Home | History | Annotate | Line # | Download | only in chfs
      1 /*	$NetBSD: chfs_readinode.c,v 1.13 2022/04/08 10:27:04 andvar Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2010 Department of Software Engineering,
      5  *		      University of Szeged, Hungary
      6  * Copyright (C) 2010 David Tengeri <dtengeri (at) inf.u-szeged.hu>
      7  * Copyright (C) 2010 Tamas Toth <ttoth (at) inf.u-szeged.hu>
      8  * Copyright (C) 2010 Adam Hoka <ahoka (at) NetBSD.org>
      9  * All rights reserved.
     10  *
     11  * This code is derived from software contributed to The NetBSD Foundation
     12  * by the Department of Software Engineering, University of Szeged, Hungary
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 #include <sys/buf.h>
     37 
     38 #include "chfs.h"
     39 
     40 /* tmp node operations */
     41 int chfs_check_td_data(struct chfs_mount *,
     42     struct chfs_tmp_dnode *);
     43 int chfs_check_td_node(struct chfs_mount *,
     44     struct chfs_tmp_dnode *);
     45 struct chfs_node_ref *chfs_first_valid_data_ref(struct chfs_node_ref *);
     46 int chfs_add_tmp_dnode_to_tree(struct chfs_mount *,
     47     struct chfs_readinode_info *,
     48     struct chfs_tmp_dnode *);
     49 void chfs_add_tmp_dnode_to_tdi(struct chfs_tmp_dnode_info *,
     50 	struct chfs_tmp_dnode *);
     51 void chfs_remove_tmp_dnode_from_tdi(struct chfs_tmp_dnode_info *,
     52 	struct chfs_tmp_dnode *);
     53 static void chfs_kill_td(struct chfs_mount *,
     54     struct chfs_tmp_dnode *);
     55 static void chfs_kill_tdi(struct chfs_mount *,
     56     struct chfs_tmp_dnode_info *);
     57 /* frag node operations */
     58 struct chfs_node_frag *new_fragment(struct chfs_full_dnode *,
     59     uint32_t,
     60     uint32_t);
     61 int no_overlapping_node(struct rb_tree *, struct chfs_node_frag *,
     62     struct chfs_node_frag *, uint32_t);
     63 int chfs_add_frag_to_fragtree(struct chfs_mount *,
     64     struct rb_tree *,
     65     struct chfs_node_frag *);
     66 void chfs_obsolete_node_frag(struct chfs_mount *,
     67     struct chfs_node_frag *);
     68 /* general node operations */
     69 int chfs_get_data_nodes(struct chfs_mount *,
     70     struct chfs_inode *,
     71     struct chfs_readinode_info *);
     72 int chfs_build_fragtree(struct chfs_mount *,
     73     struct chfs_inode *,
     74     struct chfs_readinode_info *);
     75 
     76 
     77 
     78 /* tmp node rbtree operations */
     79 static signed int
     80 tmp_node_compare_nodes(void *ctx, const void *n1, const void *n2)
     81 {
     82 	const struct chfs_tmp_dnode_info *tdi1 = n1;
     83 	const struct chfs_tmp_dnode_info *tdi2 = n2;
     84 
     85 	return (tdi1->tmpnode->node->ofs - tdi2->tmpnode->node->ofs);
     86 }
     87 
     88 static signed int
     89 tmp_node_compare_key(void *ctx, const void *n, const void *key)
     90 {
     91 	const struct chfs_tmp_dnode_info *tdi = n;
     92 	uint64_t ofs =  *(const uint64_t *)key;
     93 
     94 	return (tdi->tmpnode->node->ofs - ofs);
     95 }
     96 
     97 const rb_tree_ops_t tmp_node_rbtree_ops = {
     98 	.rbto_compare_nodes = tmp_node_compare_nodes,
     99 	.rbto_compare_key = tmp_node_compare_key,
    100 	.rbto_node_offset = offsetof(struct chfs_tmp_dnode_info, rb_node),
    101 	.rbto_context = NULL
    102 };
    103 
    104 
    105 /* frag node rbtree operations */
    106 static signed int
    107 frag_compare_nodes(void *ctx, const void *n1, const void *n2)
    108 {
    109 	const struct chfs_node_frag *frag1 = n1;
    110 	const struct chfs_node_frag *frag2 = n2;
    111 
    112 	return (frag1->ofs - frag2->ofs);
    113 }
    114 
    115 static signed int
    116 frag_compare_key(void *ctx, const void *n, const void *key)
    117 {
    118 	const struct chfs_node_frag *frag = n;
    119 	uint64_t ofs = *(const uint64_t *)key;
    120 
    121 	return (frag->ofs - ofs);
    122 }
    123 
    124 const rb_tree_ops_t frag_rbtree_ops = {
    125 	.rbto_compare_nodes = frag_compare_nodes,
    126 	.rbto_compare_key   = frag_compare_key,
    127 	.rbto_node_offset = offsetof(struct chfs_node_frag, rb_node),
    128 	.rbto_context = NULL
    129 };
    130 
    131 
    132 /*
    133  * chfs_check_td_data - checks the data CRC of the node
    134  *
    135  * Returns: 0 - if everything OK;
    136  * 	    	1 - if CRC is incorrect;
    137  * 	    	2 - else;
    138  *	    	error code if an error occurred.
    139  */
    140 int
    141 chfs_check_td_data(struct chfs_mount *chmp,
    142     struct chfs_tmp_dnode *td)
    143 {
    144 	int err;
    145 	size_t retlen, len, totlen;
    146 	uint32_t crc;
    147 	uint64_t ofs;
    148 	char *buf;
    149 	struct chfs_node_ref *nref = td->node->nref;
    150 
    151 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    152 	KASSERT(!mutex_owned(&chmp->chm_lock_sizes));
    153 
    154 	ofs = CHFS_GET_OFS(nref->nref_offset) + sizeof(struct chfs_flash_data_node);
    155 	len = td->node->size;
    156 	if (!len)
    157 		return 0;
    158 
    159 	/* Read data. */
    160 	buf = kmem_alloc(len, KM_SLEEP);
    161 	err = chfs_read_leb(chmp, nref->nref_lnr, buf, ofs, len, &retlen);
    162 	if (err) {
    163 		dbg("error while reading: %d\n", err);
    164 		err = 2;
    165 		goto out;
    166 	}
    167 
    168 	/* Check crc. */
    169 	if (len != retlen) {
    170 		dbg("len:%zu, retlen:%zu\n", len, retlen);
    171 		err = 2;
    172 		goto out;
    173 	}
    174 	crc = crc32(0, (uint8_t *)buf, len);
    175 
    176 	if (crc != td->data_crc) {
    177 		dbg("crc failed, calculated: 0x%x, orig: 0x%x\n", crc, td->data_crc);
    178 		kmem_free(buf, len);
    179 		return 1;
    180 	}
    181 
    182 	/* Correct sizes. */
    183 	CHFS_MARK_REF_NORMAL(nref);
    184 	totlen = CHFS_PAD(sizeof(struct chfs_flash_data_node) + len);
    185 
    186 	mutex_enter(&chmp->chm_lock_sizes);
    187 	chfs_change_size_unchecked(chmp, &chmp->chm_blocks[nref->nref_lnr], -totlen);
    188 	chfs_change_size_used(chmp, &chmp->chm_blocks[nref->nref_lnr], totlen);
    189 	mutex_exit(&chmp->chm_lock_sizes);
    190 	KASSERT(chmp->chm_blocks[nref->nref_lnr].used_size <= chmp->chm_ebh->eb_size);
    191 
    192 	err = 0;
    193 out:
    194 	kmem_free(buf, len);
    195 	return err;
    196 }
    197 
    198 /* chfs_check_td_node - checks a temporary node */
    199 int
    200 chfs_check_td_node(struct chfs_mount *chmp, struct chfs_tmp_dnode *td)
    201 {
    202 	int ret;
    203 
    204 	if (CHFS_REF_FLAGS(td->node->nref) != CHFS_UNCHECKED_NODE_MASK)
    205 		return 0;
    206 
    207 	ret = chfs_check_td_data(chmp, td);
    208 	return ret;
    209 }
    210 
    211 /*
    212  * chfs_first_valid_data_ref -
    213  * returns the first valid nref after the given nref
    214  */
    215 struct chfs_node_ref *
    216 chfs_first_valid_data_ref(struct chfs_node_ref *nref)
    217 {
    218 	while (nref) {
    219 		if (!CHFS_REF_OBSOLETE(nref)) {
    220 #ifdef DGB_MSG_GC
    221 			if (nref->nref_lnr == REF_EMPTY_NODE) {
    222 				dbg("FIRST VALID IS EMPTY!\n");
    223 			}
    224 #endif
    225 			return nref;
    226 		}
    227 
    228 		if (nref->nref_next) {
    229 			nref = nref->nref_next;
    230 		} else
    231 			break;
    232 	}
    233 	return NULL;
    234 }
    235 
    236 /*
    237  * chfs_add_tmp_dnode_to_tdi -
    238  * adds a temporary node to a temporary node descriptor
    239  */
    240 void
    241 chfs_add_tmp_dnode_to_tdi(struct chfs_tmp_dnode_info *tdi,
    242 	struct chfs_tmp_dnode *td)
    243 {
    244 	if (!tdi->tmpnode) {
    245 	/* The chain is empty. */
    246 		tdi->tmpnode = td;
    247 	} else {
    248 	/* Insert into the chain. */
    249 		struct chfs_tmp_dnode *tmp = tdi->tmpnode;
    250 		while (tmp->next) {
    251 			tmp = tmp->next;
    252 		}
    253 		tmp->next = td;
    254 	}
    255 }
    256 
    257 /*
    258  * chfs_remove_tmp_dnode_from_tdi -
    259  * removes a temporary node from its descriptor
    260  */
    261 void
    262 chfs_remove_tmp_dnode_from_tdi(struct chfs_tmp_dnode_info *tdi,
    263 	struct chfs_tmp_dnode *td)
    264 {
    265 	if (tdi->tmpnode == td) {
    266 	/* It's the first in the chain. */
    267 		tdi->tmpnode = tdi->tmpnode->next;
    268 	} else {
    269 	/* Remove from the middle of the chain. */
    270 		struct chfs_tmp_dnode *tmp = tdi->tmpnode->next;
    271 		while (tmp->next && tmp->next != td) {
    272 			tmp = tmp->next;
    273 		}
    274 		if (tmp->next) {
    275 			tmp->next = td->next;
    276 		}
    277 	}
    278 }
    279 
    280 /* chfs_kill_td - removes all components of a temporary node */
    281 static void
    282 chfs_kill_td(struct chfs_mount *chmp,
    283     struct chfs_tmp_dnode *td)
    284 {
    285 	struct chfs_vnode_cache *vc;
    286 	if (td->node) {
    287 		mutex_enter(&chmp->chm_lock_vnocache);
    288 		/* Remove the node from the vnode cache's data node chain. */
    289 		vc = chfs_nref_to_vc(td->node->nref);
    290 		chfs_remove_and_obsolete(chmp, vc, td->node->nref, &vc->dnode);
    291 		mutex_exit(&chmp->chm_lock_vnocache);
    292 	}
    293 
    294 	chfs_free_tmp_dnode(td);
    295 }
    296 
    297 /* chfs_kill_tdi - removes a temporary node descriptor */
    298 static void
    299 chfs_kill_tdi(struct chfs_mount *chmp,
    300     struct chfs_tmp_dnode_info *tdi)
    301 {
    302 	struct chfs_tmp_dnode *next, *tmp = tdi->tmpnode;
    303 
    304 	/* Iterate the chain and remove all temporary node from it. */
    305 	while (tmp) {
    306 		next = tmp->next;
    307 		chfs_kill_td(chmp, tmp);
    308 		tmp = next;
    309 	}
    310 
    311 	chfs_free_tmp_dnode_info(tdi);
    312 }
    313 
    314 /*
    315  * chfs_add_tmp_dnode_to_tree -
    316  * adds a temporary node to the temporary tree
    317  */
    318 int
    319 chfs_add_tmp_dnode_to_tree(struct chfs_mount *chmp,
    320     struct chfs_readinode_info *rii,
    321     struct chfs_tmp_dnode *newtd)
    322 {
    323 	uint64_t end_ofs = newtd->node->ofs + newtd->node->size;
    324 	struct chfs_tmp_dnode_info *this;
    325 	struct rb_node *node, *prev_node;
    326 	struct chfs_tmp_dnode_info *newtdi;
    327 
    328 	node = rb_tree_find_node(&rii->tdi_root, &newtd->node->ofs);
    329 	if (node) {
    330 		this = (struct chfs_tmp_dnode_info *)node;
    331 		while (this->tmpnode->overlapped) {
    332 			prev_node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_LEFT);
    333 			if (!prev_node) {
    334 				this->tmpnode->overlapped = 0;
    335 				break;
    336 			}
    337 			node = prev_node;
    338 			this = (struct chfs_tmp_dnode_info *)node;
    339 		}
    340 	}
    341 
    342 	while (node) {
    343 		this = (struct chfs_tmp_dnode_info *)node;
    344 		if (this->tmpnode->node->ofs > end_ofs)
    345 			break;
    346 
    347 		struct chfs_tmp_dnode *tmp_td = this->tmpnode;
    348 		while (tmp_td) {
    349 			if (tmp_td->version == newtd->version) {
    350 				/* This is a new version of an old node. */
    351 				if (!chfs_check_td_node(chmp, tmp_td)) {
    352 					dbg("calling kill td 0\n");
    353 					chfs_kill_td(chmp, newtd);
    354 					return 0;
    355 				} else {
    356 					chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
    357 					chfs_kill_td(chmp, tmp_td);
    358 					chfs_add_tmp_dnode_to_tdi(this, newtd);
    359 					return 0;
    360 				}
    361 			}
    362 			if (tmp_td->version < newtd->version &&
    363 				tmp_td->node->ofs >= newtd->node->ofs &&
    364 				tmp_td->node->ofs + tmp_td->node->size <= end_ofs) {
    365 				/* New node entirely overlaps 'this' */
    366 				if (chfs_check_td_node(chmp, newtd)) {
    367 					dbg("calling kill td 2\n");
    368 					chfs_kill_td(chmp, newtd);
    369 					return 0;
    370 				}
    371 				/* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */
    372 				while (tmp_td && tmp_td->node->ofs + tmp_td->node->size <= end_ofs) {
    373 					struct rb_node *next = rb_tree_iterate(&rii->tdi_root, this, RB_DIR_RIGHT);
    374 					struct chfs_tmp_dnode_info *next_tdi = (struct chfs_tmp_dnode_info *)next;
    375 					struct chfs_tmp_dnode *next_td = NULL;
    376 					if (tmp_td->next) {
    377 						next_td = tmp_td->next;
    378 					} else if (next_tdi) {
    379 						next_td = next_tdi->tmpnode;
    380 					}
    381 					if (tmp_td->version < newtd->version) {
    382 						chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
    383 						chfs_kill_td(chmp, tmp_td);
    384 						if (!this->tmpnode) {
    385 							rb_tree_remove_node(&rii->tdi_root, this);
    386 							chfs_kill_tdi(chmp, this);
    387 							this = next_tdi;
    388 						}
    389 					}
    390 					tmp_td = next_td;
    391 				}
    392 				continue;
    393 			}
    394 			if (tmp_td->version > newtd->version &&
    395 				tmp_td->node->ofs <= newtd->node->ofs &&
    396 				tmp_td->node->ofs + tmp_td->node->size >= end_ofs) {
    397 				/* New node entirely overlapped by 'this' */
    398 				if (!chfs_check_td_node(chmp, tmp_td)) {
    399 					dbg("this version: %llu\n",
    400 						(unsigned long long)tmp_td->version);
    401 					dbg("this ofs: %llu, size: %u\n",
    402 						(unsigned long long)tmp_td->node->ofs,
    403 						tmp_td->node->size);
    404 					dbg("calling kill td 4\n");
    405 					chfs_kill_td(chmp, newtd);
    406 					return 0;
    407 				}
    408 				/* ... but 'this' was bad. Replace it... */
    409 				chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
    410 				chfs_kill_td(chmp, tmp_td);
    411 				if (!this->tmpnode) {
    412 					rb_tree_remove_node(&rii->tdi_root, this);
    413 					chfs_kill_tdi(chmp, this);
    414 				}
    415 				dbg("calling kill td 5\n");
    416 				chfs_kill_td(chmp, newtd);
    417 				break;
    418 			}
    419 			tmp_td = tmp_td->next;
    420 		}
    421 		node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_RIGHT);
    422 	}
    423 
    424 	newtdi = chfs_alloc_tmp_dnode_info();
    425 	chfs_add_tmp_dnode_to_tdi(newtdi, newtd);
    426 	/* We neither completely obsoleted nor were completely
    427 	   obsoleted by an earlier node. Insert into the tree */
    428 	struct chfs_tmp_dnode_info *tmp_tdi = rb_tree_insert_node(&rii->tdi_root, newtdi);
    429 	if (tmp_tdi != newtdi) {
    430 		chfs_remove_tmp_dnode_from_tdi(newtdi, newtd);
    431 		chfs_add_tmp_dnode_to_tdi(tmp_tdi, newtd);
    432 		chfs_kill_tdi(chmp, newtdi);
    433 	}
    434 
    435 	/* If there's anything behind that overlaps us, note it */
    436 	node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_LEFT);
    437 	if (node) {
    438 		while (1) {
    439 			this = (struct chfs_tmp_dnode_info *)node;
    440 			if (this->tmpnode->node->ofs + this->tmpnode->node->size > newtd->node->ofs) {
    441 				newtd->overlapped = 1;
    442 			}
    443 			if (!this->tmpnode->overlapped)
    444 				break;
    445 
    446 			prev_node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_LEFT);
    447 			if (!prev_node) {
    448 				this->tmpnode->overlapped = 0;
    449 				break;
    450 			}
    451 			node = prev_node;
    452 		}
    453 	}
    454 
    455 	/* If the new node overlaps anything ahead, note it */
    456 	node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_RIGHT);
    457 	this = (struct chfs_tmp_dnode_info *)node;
    458 	while (this && this->tmpnode->node->ofs < end_ofs) {
    459 		this->tmpnode->overlapped = 1;
    460 		node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_RIGHT);
    461 		this = (struct chfs_tmp_dnode_info *)node;
    462 	}
    463 	return 0;
    464 }
    465 
    466 
    467 /* new_fragment - creates a new fragment for a data node */
    468 struct chfs_node_frag *
    469 new_fragment(struct chfs_full_dnode *fdn, uint32_t ofs, uint32_t size)
    470 {
    471 	struct chfs_node_frag *newfrag;
    472 	newfrag = chfs_alloc_node_frag();
    473 	if (newfrag) {
    474 		/* Initialize fragment. */
    475 		newfrag->ofs = ofs;
    476 		newfrag->size = size;
    477 		newfrag->node = fdn;
    478 		if (newfrag->node) {
    479 			newfrag->node->frags++;
    480 		}
    481 	} else {
    482 		chfs_err("cannot allocate a chfs_node_frag object\n");
    483 	}
    484 	return newfrag;
    485 }
    486 
    487 /*
    488  * no_overlapping_node - inserts a node to the fragtree
    489  * Puts hole frag into the holes between fragments.
    490  */
    491 int
    492 no_overlapping_node(struct rb_tree *fragtree,
    493     struct chfs_node_frag *newfrag,
    494     struct chfs_node_frag *this, uint32_t lastend)
    495 {
    496 	if (lastend < newfrag->node->ofs) {
    497 		struct chfs_node_frag *holefrag;
    498 
    499 		holefrag = new_fragment(NULL, lastend, newfrag->node->ofs - lastend);
    500 		if (!holefrag) {
    501 			chfs_free_node_frag(newfrag);
    502 			return ENOMEM;
    503 		}
    504 
    505 		rb_tree_insert_node(fragtree, holefrag);
    506 	}
    507 
    508 	rb_tree_insert_node(fragtree, newfrag);
    509 
    510 	return 0;
    511 }
    512 
    513 /*
    514  * chfs_add_frag_to_fragtree -
    515  * adds a fragment to a data node's fragtree
    516  */
    517 int
    518 chfs_add_frag_to_fragtree(struct chfs_mount *chmp,
    519     struct rb_tree *fragtree,
    520     struct chfs_node_frag *newfrag)
    521 {
    522 	struct chfs_node_frag *this;
    523 	uint32_t lastend;
    524 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    525 
    526 	/* Find the offset of frag which is before the new one. */
    527 	this = (struct chfs_node_frag *)rb_tree_find_node_leq(fragtree, &newfrag->ofs);
    528 
    529 	if (this) {
    530 		lastend = this->ofs + this->size;
    531 	} else {
    532 		lastend = 0;
    533 	}
    534 
    535 	/* New fragment is end of the file and there is no overlapping. */
    536 	if (lastend <= newfrag->ofs) {
    537 		if (lastend && (lastend - 1) >> PAGE_SHIFT == newfrag->ofs >> PAGE_SHIFT) {
    538 			if (this->node)
    539 				CHFS_MARK_REF_NORMAL(this->node->nref);
    540 			CHFS_MARK_REF_NORMAL(newfrag->node->nref);
    541 		}
    542 		return no_overlapping_node(fragtree, newfrag, this, lastend);
    543 	}
    544 
    545 	if (newfrag->ofs > this->ofs) {
    546 		CHFS_MARK_REF_NORMAL(newfrag->node->nref);
    547 		if (this->node)
    548 			CHFS_MARK_REF_NORMAL(this->node->nref);
    549 
    550 		if (this->ofs + this->size > newfrag->ofs + newfrag->size) {
    551 			/* Newfrag is inside of this. */
    552 			struct chfs_node_frag *newfrag2;
    553 
    554 			newfrag2 = new_fragment(this->node, newfrag->ofs + newfrag->size,
    555 			    this->ofs + this->size - newfrag->ofs - newfrag->size);
    556 			if (!newfrag2)
    557 				return ENOMEM;
    558 
    559 			this->size = newfrag->ofs - this->ofs;
    560 
    561 			rb_tree_insert_node(fragtree, newfrag);
    562 			rb_tree_insert_node(fragtree, newfrag2);
    563 
    564 			return 0;
    565 		}
    566 		/* Newfrag is bottom of this. */
    567 		this->size = newfrag->ofs - this->ofs;
    568 		rb_tree_insert_node(fragtree, newfrag);
    569 	} else {
    570 		/* Newfrag start at same point */
    571 		//TODO replace instead of remove and insert
    572 		rb_tree_remove_node(fragtree, this);
    573 		rb_tree_insert_node(fragtree, newfrag);
    574 
    575 		if (newfrag->ofs + newfrag->size >= this->ofs+this->size) {
    576 			chfs_obsolete_node_frag(chmp, this);
    577 		} else {
    578 			this->ofs += newfrag->size;
    579 			this->size -= newfrag->size;
    580 
    581 			rb_tree_insert_node(fragtree, this);
    582 			return 0;
    583 		}
    584 	}
    585 	/* OK, now we have newfrag added in the correct place in the tree, but
    586 	   frag_next(newfrag) may be a fragment which is overlapped by it
    587 	*/
    588 	while ((this = frag_next(fragtree, newfrag)) && newfrag->ofs + newfrag->size >= this->ofs + this->size) {
    589 		rb_tree_remove_node(fragtree, this);
    590 		chfs_obsolete_node_frag(chmp, this);
    591 	}
    592 
    593 	if (!this || newfrag->ofs + newfrag->size == this->ofs)
    594 		return 0;
    595 
    596 	this->size = (this->ofs + this->size) - (newfrag->ofs + newfrag->size);
    597 	this->ofs = newfrag->ofs + newfrag->size;
    598 
    599 	if (this->node)
    600 		CHFS_MARK_REF_NORMAL(this->node->nref);
    601 	CHFS_MARK_REF_NORMAL(newfrag->node->nref);
    602 
    603 	return 0;
    604 }
    605 
    606 /*
    607  * chfs_remove_frags_of_node -
    608  * removes all fragments from a fragtree and DOESN'T OBSOLETE them
    609  */
    610 void
    611 chfs_remove_frags_of_node(struct chfs_mount *chmp, struct rb_tree *fragtree,
    612 	struct chfs_node_ref *nref)
    613 {
    614 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    615 	struct chfs_node_frag *this, *next;
    616 
    617 	if (nref == NULL) {
    618 		return;
    619 	}
    620 
    621 	/* Iterate the tree and clean all elements. */
    622 	this = (struct chfs_node_frag *)RB_TREE_MIN(fragtree);
    623 	while (this) {
    624 		next = frag_next(fragtree, this);
    625 		if (this->node->nref == nref) {
    626 			rb_tree_remove_node(fragtree, this);
    627 			chfs_free_node_frag(this);
    628 		}
    629 		this = next;
    630 	}
    631 }
    632 
    633 /*
    634  * chfs_kill_fragtree -
    635  * removes all fragments from a fragtree and OBSOLETES them
    636  */
    637 void
    638 chfs_kill_fragtree(struct chfs_mount *chmp, struct rb_tree *fragtree)
    639 {
    640 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    641 	struct chfs_node_frag *this, *next;
    642 
    643 	/* Iterate the tree and clean all elements. */
    644 	this = (struct chfs_node_frag *)RB_TREE_MIN(fragtree);
    645 	while (this) {
    646 		next = frag_next(fragtree, this);
    647 		rb_tree_remove_node(fragtree, this);
    648 		chfs_obsolete_node_frag(chmp, this);
    649 		this = next;
    650 	}
    651 }
    652 
    653 /* chfs_truncate_fragtree - truncates the tree to a specified size */
    654 uint32_t
    655 chfs_truncate_fragtree(struct chfs_mount *chmp,
    656 	struct rb_tree *fragtree, uint32_t size)
    657 {
    658 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    659 	struct chfs_node_frag *frag;
    660 
    661 	dbg("truncate to size: %u\n", size);
    662 
    663 	frag = (struct chfs_node_frag *)rb_tree_find_node_leq(fragtree, &size);
    664 
    665 	/* Find the last frag before size and set its new size. */
    666 	if (frag && frag->ofs != size) {
    667 		if (frag->ofs + frag->size > size) {
    668 			frag->size = size - frag->ofs;
    669 		}
    670 		frag = frag_next(fragtree, frag);
    671 	}
    672 
    673 	/* Delete frags after new size. */
    674 	while (frag && frag->ofs >= size) {
    675 		struct chfs_node_frag *next = frag_next(fragtree, frag);
    676 
    677 		rb_tree_remove_node(fragtree, frag);
    678 		chfs_obsolete_node_frag(chmp, frag);
    679 		frag = next;
    680 	}
    681 
    682 	if (size == 0) {
    683 		return 0;
    684 	}
    685 
    686 	frag = frag_last(fragtree);
    687 
    688 	if (!frag) {
    689 		return 0;
    690 	}
    691 
    692 	if (frag->ofs + frag->size < size) {
    693 		return frag->ofs + frag->size;
    694 	}
    695 
    696 	/* FIXME Should we check the position of the last node? (PAGE_CACHE size, etc.) */
    697 	if (frag->node && (frag->ofs & (PAGE_SIZE - 1)) == 0) {
    698 		frag->node->nref->nref_offset =
    699 			CHFS_GET_OFS(frag->node->nref->nref_offset) | CHFS_PRISTINE_NODE_MASK;
    700 	}
    701 
    702 	return size;
    703 }
    704 
    705 /* chfs_obsolete_node_frag - obsoletes a fragment of a node */
    706 void
    707 chfs_obsolete_node_frag(struct chfs_mount *chmp,
    708     struct chfs_node_frag *this)
    709 {
    710 	struct chfs_vnode_cache *vc;
    711 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    712 	if (this->node) {
    713 	/* The fragment is in a node. */
    714 		KASSERT(this->node->frags != 0);
    715 		this->node->frags--;
    716 		if (this->node->frags == 0) {
    717 		/* This is the last fragment. (There is no more.) */
    718 			KASSERT(!CHFS_REF_OBSOLETE(this->node->nref));
    719 			mutex_enter(&chmp->chm_lock_vnocache);
    720 			vc = chfs_nref_to_vc(this->node->nref);
    721 			dbg("[MARK] lnr: %u ofs: %u\n", this->node->nref->nref_lnr,
    722 				this->node->nref->nref_offset);
    723 
    724 			chfs_remove_and_obsolete(chmp, vc, this->node->nref, &vc->dnode);
    725 			mutex_exit(&chmp->chm_lock_vnocache);
    726 
    727 			chfs_free_full_dnode(this->node);
    728 		} else {
    729 		/* There is more frags in the node. */
    730 			CHFS_MARK_REF_NORMAL(this->node->nref);
    731 		}
    732 	}
    733 	chfs_free_node_frag(this);
    734 }
    735 
    736 /* chfs_add_full_dnode_to_inode - adds a data node to an inode */
    737 int
    738 chfs_add_full_dnode_to_inode(struct chfs_mount *chmp,
    739     struct chfs_inode *ip,
    740     struct chfs_full_dnode *fd)
    741 {
    742 	int ret;
    743 	struct chfs_node_frag *newfrag;
    744 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    745 
    746 	if (unlikely(!fd->size))
    747 		return 0;
    748 
    749 	/* Create a new fragment from the data node and add it to the fragtree. */
    750 	newfrag = new_fragment(fd, fd->ofs, fd->size);
    751 	if (unlikely(!newfrag))
    752 		return ENOMEM;
    753 
    754 	ret = chfs_add_frag_to_fragtree(chmp, &ip->fragtree, newfrag);
    755 	if (ret)
    756 		return ret;
    757 
    758 	/* Check previous fragment. */
    759 	if (newfrag->ofs & (PAGE_SIZE - 1)) {
    760 		struct chfs_node_frag *prev = frag_prev(&ip->fragtree, newfrag);
    761 
    762 		CHFS_MARK_REF_NORMAL(fd->nref);
    763 		if (prev->node)
    764 			CHFS_MARK_REF_NORMAL(prev->node->nref);
    765 	}
    766 
    767 	/* Check next fragment. */
    768 	if ((newfrag->ofs+newfrag->size) & (PAGE_SIZE - 1)) {
    769 		struct chfs_node_frag *next = frag_next(&ip->fragtree, newfrag);
    770 
    771 		if (next) {
    772 			CHFS_MARK_REF_NORMAL(fd->nref);
    773 			if (next->node)
    774 				CHFS_MARK_REF_NORMAL(next->node->nref);
    775 		}
    776 	}
    777 
    778 	return 0;
    779 }
    780 
    781 
    782 /* chfs_get_data_nodes - get temporary nodes of an inode */
    783 int
    784 chfs_get_data_nodes(struct chfs_mount *chmp,
    785     struct chfs_inode *ip,
    786     struct chfs_readinode_info *rii)
    787 {
    788 	uint32_t crc;
    789 	int err;
    790 	size_t len, retlen;
    791 	struct chfs_node_ref *nref;
    792 	struct chfs_flash_data_node *dnode;
    793 	struct chfs_tmp_dnode *td;
    794 	char* buf;
    795 
    796 	len = sizeof(struct chfs_flash_data_node);
    797 	buf = kmem_alloc(len, KM_SLEEP);
    798 	dnode = kmem_alloc(len, KM_SLEEP);
    799 	nref = chfs_first_valid_data_ref(ip->chvc->dnode);
    800 
    801 	/* Update highest version. */
    802 	rii->highest_version = ip->chvc->highest_version;
    803 
    804 	while(nref && (struct chfs_vnode_cache *)nref != ip->chvc) {
    805 		err = chfs_read_leb(chmp, nref->nref_lnr, buf, CHFS_GET_OFS(nref->nref_offset), len, &retlen);
    806 		if (err || len != retlen)
    807 			goto out;
    808 		dnode = (struct chfs_flash_data_node*)buf;
    809 
    810 		/* Check header crc. */
    811 		crc = crc32(0, (uint8_t *)dnode, CHFS_NODE_HDR_SIZE - 4);
    812 		if (crc != le32toh(dnode->hdr_crc)) {
    813 			chfs_err("CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->hdr_crc));
    814 			goto cont;
    815 		}
    816 
    817 		/* Check header magic bitmask. */
    818 		if (le16toh(dnode->magic) != CHFS_FS_MAGIC_BITMASK) {
    819 			chfs_err("Wrong magic bitmask.\n");
    820 			goto cont;
    821 		}
    822 
    823 		/* Check node crc. */
    824 		crc = crc32(0, (uint8_t *)dnode, sizeof(*dnode) - 4);
    825 		if (crc != le32toh(dnode->node_crc)) {
    826 			chfs_err("Node CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->node_crc));
    827 			goto cont;
    828 		}
    829 
    830 		td = chfs_alloc_tmp_dnode();
    831 		if (!td) {
    832 			chfs_err("Can't allocate tmp dnode info.\n");
    833 			err = ENOMEM;
    834 			goto out;
    835 		}
    836 
    837 		/* We don't check data crc here, just add nodes to tmp frag tree, because
    838 		 * we don't want to check nodes which have been overlapped by a new node
    839 		 * with a higher version number.
    840 		 */
    841 		td->node = chfs_alloc_full_dnode();
    842 		if (!td->node) {
    843 			chfs_err("Can't allocate full dnode info.\n");
    844 			err = ENOMEM;
    845 			goto out_tmp_dnode;
    846 		}
    847 		td->version = le64toh(dnode->version);
    848 		td->node->ofs = le64toh(dnode->offset);
    849 		td->data_crc = le32toh(dnode->data_crc);
    850 		td->node->nref = nref;
    851 		td->node->size = le32toh(dnode->data_length);
    852 		td->node->frags = 1;
    853 		td->overlapped = 0;
    854 
    855 		if (td->version > rii->highest_version) {
    856 			rii->highest_version = td->version;
    857 		}
    858 
    859 		/* Add node to the tree. */
    860 		err = chfs_add_tmp_dnode_to_tree(chmp, rii, td);
    861 		if (err)
    862 			goto out_full_dnode;
    863 
    864 cont:
    865 		nref = chfs_first_valid_data_ref(nref->nref_next);
    866 	}
    867 
    868 	ip->chvc->highest_version = rii->highest_version;
    869 	return 0;
    870 
    871 out_full_dnode:
    872 	chfs_free_full_dnode(td->node);
    873 out_tmp_dnode:
    874 	chfs_free_tmp_dnode(td);
    875 out:
    876 	kmem_free(buf, len);
    877 	kmem_free(dnode, len);
    878 	return err;
    879 }
    880 
    881 
    882 /* chfs_build_fragtree - builds fragtree from temporary tree */
    883 int
    884 chfs_build_fragtree(struct chfs_mount *chmp, struct chfs_inode *ip,
    885     struct chfs_readinode_info *rii)
    886 {
    887 	struct chfs_tmp_dnode_info *pen, *last, *this;
    888 	struct rb_tree ver_tree;    /* version tree, used only temporary */
    889 	uint64_t high_ver = 0;
    890 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    891 
    892 	rb_tree_init(&ver_tree, &tmp_node_rbtree_ops);
    893 
    894 	/* Update highest version and latest node reference. */
    895 	if (rii->mdata_tn) {
    896 		high_ver = rii->mdata_tn->tmpnode->version;
    897 		rii->latest_ref = rii->mdata_tn->tmpnode->node->nref;
    898 	}
    899 
    900 	/* Iterate the temporary tree in reverse order. */
    901 	pen = (struct chfs_tmp_dnode_info *)RB_TREE_MAX(&rii->tdi_root);
    902 
    903 	while((last = pen)) {
    904 		pen = (struct chfs_tmp_dnode_info *)rb_tree_iterate(&rii->tdi_root, last, RB_DIR_LEFT);
    905 
    906 		/* We build here a version tree from overlapped nodes. */
    907 		rb_tree_remove_node(&rii->tdi_root, last);
    908 		rb_tree_insert_node(&ver_tree, last);
    909 
    910 		if (last->tmpnode->overlapped) {
    911 			if (pen)
    912 				continue;
    913 
    914 			last->tmpnode->overlapped = 0;
    915 		}
    916 
    917 		this = (struct chfs_tmp_dnode_info *)RB_TREE_MAX(&ver_tree);
    918 
    919 		/* Start to build the fragtree. */
    920 		while (this) {
    921 			struct chfs_tmp_dnode_info *vers_next;
    922 			int ret;
    923 
    924 			vers_next = (struct chfs_tmp_dnode_info *)rb_tree_iterate(&ver_tree, this, RB_DIR_LEFT);
    925 			rb_tree_remove_node(&ver_tree, this);
    926 
    927 			struct chfs_tmp_dnode *tmp_td = this->tmpnode;
    928 			while (tmp_td) {
    929 				struct chfs_tmp_dnode *next_td = tmp_td->next;
    930 
    931 				/* Check temporary node. */
    932 				if (chfs_check_td_node(chmp, tmp_td)) {
    933 					if (next_td) {
    934 						chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
    935 						chfs_kill_td(chmp, tmp_td);
    936 					} else {
    937 						break;
    938 					}
    939 				} else {
    940 					if (tmp_td->version > high_ver) {
    941 						high_ver = tmp_td->version;
    942 						dbg("highver: %llu\n", (unsigned long long)high_ver);
    943 						rii->latest_ref = tmp_td->node->nref;
    944 					}
    945 
    946 					/* Add node to inode and its fragtree. */
    947 					ret = chfs_add_full_dnode_to_inode(chmp, ip, tmp_td->node);
    948 					if (ret) {
    949 						/* On error, clean the whole version tree. */
    950 						while (1) {
    951 							vers_next = (struct chfs_tmp_dnode_info *)rb_tree_iterate(&ver_tree, this, RB_DIR_LEFT);
    952 							while (tmp_td) {
    953 								next_td = tmp_td->next;
    954 
    955 								chfs_free_full_dnode(tmp_td->node);
    956 								chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
    957 								chfs_kill_td(chmp, tmp_td);
    958 								tmp_td = next_td;
    959 							}
    960 							chfs_free_tmp_dnode_info(this);
    961 							this = vers_next;
    962 							if (!this)
    963 								break;
    964 							rb_tree_remove_node(&ver_tree, vers_next);
    965 							chfs_kill_tdi(chmp, vers_next);
    966 						}
    967 						return ret;
    968 					}
    969 
    970 					/* Remove temporary node from temporary descriptor.
    971 					 * Shouldn't obsolete tmp_td here, because tmp_td->node
    972 					 * was added to the inode. */
    973 					chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
    974 					chfs_free_tmp_dnode(tmp_td);
    975 				}
    976 				tmp_td = next_td;
    977 			}
    978 			/* Continue with the previous element of version tree. */
    979 			chfs_kill_tdi(chmp, this);
    980 			this = vers_next;
    981 		}
    982 	}
    983 
    984 	return 0;
    985 }
    986 
    987 /* chfs_read_inode - checks the state of the inode then reads and builds it */
    988 int chfs_read_inode(struct chfs_mount *chmp, struct chfs_inode *ip)
    989 {
    990 	struct chfs_vnode_cache *vc = ip->chvc;
    991 
    992 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    993 
    994 retry:
    995 	mutex_enter(&chmp->chm_lock_vnocache);
    996 	switch (vc->state) {
    997 		case VNO_STATE_UNCHECKED:
    998 			/* FALLTHROUGH */
    999 		case VNO_STATE_CHECKEDABSENT:
   1000 			vc->state = VNO_STATE_READING;
   1001 			break;
   1002 		case VNO_STATE_CHECKING:
   1003 			/* FALLTHROUGH */
   1004 		case VNO_STATE_GC:
   1005 			mutex_exit(&chmp->chm_lock_vnocache);
   1006 			goto retry;
   1007 			break;
   1008 		case VNO_STATE_PRESENT:
   1009 			/* FALLTHROUGH */
   1010 		case VNO_STATE_READING:
   1011 			chfs_err("Reading inode #%llu in state %d!\n",
   1012 				(unsigned long long)vc->vno, vc->state);
   1013 			chfs_err("wants to read a nonexistent ino %llu\n",
   1014 				(unsigned long long)vc->vno);
   1015 			mutex_exit(&chmp->chm_lock_vnocache);
   1016 			return ENOENT;
   1017 		default:
   1018 			panic("BUG() Bad vno cache state.");
   1019 	}
   1020 	mutex_exit(&chmp->chm_lock_vnocache);
   1021 
   1022 	return chfs_read_inode_internal(chmp, ip);
   1023 }
   1024 
   1025 /*
   1026  * chfs_read_inode_internal - reads and builds an inode
   1027  * Firstly get temporary nodes then build fragtree.
   1028  */
   1029 int
   1030 chfs_read_inode_internal(struct chfs_mount *chmp, struct chfs_inode *ip)
   1031 {
   1032 	int err;
   1033 	size_t len, retlen;
   1034 	char* buf;
   1035 	struct chfs_readinode_info rii;
   1036 	struct chfs_flash_vnode *fvnode;
   1037 
   1038 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
   1039 
   1040 	len = sizeof(*fvnode);
   1041 
   1042 	memset(&rii, 0, sizeof(rii));
   1043 
   1044 	rb_tree_init(&rii.tdi_root, &tmp_node_rbtree_ops);
   1045 
   1046 	/* Build a temporary node tree. */
   1047 	err = chfs_get_data_nodes(chmp, ip, &rii);
   1048 	if (err) {
   1049 		if (ip->chvc->state == VNO_STATE_READING)
   1050 			ip->chvc->state = VNO_STATE_CHECKEDABSENT;
   1051 		/* FIXME Should we kill fragtree or something here? */
   1052 		return err;
   1053 	}
   1054 
   1055 	/* Build fragtree from temp nodes. */
   1056 	rb_tree_init(&ip->fragtree, &frag_rbtree_ops);
   1057 
   1058 	err = chfs_build_fragtree(chmp, ip, &rii);
   1059 	if (err) {
   1060 		if (ip->chvc->state == VNO_STATE_READING)
   1061 			ip->chvc->state = VNO_STATE_CHECKEDABSENT;
   1062 		/* FIXME Should we kill fragtree or something here? */
   1063 		return err;
   1064 	}
   1065 
   1066 	if (!rii.latest_ref) {
   1067 		return 0;
   1068 	}
   1069 
   1070 	buf = kmem_alloc(len, KM_SLEEP);
   1071 
   1072 	/* Set inode size from its vnode information node. */
   1073 	err = chfs_read_leb(chmp, ip->chvc->v->nref_lnr, buf, CHFS_GET_OFS(ip->chvc->v->nref_offset), len, &retlen);
   1074 	if (err || retlen != len) {
   1075 		kmem_free(buf, len);
   1076 		return err?err:EIO;
   1077 	}
   1078 
   1079 	fvnode = (struct chfs_flash_vnode*)buf;
   1080 
   1081 	dbg("set size from v: %u\n", fvnode->dn_size);
   1082 	chfs_set_vnode_size(ITOV(ip), fvnode->dn_size);
   1083 	uint32_t retsize = chfs_truncate_fragtree(chmp, &ip->fragtree, fvnode->dn_size);
   1084 	if (retsize != fvnode->dn_size) {
   1085 		dbg("Truncating failed. It is %u instead of %u\n", retsize, fvnode->dn_size);
   1086 	}
   1087 
   1088 	kmem_free(buf, len);
   1089 
   1090 	if (ip->chvc->state == VNO_STATE_READING) {
   1091 		ip->chvc->state = VNO_STATE_PRESENT;
   1092 	}
   1093 
   1094 	return 0;
   1095 }
   1096 
   1097 /* chfs_read_data - reads and checks data of a file */
   1098 int
   1099 chfs_read_data(struct chfs_mount* chmp, struct vnode *vp,
   1100     struct buf *bp)
   1101 {
   1102 	off_t ofs;
   1103 	struct chfs_node_frag *frag;
   1104 	char * buf;
   1105 	int err = 0;
   1106 	size_t size, retlen;
   1107 	uint32_t crc;
   1108 	struct chfs_inode *ip = VTOI(vp);
   1109 	struct chfs_flash_data_node *dnode;
   1110 	struct chfs_node_ref *nref;
   1111 
   1112 	memset(bp->b_data, 0, bp->b_bcount);
   1113 
   1114 	/* Calculate the size of the file from its fragtree. */
   1115 	ofs = bp->b_blkno * PAGE_SIZE;
   1116 	frag = (struct chfs_node_frag *)rb_tree_find_node_leq(&ip->fragtree, &ofs);
   1117 
   1118 	if (!frag || frag->ofs > ofs || frag->ofs + frag->size <= ofs) {
   1119 		bp->b_resid = 0;
   1120 		dbg("not found in frag tree\n");
   1121 		return 0;
   1122 	}
   1123 
   1124 	if (!frag->node) {
   1125 		dbg("no node in frag\n");
   1126 		return 0;
   1127 	}
   1128 
   1129 	nref = frag->node->nref;
   1130 	size = sizeof(*dnode) + frag->size;
   1131 
   1132 	buf = kmem_alloc(size, KM_SLEEP);
   1133 
   1134 	/* Read node from flash. */
   1135 	dbg("reading from lnr: %u, offset: %u, size: %zu\n", nref->nref_lnr, CHFS_GET_OFS(nref->nref_offset), size);
   1136 	err = chfs_read_leb(chmp, nref->nref_lnr, buf, CHFS_GET_OFS(nref->nref_offset), size, &retlen);
   1137 	if (err) {
   1138 		chfs_err("error after reading: %d\n", err);
   1139 		goto out;
   1140 	}
   1141 	if (retlen != size) {
   1142 		chfs_err("retlen: %zu != size: %zu\n", retlen, size);
   1143 		err = EIO;
   1144 		goto out;
   1145 	}
   1146 
   1147 	/* Read data from flash. */
   1148 	dnode = (struct chfs_flash_data_node *)buf;
   1149 	crc = crc32(0, (uint8_t *)dnode, CHFS_NODE_HDR_SIZE - 4);
   1150 	if (crc != le32toh(dnode->hdr_crc)) {
   1151 		chfs_err("CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->hdr_crc));
   1152 		err = EIO;
   1153 		goto out;
   1154 	}
   1155 
   1156 	/* Check header magic bitmask. */
   1157 	if (le16toh(dnode->magic) != CHFS_FS_MAGIC_BITMASK) {
   1158 		chfs_err("Wrong magic bitmask.\n");
   1159 		err = EIO;
   1160 		goto out;
   1161 	}
   1162 
   1163 	/* Check crc of node. */
   1164 	crc = crc32(0, (uint8_t *)dnode, sizeof(*dnode) - 4);
   1165 	if (crc != le32toh(dnode->node_crc)) {
   1166 		chfs_err("Node CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->node_crc));
   1167 		err = EIO;
   1168 		goto out;
   1169 	}
   1170 
   1171 	/* Check crc of data. */
   1172 	crc = crc32(0, (uint8_t *)dnode->data, dnode->data_length);
   1173 	if (crc != le32toh(dnode->data_crc)) {
   1174 		chfs_err("Data CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->data_crc));
   1175 		err = EIO;
   1176 		goto out;
   1177 	}
   1178 
   1179 	memcpy(bp->b_data, dnode->data, dnode->data_length);
   1180 	bp->b_resid = 0;
   1181 
   1182 out:
   1183 	kmem_free(buf, size);
   1184 	return err;
   1185 }
   1186