Home | History | Annotate | Line # | Download | only in hwmgr
      1 /*	$NetBSD: amdgpu_smu_helper.c,v 1.2 2021/12/18 23:45:26 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2018 Advanced Micro Devices, Inc.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     22  * OTHER DEALINGS IN THE SOFTWARE.
     23  *
     24  */
     25 
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: amdgpu_smu_helper.c,v 1.2 2021/12/18 23:45:26 riastradh Exp $");
     28 
     29 #include <linux/pci.h>
     30 
     31 #include "hwmgr.h"
     32 #include "pp_debug.h"
     33 #include "ppatomctrl.h"
     34 #include "ppsmc.h"
     35 #include "atom.h"
     36 #include "ivsrcid/thm/irqsrcs_thm_9_0.h"
     37 #include "ivsrcid/smuio/irqsrcs_smuio_9_0.h"
     38 #include "ivsrcid/ivsrcid_vislands30.h"
     39 
     40 uint8_t convert_to_vid(uint16_t vddc)
     41 {
     42 	return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
     43 }
     44 
     45 uint16_t convert_to_vddc(uint8_t vid)
     46 {
     47 	return (uint16_t) ((6200 - (vid * 25)) / VOLTAGE_SCALE);
     48 }
     49 
     50 int phm_copy_clock_limits_array(
     51 	struct pp_hwmgr *hwmgr,
     52 	uint32_t **pptable_info_array,
     53 	const uint32_t *pptable_array,
     54 	uint32_t power_saving_clock_count)
     55 {
     56 	uint32_t array_size, i;
     57 	uint32_t *table;
     58 
     59 	array_size = sizeof(uint32_t) * power_saving_clock_count;
     60 	table = kzalloc(array_size, GFP_KERNEL);
     61 	if (NULL == table)
     62 		return -ENOMEM;
     63 
     64 	for (i = 0; i < power_saving_clock_count; i++)
     65 		table[i] = le32_to_cpu(pptable_array[i]);
     66 
     67 	*pptable_info_array = table;
     68 
     69 	return 0;
     70 }
     71 
     72 int phm_copy_overdrive_settings_limits_array(
     73 	struct pp_hwmgr *hwmgr,
     74 	uint32_t **pptable_info_array,
     75 	const uint32_t *pptable_array,
     76 	uint32_t od_setting_count)
     77 {
     78 	uint32_t array_size, i;
     79 	uint32_t *table;
     80 
     81 	array_size = sizeof(uint32_t) * od_setting_count;
     82 	table = kzalloc(array_size, GFP_KERNEL);
     83 	if (NULL == table)
     84 		return -ENOMEM;
     85 
     86 	for (i = 0; i < od_setting_count; i++)
     87 		table[i] = le32_to_cpu(pptable_array[i]);
     88 
     89 	*pptable_info_array = table;
     90 
     91 	return 0;
     92 }
     93 
     94 uint32_t phm_set_field_to_u32(u32 offset, u32 original_data, u32 field, u32 size)
     95 {
     96 	u32 mask = 0;
     97 	u32 shift = 0;
     98 
     99 	shift = (offset % 4) << 3;
    100 	if (size == sizeof(uint8_t))
    101 		mask = 0xFF << shift;
    102 	else if (size == sizeof(uint16_t))
    103 		mask = 0xFFFF << shift;
    104 
    105 	original_data &= ~mask;
    106 	original_data |= (field << shift);
    107 	return original_data;
    108 }
    109 
    110 /**
    111  * Returns once the part of the register indicated by the mask has
    112  * reached the given value.
    113  */
    114 int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index,
    115 			 uint32_t value, uint32_t mask)
    116 {
    117 	uint32_t i;
    118 	uint32_t cur_value;
    119 
    120 	if (hwmgr == NULL || hwmgr->device == NULL) {
    121 		pr_err("Invalid Hardware Manager!");
    122 		return -EINVAL;
    123 	}
    124 
    125 	for (i = 0; i < hwmgr->usec_timeout; i++) {
    126 		cur_value = cgs_read_register(hwmgr->device, index);
    127 		if ((cur_value & mask) == (value & mask))
    128 			break;
    129 		udelay(1);
    130 	}
    131 
    132 	/* timeout means wrong logic*/
    133 	if (i == hwmgr->usec_timeout)
    134 		return -1;
    135 	return 0;
    136 }
    137 
    138 
    139 /**
    140  * Returns once the part of the register indicated by the mask has
    141  * reached the given value.The indirect space is described by giving
    142  * the memory-mapped index of the indirect index register.
    143  */
    144 int phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr,
    145 				uint32_t indirect_port,
    146 				uint32_t index,
    147 				uint32_t value,
    148 				uint32_t mask)
    149 {
    150 	if (hwmgr == NULL || hwmgr->device == NULL) {
    151 		pr_err("Invalid Hardware Manager!");
    152 		return -EINVAL;
    153 	}
    154 
    155 	cgs_write_register(hwmgr->device, indirect_port, index);
    156 	return phm_wait_on_register(hwmgr, indirect_port + 1, mask, value);
    157 }
    158 
    159 int phm_wait_for_register_unequal(struct pp_hwmgr *hwmgr,
    160 					uint32_t index,
    161 					uint32_t value, uint32_t mask)
    162 {
    163 	uint32_t i;
    164 	uint32_t cur_value;
    165 
    166 	if (hwmgr == NULL || hwmgr->device == NULL)
    167 		return -EINVAL;
    168 
    169 	for (i = 0; i < hwmgr->usec_timeout; i++) {
    170 		cur_value = cgs_read_register(hwmgr->device,
    171 									index);
    172 		if ((cur_value & mask) != (value & mask))
    173 			break;
    174 		udelay(1);
    175 	}
    176 
    177 	/* timeout means wrong logic */
    178 	if (i == hwmgr->usec_timeout)
    179 		return -ETIME;
    180 	return 0;
    181 }
    182 
    183 int phm_wait_for_indirect_register_unequal(struct pp_hwmgr *hwmgr,
    184 						uint32_t indirect_port,
    185 						uint32_t index,
    186 						uint32_t value,
    187 						uint32_t mask)
    188 {
    189 	if (hwmgr == NULL || hwmgr->device == NULL)
    190 		return -EINVAL;
    191 
    192 	cgs_write_register(hwmgr->device, indirect_port, index);
    193 	return phm_wait_for_register_unequal(hwmgr, indirect_port + 1,
    194 						value, mask);
    195 }
    196 
    197 bool phm_cf_want_uvd_power_gating(struct pp_hwmgr *hwmgr)
    198 {
    199 	return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating);
    200 }
    201 
    202 bool phm_cf_want_vce_power_gating(struct pp_hwmgr *hwmgr)
    203 {
    204 	return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating);
    205 }
    206 
    207 
    208 int phm_trim_voltage_table(struct pp_atomctrl_voltage_table *vol_table)
    209 {
    210 	uint32_t i, j;
    211 	uint16_t vvalue;
    212 	bool found = false;
    213 	struct pp_atomctrl_voltage_table *table;
    214 
    215 	PP_ASSERT_WITH_CODE((NULL != vol_table),
    216 			"Voltage Table empty.", return -EINVAL);
    217 
    218 	table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
    219 			GFP_KERNEL);
    220 
    221 	if (NULL == table)
    222 		return -EINVAL;
    223 
    224 	table->mask_low = vol_table->mask_low;
    225 	table->phase_delay = vol_table->phase_delay;
    226 
    227 	for (i = 0; i < vol_table->count; i++) {
    228 		vvalue = vol_table->entries[i].value;
    229 		found = false;
    230 
    231 		for (j = 0; j < table->count; j++) {
    232 			if (vvalue == table->entries[j].value) {
    233 				found = true;
    234 				break;
    235 			}
    236 		}
    237 
    238 		if (!found) {
    239 			table->entries[table->count].value = vvalue;
    240 			table->entries[table->count].smio_low =
    241 					vol_table->entries[i].smio_low;
    242 			table->count++;
    243 		}
    244 	}
    245 
    246 	memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
    247 	kfree(table);
    248 	table = NULL;
    249 	return 0;
    250 }
    251 
    252 int phm_get_svi2_mvdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
    253 		phm_ppt_v1_clock_voltage_dependency_table *dep_table)
    254 {
    255 	uint32_t i;
    256 	int result;
    257 
    258 	PP_ASSERT_WITH_CODE((0 != dep_table->count),
    259 			"Voltage Dependency Table empty.", return -EINVAL);
    260 
    261 	PP_ASSERT_WITH_CODE((NULL != vol_table),
    262 			"vol_table empty.", return -EINVAL);
    263 
    264 	vol_table->mask_low = 0;
    265 	vol_table->phase_delay = 0;
    266 	vol_table->count = dep_table->count;
    267 
    268 	for (i = 0; i < dep_table->count; i++) {
    269 		vol_table->entries[i].value = dep_table->entries[i].mvdd;
    270 		vol_table->entries[i].smio_low = 0;
    271 	}
    272 
    273 	result = phm_trim_voltage_table(vol_table);
    274 	PP_ASSERT_WITH_CODE((0 == result),
    275 			"Failed to trim MVDD table.", return result);
    276 
    277 	return 0;
    278 }
    279 
    280 int phm_get_svi2_vddci_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
    281 		phm_ppt_v1_clock_voltage_dependency_table *dep_table)
    282 {
    283 	uint32_t i;
    284 	int result;
    285 
    286 	PP_ASSERT_WITH_CODE((0 != dep_table->count),
    287 			"Voltage Dependency Table empty.", return -EINVAL);
    288 
    289 	PP_ASSERT_WITH_CODE((NULL != vol_table),
    290 			"vol_table empty.", return -EINVAL);
    291 
    292 	vol_table->mask_low = 0;
    293 	vol_table->phase_delay = 0;
    294 	vol_table->count = dep_table->count;
    295 
    296 	for (i = 0; i < dep_table->count; i++) {
    297 		vol_table->entries[i].value = dep_table->entries[i].vddci;
    298 		vol_table->entries[i].smio_low = 0;
    299 	}
    300 
    301 	result = phm_trim_voltage_table(vol_table);
    302 	PP_ASSERT_WITH_CODE((0 == result),
    303 			"Failed to trim VDDCI table.", return result);
    304 
    305 	return 0;
    306 }
    307 
    308 int phm_get_svi2_vdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
    309 		phm_ppt_v1_voltage_lookup_table *lookup_table)
    310 {
    311 	int i = 0;
    312 
    313 	PP_ASSERT_WITH_CODE((0 != lookup_table->count),
    314 			"Voltage Lookup Table empty.", return -EINVAL);
    315 
    316 	PP_ASSERT_WITH_CODE((NULL != vol_table),
    317 			"vol_table empty.", return -EINVAL);
    318 
    319 	vol_table->mask_low = 0;
    320 	vol_table->phase_delay = 0;
    321 
    322 	vol_table->count = lookup_table->count;
    323 
    324 	for (i = 0; i < vol_table->count; i++) {
    325 		vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
    326 		vol_table->entries[i].smio_low = 0;
    327 	}
    328 
    329 	return 0;
    330 }
    331 
    332 void phm_trim_voltage_table_to_fit_state_table(uint32_t max_vol_steps,
    333 				struct pp_atomctrl_voltage_table *vol_table)
    334 {
    335 	unsigned int i, diff;
    336 
    337 	if (vol_table->count <= max_vol_steps)
    338 		return;
    339 
    340 	diff = vol_table->count - max_vol_steps;
    341 
    342 	for (i = 0; i < max_vol_steps; i++)
    343 		vol_table->entries[i] = vol_table->entries[i + diff];
    344 
    345 	vol_table->count = max_vol_steps;
    346 
    347 	return;
    348 }
    349 
    350 int phm_reset_single_dpm_table(void *table,
    351 				uint32_t count, int max)
    352 {
    353 	int i;
    354 
    355 	struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
    356 
    357 	dpm_table->count = count > max ? max : count;
    358 
    359 	for (i = 0; i < dpm_table->count; i++)
    360 		dpm_table->dpm_level[i].enabled = false;
    361 
    362 	return 0;
    363 }
    364 
    365 void phm_setup_pcie_table_entry(
    366 	void *table,
    367 	uint32_t index, uint32_t pcie_gen,
    368 	uint32_t pcie_lanes)
    369 {
    370 	struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
    371 	dpm_table->dpm_level[index].value = pcie_gen;
    372 	dpm_table->dpm_level[index].param1 = pcie_lanes;
    373 	dpm_table->dpm_level[index].enabled = 1;
    374 }
    375 
    376 int32_t phm_get_dpm_level_enable_mask_value(void *table)
    377 {
    378 	int32_t i;
    379 	int32_t mask = 0;
    380 	struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
    381 
    382 	for (i = dpm_table->count; i > 0; i--) {
    383 		mask = mask << 1;
    384 		if (dpm_table->dpm_level[i - 1].enabled)
    385 			mask |= 0x1;
    386 		else
    387 			mask &= 0xFFFFFFFE;
    388 	}
    389 
    390 	return mask;
    391 }
    392 
    393 uint8_t phm_get_voltage_index(
    394 		struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
    395 {
    396 	uint8_t count = (uint8_t) (lookup_table->count);
    397 	uint8_t i;
    398 
    399 	PP_ASSERT_WITH_CODE((NULL != lookup_table),
    400 			"Lookup Table empty.", return 0);
    401 	PP_ASSERT_WITH_CODE((0 != count),
    402 			"Lookup Table empty.", return 0);
    403 
    404 	for (i = 0; i < lookup_table->count; i++) {
    405 		/* find first voltage equal or bigger than requested */
    406 		if (lookup_table->entries[i].us_vdd >= voltage)
    407 			return i;
    408 	}
    409 	/* voltage is bigger than max voltage in the table */
    410 	return i - 1;
    411 }
    412 
    413 uint8_t phm_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
    414 		uint32_t voltage)
    415 {
    416 	uint8_t count = (uint8_t) (voltage_table->count);
    417 	uint8_t i = 0;
    418 
    419 	PP_ASSERT_WITH_CODE((NULL != voltage_table),
    420 		"Voltage Table empty.", return 0;);
    421 	PP_ASSERT_WITH_CODE((0 != count),
    422 		"Voltage Table empty.", return 0;);
    423 
    424 	for (i = 0; i < count; i++) {
    425 		/* find first voltage bigger than requested */
    426 		if (voltage_table->entries[i].value >= voltage)
    427 			return i;
    428 	}
    429 
    430 	/* voltage is bigger than max voltage in the table */
    431 	return i - 1;
    432 }
    433 
    434 uint16_t phm_find_closest_vddci(struct pp_atomctrl_voltage_table *vddci_table, uint16_t vddci)
    435 {
    436 	uint32_t  i;
    437 
    438 	for (i = 0; i < vddci_table->count; i++) {
    439 		if (vddci_table->entries[i].value >= vddci)
    440 			return vddci_table->entries[i].value;
    441 	}
    442 
    443 	pr_debug("vddci is larger than max value in vddci_table\n");
    444 	return vddci_table->entries[i-1].value;
    445 }
    446 
    447 int phm_find_boot_level(void *table,
    448 		uint32_t value, uint32_t *boot_level)
    449 {
    450 	int result = -EINVAL;
    451 	uint32_t i;
    452 	struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
    453 
    454 	for (i = 0; i < dpm_table->count; i++) {
    455 		if (value == dpm_table->dpm_level[i].value) {
    456 			*boot_level = i;
    457 			result = 0;
    458 		}
    459 	}
    460 
    461 	return result;
    462 }
    463 
    464 int phm_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
    465 	phm_ppt_v1_voltage_lookup_table *lookup_table,
    466 	uint16_t virtual_voltage_id, int32_t *sclk)
    467 {
    468 	uint8_t entry_id;
    469 	uint8_t voltage_id;
    470 	struct phm_ppt_v1_information *table_info =
    471 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    472 
    473 	PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
    474 
    475 	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
    476 	for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
    477 		voltage_id = table_info->vdd_dep_on_sclk->entries[entry_id].vddInd;
    478 		if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
    479 			break;
    480 	}
    481 
    482 	if (entry_id >= table_info->vdd_dep_on_sclk->count) {
    483 		pr_debug("Can't find requested voltage id in vdd_dep_on_sclk table\n");
    484 		return -EINVAL;
    485 	}
    486 
    487 	*sclk = table_info->vdd_dep_on_sclk->entries[entry_id].clk;
    488 
    489 	return 0;
    490 }
    491 
    492 /**
    493  * Initialize Dynamic State Adjustment Rule Settings
    494  *
    495  * @param    hwmgr  the address of the powerplay hardware manager.
    496  */
    497 int phm_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
    498 {
    499 	uint32_t table_size;
    500 	struct phm_clock_voltage_dependency_table *table_clk_vlt;
    501 	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
    502 
    503 	/* initialize vddc_dep_on_dal_pwrl table */
    504 	table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
    505 	table_clk_vlt = kzalloc(table_size, GFP_KERNEL);
    506 
    507 	if (NULL == table_clk_vlt) {
    508 		pr_err("Can not allocate space for vddc_dep_on_dal_pwrl! \n");
    509 		return -ENOMEM;
    510 	} else {
    511 		table_clk_vlt->count = 4;
    512 		table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
    513 		table_clk_vlt->entries[0].v = 0;
    514 		table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
    515 		table_clk_vlt->entries[1].v = 720;
    516 		table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
    517 		table_clk_vlt->entries[2].v = 810;
    518 		table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
    519 		table_clk_vlt->entries[3].v = 900;
    520 		if (pptable_info != NULL)
    521 			pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
    522 		hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
    523 	}
    524 
    525 	return 0;
    526 }
    527 
    528 uint32_t phm_get_lowest_enabled_level(struct pp_hwmgr *hwmgr, uint32_t mask)
    529 {
    530 	uint32_t level = 0;
    531 
    532 	while (0 == (mask & (1 << level)))
    533 		level++;
    534 
    535 	return level;
    536 }
    537 
    538 void phm_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
    539 {
    540 	struct phm_ppt_v1_information *table_info =
    541 			(struct phm_ppt_v1_information *)hwmgr->pptable;
    542 	struct phm_clock_voltage_dependency_table *table =
    543 				table_info->vddc_dep_on_dal_pwrl;
    544 	struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
    545 	enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
    546 	uint32_t req_vddc = 0, req_volt, i;
    547 
    548 	if (!table || table->count <= 0
    549 		|| dal_power_level < PP_DAL_POWERLEVEL_ULTRALOW
    550 		|| dal_power_level > PP_DAL_POWERLEVEL_PERFORMANCE)
    551 		return;
    552 
    553 	for (i = 0; i < table->count; i++) {
    554 		if (dal_power_level == table->entries[i].clk) {
    555 			req_vddc = table->entries[i].v;
    556 			break;
    557 		}
    558 	}
    559 
    560 	vddc_table = table_info->vdd_dep_on_sclk;
    561 	for (i = 0; i < vddc_table->count; i++) {
    562 		if (req_vddc <= vddc_table->entries[i].vddc) {
    563 			req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE);
    564 			smum_send_msg_to_smc_with_parameter(hwmgr,
    565 					PPSMC_MSG_VddC_Request, req_volt);
    566 			return;
    567 		}
    568 	}
    569 	pr_err("DAL requested level can not"
    570 			" found a available voltage in VDDC DPM Table \n");
    571 }
    572 
    573 int phm_get_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
    574 				uint32_t sclk, uint16_t id, uint16_t *voltage)
    575 {
    576 	uint32_t vol;
    577 	int ret = 0;
    578 
    579 	if (hwmgr->chip_id < CHIP_TONGA) {
    580 		ret = atomctrl_get_voltage_evv(hwmgr, id, voltage);
    581 	} else if (hwmgr->chip_id < CHIP_POLARIS10) {
    582 		ret = atomctrl_get_voltage_evv_on_sclk(hwmgr, voltage_type, sclk, id, voltage);
    583 		if (*voltage >= 2000 || *voltage == 0)
    584 			*voltage = 1150;
    585 	} else {
    586 		ret = atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, voltage_type, sclk, id, &vol);
    587 		*voltage = (uint16_t)(vol/100);
    588 	}
    589 	return ret;
    590 }
    591 
    592 
    593 int phm_irq_process(struct amdgpu_device *adev,
    594 			   struct amdgpu_irq_src *source,
    595 			   struct amdgpu_iv_entry *entry)
    596 {
    597 	uint32_t client_id = entry->client_id;
    598 	uint32_t src_id = entry->src_id;
    599 
    600 	if (client_id == AMDGPU_IRQ_CLIENTID_LEGACY) {
    601 		if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH)
    602 			pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
    603 						PCI_BUS_NUM(adev->pdev->devfn),
    604 						PCI_SLOT(adev->pdev->devfn),
    605 						PCI_FUNC(adev->pdev->devfn));
    606 		else if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW)
    607 			pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
    608 					PCI_BUS_NUM(adev->pdev->devfn),
    609 					PCI_SLOT(adev->pdev->devfn),
    610 					PCI_FUNC(adev->pdev->devfn));
    611 		else if (src_id == VISLANDS30_IV_SRCID_GPIO_19)
    612 			pr_warn("GPU Critical Temperature Fault detected on PCIe %d:%d.%d!\n",
    613 					PCI_BUS_NUM(adev->pdev->devfn),
    614 					PCI_SLOT(adev->pdev->devfn),
    615 					PCI_FUNC(adev->pdev->devfn));
    616 	} else if (client_id == SOC15_IH_CLIENTID_THM) {
    617 		if (src_id == 0)
    618 			pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
    619 						PCI_BUS_NUM(adev->pdev->devfn),
    620 						PCI_SLOT(adev->pdev->devfn),
    621 						PCI_FUNC(adev->pdev->devfn));
    622 		else
    623 			pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
    624 					PCI_BUS_NUM(adev->pdev->devfn),
    625 					PCI_SLOT(adev->pdev->devfn),
    626 					PCI_FUNC(adev->pdev->devfn));
    627 	} else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO)
    628 		pr_warn("GPU Critical Temperature Fault detected on PCIe %d:%d.%d!\n",
    629 				PCI_BUS_NUM(adev->pdev->devfn),
    630 				PCI_SLOT(adev->pdev->devfn),
    631 				PCI_FUNC(adev->pdev->devfn));
    632 
    633 	return 0;
    634 }
    635 
    636 static const struct amdgpu_irq_src_funcs smu9_irq_funcs = {
    637 	.process = phm_irq_process,
    638 };
    639 
    640 int smu9_register_irq_handlers(struct pp_hwmgr *hwmgr)
    641 {
    642 	struct amdgpu_irq_src *source =
    643 		kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
    644 
    645 	if (!source)
    646 		return -ENOMEM;
    647 
    648 	source->funcs = &smu9_irq_funcs;
    649 
    650 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
    651 			SOC15_IH_CLIENTID_THM,
    652 			THM_9_0__SRCID__THM_DIG_THERM_L2H,
    653 			source);
    654 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
    655 			SOC15_IH_CLIENTID_THM,
    656 			THM_9_0__SRCID__THM_DIG_THERM_H2L,
    657 			source);
    658 
    659 	/* Register CTF(GPIO_19) interrupt */
    660 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
    661 			SOC15_IH_CLIENTID_ROM_SMUIO,
    662 			SMUIO_9_0__SRCID__SMUIO_GPIO19,
    663 			source);
    664 
    665 	return 0;
    666 }
    667 
    668 void *smu_atom_get_data_table(void *dev, uint32_t table, uint16_t *size,
    669 						uint8_t *frev, uint8_t *crev)
    670 {
    671 	struct amdgpu_device *adev = dev;
    672 	uint16_t data_start;
    673 
    674 	if (amdgpu_atom_parse_data_header(
    675 		    adev->mode_info.atom_context, table, size,
    676 		    frev, crev, &data_start))
    677 		return (uint8_t *)adev->mode_info.atom_context->bios +
    678 			data_start;
    679 
    680 	return NULL;
    681 }
    682 
    683 int smu_get_voltage_dependency_table_ppt_v1(
    684 			const struct phm_ppt_v1_clock_voltage_dependency_table *allowed_dep_table,
    685 			struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
    686 {
    687 	uint8_t i = 0;
    688 	PP_ASSERT_WITH_CODE((0 != allowed_dep_table->count),
    689 				"Voltage Lookup Table empty",
    690 				return -EINVAL);
    691 
    692 	dep_table->count = allowed_dep_table->count;
    693 	for (i=0; i<dep_table->count; i++) {
    694 		dep_table->entries[i].clk = allowed_dep_table->entries[i].clk;
    695 		dep_table->entries[i].vddInd = allowed_dep_table->entries[i].vddInd;
    696 		dep_table->entries[i].vdd_offset = allowed_dep_table->entries[i].vdd_offset;
    697 		dep_table->entries[i].vddc = allowed_dep_table->entries[i].vddc;
    698 		dep_table->entries[i].vddgfx = allowed_dep_table->entries[i].vddgfx;
    699 		dep_table->entries[i].vddci = allowed_dep_table->entries[i].vddci;
    700 		dep_table->entries[i].mvdd = allowed_dep_table->entries[i].mvdd;
    701 		dep_table->entries[i].phases = allowed_dep_table->entries[i].phases;
    702 		dep_table->entries[i].cks_enable = allowed_dep_table->entries[i].cks_enable;
    703 		dep_table->entries[i].cks_voffset = allowed_dep_table->entries[i].cks_voffset;
    704 	}
    705 
    706 	return 0;
    707 }
    708 
    709 int smu_set_watermarks_for_clocks_ranges(void *wt_table,
    710 		struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges)
    711 {
    712 	uint32_t i;
    713 	struct watermarks *table = wt_table;
    714 
    715 	if (!table || !wm_with_clock_ranges)
    716 		return -EINVAL;
    717 
    718 	if (wm_with_clock_ranges->num_wm_dmif_sets > 4 || wm_with_clock_ranges->num_wm_mcif_sets > 4)
    719 		return -EINVAL;
    720 
    721 	for (i = 0; i < wm_with_clock_ranges->num_wm_dmif_sets; i++) {
    722 		table->WatermarkRow[1][i].MinClock =
    723 			cpu_to_le16((uint16_t)
    724 			(wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz /
    725 			1000));
    726 		table->WatermarkRow[1][i].MaxClock =
    727 			cpu_to_le16((uint16_t)
    728 			(wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz /
    729 			1000));
    730 		table->WatermarkRow[1][i].MinUclk =
    731 			cpu_to_le16((uint16_t)
    732 			(wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz /
    733 			1000));
    734 		table->WatermarkRow[1][i].MaxUclk =
    735 			cpu_to_le16((uint16_t)
    736 			(wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz /
    737 			1000));
    738 		table->WatermarkRow[1][i].WmSetting = (uint8_t)
    739 				wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
    740 	}
    741 
    742 	for (i = 0; i < wm_with_clock_ranges->num_wm_mcif_sets; i++) {
    743 		table->WatermarkRow[0][i].MinClock =
    744 			cpu_to_le16((uint16_t)
    745 			(wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz /
    746 			1000));
    747 		table->WatermarkRow[0][i].MaxClock =
    748 			cpu_to_le16((uint16_t)
    749 			(wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz /
    750 			1000));
    751 		table->WatermarkRow[0][i].MinUclk =
    752 			cpu_to_le16((uint16_t)
    753 			(wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz /
    754 			1000));
    755 		table->WatermarkRow[0][i].MaxUclk =
    756 			cpu_to_le16((uint16_t)
    757 			(wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz /
    758 			1000));
    759 		table->WatermarkRow[0][i].WmSetting = (uint8_t)
    760 				wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
    761 	}
    762 	return 0;
    763 }
    764