Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: vfs_bio.c,v 1.306 2024/12/07 02:27:38 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, and by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  * (c) UNIX System Laboratories, Inc.
     36  * All or some portions of this file are derived from material licensed
     37  * to the University of California by American Telephone and Telegraph
     38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     39  * the permission of UNIX System Laboratories, Inc.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     66  */
     67 
     68 /*-
     69  * Copyright (c) 1994 Christopher G. Demetriou
     70  *
     71  * Redistribution and use in source and binary forms, with or without
     72  * modification, are permitted provided that the following conditions
     73  * are met:
     74  * 1. Redistributions of source code must retain the above copyright
     75  *    notice, this list of conditions and the following disclaimer.
     76  * 2. Redistributions in binary form must reproduce the above copyright
     77  *    notice, this list of conditions and the following disclaimer in the
     78  *    documentation and/or other materials provided with the distribution.
     79  * 3. All advertising materials mentioning features or use of this software
     80  *    must display the following acknowledgement:
     81  *	This product includes software developed by the University of
     82  *	California, Berkeley and its contributors.
     83  * 4. Neither the name of the University nor the names of its contributors
     84  *    may be used to endorse or promote products derived from this software
     85  *    without specific prior written permission.
     86  *
     87  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     88  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     90  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     91  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     92  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     93  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     94  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     95  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     96  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     97  * SUCH DAMAGE.
     98  *
     99  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
    100  */
    101 
    102 /*
    103  * The buffer cache subsystem.
    104  *
    105  * Some references:
    106  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
    107  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
    108  *		UNIX Operating System (Addison Welley, 1989)
    109  *
    110  * Locking
    111  *
    112  * There are three locks:
    113  * - bufcache_lock: protects global buffer cache state.
    114  * - BC_BUSY: a long term per-buffer lock.
    115  * - buf_t::b_objlock: lock on completion (biowait vs biodone).
    116  *
    117  * For buffers associated with vnodes (a most common case) b_objlock points
    118  * to the vnode_t::v_interlock.  Otherwise, it points to generic buffer_lock.
    119  *
    120  * Lock order:
    121  *	bufcache_lock ->
    122  *		buf_t::b_objlock
    123  */
    124 
    125 #include <sys/cdefs.h>
    126 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.306 2024/12/07 02:27:38 riastradh Exp $");
    127 
    128 #ifdef _KERNEL_OPT
    129 #include "opt_biohist.h"
    130 #include "opt_bufcache.h"
    131 #include "opt_dtrace.h"
    132 #endif
    133 
    134 #include <sys/param.h>
    135 #include <sys/types.h>
    136 
    137 #include <sys/bitops.h>
    138 #include <sys/buf.h>
    139 #include <sys/conf.h>
    140 #include <sys/cprng.h>
    141 #include <sys/cpu.h>
    142 #include <sys/fstrans.h>
    143 #include <sys/intr.h>
    144 #include <sys/kauth.h>
    145 #include <sys/kernel.h>
    146 #include <sys/mount.h>
    147 #include <sys/proc.h>
    148 #include <sys/resourcevar.h>
    149 #include <sys/sdt.h>
    150 #include <sys/sysctl.h>
    151 #include <sys/systm.h>
    152 #include <sys/vnode.h>
    153 #include <sys/wapbl.h>
    154 
    155 #include <uvm/uvm.h>	/* extern struct uvm uvm */
    156 
    157 #include <miscfs/specfs/specdev.h>
    158 
    159 SDT_PROVIDER_DEFINE(io);
    160 
    161 SDT_PROBE_DEFINE4(io, kernel, , bbusy__start,
    162     "struct buf *"/*bp*/,
    163     "bool"/*intr*/, "int"/*timo*/, "kmutex_t *"/*interlock*/);
    164 SDT_PROBE_DEFINE5(io, kernel, , bbusy__done,
    165     "struct buf *"/*bp*/,
    166     "bool"/*intr*/,
    167     "int"/*timo*/,
    168     "kmutex_t *"/*interlock*/,
    169     "int"/*error*/);
    170 SDT_PROBE_DEFINE0(io, kernel, , getnewbuf__start);
    171 SDT_PROBE_DEFINE1(io, kernel, , getnewbuf__done,  "struct buf *"/*bp*/);
    172 SDT_PROBE_DEFINE3(io, kernel, , getblk__start,
    173     "struct vnode *"/*vp*/, "daddr_t"/*blkno*/, "int"/*size*/);
    174 SDT_PROBE_DEFINE4(io, kernel, , getblk__done,
    175     "struct vnode *"/*vp*/, "daddr_t"/*blkno*/, "int"/*size*/,
    176     "struct buf *"/*bp*/);
    177 SDT_PROBE_DEFINE2(io, kernel, , brelse, "struct buf *"/*bp*/, "int"/*set*/);
    178 SDT_PROBE_DEFINE1(io, kernel, , wait__start, "struct buf *"/*bp*/);
    179 SDT_PROBE_DEFINE1(io, kernel, , wait__done, "struct buf *"/*bp*/);
    180 
    181 #ifndef	BUFPAGES
    182 # define BUFPAGES 0
    183 #endif
    184 
    185 #ifdef BUFCACHE
    186 # if (BUFCACHE < 5) || (BUFCACHE > 95)
    187 #  error BUFCACHE is not between 5 and 95
    188 # endif
    189 #else
    190 # define BUFCACHE 15
    191 #endif
    192 
    193 u_int	nbuf;			/* desired number of buffer headers */
    194 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
    195 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
    196 
    197 /*
    198  * Definitions for the buffer free lists.
    199  */
    200 #define	BQUEUES		3		/* number of free buffer queues */
    201 
    202 #define	BQ_LOCKED	0		/* super-blocks &c */
    203 #define	BQ_LRU		1		/* lru, useful buffers */
    204 #define	BQ_AGE		2		/* rubbish */
    205 
    206 struct bqueue {
    207 	TAILQ_HEAD(, buf) bq_queue;
    208 	uint64_t bq_bytes;
    209 	buf_t *bq_marker;
    210 };
    211 static struct bqueue bufqueues[BQUEUES] __cacheline_aligned;
    212 
    213 /* Function prototypes */
    214 static void buf_setwm(void);
    215 static int buf_trim(void);
    216 static void *bufpool_page_alloc(struct pool *, int);
    217 static void bufpool_page_free(struct pool *, void *);
    218 static buf_t *bio_doread(struct vnode *, daddr_t, int, int);
    219 static buf_t *getnewbuf(int, int, int);
    220 static int buf_lotsfree(void);
    221 static int buf_canrelease(void);
    222 static u_long buf_mempoolidx(u_long);
    223 static u_long buf_roundsize(u_long);
    224 static void *buf_alloc(size_t);
    225 static void buf_mrelease(void *, size_t);
    226 static void binsheadfree(buf_t *, struct bqueue *);
    227 static void binstailfree(buf_t *, struct bqueue *);
    228 #ifdef DEBUG
    229 static int checkfreelist(buf_t *, struct bqueue *, int);
    230 #endif
    231 static void biointr(void *);
    232 static void biodone2(buf_t *);
    233 static void sysctl_kern_buf_setup(void);
    234 static void sysctl_vm_buf_setup(void);
    235 
    236 /* Initialization for biohist */
    237 
    238 #include <sys/biohist.h>
    239 
    240 BIOHIST_DEFINE(biohist);
    241 
    242 void
    243 biohist_init(void)
    244 {
    245 
    246 	BIOHIST_INIT(biohist, BIOHIST_SIZE);
    247 }
    248 
    249 /*
    250  * Definitions for the buffer hash lists.
    251  */
    252 #define	BUFHASH(dvp, lbn)	\
    253 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
    254 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
    255 u_long	bufhash;
    256 
    257 static int     bufhash_stats(struct hashstat_sysctl *, bool);
    258 
    259 static kcondvar_t needbuffer_cv;
    260 
    261 /*
    262  * Buffer queue lock.
    263  */
    264 kmutex_t bufcache_lock __cacheline_aligned;
    265 kmutex_t buffer_lock __cacheline_aligned;
    266 
    267 /* Software ISR for completed transfers. */
    268 static void *biodone_sih;
    269 
    270 /* Buffer pool for I/O buffers. */
    271 static pool_cache_t buf_cache;
    272 static pool_cache_t bufio_cache;
    273 
    274 #define MEMPOOL_INDEX_OFFSET (ilog2(DEV_BSIZE))	/* smallest pool is 512 bytes */
    275 #define NMEMPOOLS (ilog2(MAXBSIZE) - MEMPOOL_INDEX_OFFSET + 1)
    276 __CTASSERT((1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) == MAXBSIZE);
    277 
    278 /* Buffer memory pools */
    279 static struct pool bmempools[NMEMPOOLS];
    280 
    281 static struct vm_map *buf_map;
    282 
    283 /*
    284  * Buffer memory pool allocator.
    285  */
    286 static void *
    287 bufpool_page_alloc(struct pool *pp, int flags)
    288 {
    289 
    290 	return (void *)uvm_km_alloc(buf_map,
    291 	    MAXBSIZE, MAXBSIZE,
    292 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT|UVM_KMF_TRYLOCK)
    293 	    | UVM_KMF_WIRED);
    294 }
    295 
    296 static void
    297 bufpool_page_free(struct pool *pp, void *v)
    298 {
    299 
    300 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
    301 }
    302 
    303 static struct pool_allocator bufmempool_allocator = {
    304 	.pa_alloc = bufpool_page_alloc,
    305 	.pa_free = bufpool_page_free,
    306 	.pa_pagesz = MAXBSIZE,
    307 };
    308 
    309 /* Buffer memory management variables */
    310 u_long bufmem_valimit;
    311 u_long bufmem_hiwater;
    312 u_long bufmem_lowater;
    313 u_long bufmem;
    314 
    315 /*
    316  * MD code can call this to set a hard limit on the amount
    317  * of virtual memory used by the buffer cache.
    318  */
    319 int
    320 buf_setvalimit(vsize_t sz)
    321 {
    322 
    323 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
    324 	if (sz < NMEMPOOLS * MAXBSIZE)
    325 		return SET_ERROR(EINVAL);
    326 
    327 	bufmem_valimit = sz;
    328 	return 0;
    329 }
    330 
    331 static void
    332 buf_setwm(void)
    333 {
    334 
    335 	bufmem_hiwater = buf_memcalc();
    336 	/* lowater is approx. 2% of memory (with bufcache = 15) */
    337 #define	BUFMEM_WMSHIFT	3
    338 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
    339 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
    340 		/* Ensure a reasonable minimum value */
    341 		bufmem_hiwater = BUFMEM_HIWMMIN;
    342 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
    343 }
    344 
    345 #ifdef DEBUG
    346 int debug_verify_freelist = 0;
    347 static int
    348 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
    349 {
    350 	buf_t *b;
    351 
    352 	if (!debug_verify_freelist)
    353 		return 1;
    354 
    355 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
    356 		if (b == bp)
    357 			return ison ? 1 : 0;
    358 	}
    359 
    360 	return ison ? 0 : 1;
    361 }
    362 #endif
    363 
    364 /*
    365  * Insq/Remq for the buffer hash lists.
    366  * Call with buffer queue locked.
    367  */
    368 static void
    369 binsheadfree(buf_t *bp, struct bqueue *dp)
    370 {
    371 
    372 	KASSERT(mutex_owned(&bufcache_lock));
    373 	KASSERT(bp->b_freelistindex == -1);
    374 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
    375 	dp->bq_bytes += bp->b_bufsize;
    376 	bp->b_freelistindex = dp - bufqueues;
    377 }
    378 
    379 static void
    380 binstailfree(buf_t *bp, struct bqueue *dp)
    381 {
    382 
    383 	KASSERT(mutex_owned(&bufcache_lock));
    384 	KASSERTMSG(bp->b_freelistindex == -1, "double free of buffer? "
    385 	    "bp=%p, b_freelistindex=%d\n", bp, bp->b_freelistindex);
    386 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
    387 	dp->bq_bytes += bp->b_bufsize;
    388 	bp->b_freelistindex = dp - bufqueues;
    389 }
    390 
    391 void
    392 bremfree(buf_t *bp)
    393 {
    394 	struct bqueue *dp;
    395 	int bqidx = bp->b_freelistindex;
    396 
    397 	KASSERT(mutex_owned(&bufcache_lock));
    398 
    399 	KASSERT(bqidx != -1);
    400 	dp = &bufqueues[bqidx];
    401 	KDASSERT(checkfreelist(bp, dp, 1));
    402 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
    403 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
    404 	dp->bq_bytes -= bp->b_bufsize;
    405 
    406 	/* For the sysctl helper. */
    407 	if (bp == dp->bq_marker)
    408 		dp->bq_marker = NULL;
    409 
    410 #if defined(DIAGNOSTIC)
    411 	bp->b_freelistindex = -1;
    412 #endif /* defined(DIAGNOSTIC) */
    413 }
    414 
    415 /*
    416  * note that for some ports this is used by pmap bootstrap code to
    417  * determine kva size.
    418  */
    419 u_long
    420 buf_memcalc(void)
    421 {
    422 	u_long n;
    423 	vsize_t mapsz = 0;
    424 
    425 	/*
    426 	 * Determine the upper bound of memory to use for buffers.
    427 	 *
    428 	 *	- If bufpages is specified, use that as the number
    429 	 *	  pages.
    430 	 *
    431 	 *	- Otherwise, use bufcache as the percentage of
    432 	 *	  physical memory.
    433 	 */
    434 	if (bufpages != 0) {
    435 		n = bufpages;
    436 	} else {
    437 		if (bufcache < 5) {
    438 			printf("forcing bufcache %d -> 5", bufcache);
    439 			bufcache = 5;
    440 		}
    441 		if (bufcache > 95) {
    442 			printf("forcing bufcache %d -> 95", bufcache);
    443 			bufcache = 95;
    444 		}
    445 		if (buf_map != NULL)
    446 			mapsz = vm_map_max(buf_map) - vm_map_min(buf_map);
    447 		n = calc_cache_size(mapsz, bufcache,
    448 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
    449 		    / PAGE_SIZE;
    450 	}
    451 
    452 	n <<= PAGE_SHIFT;
    453 	if (bufmem_valimit != 0 && n > bufmem_valimit)
    454 		n = bufmem_valimit;
    455 
    456 	return n;
    457 }
    458 
    459 /*
    460  * Initialize buffers and hash links for buffers.
    461  */
    462 void
    463 bufinit(void)
    464 {
    465 	struct bqueue *dp;
    466 	int use_std;
    467 	u_int i;
    468 
    469 	biodone_vfs = biodone;
    470 
    471 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
    472 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
    473 	cv_init(&needbuffer_cv, "needbuf");
    474 
    475 	if (bufmem_valimit != 0) {
    476 		vaddr_t minaddr = 0, maxaddr;
    477 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    478 		    bufmem_valimit, 0, false, 0);
    479 		if (buf_map == NULL)
    480 			panic("bufinit: cannot allocate submap");
    481 	} else
    482 		buf_map = kernel_map;
    483 
    484 	/*
    485 	 * Initialize buffer cache memory parameters.
    486 	 */
    487 	bufmem = 0;
    488 	buf_setwm();
    489 
    490 	/* On "small" machines use small pool page sizes where possible */
    491 	use_std = (physmem < atop(16*1024*1024));
    492 
    493 	/*
    494 	 * Also use them on systems that can map the pool pages using
    495 	 * a direct-mapped segment.
    496 	 */
    497 #ifdef PMAP_MAP_POOLPAGE
    498 	use_std = 1;
    499 #endif
    500 
    501 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    502 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
    503 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
    504 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
    505 
    506 	for (i = 0; i < NMEMPOOLS; i++) {
    507 		struct pool_allocator *pa;
    508 		struct pool *pp = &bmempools[i];
    509 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
    510 		char *name = kmem_alloc(8, KM_SLEEP); /* XXX: never freed */
    511 
    512 		if (__predict_false(size >= 1048576))
    513 			(void)snprintf(name, 8, "buf%um", size / 1048576);
    514 		else if (__predict_true(size >= 1024))
    515 			(void)snprintf(name, 8, "buf%uk", size / 1024);
    516 		else
    517 			(void)snprintf(name, 8, "buf%ub", size);
    518 		pa = (size <= PAGE_SIZE && use_std)
    519 		    ? &pool_allocator_nointr
    520 		    : &bufmempool_allocator;
    521 		pool_init(pp, size, DEV_BSIZE, 0, 0, name, pa, IPL_NONE);
    522 		pool_setlowat(pp, 1);
    523 		pool_sethiwat(pp, 1);
    524 	}
    525 
    526 	/* Initialize the buffer queues */
    527 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
    528 		TAILQ_INIT(&dp->bq_queue);
    529 		dp->bq_bytes = 0;
    530 	}
    531 
    532 	/*
    533 	 * Estimate hash table size based on the amount of memory we
    534 	 * intend to use for the buffer cache. The average buffer
    535 	 * size is dependent on our clients (i.e. filesystems).
    536 	 *
    537 	 * For now, use an empirical 3K per buffer.
    538 	 */
    539 	nbuf = (bufmem_hiwater / 1024) / 3;
    540 	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
    541 
    542 	sysctl_kern_buf_setup();
    543 	sysctl_vm_buf_setup();
    544 	hashstat_register("bufhash", bufhash_stats);
    545 }
    546 
    547 void
    548 bufinit2(void)
    549 {
    550 
    551 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
    552 	    NULL);
    553 	if (biodone_sih == NULL)
    554 		panic("bufinit2: can't establish soft interrupt");
    555 }
    556 
    557 static int
    558 buf_lotsfree(void)
    559 {
    560 	u_long guess;
    561 
    562 	/* Always allocate if less than the low water mark. */
    563 	if (bufmem < bufmem_lowater)
    564 		return 1;
    565 
    566 	/* Never allocate if greater than the high water mark. */
    567 	if (bufmem > bufmem_hiwater)
    568 		return 0;
    569 
    570 	/* If there's anything on the AGE list, it should be eaten. */
    571 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
    572 		return 0;
    573 
    574 	/*
    575 	 * The probabily of getting a new allocation is inversely
    576 	 * proportional  to the current size of the cache above
    577 	 * the low water mark.  Divide the total first to avoid overflows
    578 	 * in the product.
    579 	 */
    580 	guess = cprng_fast32() % 16;
    581 
    582 	if ((bufmem_hiwater - bufmem_lowater) / 16 * guess >=
    583 	    (bufmem - bufmem_lowater))
    584 		return 1;
    585 
    586 	/* Otherwise don't allocate. */
    587 	return 0;
    588 }
    589 
    590 /*
    591  * Return estimate of bytes we think need to be
    592  * released to help resolve low memory conditions.
    593  *
    594  * => called with bufcache_lock held.
    595  */
    596 static int
    597 buf_canrelease(void)
    598 {
    599 	int pagedemand, ninvalid = 0;
    600 
    601 	KASSERT(mutex_owned(&bufcache_lock));
    602 
    603 	if (bufmem < bufmem_lowater)
    604 		return 0;
    605 
    606 	if (bufmem > bufmem_hiwater)
    607 		return bufmem - bufmem_hiwater;
    608 
    609 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
    610 
    611 	pagedemand = uvmexp.freetarg - uvm_availmem(false);
    612 	if (pagedemand < 0)
    613 		return ninvalid;
    614 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
    615 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
    616 }
    617 
    618 /*
    619  * Buffer memory allocation helper functions
    620  */
    621 static u_long
    622 buf_mempoolidx(u_long size)
    623 {
    624 	u_int n = 0;
    625 
    626 	size -= 1;
    627 	size >>= MEMPOOL_INDEX_OFFSET;
    628 	while (size) {
    629 		size >>= 1;
    630 		n += 1;
    631 	}
    632 	if (n >= NMEMPOOLS)
    633 		panic("buf mem pool index %d", n);
    634 	return n;
    635 }
    636 
    637 static u_long
    638 buf_roundsize(u_long size)
    639 {
    640 
    641 	/* Round up to nearest power of 2 */
    642 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
    643 }
    644 
    645 static void *
    646 buf_alloc(size_t size)
    647 {
    648 	u_int n = buf_mempoolidx(size);
    649 	void *addr;
    650 
    651 	while (1) {
    652 		addr = pool_get(&bmempools[n], PR_NOWAIT);
    653 		if (addr != NULL)
    654 			break;
    655 
    656 		/* No memory, see if we can free some. If so, try again */
    657 		mutex_enter(&bufcache_lock);
    658 		if (buf_drain(1) > 0) {
    659 			mutex_exit(&bufcache_lock);
    660 			continue;
    661 		}
    662 
    663 		if (curlwp == uvm.pagedaemon_lwp) {
    664 			mutex_exit(&bufcache_lock);
    665 			return NULL;
    666 		}
    667 
    668 		/* Wait for buffers to arrive on the LRU queue */
    669 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
    670 		mutex_exit(&bufcache_lock);
    671 	}
    672 
    673 	return addr;
    674 }
    675 
    676 static void
    677 buf_mrelease(void *addr, size_t size)
    678 {
    679 
    680 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
    681 }
    682 
    683 /*
    684  * bread()/breadn() helper.
    685  */
    686 static buf_t *
    687 bio_doread(struct vnode *vp, daddr_t blkno, int size, int async)
    688 {
    689 	buf_t *bp;
    690 	struct mount *mp;
    691 
    692 	bp = getblk(vp, blkno, size, 0, 0);
    693 
    694 	/*
    695 	 * getblk() may return NULL if we are the pagedaemon.
    696 	 */
    697 	if (bp == NULL) {
    698 		KASSERT(curlwp == uvm.pagedaemon_lwp);
    699 		return NULL;
    700 	}
    701 
    702 	/*
    703 	 * If buffer does not have data valid, start a read.
    704 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
    705 	 * Therefore, it's valid if its I/O has completed or been delayed.
    706 	 */
    707 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
    708 		/* Start I/O for the buffer. */
    709 		SET(bp->b_flags, B_READ | async);
    710 		if (async)
    711 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    712 		else
    713 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    714 		VOP_STRATEGY(vp, bp);
    715 
    716 		/* Pay for the read. */
    717 		curlwp->l_ru.ru_inblock++;
    718 	} else if (async)
    719 		brelse(bp, 0);
    720 
    721 	if (vp->v_type == VBLK)
    722 		mp = spec_node_getmountedfs(vp);
    723 	else
    724 		mp = vp->v_mount;
    725 
    726 	/*
    727 	 * Collect statistics on synchronous and asynchronous reads.
    728 	 * Reads from block devices are charged to their associated
    729 	 * filesystem (if any).
    730 	 */
    731 	if (mp != NULL) {
    732 		if (async == 0)
    733 			mp->mnt_stat.f_syncreads++;
    734 		else
    735 			mp->mnt_stat.f_asyncreads++;
    736 	}
    737 
    738 	return bp;
    739 }
    740 
    741 /*
    742  * Read a disk block.
    743  * This algorithm described in Bach (p.54).
    744  */
    745 int
    746 bread(struct vnode *vp, daddr_t blkno, int size, int flags, buf_t **bpp)
    747 {
    748 	buf_t *bp;
    749 	int error;
    750 
    751 	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
    752 
    753 	/* Get buffer for block. */
    754 	bp = *bpp = bio_doread(vp, blkno, size, 0);
    755 	if (bp == NULL)
    756 		return SET_ERROR(ENOMEM);
    757 
    758 	/* Wait for the read to complete, and return result. */
    759 	error = biowait(bp);
    760 	if (error == 0 && (flags & B_MODIFY) != 0)
    761 		error = fscow_run(bp, true);
    762 	if (error) {
    763 		brelse(bp, 0);
    764 		*bpp = NULL;
    765 	}
    766 
    767 	return error;
    768 }
    769 
    770 /*
    771  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    772  * Trivial modification to the breada algorithm presented in Bach (p.55).
    773  */
    774 int
    775 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
    776     int *rasizes, int nrablks, int flags, buf_t **bpp)
    777 {
    778 	buf_t *bp;
    779 	int error, i;
    780 
    781 	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
    782 
    783 	bp = *bpp = bio_doread(vp, blkno, size, 0);
    784 	if (bp == NULL)
    785 		return SET_ERROR(ENOMEM);
    786 
    787 	/*
    788 	 * For each of the read-ahead blocks, start a read, if necessary.
    789 	 */
    790 	mutex_enter(&bufcache_lock);
    791 	for (i = 0; i < nrablks; i++) {
    792 		/* If it's in the cache, just go on to next one. */
    793 		if (incore(vp, rablks[i]))
    794 			continue;
    795 
    796 		/* Get a buffer for the read-ahead block */
    797 		mutex_exit(&bufcache_lock);
    798 		(void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC);
    799 		mutex_enter(&bufcache_lock);
    800 	}
    801 	mutex_exit(&bufcache_lock);
    802 
    803 	/* Otherwise, we had to start a read for it; wait until it's valid. */
    804 	error = biowait(bp);
    805 	if (error == 0 && (flags & B_MODIFY) != 0)
    806 		error = fscow_run(bp, true);
    807 	if (error) {
    808 		brelse(bp, 0);
    809 		*bpp = NULL;
    810 	}
    811 
    812 	return error;
    813 }
    814 
    815 /*
    816  * Block write.  Described in Bach (p.56)
    817  */
    818 int
    819 bwrite(buf_t *bp)
    820 {
    821 	int rv, sync, wasdelayed;
    822 	struct vnode *vp;
    823 	struct mount *mp;
    824 
    825 	BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
    826 	    (uintptr_t)bp, 0, 0, 0);
    827 
    828 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    829 	KASSERT(!cv_has_waiters(&bp->b_done));
    830 
    831 	vp = bp->b_vp;
    832 
    833 	/*
    834 	 * dholland 20160728 AFAICT vp==NULL must be impossible as it
    835 	 * will crash upon reaching VOP_STRATEGY below... see further
    836 	 * analysis on tech-kern.
    837 	 */
    838 	KASSERTMSG(vp != NULL, "bwrite given buffer with null vnode");
    839 
    840 	if (vp != NULL) {
    841 		KASSERT(bp->b_objlock == vp->v_interlock);
    842 		if (vp->v_type == VBLK)
    843 			mp = spec_node_getmountedfs(vp);
    844 		else
    845 			mp = vp->v_mount;
    846 	} else {
    847 		mp = NULL;
    848 	}
    849 
    850 	if (mp && mp->mnt_wapbl) {
    851 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    852 			bdwrite(bp);
    853 			return 0;
    854 		}
    855 	}
    856 
    857 	/*
    858 	 * Remember buffer type, to switch on it later.  If the write was
    859 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    860 	 * convert it to a delayed write.
    861 	 * XXX note that this relies on delayed tape writes being converted
    862 	 * to async, not sync writes (which is safe, but ugly).
    863 	 */
    864 	sync = !ISSET(bp->b_flags, B_ASYNC);
    865 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    866 		bdwrite(bp);
    867 		return 0;
    868 	}
    869 
    870 	/*
    871 	 * Collect statistics on synchronous and asynchronous writes.
    872 	 * Writes to block devices are charged to their associated
    873 	 * filesystem (if any).
    874 	 */
    875 	if (mp != NULL) {
    876 		if (sync)
    877 			mp->mnt_stat.f_syncwrites++;
    878 		else
    879 			mp->mnt_stat.f_asyncwrites++;
    880 	}
    881 
    882 	/*
    883 	 * Pay for the I/O operation and make sure the buf is on the correct
    884 	 * vnode queue.
    885 	 */
    886 	bp->b_error = 0;
    887 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
    888 	CLR(bp->b_flags, B_READ);
    889 	if (wasdelayed) {
    890 		mutex_enter(&bufcache_lock);
    891 		mutex_enter(bp->b_objlock);
    892 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    893 		reassignbuf(bp, bp->b_vp);
    894 		/* Wake anyone trying to busy the buffer via vnode's lists. */
    895 		cv_broadcast(&bp->b_busy);
    896 		mutex_exit(&bufcache_lock);
    897 	} else {
    898 		curlwp->l_ru.ru_oublock++;
    899 		mutex_enter(bp->b_objlock);
    900 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
    901 	}
    902 	if (vp != NULL)
    903 		vp->v_numoutput++;
    904 	mutex_exit(bp->b_objlock);
    905 
    906 	/* Initiate disk write. */
    907 	if (sync)
    908 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    909 	else
    910 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    911 
    912 	VOP_STRATEGY(vp, bp);
    913 
    914 	if (sync) {
    915 		/* If I/O was synchronous, wait for it to complete. */
    916 		rv = biowait(bp);
    917 
    918 		/* Release the buffer. */
    919 		brelse(bp, 0);
    920 
    921 		return rv;
    922 	} else {
    923 		return 0;
    924 	}
    925 }
    926 
    927 int
    928 vn_bwrite(void *v)
    929 {
    930 	struct vop_bwrite_args *ap = v;
    931 
    932 	return bwrite(ap->a_bp);
    933 }
    934 
    935 /*
    936  * Delayed write.
    937  *
    938  * The buffer is marked dirty, but is not queued for I/O.
    939  * This routine should be used when the buffer is expected
    940  * to be modified again soon, typically a small write that
    941  * partially fills a buffer.
    942  *
    943  * NB: magnetic tapes cannot be delayed; they must be
    944  * written in the order that the writes are requested.
    945  *
    946  * Described in Leffler, et al. (pp. 208-213).
    947  */
    948 void
    949 bdwrite(buf_t *bp)
    950 {
    951 
    952 	BIOHIST_FUNC(__func__); BIOHIST_CALLARGS(biohist, "bp=%#jx",
    953 	    (uintptr_t)bp, 0, 0, 0);
    954 
    955 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
    956 	    bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
    957 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
    958 	KASSERT(!cv_has_waiters(&bp->b_done));
    959 
    960 	/* If this is a tape block, write the block now. */
    961 	if (bdev_type(bp->b_dev) == D_TAPE) {
    962 		bawrite(bp);
    963 		return;
    964 	}
    965 
    966 	if (wapbl_vphaswapbl(bp->b_vp)) {
    967 		struct mount *mp = wapbl_vptomp(bp->b_vp);
    968 
    969 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
    970 			WAPBL_ADD_BUF(mp, bp);
    971 		}
    972 	}
    973 
    974 	/*
    975 	 * If the block hasn't been seen before:
    976 	 *	(1) Mark it as having been seen,
    977 	 *	(2) Charge for the write,
    978 	 *	(3) Make sure it's on its vnode's correct block list.
    979 	 */
    980 	KASSERT(bp->b_vp == NULL || bp->b_objlock == bp->b_vp->v_interlock);
    981 
    982 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
    983 		mutex_enter(&bufcache_lock);
    984 		mutex_enter(bp->b_objlock);
    985 		SET(bp->b_oflags, BO_DELWRI);
    986 		curlwp->l_ru.ru_oublock++;
    987 		reassignbuf(bp, bp->b_vp);
    988 		/* Wake anyone trying to busy the buffer via vnode's lists. */
    989 		cv_broadcast(&bp->b_busy);
    990 		mutex_exit(&bufcache_lock);
    991 	} else {
    992 		mutex_enter(bp->b_objlock);
    993 	}
    994 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    995 	CLR(bp->b_oflags, BO_DONE);
    996 	mutex_exit(bp->b_objlock);
    997 
    998 	brelse(bp, 0);
    999 }
   1000 
   1001 /*
   1002  * Asynchronous block write; just an asynchronous bwrite().
   1003  */
   1004 void
   1005 bawrite(buf_t *bp)
   1006 {
   1007 
   1008 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1009 	KASSERT(bp->b_vp != NULL);
   1010 
   1011 	SET(bp->b_flags, B_ASYNC);
   1012 	VOP_BWRITE(bp->b_vp, bp);
   1013 }
   1014 
   1015 /*
   1016  * Release a buffer on to the free lists.
   1017  * Described in Bach (p. 46).
   1018  */
   1019 void
   1020 brelsel(buf_t *bp, int set)
   1021 {
   1022 	struct bqueue *bufq;
   1023 	struct vnode *vp;
   1024 
   1025 	SDT_PROBE2(io, kernel, , brelse,  bp, set);
   1026 
   1027 	KASSERT(bp != NULL);
   1028 	KASSERT(mutex_owned(&bufcache_lock));
   1029 	KASSERT(!cv_has_waiters(&bp->b_done));
   1030 
   1031 	SET(bp->b_cflags, set);
   1032 
   1033 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1034 	KASSERT(bp->b_iodone == NULL);
   1035 
   1036 	/* Wake up any processes waiting for any buffer to become free. */
   1037 	cv_signal(&needbuffer_cv);
   1038 
   1039 	/* Wake up any proceeses waiting for _this_ buffer to become free */
   1040 	if (ISSET(bp->b_cflags, BC_WANTED))
   1041 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
   1042 
   1043 	/* If it's clean clear the copy-on-write flag. */
   1044 	if (ISSET(bp->b_flags, B_COWDONE)) {
   1045 		mutex_enter(bp->b_objlock);
   1046 		if (!ISSET(bp->b_oflags, BO_DELWRI))
   1047 			CLR(bp->b_flags, B_COWDONE);
   1048 		mutex_exit(bp->b_objlock);
   1049 	}
   1050 
   1051 	/*
   1052 	 * Determine which queue the buffer should be on, then put it there.
   1053 	 */
   1054 
   1055 	/* If it's locked, don't report an error; try again later. */
   1056 	if (ISSET(bp->b_flags, B_LOCKED))
   1057 		bp->b_error = 0;
   1058 
   1059 	/* If it's not cacheable, or an error, mark it invalid. */
   1060 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
   1061 		SET(bp->b_cflags, BC_INVAL);
   1062 
   1063 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1064 		/*
   1065 		 * This is a delayed write buffer that was just flushed to
   1066 		 * disk.  It is still on the LRU queue.  If it's become
   1067 		 * invalid, then we need to move it to a different queue;
   1068 		 * otherwise leave it in its current position.
   1069 		 */
   1070 		CLR(bp->b_cflags, BC_VFLUSH);
   1071 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
   1072 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
   1073 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
   1074 			goto already_queued;
   1075 		} else {
   1076 			bremfree(bp);
   1077 		}
   1078 	}
   1079 
   1080 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
   1081 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
   1082 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
   1083 
   1084 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
   1085 		/*
   1086 		 * If it's invalid or empty, dissociate it from its vnode
   1087 		 * and put on the head of the appropriate queue.
   1088 		 */
   1089 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1090 			if (wapbl_vphaswapbl(vp = bp->b_vp)) {
   1091 				struct mount *mp = wapbl_vptomp(vp);
   1092 
   1093 				KASSERT(bp->b_iodone !=
   1094 				    mp->mnt_wapbl_op->wo_wapbl_biodone);
   1095 				WAPBL_REMOVE_BUF(mp, bp);
   1096 			}
   1097 		}
   1098 
   1099 		mutex_enter(bp->b_objlock);
   1100 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
   1101 		if ((vp = bp->b_vp) != NULL) {
   1102 			KASSERT(bp->b_objlock == vp->v_interlock);
   1103 			reassignbuf(bp, bp->b_vp);
   1104 			brelvp(bp);
   1105 			mutex_exit(vp->v_interlock);
   1106 		} else {
   1107 			KASSERT(bp->b_objlock == &buffer_lock);
   1108 			mutex_exit(bp->b_objlock);
   1109 		}
   1110 		/* We want to dispose of the buffer, so wake everybody. */
   1111 		cv_broadcast(&bp->b_busy);
   1112 		if (bp->b_bufsize <= 0)
   1113 			/* no data */
   1114 			goto already_queued;
   1115 		else
   1116 			/* invalid data */
   1117 			bufq = &bufqueues[BQ_AGE];
   1118 		binsheadfree(bp, bufq);
   1119 	} else  {
   1120 		/*
   1121 		 * It has valid data.  Put it on the end of the appropriate
   1122 		 * queue, so that it'll stick around for as long as possible.
   1123 		 * If buf is AGE, but has dependencies, must put it on last
   1124 		 * bufqueue to be scanned, ie LRU. This protects against the
   1125 		 * livelock where BQ_AGE only has buffers with dependencies,
   1126 		 * and we thus never get to the dependent buffers in BQ_LRU.
   1127 		 */
   1128 		if (ISSET(bp->b_flags, B_LOCKED)) {
   1129 			/* locked in core */
   1130 			bufq = &bufqueues[BQ_LOCKED];
   1131 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
   1132 			/* valid data */
   1133 			bufq = &bufqueues[BQ_LRU];
   1134 		} else {
   1135 			/* stale but valid data */
   1136 			bufq = &bufqueues[BQ_AGE];
   1137 		}
   1138 		binstailfree(bp, bufq);
   1139 	}
   1140 already_queued:
   1141 	/* Unlock the buffer. */
   1142 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
   1143 	CLR(bp->b_flags, B_ASYNC);
   1144 
   1145 	/*
   1146 	 * Wake only the highest priority waiter on the lock, in order to
   1147 	 * prevent a thundering herd: many LWPs simultaneously awakening and
   1148 	 * competing for the buffer's lock.  Testing in 2019 revealed this
   1149 	 * to reduce contention on bufcache_lock tenfold during a kernel
   1150 	 * compile.  Here and elsewhere, when the buffer is changing
   1151 	 * identity, being disposed of, or moving from one list to another,
   1152 	 * we wake all lock requestors.
   1153 	 */
   1154 	if (bp->b_bufsize <= 0) {
   1155 		cv_broadcast(&bp->b_busy);
   1156 		buf_destroy(bp);
   1157 #ifdef DEBUG
   1158 		memset((char *)bp, 0, sizeof(*bp));
   1159 #endif
   1160 		pool_cache_put(buf_cache, bp);
   1161 	} else
   1162 		cv_signal(&bp->b_busy);
   1163 }
   1164 
   1165 void
   1166 brelse(buf_t *bp, int set)
   1167 {
   1168 
   1169 	mutex_enter(&bufcache_lock);
   1170 	brelsel(bp, set);
   1171 	mutex_exit(&bufcache_lock);
   1172 }
   1173 
   1174 /*
   1175  * Determine if a block is in the cache.
   1176  * Just look on what would be its hash chain.  If it's there, return
   1177  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
   1178  * we normally don't return the buffer, unless the caller explicitly
   1179  * wants us to.
   1180  */
   1181 buf_t *
   1182 incore(struct vnode *vp, daddr_t blkno)
   1183 {
   1184 	buf_t *bp;
   1185 
   1186 	KASSERT(mutex_owned(&bufcache_lock));
   1187 
   1188 	/* Search hash chain */
   1189 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
   1190 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
   1191 		    !ISSET(bp->b_cflags, BC_INVAL)) {
   1192 			KASSERT(bp->b_objlock == vp->v_interlock);
   1193 			return (bp);
   1194 		}
   1195 	}
   1196 
   1197 	return NULL;
   1198 }
   1199 
   1200 /*
   1201  * Get a block of requested size that is associated with
   1202  * a given vnode and block offset. If it is found in the
   1203  * block cache, mark it as having been found, make it busy
   1204  * and return it. Otherwise, return an empty block of the
   1205  * correct size. It is up to the caller to insure that the
   1206  * cached blocks be of the correct size.
   1207  */
   1208 buf_t *
   1209 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
   1210 {
   1211 	int err, preserve;
   1212 	buf_t *bp;
   1213 
   1214 	mutex_enter(&bufcache_lock);
   1215 	SDT_PROBE3(io, kernel, , getblk__start,  vp, blkno, size);
   1216 loop:
   1217 	bp = incore(vp, blkno);
   1218 	if (bp != NULL) {
   1219 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
   1220 		if (err != 0) {
   1221 			if (err == EPASSTHROUGH)
   1222 				goto loop;
   1223 			mutex_exit(&bufcache_lock);
   1224 			SDT_PROBE4(io, kernel, , getblk__done,
   1225 			    vp, blkno, size, NULL);
   1226 			return NULL;
   1227 		}
   1228 		KASSERT(!cv_has_waiters(&bp->b_done));
   1229 #ifdef DIAGNOSTIC
   1230 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
   1231 		    bp->b_bcount < size && vp->v_type != VBLK)
   1232 			panic("getblk: block size invariant failed");
   1233 #endif
   1234 		bremfree(bp);
   1235 		preserve = 1;
   1236 	} else {
   1237 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
   1238 			goto loop;
   1239 
   1240 		if (incore(vp, blkno) != NULL) {
   1241 			/* The block has come into memory in the meantime. */
   1242 			brelsel(bp, 0);
   1243 			goto loop;
   1244 		}
   1245 
   1246 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
   1247 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
   1248 		mutex_enter(vp->v_interlock);
   1249 		bgetvp(vp, bp);
   1250 		mutex_exit(vp->v_interlock);
   1251 		preserve = 0;
   1252 	}
   1253 	mutex_exit(&bufcache_lock);
   1254 
   1255 	/*
   1256 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
   1257 	 * if we re-size buffers here.
   1258 	 */
   1259 	if (ISSET(bp->b_flags, B_LOCKED)) {
   1260 		KASSERT(bp->b_bufsize >= size);
   1261 	} else {
   1262 		if (allocbuf(bp, size, preserve)) {
   1263 			mutex_enter(&bufcache_lock);
   1264 			LIST_REMOVE(bp, b_hash);
   1265 			brelsel(bp, BC_INVAL);
   1266 			mutex_exit(&bufcache_lock);
   1267 			SDT_PROBE4(io, kernel, , getblk__done,
   1268 			    vp, blkno, size, NULL);
   1269 			return NULL;
   1270 		}
   1271 	}
   1272 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1273 	SDT_PROBE4(io, kernel, , getblk__done,  vp, blkno, size, bp);
   1274 	return bp;
   1275 }
   1276 
   1277 /*
   1278  * Get an empty, disassociated buffer of given size.
   1279  */
   1280 buf_t *
   1281 geteblk(int size)
   1282 {
   1283 	buf_t *bp;
   1284 	int error __diagused;
   1285 
   1286 	mutex_enter(&bufcache_lock);
   1287 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
   1288 		continue;
   1289 
   1290 	SET(bp->b_cflags, BC_INVAL);
   1291 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
   1292 	mutex_exit(&bufcache_lock);
   1293 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1294 	error = allocbuf(bp, size, 0);
   1295 	KASSERT(error == 0);
   1296 	return bp;
   1297 }
   1298 
   1299 /*
   1300  * Expand or contract the actual memory allocated to a buffer.
   1301  *
   1302  * If the buffer shrinks, data is lost, so it's up to the
   1303  * caller to have written it out *first*; this routine will not
   1304  * start a write.  If the buffer grows, it's the callers
   1305  * responsibility to fill out the buffer's additional contents.
   1306  */
   1307 int
   1308 allocbuf(buf_t *bp, int size, int preserve)
   1309 {
   1310 	void *addr;
   1311 	vsize_t oldsize, desired_size;
   1312 	int oldcount;
   1313 	int delta;
   1314 
   1315 	desired_size = buf_roundsize(size);
   1316 	if (desired_size > MAXBSIZE)
   1317 		printf("allocbuf: buffer larger than MAXBSIZE requested");
   1318 
   1319 	oldcount = bp->b_bcount;
   1320 
   1321 	bp->b_bcount = size;
   1322 
   1323 	oldsize = bp->b_bufsize;
   1324 	if (oldsize == desired_size) {
   1325 		/*
   1326 		 * Do not short cut the WAPBL resize, as the buffer length
   1327 		 * could still have changed and this would corrupt the
   1328 		 * tracking of the transaction length.
   1329 		 */
   1330 		goto out;
   1331 	}
   1332 
   1333 	/*
   1334 	 * If we want a buffer of a different size, re-allocate the
   1335 	 * buffer's memory; copy old content only if needed.
   1336 	 */
   1337 	addr = buf_alloc(desired_size);
   1338 	if (addr == NULL)
   1339 		return SET_ERROR(ENOMEM);
   1340 	if (preserve)
   1341 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
   1342 	if (bp->b_data != NULL)
   1343 		buf_mrelease(bp->b_data, oldsize);
   1344 	bp->b_data = addr;
   1345 	bp->b_bufsize = desired_size;
   1346 
   1347 	/*
   1348 	 * Update overall buffer memory counter (protected by bufcache_lock)
   1349 	 */
   1350 	delta = (long)desired_size - (long)oldsize;
   1351 
   1352 	mutex_enter(&bufcache_lock);
   1353 	if ((bufmem += delta) > bufmem_hiwater) {
   1354 		/*
   1355 		 * Need to trim overall memory usage.
   1356 		 */
   1357 		while (buf_canrelease()) {
   1358 			if (preempt_needed()) {
   1359 				mutex_exit(&bufcache_lock);
   1360 				preempt();
   1361 				mutex_enter(&bufcache_lock);
   1362 			}
   1363 			if (buf_trim() == 0)
   1364 				break;
   1365 		}
   1366 	}
   1367 	mutex_exit(&bufcache_lock);
   1368 
   1369 out:
   1370 	if (wapbl_vphaswapbl(bp->b_vp)) {
   1371 		WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp,
   1372 		    oldsize, oldcount);
   1373 	}
   1374 
   1375 	return 0;
   1376 }
   1377 
   1378 /*
   1379  * Find a buffer which is available for use.
   1380  * Select something from a free list.
   1381  * Preference is to AGE list, then LRU list.
   1382  *
   1383  * Called with the buffer queues locked.
   1384  * Return buffer locked.
   1385  */
   1386 static buf_t *
   1387 getnewbuf(int slpflag, int slptimeo, int from_bufq)
   1388 {
   1389 	buf_t *bp;
   1390 	struct vnode *vp;
   1391 	struct mount *transmp = NULL;
   1392 
   1393 	SDT_PROBE0(io, kernel, , getnewbuf__start);
   1394 
   1395 start:
   1396 	KASSERT(mutex_owned(&bufcache_lock));
   1397 
   1398 	/*
   1399 	 * Get a new buffer from the pool.
   1400 	 */
   1401 	if (!from_bufq && buf_lotsfree()) {
   1402 		mutex_exit(&bufcache_lock);
   1403 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
   1404 		if (bp != NULL) {
   1405 			memset((char *)bp, 0, sizeof(*bp));
   1406 			buf_init(bp);
   1407 			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
   1408 			mutex_enter(&bufcache_lock);
   1409 #if defined(DIAGNOSTIC)
   1410 			bp->b_freelistindex = -1;
   1411 #endif /* defined(DIAGNOSTIC) */
   1412 			SDT_PROBE1(io, kernel, , getnewbuf__done,  bp);
   1413 			return bp;
   1414 		}
   1415 		mutex_enter(&bufcache_lock);
   1416 	}
   1417 
   1418 	KASSERT(mutex_owned(&bufcache_lock));
   1419 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL) {
   1420 		KASSERT(!ISSET(bp->b_oflags, BO_DELWRI));
   1421 	} else {
   1422 		TAILQ_FOREACH(bp, &bufqueues[BQ_LRU].bq_queue, b_freelist) {
   1423 			if (ISSET(bp->b_cflags, BC_VFLUSH) ||
   1424 			    !ISSET(bp->b_oflags, BO_DELWRI))
   1425 				break;
   1426 			if (fstrans_start_nowait(bp->b_vp->v_mount) == 0) {
   1427 				KASSERT(transmp == NULL);
   1428 				transmp = bp->b_vp->v_mount;
   1429 				break;
   1430 			}
   1431 		}
   1432 	}
   1433 	if (bp != NULL) {
   1434 		KASSERT(!ISSET(bp->b_cflags, BC_BUSY) ||
   1435 		    ISSET(bp->b_cflags, BC_VFLUSH));
   1436 		bremfree(bp);
   1437 
   1438 		/* Buffer is no longer on free lists. */
   1439 		SET(bp->b_cflags, BC_BUSY);
   1440 
   1441 		/* Wake anyone trying to lock the old identity. */
   1442 		cv_broadcast(&bp->b_busy);
   1443 	} else {
   1444 		/*
   1445 		 * XXX: !from_bufq should be removed.
   1446 		 */
   1447 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
   1448 			/* wait for a free buffer of any kind */
   1449 			if ((slpflag & PCATCH) != 0)
   1450 				(void)cv_timedwait_sig(&needbuffer_cv,
   1451 				    &bufcache_lock, slptimeo);
   1452 			else
   1453 				(void)cv_timedwait(&needbuffer_cv,
   1454 				    &bufcache_lock, slptimeo);
   1455 		}
   1456 		SDT_PROBE1(io, kernel, , getnewbuf__done,  NULL);
   1457 		return NULL;
   1458 	}
   1459 
   1460 #ifdef DIAGNOSTIC
   1461 	if (bp->b_bufsize <= 0)
   1462 		panic("buffer %p: on queue but empty", bp);
   1463 #endif
   1464 
   1465 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
   1466 		/*
   1467 		 * This is a delayed write buffer being flushed to disk.  Make
   1468 		 * sure it gets aged out of the queue when it's finished, and
   1469 		 * leave it off the LRU queue.
   1470 		 */
   1471 		CLR(bp->b_cflags, BC_VFLUSH);
   1472 		SET(bp->b_cflags, BC_AGE);
   1473 		goto start;
   1474 	}
   1475 
   1476 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1477 	KASSERT(!cv_has_waiters(&bp->b_done));
   1478 
   1479 	/*
   1480 	 * If buffer was a delayed write, start it and return NULL
   1481 	 * (since we might sleep while starting the write).
   1482 	 */
   1483 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
   1484 		/*
   1485 		 * This buffer has gone through the LRU, so make sure it gets
   1486 		 * reused ASAP.
   1487 		 */
   1488 		SET(bp->b_cflags, BC_AGE);
   1489 		mutex_exit(&bufcache_lock);
   1490 		bawrite(bp);
   1491 		KASSERT(transmp != NULL);
   1492 		fstrans_done(transmp);
   1493 		mutex_enter(&bufcache_lock);
   1494 		SDT_PROBE1(io, kernel, , getnewbuf__done,  NULL);
   1495 		return NULL;
   1496 	}
   1497 
   1498 	KASSERT(transmp == NULL);
   1499 
   1500 	vp = bp->b_vp;
   1501 
   1502 	/* clear out various other fields */
   1503 	bp->b_cflags = BC_BUSY;
   1504 	bp->b_oflags = 0;
   1505 	bp->b_flags = 0;
   1506 	bp->b_dev = NODEV;
   1507 	bp->b_blkno = 0;
   1508 	bp->b_lblkno = 0;
   1509 	bp->b_rawblkno = 0;
   1510 	bp->b_iodone = 0;
   1511 	bp->b_error = 0;
   1512 	bp->b_resid = 0;
   1513 	bp->b_bcount = 0;
   1514 
   1515 	LIST_REMOVE(bp, b_hash);
   1516 
   1517 	/* Disassociate us from our vnode, if we had one... */
   1518 	if (vp != NULL) {
   1519 		mutex_enter(vp->v_interlock);
   1520 		brelvp(bp);
   1521 		mutex_exit(vp->v_interlock);
   1522 	}
   1523 
   1524 	SDT_PROBE1(io, kernel, , getnewbuf__done,  bp);
   1525 	return bp;
   1526 }
   1527 
   1528 /*
   1529  * Invalidate the specified buffer if it exists.
   1530  */
   1531 void
   1532 binvalbuf(struct vnode *vp, daddr_t blkno)
   1533 {
   1534 	buf_t *bp;
   1535 	int err;
   1536 
   1537 	mutex_enter(&bufcache_lock);
   1538 
   1539 loop:
   1540 	bp = incore(vp, blkno);
   1541 	if (bp != NULL) {
   1542 		err = bbusy(bp, 0, 0, NULL);
   1543 		if (err == EPASSTHROUGH)
   1544 			goto loop;
   1545 		bremfree(bp);
   1546 		if (ISSET(bp->b_oflags, BO_DELWRI)) {
   1547 			SET(bp->b_cflags, BC_NOCACHE);
   1548 			mutex_exit(&bufcache_lock);
   1549 			bwrite(bp);
   1550 		} else {
   1551 			brelsel(bp, BC_INVAL);
   1552 			mutex_exit(&bufcache_lock);
   1553 		}
   1554 	} else
   1555 		mutex_exit(&bufcache_lock);
   1556 }
   1557 
   1558 /*
   1559  * Attempt to free an aged buffer off the queues.
   1560  * Called with queue lock held.
   1561  * Returns the amount of buffer memory freed.
   1562  */
   1563 static int
   1564 buf_trim(void)
   1565 {
   1566 	buf_t *bp;
   1567 	long size;
   1568 
   1569 	KASSERT(mutex_owned(&bufcache_lock));
   1570 
   1571 	/* Instruct getnewbuf() to get buffers off the queues */
   1572 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
   1573 		return 0;
   1574 
   1575 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
   1576 	size = bp->b_bufsize;
   1577 	bufmem -= size;
   1578 	if (size > 0) {
   1579 		buf_mrelease(bp->b_data, size);
   1580 		bp->b_bcount = bp->b_bufsize = 0;
   1581 	}
   1582 	/* brelse() will return the buffer to the global buffer pool */
   1583 	brelsel(bp, 0);
   1584 	return size;
   1585 }
   1586 
   1587 int
   1588 buf_drain(int n)
   1589 {
   1590 	int size = 0, sz;
   1591 
   1592 	KASSERT(mutex_owned(&bufcache_lock));
   1593 
   1594 	while (size < n && bufmem > bufmem_lowater) {
   1595 		sz = buf_trim();
   1596 		if (sz <= 0)
   1597 			break;
   1598 		size += sz;
   1599 	}
   1600 
   1601 	return size;
   1602 }
   1603 
   1604 /*
   1605  * Wait for operations on the buffer to complete.
   1606  * When they do, extract and return the I/O's error value.
   1607  */
   1608 int
   1609 biowait(buf_t *bp)
   1610 {
   1611 
   1612 	BIOHIST_FUNC(__func__);
   1613 
   1614 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
   1615 
   1616 	SDT_PROBE1(io, kernel, , wait__start, bp);
   1617 
   1618 	mutex_enter(bp->b_objlock);
   1619 
   1620 	BIOHIST_CALLARGS(biohist, "bp=%#jx, oflags=0x%jx, ret_addr=%#jx",
   1621 	    (uintptr_t)bp, bp->b_oflags,
   1622 	    (uintptr_t)__builtin_return_address(0), 0);
   1623 
   1624 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI)) {
   1625 		BIOHIST_LOG(biohist, "waiting bp=%#jx",
   1626 		    (uintptr_t)bp, 0, 0, 0);
   1627 		cv_wait(&bp->b_done, bp->b_objlock);
   1628 	}
   1629 	mutex_exit(bp->b_objlock);
   1630 
   1631 	SDT_PROBE1(io, kernel, , wait__done, bp);
   1632 
   1633 	BIOHIST_LOG(biohist, "return %jd", bp->b_error, 0, 0, 0);
   1634 
   1635 	return bp->b_error;
   1636 }
   1637 
   1638 /*
   1639  * Mark I/O complete on a buffer.
   1640  *
   1641  * If a callback has been requested, e.g. the pageout
   1642  * daemon, do so. Otherwise, awaken waiting processes.
   1643  *
   1644  * [ Leffler, et al., says on p.247:
   1645  *	"This routine wakes up the blocked process, frees the buffer
   1646  *	for an asynchronous write, or, for a request by the pagedaemon
   1647  *	process, invokes a procedure specified in the buffer structure" ]
   1648  *
   1649  * In real life, the pagedaemon (or other system processes) wants
   1650  * to do async stuff too, and doesn't want the buffer brelse()'d.
   1651  * (for swap pager, that puts swap buffers on the free lists (!!!),
   1652  * for the vn device, that puts allocated buffers on the free lists!)
   1653  */
   1654 void
   1655 biodone(buf_t *bp)
   1656 {
   1657 	int s;
   1658 
   1659 	BIOHIST_FUNC(__func__);
   1660 
   1661 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
   1662 
   1663 	if (cpu_intr_p()) {
   1664 		/* From interrupt mode: defer to a soft interrupt. */
   1665 		s = splvm();
   1666 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
   1667 
   1668 		BIOHIST_CALLARGS(biohist, "bp=%#jx, softint scheduled",
   1669 		    (uintptr_t)bp, 0, 0, 0);
   1670 		softint_schedule(biodone_sih);
   1671 		splx(s);
   1672 	} else {
   1673 		/* Process now - the buffer may be freed soon. */
   1674 		biodone2(bp);
   1675 	}
   1676 }
   1677 
   1678 SDT_PROBE_DEFINE1(io, kernel, , done, "struct buf *"/*bp*/);
   1679 
   1680 static void
   1681 biodone2(buf_t *bp)
   1682 {
   1683 	void (*callout)(buf_t *);
   1684 
   1685 	SDT_PROBE1(io, kernel, ,done, bp);
   1686 
   1687 	BIOHIST_FUNC(__func__);
   1688 	BIOHIST_CALLARGS(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
   1689 
   1690 	mutex_enter(bp->b_objlock);
   1691 	/* Note that the transfer is done. */
   1692 	if (ISSET(bp->b_oflags, BO_DONE))
   1693 		panic("biodone2 already");
   1694 	CLR(bp->b_flags, B_COWDONE);
   1695 	SET(bp->b_oflags, BO_DONE);
   1696 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   1697 
   1698 	/* Wake up waiting writers. */
   1699 	if (!ISSET(bp->b_flags, B_READ))
   1700 		vwakeup(bp);
   1701 
   1702 	if ((callout = bp->b_iodone) != NULL) {
   1703 		BIOHIST_LOG(biohist, "callout %#jx", (uintptr_t)callout,
   1704 		    0, 0, 0);
   1705 
   1706 		/* Note callout done, then call out. */
   1707 		KASSERT(!cv_has_waiters(&bp->b_done));
   1708 		bp->b_iodone = NULL;
   1709 		mutex_exit(bp->b_objlock);
   1710 		(*callout)(bp);
   1711 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
   1712 		/* If async, release. */
   1713 		BIOHIST_LOG(biohist, "async", 0, 0, 0, 0);
   1714 		KASSERT(!cv_has_waiters(&bp->b_done));
   1715 		mutex_exit(bp->b_objlock);
   1716 		brelse(bp, 0);
   1717 	} else {
   1718 		/* Otherwise just wake up waiters in biowait(). */
   1719 		BIOHIST_LOG(biohist, "wake-up", 0, 0, 0, 0);
   1720 		cv_broadcast(&bp->b_done);
   1721 		mutex_exit(bp->b_objlock);
   1722 	}
   1723 }
   1724 
   1725 static void
   1726 biointr(void *cookie)
   1727 {
   1728 	struct cpu_info *ci;
   1729 	buf_t *bp;
   1730 	int s;
   1731 
   1732 	BIOHIST_FUNC(__func__); BIOHIST_CALLED(biohist);
   1733 
   1734 	ci = curcpu();
   1735 
   1736 	s = splvm();
   1737 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
   1738 		KASSERT(curcpu() == ci);
   1739 
   1740 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
   1741 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
   1742 		splx(s);
   1743 
   1744 		BIOHIST_LOG(biohist, "bp=%#jx", (uintptr_t)bp, 0, 0, 0);
   1745 		biodone2(bp);
   1746 
   1747 		s = splvm();
   1748 	}
   1749 	splx(s);
   1750 }
   1751 
   1752 static void
   1753 sysctl_fillbuf(const buf_t *i, struct buf_sysctl *o)
   1754 {
   1755 	const bool allowaddr = get_expose_address(curproc);
   1756 
   1757 	memset(o, 0, sizeof(*o));
   1758 
   1759 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
   1760 	o->b_error = i->b_error;
   1761 	o->b_prio = i->b_prio;
   1762 	o->b_dev = i->b_dev;
   1763 	o->b_bufsize = i->b_bufsize;
   1764 	o->b_bcount = i->b_bcount;
   1765 	o->b_resid = i->b_resid;
   1766 	COND_SET_VALUE(o->b_addr, PTRTOUINT64(i->b_data), allowaddr);
   1767 	o->b_blkno = i->b_blkno;
   1768 	o->b_rawblkno = i->b_rawblkno;
   1769 	COND_SET_VALUE(o->b_iodone, PTRTOUINT64(i->b_iodone), allowaddr);
   1770 	COND_SET_VALUE(o->b_proc, PTRTOUINT64(i->b_proc), allowaddr);
   1771 	COND_SET_VALUE(o->b_vp, PTRTOUINT64(i->b_vp), allowaddr);
   1772 	COND_SET_VALUE(o->b_saveaddr, PTRTOUINT64(i->b_saveaddr), allowaddr);
   1773 	o->b_lblkno = i->b_lblkno;
   1774 }
   1775 
   1776 static int
   1777 sysctl_dobuf(SYSCTLFN_ARGS)
   1778 {
   1779 	buf_t *bp;
   1780 	struct buf_sysctl bs;
   1781 	struct bqueue *bq;
   1782 	char *dp;
   1783 	u_int i, op, arg;
   1784 	size_t len, needed, elem_size, out_size;
   1785 	int error, elem_count, retries;
   1786 
   1787 	if (namelen == 1 && name[0] == CTL_QUERY)
   1788 		return sysctl_query(SYSCTLFN_CALL(rnode));
   1789 
   1790 	if (namelen != 4)
   1791 		return SET_ERROR(EINVAL);
   1792 
   1793 	retries = 100;
   1794 retry:
   1795 	dp = oldp;
   1796 	len = (oldp != NULL) ? *oldlenp : 0;
   1797 	op = name[0];
   1798 	arg = name[1];
   1799 	elem_size = name[2];
   1800 	elem_count = name[3];
   1801 	out_size = MIN(sizeof(bs), elem_size);
   1802 
   1803 	/*
   1804 	 * at the moment, these are just "placeholders" to make the
   1805 	 * API for retrieving kern.buf data more extensible in the
   1806 	 * future.
   1807 	 *
   1808 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
   1809 	 * these will be resolved at a later point.
   1810 	 */
   1811 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
   1812 	    elem_size < 1 || elem_count < 0)
   1813 		return SET_ERROR(EINVAL);
   1814 
   1815 	if (oldp == NULL) {
   1816 		/* count only, don't run through the buffer queues */
   1817 		needed = pool_cache_nget(buf_cache) -
   1818 		    pool_cache_nput(buf_cache);
   1819 		*oldlenp = (needed + KERN_BUFSLOP) * elem_size;
   1820 
   1821 		return 0;
   1822 	}
   1823 
   1824 	error = 0;
   1825 	needed = 0;
   1826 	sysctl_unlock();
   1827 	mutex_enter(&bufcache_lock);
   1828 	for (i = 0; i < BQUEUES; i++) {
   1829 		bq = &bufqueues[i];
   1830 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
   1831 			bq->bq_marker = bp;
   1832 			if (len >= elem_size && elem_count > 0) {
   1833 				sysctl_fillbuf(bp, &bs);
   1834 				mutex_exit(&bufcache_lock);
   1835 				error = copyout(&bs, dp, out_size);
   1836 				mutex_enter(&bufcache_lock);
   1837 				if (error)
   1838 					break;
   1839 				if (bq->bq_marker != bp) {
   1840 					/*
   1841 					 * This sysctl node is only for
   1842 					 * statistics.  Retry; if the
   1843 					 * queue keeps changing, then
   1844 					 * bail out.
   1845 					 */
   1846 					if (retries-- == 0) {
   1847 						error = SET_ERROR(EAGAIN);
   1848 						break;
   1849 					}
   1850 					mutex_exit(&bufcache_lock);
   1851 					sysctl_relock();
   1852 					goto retry;
   1853 				}
   1854 				dp += elem_size;
   1855 				len -= elem_size;
   1856 			}
   1857 			needed += elem_size;
   1858 			if (elem_count > 0 && elem_count != INT_MAX)
   1859 				elem_count--;
   1860 		}
   1861 		if (error != 0)
   1862 			break;
   1863 	}
   1864 	mutex_exit(&bufcache_lock);
   1865 	sysctl_relock();
   1866 
   1867 	*oldlenp = needed;
   1868 
   1869 	return error;
   1870 }
   1871 
   1872 static int
   1873 sysctl_bufvm_update(SYSCTLFN_ARGS)
   1874 {
   1875 	int error, rv;
   1876 	struct sysctlnode node;
   1877 	unsigned int temp_bufcache;
   1878 	unsigned long temp_water;
   1879 
   1880 	/* Take a copy of the supplied node and its data */
   1881 	node = *rnode;
   1882 	if (node.sysctl_data == &bufcache) {
   1883 		node.sysctl_data = &temp_bufcache;
   1884 		temp_bufcache = *(unsigned int *)rnode->sysctl_data;
   1885 	} else {
   1886 		node.sysctl_data = &temp_water;
   1887 		temp_water = *(unsigned long *)rnode->sysctl_data;
   1888 	}
   1889 
   1890 	/* Update the copy */
   1891 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1892 	if (error || newp == NULL)
   1893 		return error;
   1894 
   1895 	if (rnode->sysctl_data == &bufcache) {
   1896 		if (temp_bufcache > 100)
   1897 			return SET_ERROR(EINVAL);
   1898 		bufcache = temp_bufcache;
   1899 		buf_setwm();
   1900 	} else if (rnode->sysctl_data == &bufmem_lowater) {
   1901 		if (bufmem_hiwater - temp_water < 16)
   1902 			return SET_ERROR(EINVAL);
   1903 		bufmem_lowater = temp_water;
   1904 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
   1905 		if (temp_water - bufmem_lowater < 16)
   1906 			return SET_ERROR(EINVAL);
   1907 		bufmem_hiwater = temp_water;
   1908 	} else
   1909 		return SET_ERROR(EINVAL);
   1910 
   1911 	/* Drain until below new high water mark */
   1912 	sysctl_unlock();
   1913 	mutex_enter(&bufcache_lock);
   1914 	while (bufmem > bufmem_hiwater) {
   1915 		rv = buf_drain((bufmem - bufmem_hiwater) / (2 * 1024));
   1916 		if (rv <= 0)
   1917 			break;
   1918 	}
   1919 	mutex_exit(&bufcache_lock);
   1920 	sysctl_relock();
   1921 
   1922 	return 0;
   1923 }
   1924 
   1925 static struct sysctllog *vfsbio_sysctllog;
   1926 
   1927 static void
   1928 sysctl_kern_buf_setup(void)
   1929 {
   1930 
   1931 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1932 	    CTLFLAG_PERMANENT,
   1933 	    CTLTYPE_NODE, "buf",
   1934 	    SYSCTL_DESCR("Kernel buffer cache information"),
   1935 	    sysctl_dobuf, 0, NULL, 0,
   1936 	    CTL_KERN, KERN_BUF, CTL_EOL);
   1937 }
   1938 
   1939 static void
   1940 sysctl_vm_buf_setup(void)
   1941 {
   1942 
   1943 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1944 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1945 	    CTLTYPE_INT, "bufcache",
   1946 	    SYSCTL_DESCR("Percentage of physical memory to use for "
   1947 		"buffer cache"),
   1948 	    sysctl_bufvm_update, 0, &bufcache, 0,
   1949 	    CTL_VM, CTL_CREATE, CTL_EOL);
   1950 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1951 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1952 	    CTLTYPE_LONG, "bufmem",
   1953 	    SYSCTL_DESCR("Amount of kernel memory used by buffer cache"),
   1954 	    NULL, 0, &bufmem, 0,
   1955 	    CTL_VM, CTL_CREATE, CTL_EOL);
   1956 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1957 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1958 	    CTLTYPE_LONG, "bufmem_lowater",
   1959 	    SYSCTL_DESCR("Minimum amount of kernel memory to reserve for "
   1960 		"buffer cache"),
   1961 	    sysctl_bufvm_update, 0, &bufmem_lowater, 0,
   1962 	    CTL_VM, CTL_CREATE, CTL_EOL);
   1963 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
   1964 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1965 	    CTLTYPE_LONG, "bufmem_hiwater",
   1966 	    SYSCTL_DESCR("Maximum amount of kernel memory to use for "
   1967 		"buffer cache"),
   1968 	    sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
   1969 	    CTL_VM, CTL_CREATE, CTL_EOL);
   1970 }
   1971 
   1972 static int
   1973 bufhash_stats(struct hashstat_sysctl *hs, bool fill)
   1974 {
   1975 	buf_t *bp;
   1976 	uint64_t chain;
   1977 
   1978 	strlcpy(hs->hash_name, "bufhash", sizeof(hs->hash_name));
   1979 	strlcpy(hs->hash_desc, "buffer hash", sizeof(hs->hash_desc));
   1980 	if (!fill)
   1981 		return 0;
   1982 
   1983 	hs->hash_size = bufhash + 1;
   1984 
   1985 	for (size_t i = 0; i < hs->hash_size; i++) {
   1986 		chain = 0;
   1987 
   1988 		mutex_enter(&bufcache_lock);
   1989 		LIST_FOREACH(bp, &bufhashtbl[i], b_hash) {
   1990 			chain++;
   1991 		}
   1992 		mutex_exit(&bufcache_lock);
   1993 
   1994 		if (chain > 0) {
   1995 			hs->hash_used++;
   1996 			hs->hash_items += chain;
   1997 			if (chain > hs->hash_maxchain)
   1998 				hs->hash_maxchain = chain;
   1999 		}
   2000 		preempt_point();
   2001 	}
   2002 
   2003 	return 0;
   2004 }
   2005 
   2006 #ifdef DEBUG
   2007 /*
   2008  * Print out statistics on the current allocation of the buffer pool.
   2009  * Can be enabled to print out on every ``sync'' by setting "syncprt"
   2010  * in vfs_syscalls.c using sysctl.
   2011  */
   2012 void
   2013 vfs_bufstats(void)
   2014 {
   2015 	int i, j, count;
   2016 	buf_t *bp;
   2017 	struct bqueue *dp;
   2018 	int counts[MAXBSIZE / MIN_PAGE_SIZE + 1];
   2019 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
   2020 
   2021 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
   2022 		count = 0;
   2023 		memset(counts, 0, sizeof(counts));
   2024 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
   2025 			counts[bp->b_bufsize / PAGE_SIZE]++;
   2026 			count++;
   2027 		}
   2028 		printf("%s: total-%d", bname[i], count);
   2029 		for (j = 0; j <= MAXBSIZE / PAGE_SIZE; j++)
   2030 			if (counts[j] != 0)
   2031 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
   2032 		printf("\n");
   2033 	}
   2034 }
   2035 #endif /* DEBUG */
   2036 
   2037 /* ------------------------------ */
   2038 
   2039 buf_t *
   2040 getiobuf(struct vnode *vp, bool waitok)
   2041 {
   2042 	buf_t *bp;
   2043 
   2044 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
   2045 	if (bp == NULL)
   2046 		return bp;
   2047 
   2048 	buf_init(bp);
   2049 
   2050 	if ((bp->b_vp = vp) != NULL) {
   2051 		bp->b_objlock = vp->v_interlock;
   2052 	} else {
   2053 		KASSERT(bp->b_objlock == &buffer_lock);
   2054 	}
   2055 
   2056 	return bp;
   2057 }
   2058 
   2059 void
   2060 putiobuf(buf_t *bp)
   2061 {
   2062 
   2063 	buf_destroy(bp);
   2064 	pool_cache_put(bufio_cache, bp);
   2065 }
   2066 
   2067 /*
   2068  * nestiobuf_iodone: b_iodone callback for nested buffers.
   2069  */
   2070 
   2071 void
   2072 nestiobuf_iodone(buf_t *bp)
   2073 {
   2074 	buf_t *mbp = bp->b_private;
   2075 	int error;
   2076 	int donebytes;
   2077 
   2078 	KASSERT(bp->b_bcount <= bp->b_bufsize);
   2079 	KASSERT(mbp != bp);
   2080 
   2081 	error = bp->b_error;
   2082 	if (bp->b_error == 0 &&
   2083 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
   2084 		/*
   2085 		 * Not all got transferred, raise an error. We have no way to
   2086 		 * propagate these conditions to mbp.
   2087 		 */
   2088 		error = SET_ERROR(EIO);
   2089 	}
   2090 
   2091 	donebytes = bp->b_bufsize;
   2092 
   2093 	putiobuf(bp);
   2094 	nestiobuf_done(mbp, donebytes, error);
   2095 }
   2096 
   2097 /*
   2098  * nestiobuf_setup: setup a "nested" buffer.
   2099  *
   2100  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
   2101  * => 'bp' should be a buffer allocated by getiobuf.
   2102  * => 'offset' is a byte offset in the master buffer.
   2103  * => 'size' is a size in bytes of this nested buffer.
   2104  */
   2105 
   2106 void
   2107 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
   2108 {
   2109 	const int b_pass = mbp->b_flags & (B_READ|B_PHYS|B_RAW|B_MEDIA_FLAGS);
   2110 	struct vnode *vp = mbp->b_vp;
   2111 
   2112 	KASSERT(mbp->b_bcount >= offset + size);
   2113 	bp->b_vp = vp;
   2114 	bp->b_dev = mbp->b_dev;
   2115 	bp->b_objlock = mbp->b_objlock;
   2116 	bp->b_cflags = BC_BUSY;
   2117 	bp->b_flags = B_ASYNC | b_pass;
   2118 	bp->b_iodone = nestiobuf_iodone;
   2119 	bp->b_data = (char *)mbp->b_data + offset;
   2120 	bp->b_resid = bp->b_bcount = size;
   2121 	bp->b_bufsize = bp->b_bcount;
   2122 	bp->b_private = mbp;
   2123 	BIO_COPYPRIO(bp, mbp);
   2124 	if (BUF_ISWRITE(bp) && vp != NULL) {
   2125 		mutex_enter(vp->v_interlock);
   2126 		vp->v_numoutput++;
   2127 		mutex_exit(vp->v_interlock);
   2128 	}
   2129 }
   2130 
   2131 /*
   2132  * nestiobuf_done: propagate completion to the master buffer.
   2133  *
   2134  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
   2135  * => 'error' is an errno(2) that 'donebytes' has been completed with.
   2136  */
   2137 
   2138 void
   2139 nestiobuf_done(buf_t *mbp, int donebytes, int error)
   2140 {
   2141 
   2142 	if (donebytes == 0) {
   2143 		return;
   2144 	}
   2145 	mutex_enter(mbp->b_objlock);
   2146 	KASSERT(mbp->b_resid >= donebytes);
   2147 	mbp->b_resid -= donebytes;
   2148 	if (error)
   2149 		mbp->b_error = error;
   2150 	if (mbp->b_resid == 0) {
   2151 		if (mbp->b_error)
   2152 			mbp->b_resid = mbp->b_bcount;
   2153 		mutex_exit(mbp->b_objlock);
   2154 		biodone(mbp);
   2155 	} else
   2156 		mutex_exit(mbp->b_objlock);
   2157 }
   2158 
   2159 void
   2160 buf_init(buf_t *bp)
   2161 {
   2162 
   2163 	cv_init(&bp->b_busy, "biolock");
   2164 	cv_init(&bp->b_done, "biowait");
   2165 	bp->b_dev = NODEV;
   2166 	bp->b_error = 0;
   2167 	bp->b_flags = 0;
   2168 	bp->b_cflags = 0;
   2169 	bp->b_oflags = 0;
   2170 	bp->b_objlock = &buffer_lock;
   2171 	bp->b_iodone = NULL;
   2172 	bp->b_dev = NODEV;
   2173 	bp->b_vnbufs.le_next = NOLIST;
   2174 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
   2175 }
   2176 
   2177 void
   2178 buf_destroy(buf_t *bp)
   2179 {
   2180 
   2181 	cv_destroy(&bp->b_done);
   2182 	cv_destroy(&bp->b_busy);
   2183 }
   2184 
   2185 int
   2186 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
   2187 {
   2188 	int error;
   2189 
   2190 	KASSERT(mutex_owned(&bufcache_lock));
   2191 
   2192 	SDT_PROBE4(io, kernel, , bbusy__start,  bp, intr, timo, interlock);
   2193 
   2194 	if ((bp->b_cflags & BC_BUSY) != 0) {
   2195 		if (curlwp == uvm.pagedaemon_lwp) {
   2196 			error = SET_ERROR(EDEADLK);
   2197 			goto out;
   2198 		}
   2199 		bp->b_cflags |= BC_WANTED;
   2200 		if (interlock != NULL)
   2201 			mutex_exit(interlock);
   2202 		if (intr) {
   2203 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
   2204 			    timo);
   2205 		} else {
   2206 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
   2207 			    timo);
   2208 		}
   2209 		/*
   2210 		 * At this point the buffer may be gone: don't touch it
   2211 		 * again.  The caller needs to find it again and retry.
   2212 		 */
   2213 		if (interlock != NULL)
   2214 			mutex_enter(interlock);
   2215 		if (error == 0)
   2216 			error = SET_ERROR(EPASSTHROUGH);
   2217 	} else {
   2218 		bp->b_cflags |= BC_BUSY;
   2219 		error = 0;
   2220 	}
   2221 
   2222 out:	SDT_PROBE5(io, kernel, , bbusy__done,
   2223 	    bp, intr, timo, interlock, error);
   2224 	return error;
   2225 }
   2226 
   2227 /*
   2228  * Nothing outside this file should really need to know about nbuf,
   2229  * but a few things still want to read it, so give them a way to do that.
   2230  */
   2231 u_int
   2232 buf_nbuf(void)
   2233 {
   2234 
   2235 	return nbuf;
   2236 }
   2237