		*res = SLJIT_XOR;
   1621 		return true;
   1622 	case BPF_AND:
   1623 		*res = SLJIT_AND;
   1624 		return true;
   1625 	case BPF_LSH:
   1626 		*res = SLJIT_SHL;
   1627 		return k < 32;
   1628 	case BPF_RSH:
   1629 		*res = SLJIT_LSHR|SLJIT_I32_OP;
   1630 		return k < 32;
   1631 	default:
   1632 		return false;
   1633 	}
   1634 }
   1635 
   1636 /*
   1637  * Convert BPF_JMP operations except BPF_JA to sljit condition.
   1638  */
   1639 static bool
   1640 jmp_to_cond(const struct bpf_insn *pc, bool negate, int *res)
   1641 {
   1642 
   1643 	/*
   1644 	 * Note: all supported 64bit arches have 32bit comparison
   1645 	 * instructions so SLJIT_I32_OP doesn't have any overhead.
   1646 	 */
   1647 	*res = SLJIT_I32_OP;
   1648 
   1649 	switch (BPF_OP(pc->code)) {
   1650 	case BPF_JGT:
   1651 		*res |= negate ? SLJIT_LESS_EQUAL : SLJIT_GREATER;
   1652 		return true;
   1653 	case BPF_JGE:
   1654 		*res |= negate ? SLJIT_LESS : SLJIT_GREATER_EQUAL;
   1655 		return true;
   1656 	case BPF_JEQ:
   1657 		*res |= negate ? SLJIT_NOT_EQUAL : SLJIT_EQUAL;
   1658 		return true;
   1659 	case BPF_JSET:
   1660 		*res |= negate ? SLJIT_EQUAL : SLJIT_NOT_EQUAL;
   1661 		return true;
   1662 	default:
   1663 		return false;
   1664 	}
   1665 }
   1666 
   1667 /*
   1668  * Convert BPF_K and BPF_X to sljit register.
   1669  */
   1670 static int
   1671 kx_to_reg(const struct bpf_insn *pc)
   1672 {
   1673 
   1674 	switch (BPF_SRC(pc->code)) {
   1675 	case BPF_K: return SLJIT_IMM;
   1676 	case BPF_X: return BJ_XREG;
   1677 	default:
   1678 		BJ_ASSERT(false);
   1679 		return 0;
   1680 	}
   1681 }
   1682 
   1683 static sljit_sw
   1684 kx_to_reg_arg(const struct bpf_insn *pc)
   1685 {
   1686 
   1687 	switch (BPF_SRC(pc->code)) {
   1688 	case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
   1689 	case BPF_X: return 0;               /* BJ_XREG, 0,      */
   1690 	default:
   1691 		BJ_ASSERT(false);
   1692 		return 0;
   1693 	}
   1694 }
   1695 
   1696 static bool
   1697 generate_insn_code(struct sljit_compiler *compiler, bpfjit_hint_t hints,
   1698     const bpf_ctx_t *bc, const struct bpf_insn *insns,
   1699     struct bpfjit_insn_data *insn_dat, size_t insn_count)
   1700 {
   1701 	/* a list of jumps to out-of-bound return from a generated function */
   1702 	struct sljit_jump **ret0;
   1703 	size_t ret0_size, ret0_maxsize;
   1704 
   1705 	struct sljit_jump *jump;
   1706 	struct sljit_label *label;
   1707 	const struct bpf_insn *pc;
   1708 	struct bpfjit_jump *bjump, *jtf;
   1709 	struct sljit_jump *to_mchain_jump;
   1710 
   1711 	size_t i;
   1712 	unsigned int rval, mode, src, op;
   1713 	int branching, negate;
   1714 	int status, cond, op2;
   1715 	uint32_t jt, jf;
   1716 
   1717 	bool unconditional_ret;
   1718 	bool rv;
   1719 
   1720 	const size_t extwords = GET_EXTWORDS(bc);
   1721 	const size_t memwords = GET_MEMWORDS(bc);
   1722 
   1723 	ret0 = NULL;
   1724 	rv = false;
   1725 
   1726 	ret0_size = 0;
   1727 	ret0_maxsize = 64;
   1728 	ret0 = BJ_ALLOC(ret0_maxsize * sizeof(ret0[0]));
   1729 	if (ret0 == NULL)
   1730 		goto fail;
   1731 
   1732 	/* reset sjump members of jdata */
   1733 	for (i = 0; i < insn_count; i++) {
   1734 		if (insn_dat[i].unreachable ||
   1735 		    BPF_CLASS(insns[i].code) != BPF_JMP) {
   1736 			continue;
   1737 		}
   1738 
   1739 		jtf = insn_dat[i].u.jdata.jtf;
   1740 		jtf[0].sjump = jtf[1].sjump = NULL;
   1741 	}
   1742 
   1743 	/* main loop */
   1744 	for (i = 0; i < insn_count; i++) {
   1745 		if (insn_dat[i].unreachable)
   1746 			continue;
   1747 
   1748 		/*
   1749 		 * Resolve jumps to the current insn.
   1750 		 */
   1751 		label = NULL;
   1752 		SLIST_FOREACH(bjump, &insn_dat[i].bjumps, entries) {
   1753 			if (bjump->sjump != NULL) {
   1754 				if (label == NULL)
   1755 					label = sljit_emit_label(compiler);
   1756 				if (label == NULL)
   1757 					goto fail;
   1758 				sljit_set_label(bjump->sjump, label);
   1759 			}
   1760 		}
   1761 
   1762 		to_mchain_jump = NULL;
   1763 		unconditional_ret = false;
   1764 
   1765 		if (read_pkt_insn(&insns[i], NULL)) {
   1766 			if (insn_dat[i].u.rdata.check_length > UINT32_MAX) {
   1767 				/* Jump to "return 0" unconditionally. */
   1768 				unconditional_ret = true;
   1769 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1770 				if (jump == NULL)
   1771 					goto fail;
   1772 				if (!append_jump(jump, &ret0,
   1773 				    &ret0_size, &ret0_maxsize))
   1774 					goto fail;
   1775 			} else if (insn_dat[i].u.rdata.check_length > 0) {
   1776 				/* if (buflen < check_length) return 0; */
   1777 				jump = sljit_emit_cmp(compiler,
   1778 				    SLJIT_LESS,
   1779 				    BJ_BUFLEN, 0,
   1780 				    SLJIT_IMM,
   1781 				    insn_dat[i].u.rdata.check_length);
   1782 				if (jump == NULL)
   1783 					goto fail;
   1784 #ifdef _KERNEL
   1785 				to_mchain_jump = jump;
   1786 #else
   1787 				if (!append_jump(jump, &ret0,
   1788 				    &ret0_size, &ret0_maxsize))
   1789 					goto fail;
   1790 #endif
   1791 			}
   1792 		}
   1793 
   1794 		pc = &insns[i];
   1795 		switch (BPF_CLASS(pc->code)) {
   1796 
   1797 		default:
   1798 			goto fail;
   1799 
   1800 		case BPF_LD:
   1801 			/* BPF_LD+BPF_IMM          A <- k */
   1802 			if (pc->code == (BPF_LD|BPF_IMM)) {
   1803 				status = sljit_emit_op1(compiler,
   1804 				    SLJIT_MOV,
   1805 				    BJ_AREG, 0,
   1806 				    SLJIT_IMM, (uint32_t)pc->k);
   1807 				if (status != SLJIT_SUCCESS)
   1808 					goto fail;
   1809 
   1810 				continue;
   1811 			}
   1812 
   1813 			/* BPF_LD+BPF_MEM          A <- M[k] */
   1814 			if (pc->code == (BPF_LD|BPF_MEM)) {
   1815 				if ((uint32_t)pc->k >= memwords)
   1816 					goto fail;
   1817 				status = emit_memload(compiler,
   1818 				    BJ_AREG, pc->k, extwords);
   1819 				if (status != SLJIT_SUCCESS)
   1820 					goto fail;
   1821 
   1822 				continue;
   1823 			}
   1824 
   1825 			/* BPF_LD+BPF_W+BPF_LEN    A <- len */
   1826 			if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
   1827 				status = sljit_emit_op1(compiler,
   1828 				    SLJIT_MOV, /* size_t source */
   1829 				    BJ_AREG, 0,
   1830 				    SLJIT_MEM1(BJ_ARGS),
   1831 				    offsetof(struct bpf_args, wirelen));
   1832 				if (status != SLJIT_SUCCESS)
   1833 					goto fail;
   1834 
   1835 				continue;
   1836 			}
   1837 
   1838 			mode = BPF_MODE(pc->code);
   1839 			if (mode != BPF_ABS && mode != BPF_IND)
   1840 				goto fail;
   1841 
   1842 			if (unconditional_ret)
   1843 				continue;
   1844 
   1845 			status = emit_pkt_read(compiler, hints, pc,
   1846 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1847 			if (status != SLJIT_SUCCESS)
   1848 				goto fail;
   1849 
   1850 			continue;
   1851 
   1852 		case BPF_LDX:
   1853 			mode = BPF_MODE(pc->code);
   1854 
   1855 			/* BPF_LDX+BPF_W+BPF_IMM    X <- k */
   1856 			if (mode == BPF_IMM) {
   1857 				if (BPF_SIZE(pc->code) != BPF_W)
   1858 					goto fail;
   1859 				status = sljit_emit_op1(compiler,
   1860 				    SLJIT_MOV,
   1861 				    BJ_XREG, 0,
   1862 				    SLJIT_IMM, (uint32_t)pc->k);
   1863 				if (status != SLJIT_SUCCESS)
   1864 					goto fail;
   1865 
   1866 				continue;
   1867 			}
   1868 
   1869 			/* BPF_LDX+BPF_W+BPF_LEN    X <- len */
   1870 			if (mode == BPF_LEN) {
   1871 				if (BPF_SIZE(pc->code) != BPF_W)
   1872 					goto fail;
   1873 				status = sljit_emit_op1(compiler,
   1874 				    SLJIT_MOV, /* size_t source */
   1875 				    BJ_XREG, 0,
   1876 				    SLJIT_MEM1(BJ_ARGS),
   1877 				    offsetof(struct bpf_args, wirelen));
   1878 				if (status != SLJIT_SUCCESS)
   1879 					goto fail;
   1880 
   1881 				continue;
   1882 			}
   1883 
   1884 			/* BPF_LDX+BPF_W+BPF_MEM    X <- M[k] */
   1885 			if (mode == BPF_MEM) {
   1886 				if (BPF_SIZE(pc->code) != BPF_W)
   1887 					goto fail;
   1888 				if ((uint32_t)pc->k >= memwords)
   1889 					goto fail;
   1890 				status = emit_memload(compiler,
   1891 				    BJ_XREG, pc->k, extwords);
   1892 				if (status != SLJIT_SUCCESS)
   1893 					goto fail;
   1894 
   1895 				continue;
   1896 			}
   1897 
   1898 			/* BPF_LDX+BPF_B+BPF_MSH    X <- 4*(P[k:1]&0xf) */
   1899 			if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
   1900 				goto fail;
   1901 
   1902 			if (unconditional_ret)
   1903 				continue;
   1904 
   1905 			status = emit_msh(compiler, hints, pc,
   1906 			    to_mchain_jump, &ret0, &ret0_size, &ret0_maxsize);
   1907 			if (status != SLJIT_SUCCESS)
   1908 				goto fail;
   1909 
   1910 			continue;
   1911 
   1912 		case BPF_ST:
   1913 			if (pc->code != BPF_ST ||
   1914 			    (uint32_t)pc->k >= memwords) {
   1915 				goto fail;
   1916 			}
   1917 
   1918 			status = emit_memstore(compiler,
   1919 			    BJ_AREG, pc->k, extwords);
   1920 			if (status != SLJIT_SUCCESS)
   1921 				goto fail;
   1922 
   1923 			continue;
   1924 
   1925 		case BPF_STX:
   1926 			if (pc->code != BPF_STX ||
   1927 			    (uint32_t)pc->k >= memwords) {
   1928 				goto fail;
   1929 			}
   1930 
   1931 			status = emit_memstore(compiler,
   1932 			    BJ_XREG, pc->k, extwords);
   1933 			if (status != SLJIT_SUCCESS)
   1934 				goto fail;
   1935 
   1936 			continue;
   1937 
   1938 		case BPF_ALU:
   1939 			if (pc->code == (BPF_ALU|BPF_NEG)) {
   1940 				status = sljit_emit_op1(compiler,
   1941 				    SLJIT_NEG,
   1942 				    BJ_AREG, 0,
   1943 				    BJ_AREG, 0);
   1944 				if (status != SLJIT_SUCCESS)
   1945 					goto fail;
   1946 
   1947 				continue;
   1948 			}
   1949 
   1950 			op = BPF_OP(pc->code);
   1951 			if (op != BPF_DIV && op != BPF_MOD) {
   1952 				if (!alu_to_op(pc, &op2))
   1953 					goto fail;
   1954 
   1955 				status = sljit_emit_op2(compiler,
   1956 				    op2, BJ_AREG, 0, BJ_AREG, 0,
   1957 				    kx_to_reg(pc), kx_to_reg_arg(pc));
   1958 				if (status != SLJIT_SUCCESS)
   1959 					goto fail;
   1960 
   1961 				continue;
   1962 			}
   1963 
   1964 			/* BPF_DIV/BPF_MOD */
   1965 
   1966 			src = BPF_SRC(pc->code);
   1967 			if (src != BPF_X && src != BPF_K)
   1968 				goto fail;
   1969 
   1970 			/* division by zero? */
   1971 			if (src == BPF_X) {
   1972 				jump = sljit_emit_cmp(compiler,
   1973 				    SLJIT_EQUAL|SLJIT_I32_OP,
   1974 				    BJ_XREG, 0,
   1975 				    SLJIT_IMM, 0);
   1976 				if (jump == NULL)
   1977 					goto fail;
   1978 				if (!append_jump(jump, &ret0,
   1979 				    &ret0_size, &ret0_maxsize))
   1980 					goto fail;
   1981 			} else if (pc->k == 0) {
   1982 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   1983 				if (jump == NULL)
   1984 					goto fail;
   1985 				if (!append_jump(jump, &ret0,
   1986 				    &ret0_size, &ret0_maxsize))
   1987 					goto fail;
   1988 			}
   1989 
   1990 			if (src == BPF_X) {
   1991 				status = emit_moddiv(compiler, pc);
   1992 				if (status != SLJIT_SUCCESS)
   1993 					goto fail;
   1994 			} else if (pc->k != 0) {
   1995 				if (pc->k & (pc->k - 1)) {
   1996 					status = emit_moddiv(compiler, pc);
   1997 				} else {
   1998 					status = emit_pow2_moddiv(compiler, pc);
   1999 				}
   2000 				if (status != SLJIT_SUCCESS)
   2001 					goto fail;
   2002 			}
   2003 
   2004 			continue;
   2005 
   2006 		case BPF_JMP:
   2007 			op = BPF_OP(pc->code);
   2008 			if (op == BPF_JA) {
   2009 				jt = jf = pc->k;
   2010 			} else {
   2011 				jt = pc->jt;
   2012 				jf = pc->jf;
   2013 			}
   2014 
   2015 			negate = (jt == 0) ? 1 : 0;
   2016 			branching = (jt == jf) ? 0 : 1;
   2017 			jtf = insn_dat[i].u.jdata.jtf;
   2018 
   2019 			if (branching) {
   2020 				if (op != BPF_JSET) {
   2021 					if (!jmp_to_cond(pc, negate, &cond))
   2022 						goto fail;
   2023 					jump = sljit_emit_cmp(compiler,
   2024 					    cond, BJ_AREG, 0,
   2025 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   2026 				} else {
   2027 					status = sljit_emit_op2(compiler,
   2028 					    SLJIT_AND,
   2029 					    BJ_TMP1REG, 0,
   2030 					    BJ_AREG, 0,
   2031 					    kx_to_reg(pc), kx_to_reg_arg(pc));
   2032 					if (status != SLJIT_SUCCESS)
   2033 						goto fail;
   2034 
   2035 					if (!jmp_to_cond(pc, negate, &cond))
   2036 						goto fail;
   2037 					jump = sljit_emit_cmp(compiler,
   2038 					    cond, BJ_TMP1REG, 0, SLJIT_IMM, 0);
   2039 				}
   2040 
   2041 				if (jump == NULL)
   2042 					goto fail;
   2043 
   2044 				BJ_ASSERT(jtf[negate].sjump == NULL);
   2045 				jtf[negate].sjump = jump;
   2046 			}
   2047 
   2048 			if (!branching || (jt != 0 && jf != 0)) {
   2049 				jump = sljit_emit_jump(compiler, SLJIT_JUMP);
   2050 				if (jump == NULL)
   2051 					goto fail;
   2052 
   2053 				BJ_ASSERT(jtf[branching].sjump == NULL);
   2054 				jtf[branching].sjump = jump;
   2055 			}
   2056 
   2057 			continue;
   2058 
   2059 		case BPF_RET:
   2060 			rval = BPF_RVAL(pc->code);
   2061 			if (rval == BPF_X)
   2062 				goto fail;
   2063 
   2064 			/* BPF_RET+BPF_K    accept k bytes */
   2065 			if (rval == BPF_K) {
   2066 				status = sljit_emit_return(compiler,
   2067 				    SLJIT_MOV_U32,
   2068 				    SLJIT_IMM, (uint32_t)pc->k);
   2069 				if (status != SLJIT_SUCCESS)
   2070 					goto fail;
   2071 			}
   2072 
   2073 			/* BPF_RET+BPF_A    accept A bytes */
   2074 			if (rval == BPF_A) {
   2075 				status = sljit_emit_return(compiler,
   2076 				    SLJIT_MOV_U32,
   2077 				    BJ_AREG, 0);
   2078 				if (status != SLJIT_SUCCESS)
   2079 					goto fail;
   2080 			}
   2081 
   2082 			continue;
   2083 
   2084 		case BPF_MISC:
   2085 			switch (BPF_MISCOP(pc->code)) {
   2086 			case BPF_TAX:
   2087 				status = sljit_emit_op1(compiler,
   2088 				    SLJIT_MOV_U32,
   2089 				    BJ_XREG, 0,
   2090 				    BJ_AREG, 0);
   2091 				if (status != SLJIT_SUCCESS)
   2092 					goto fail;
   2093 
   2094 				continue;
   2095 
   2096 			case BPF_TXA:
   2097 				status = sljit_emit_op1(compiler,
   2098 				    SLJIT_MOV,
   2099 				    BJ_AREG, 0,
   2100 				    BJ_XREG, 0);
   2101 				if (status != SLJIT_SUCCESS)
   2102 					goto fail;
   2103 
   2104 				continue;
   2105 
   2106 			case BPF_COP:
   2107 			case BPF_COPX:
   2108 				if (bc == NULL || bc->copfuncs == NULL)
   2109 					goto fail;
   2110 				if (BPF_MISCOP(pc->code) == BPF_COP &&
   2111 				    (uint32_t)pc->k >= bc->nfuncs) {
   2112 					goto fail;
   2113 				}
   2114 
   2115 				status = emit_cop(compiler, hints, bc, pc,
   2116 				    &ret0, &ret0_size, &ret0_maxsize);
   2117 				if (status != SLJIT_SUCCESS)
   2118 					goto fail;
   2119 
   2120 				continue;
   2121 			}
   2122 
   2123 			goto fail;
   2124 		} /* switch */
   2125 	} /* main loop */
   2126 
   2127 	BJ_ASSERT(ret0_size <= ret0_maxsize);
   2128 
   2129 	if (ret0_size > 0) {
   2130 		label = sljit_emit_label(compiler);
   2131 		if (label == NULL)
   2132 			goto fail;
   2133 		for (i = 0; i < ret0_size; i++)
   2134 			sljit_set_label(ret0[i], label);
   2135 	}
   2136 
   2137 	status = sljit_emit_return(compiler,
   2138 	    SLJIT_MOV_U32,
   2139 	    SLJIT_IMM, 0);
   2140 	if (status != SLJIT_SUCCESS)
   2141 		goto fail;
   2142 
   2143 	rv = true;
   2144 
   2145 fail:
   2146 	if (ret0 != NULL)
   2147 		BJ_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
   2148 
   2149 	return rv;
   2150 }
   2151 
   2152 bpfjit_func_t
   2153 bpfjit_generate_code(const bpf_ctx_t *bc,
   2154     const struct bpf_insn *insns, size_t insn_count)
   2155 {
   2156 	void *rv;
   2157 	struct sljit_compiler *compiler;
   2158 
   2159 	size_t i;
   2160 	int status;
   2161 
   2162 	/* optimization related */
   2163 	bpf_memword_init_t initmask;
   2164 	bpfjit_hint_t hints;
   2165 
   2166 	/* memory store location for initial zero initialization */
   2167 	sljit_s32 mem_reg;
   2168 	sljit_sw mem_off;
   2169 
   2170 	struct bpfjit_insn_data *insn_dat;
   2171 
   2172 	const size_t extwords = GET_EXTWORDS(bc);
   2173 	const size_t memwords = GET_MEMWORDS(bc);
   2174 	const bpf_memword_init_t preinited = extwords ? bc->preinited : 0;
   2175 
   2176 	rv = NULL;
   2177 	compiler = NULL;
   2178 	insn_dat = NULL;
   2179 
   2180 	if (memwords > MAX_MEMWORDS)
   2181 		goto fail;
   2182 
   2183 	if (insn_count == 0 || insn_count > SIZE_MAX / sizeof(insn_dat[0]))
   2184 		goto fail;
   2185 
   2186 	insn_dat = BJ_ALLOC(insn_count * sizeof(insn_dat[0]));
   2187 	if (insn_dat == NULL)
   2188 		goto fail;
   2189 
   2190 	if (!optimize(bc, insns, insn_dat, insn_count, &initmask, &hints))
   2191 		goto fail;
   2192 
   2193 	compiler = sljit_create_compiler(NULL);
   2194 	if (compiler == NULL)
   2195 		goto fail;
   2196 
   2197 #if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
   2198 	sljit_compiler_verbose(compiler, stderr);
   2199 #endif
   2200 
   2201 	status = sljit_emit_enter(compiler, 0, 2, nscratches(hints),
   2202 	    NSAVEDS, 0, 0, sizeof(struct bpfjit_stack));
   2203 	if (status != SLJIT_SUCCESS)
   2204 		goto fail;
   2205 
   2206 	if (hints & BJ_HINT_COP) {
   2207 		/* save ctx argument */
   2208 		status = sljit_emit_op1(compiler,
   2209 		    SLJIT_MOV_P,
   2210 		    SLJIT_MEM1(SLJIT_SP),
   2211 		    offsetof(struct bpfjit_stack, ctx),
   2212 		    BJ_CTX_ARG, 0);
   2213 		if (status != SLJIT_SUCCESS)
   2214 			goto fail;
   2215 	}
   2216 
   2217 	if (extwords == 0) {
   2218 		mem_reg = SLJIT_MEM1(SLJIT_SP);
   2219 		mem_off = offsetof(struct bpfjit_stack, mem);
   2220 	} else {
   2221 		/* copy "mem" argument from bpf_args to bpfjit_stack */
   2222 		status = sljit_emit_op1(compiler,
   2223 		    SLJIT_MOV_P,
   2224 		    BJ_TMP1REG, 0,
   2225 		    SLJIT_MEM1(BJ_ARGS), offsetof(struct bpf_args, mem));
   2226 		if (status != SLJIT_SUCCESS)
   2227 			goto fail;
   2228 
   2229 		status = sljit_emit_op1(compiler,
   2230 		    SLJIT_MOV_P,
   2231 		    SLJIT_MEM1(SLJIT_SP),
   2232 		    offsetof(struct bpfjit_stack, extmem),
   2233 		    BJ_TMP1REG, 0);
   2234 		if (status != SLJIT_SUCCESS)
   2235 			goto fail;
   2236 
   2237 		mem_reg = SLJIT_MEM1(BJ_TMP1REG);
   2238 		mem_off = 0;
   2239 	}
   2240 
   2241 	/*
   2242 	 * Exclude pre-initialised external memory words but keep
   2243 	 * initialization statuses of A and X registers in case
   2244 	 * bc->preinited wrongly sets those two bits.
   2245 	 */
   2246 	initmask &= ~preinited | BJ_INIT_ABIT | BJ_INIT_XBIT;
   2247 
   2248 #if defined(_KERNEL)
   2249 	/* bpf_filter() checks initialization of memwords. */
   2250 	BJ_ASSERT((initmask & (BJ_INIT_MBIT(memwords) - 1)) == 0);
   2251 #endif
   2252 	for (i = 0; i < memwords; i++) {
   2253 		if (initmask & BJ_INIT_MBIT(i)) {
   2254 			/* M[i] = 0; */
   2255 			status = sljit_emit_op1(compiler,
   2256 			    SLJIT_MOV_U32,
   2257 			    mem_reg, mem_off + i * sizeof(uint32_t),
   2258 			    SLJIT_IMM, 0);
   2259 			if (status != SLJIT_SUCCESS)
   2260 				goto fail;
   2261 		}
   2262 	}
   2263 
   2264 	if (initmask & BJ_INIT_ABIT) {
   2265 		/* A = 0; */
   2266 		status = sljit_emit_op1(compiler,
   2267 		    SLJIT_MOV,
   2268 		    BJ_AREG, 0,
   2269 		    SLJIT_IMM, 0);
   2270 		if (status != SLJIT_SUCCESS)
   2271 			goto fail;
   2272 	}
   2273 
   2274 	if (initmask & BJ_INIT_XBIT) {
   2275 		/* X = 0; */
   2276 		status = sljit_emit_op1(compiler,
   2277 		    SLJIT_MOV,
   2278 		    BJ_XREG, 0,
   2279 		    SLJIT_IMM, 0);
   2280 		if (status != SLJIT_SUCCESS)
   2281 			goto fail;
   2282 	}
   2283 
   2284 	status = load_buf_buflen(compiler);
   2285 	if (status != SLJIT_SUCCESS)
   2286 		goto fail;
   2287 
   2288 	if (!generate_insn_code(compiler, hints,
   2289 	    bc, insns, insn_dat, insn_count)) {
   2290 		goto fail;
   2291 	}
   2292 
   2293 	rv = sljit_generate_code(compiler);
   2294 
   2295 fail:
   2296 	if (compiler != NULL)
   2297 		sljit_free_compiler(compiler);
   2298 
   2299 	if (insn_dat != NULL)
   2300 		BJ_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
   2301 
   2302 	return (bpfjit_func_t)rv;
   2303 }
   2304 
   2305 void
   2306 bpfjit_free_code(bpfjit_func_t code)
   2307 {
   2308 
   2309 	sljit_free_code((void *)code);
   2310 }
   2311