Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: kern_condvar.c,v 1.63 2023/11/02 10:31:55 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007, 2008, 2019, 2020, 2023
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Kernel condition variable implementation.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.63 2023/11/02 10:31:55 martin Exp $");
     39 
     40 #include <sys/param.h>
     41 
     42 #include <sys/condvar.h>
     43 #include <sys/cpu.h>
     44 #include <sys/kernel.h>
     45 #include <sys/lockdebug.h>
     46 #include <sys/lwp.h>
     47 #include <sys/sleepq.h>
     48 #include <sys/syncobj.h>
     49 #include <sys/systm.h>
     50 
     51 /*
     52  * Accessors for the private contents of the kcondvar_t data type.
     53  *
     54  *	cv_opaque[0]	sleepq_t
     55  *	cv_opaque[1]	description for ps(1)
     56  *
     57  * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
     58  * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
     59  * and dequeue).
     60  *
     61  * cv_opaque[1] (the wmesg) is static and does not change throughout the life
     62  * of the CV.
     63  */
     64 #define	CV_SLEEPQ(cv)		((sleepq_t *)(cv)->cv_opaque)
     65 #define	CV_WMESG(cv)		((const char *)(cv)->cv_opaque[1])
     66 #define	CV_SET_WMESG(cv, v) 	(cv)->cv_opaque[1] = __UNCONST(v)
     67 
     68 #define	CV_DEBUG_P(cv)	(CV_WMESG(cv) != nodebug)
     69 #define	CV_RA		((uintptr_t)__builtin_return_address(0))
     70 
     71 static void		cv_unsleep(lwp_t *, bool);
     72 static inline void	cv_wakeup_one(kcondvar_t *);
     73 static inline void	cv_wakeup_all(kcondvar_t *);
     74 
     75 syncobj_t cv_syncobj = {
     76 	.sobj_name	= "cv",
     77 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
     78 	.sobj_boostpri  = PRI_KERNEL,
     79 	.sobj_unsleep	= cv_unsleep,
     80 	.sobj_changepri	= sleepq_changepri,
     81 	.sobj_lendpri	= sleepq_lendpri,
     82 	.sobj_owner	= syncobj_noowner,
     83 };
     84 
     85 static const char deadcv[] = "deadcv";
     86 
     87 /*
     88  * cv_init:
     89  *
     90  *	Initialize a condition variable for use.
     91  */
     92 void
     93 cv_init(kcondvar_t *cv, const char *wmesg)
     94 {
     95 
     96 	KASSERT(wmesg != NULL);
     97 	CV_SET_WMESG(cv, wmesg);
     98 	sleepq_init(CV_SLEEPQ(cv));
     99 }
    100 
    101 /*
    102  * cv_destroy:
    103  *
    104  *	Tear down a condition variable.
    105  */
    106 void
    107 cv_destroy(kcondvar_t *cv)
    108 {
    109 
    110 	sleepq_destroy(CV_SLEEPQ(cv));
    111 #ifdef DIAGNOSTIC
    112 	KASSERT(cv_is_valid(cv));
    113 	KASSERT(!cv_has_waiters(cv));
    114 	CV_SET_WMESG(cv, deadcv);
    115 #endif
    116 }
    117 
    118 /*
    119  * cv_enter:
    120  *
    121  *	Look up and lock the sleep queue corresponding to the given
    122  *	condition variable, and increment the number of waiters.
    123  */
    124 static inline int
    125 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
    126 {
    127 	sleepq_t *sq;
    128 	kmutex_t *mp;
    129 	int nlocks;
    130 
    131 	KASSERT(cv_is_valid(cv));
    132 	KASSERT(!cpu_intr_p());
    133 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
    134 
    135 	mp = sleepq_hashlock(cv);
    136 	sq = CV_SLEEPQ(cv);
    137 	nlocks = sleepq_enter(sq, l, mp);
    138 	sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
    139 	mutex_exit(mtx);
    140 	KASSERT(cv_has_waiters(cv));
    141 	return nlocks;
    142 }
    143 
    144 /*
    145  * cv_unsleep:
    146  *
    147  *	Remove an LWP from the condition variable and sleep queue.  This
    148  *	is called when the LWP has not been awoken normally but instead
    149  *	interrupted: for example, when a signal is received.  Must be
    150  *	called with the LWP locked.  Will unlock if "unlock" is true.
    151  */
    152 static void
    153 cv_unsleep(lwp_t *l, bool unlock)
    154 {
    155 	kcondvar_t *cv __diagused;
    156 
    157 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
    158 
    159 	KASSERT(l->l_wchan == (wchan_t)cv);
    160 	KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
    161 	KASSERT(cv_is_valid(cv));
    162 	KASSERT(cv_has_waiters(cv));
    163 
    164 	sleepq_unsleep(l, unlock);
    165 }
    166 
    167 /*
    168  * cv_wait:
    169  *
    170  *	Wait non-interruptably on a condition variable until awoken.
    171  */
    172 void
    173 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
    174 {
    175 	lwp_t *l = curlwp;
    176 	int nlocks;
    177 
    178 	KASSERT(mutex_owned(mtx));
    179 
    180 	nlocks = cv_enter(cv, mtx, l, false);
    181 	(void)sleepq_block(0, false, &cv_syncobj, nlocks);
    182 	mutex_enter(mtx);
    183 }
    184 
    185 /*
    186  * cv_wait_sig:
    187  *
    188  *	Wait on a condition variable until a awoken or a signal is received.
    189  *	Will also return early if the process is exiting.  Returns zero if
    190  *	awoken normally, ERESTART if a signal was received and the system
    191  *	call is restartable, or EINTR otherwise.
    192  */
    193 int
    194 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
    195 {
    196 	lwp_t *l = curlwp;
    197 	int error, nlocks;
    198 
    199 	KASSERT(mutex_owned(mtx));
    200 
    201 	nlocks = cv_enter(cv, mtx, l, true);
    202 	error = sleepq_block(0, true, &cv_syncobj, nlocks);
    203 	mutex_enter(mtx);
    204 	return error;
    205 }
    206 
    207 /*
    208  * cv_timedwait:
    209  *
    210  *	Wait on a condition variable until awoken or the specified timeout
    211  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
    212  *	timeout expired.
    213  *
    214  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    215  */
    216 int
    217 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
    218 {
    219 	lwp_t *l = curlwp;
    220 	int error, nlocks;
    221 
    222 	KASSERT(mutex_owned(mtx));
    223 
    224 	nlocks = cv_enter(cv, mtx, l, false);
    225 	error = sleepq_block(timo, false, &cv_syncobj, nlocks);
    226 	mutex_enter(mtx);
    227 	return error;
    228 }
    229 
    230 /*
    231  * cv_timedwait_sig:
    232  *
    233  *	Wait on a condition variable until a timeout expires, awoken or a
    234  *	signal is received.  Will also return early if the process is
    235  *	exiting.  Returns zero if awoken normally, EWOULDBLOCK if the
    236  *	timeout expires, ERESTART if a signal was received and the system
    237  *	call is restartable, or EINTR otherwise.
    238  *
    239  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
    240  */
    241 int
    242 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
    243 {
    244 	lwp_t *l = curlwp;
    245 	int error, nlocks;
    246 
    247 	KASSERT(mutex_owned(mtx));
    248 
    249 	nlocks = cv_enter(cv, mtx, l, true);
    250 	error = sleepq_block(timo, true, &cv_syncobj, nlocks);
    251 	mutex_enter(mtx);
    252 	return error;
    253 }
    254 
    255 /*
    256  * Given a number of seconds, sec, and 2^64ths of a second, frac, we
    257  * want a number of ticks for a timeout:
    258  *
    259  *	timo = hz*(sec + frac/2^64)
    260  *	     = hz*sec + hz*frac/2^64
    261  *	     = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
    262  *	     = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
    263  *
    264  * where frachi is the high 32 bits of frac and fraclo is the
    265  * low 32 bits.
    266  *
    267  * We assume hz < INT_MAX/2 < UINT32_MAX, so
    268  *
    269  *	hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
    270  *
    271  * since fraclo < 2^32.
    272  *
    273  * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
    274  * can't represent timeouts higher than INT_MAX in cv_timedwait, and
    275  * spurious wakeup is OK.  Moreover, we don't want to wrap around,
    276  * because we compute end - start in ticks in order to compute the
    277  * remaining timeout, and that difference cannot wrap around, so we use
    278  * a timeout less than INT_MAX.  Using INT_MAX/2 provides plenty of
    279  * margin for paranoia and will exceed most waits in practice by far.
    280  */
    281 static unsigned
    282 bintime2timo(const struct bintime *bt)
    283 {
    284 
    285 	KASSERT(hz < INT_MAX/2);
    286 	CTASSERT(INT_MAX/2 < UINT32_MAX);
    287 	if (bt->sec > ((INT_MAX/2)/hz))
    288 		return INT_MAX/2;
    289 	if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
    290 		return INT_MAX/2;
    291 
    292 	return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
    293 }
    294 
    295 /*
    296  * timo is in units of ticks.  We want units of seconds and 2^64ths of
    297  * a second.  We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
    298  * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
    299  * second)/tick.  So for the fractional part, we compute
    300  *
    301  *	frac = rem * 2^64 / hz
    302  *	     = ((rem * 2^32) / hz) * 2^32
    303  *
    304  * Using truncating integer division instead of real division will
    305  * leave us with only about 32 bits of precision, which means about
    306  * 1/4-nanosecond resolution, which is good enough for our purposes.
    307  */
    308 static struct bintime
    309 timo2bintime(unsigned timo)
    310 {
    311 
    312 	return (struct bintime) {
    313 		.sec = timo / hz,
    314 		.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
    315 	};
    316 }
    317 
    318 /*
    319  * cv_timedwaitbt:
    320  *
    321  *	Wait on a condition variable until awoken or the specified
    322  *	timeout expires.  Returns zero if awoken normally or
    323  *	EWOULDBLOCK if the timeout expires.
    324  *
    325  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt subtracts
    326  *	the time slept, so on exit, bt is the time remaining after
    327  *	sleeping, possibly negative if the complete time has elapsed.
    328  *	No infinite timeout; use cv_wait_sig instead.
    329  *
    330  *	epsilon is a requested maximum error in timeout (excluding
    331  *	spurious wakeups).  Currently not used, will be used in the
    332  *	future to choose between low- and high-resolution timers.
    333  *	Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
    334  *	where r is the finest resolution of clock available and s is
    335  *	scheduling delays for scheduler overhead and competing threads.
    336  *	Time is measured by the interrupt source implementing the
    337  *	timeout, not by another timecounter.
    338  */
    339 int
    340 cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    341     const struct bintime *epsilon __diagused)
    342 {
    343 	struct bintime slept;
    344 	unsigned start, end;
    345 	int timo;
    346 	int error;
    347 
    348 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    349 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    350 
    351 	/* If there's nothing left to wait, time out.  */
    352 	if (bt->sec == 0 && bt->frac == 0)
    353 		return EWOULDBLOCK;
    354 
    355 	/* Convert to ticks, but clamp to be >=1.  */
    356 	timo = bintime2timo(bt);
    357 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    358 	if (timo == 0)
    359 		timo = 1;
    360 
    361 	/*
    362 	 * getticks() is technically int, but nothing special
    363 	 * happens instead of overflow, so we assume two's-complement
    364 	 * wraparound and just treat it as unsigned.
    365 	 */
    366 	start = getticks();
    367 	error = cv_timedwait(cv, mtx, timo);
    368 	end = getticks();
    369 
    370 	/*
    371 	 * Set it to the time left, or zero, whichever is larger.  We
    372 	 * do not fail with EWOULDBLOCK here because this may have been
    373 	 * an explicit wakeup, so the caller needs to check before they
    374 	 * give up or else cv_signal would be lost.
    375 	 */
    376 	slept = timo2bintime(end - start);
    377 	if (bintimecmp(bt, &slept, <=)) {
    378 		bt->sec = 0;
    379 		bt->frac = 0;
    380 	} else {
    381 		/* bt := bt - slept */
    382 		bintime_sub(bt, &slept);
    383 	}
    384 
    385 	return error;
    386 }
    387 
    388 /*
    389  * cv_timedwaitbt_sig:
    390  *
    391  *	Wait on a condition variable until awoken, the specified
    392  *	timeout expires, or interrupted by a signal.  Returns zero if
    393  *	awoken normally, EWOULDBLOCK if the timeout expires, or
    394  *	EINTR/ERESTART if interrupted by a signal.
    395  *
    396  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt_sig
    397  *	subtracts the time slept, so on exit, bt is the time remaining
    398  *	after sleeping.  No infinite timeout; use cv_wait instead.
    399  *
    400  *	epsilon is a requested maximum error in timeout (excluding
    401  *	spurious wakeups).  Currently not used, will be used in the
    402  *	future to choose between low- and high-resolution timers.
    403  */
    404 int
    405 cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
    406     const struct bintime *epsilon __diagused)
    407 {
    408 	struct bintime slept;
    409 	unsigned start, end;
    410 	int timo;
    411 	int error;
    412 
    413 	KASSERTMSG(bt->sec >= 0, "negative timeout");
    414 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
    415 
    416 	/* If there's nothing left to wait, time out.  */
    417 	if (bt->sec == 0 && bt->frac == 0)
    418 		return EWOULDBLOCK;
    419 
    420 	/* Convert to ticks, but clamp to be >=1.  */
    421 	timo = bintime2timo(bt);
    422 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
    423 	if (timo == 0)
    424 		timo = 1;
    425 
    426 	/*
    427 	 * getticks() is technically int, but nothing special
    428 	 * happens instead of overflow, so we assume two's-complement
    429 	 * wraparound and just treat it as unsigned.
    430 	 */
    431 	start = getticks();
    432 	error = cv_timedwait_sig(cv, mtx, timo);
    433 	end = getticks();
    434 
    435 	/*
    436 	 * Set it to the time left, or zero, whichever is larger.  We
    437 	 * do not fail with EWOULDBLOCK here because this may have been
    438 	 * an explicit wakeup, so the caller needs to check before they
    439 	 * give up or else cv_signal would be lost.
    440 	 */
    441 	slept = timo2bintime(end - start);
    442 	if (bintimecmp(bt, &slept, <=)) {
    443 		bt->sec = 0;
    444 		bt->frac = 0;
    445 	} else {
    446 		/* bt := bt - slept */
    447 		bintime_sub(bt, &slept);
    448 	}
    449 
    450 	return error;
    451 }
    452 
    453 /*
    454  * cv_signal:
    455  *
    456  *	Wake the highest priority LWP waiting on a condition variable.  Must
    457  *	be called with the interlocking mutex held or just after it has been
    458  *	released (so the awoken LWP will see the changed condition).
    459  */
    460 void
    461 cv_signal(kcondvar_t *cv)
    462 {
    463 
    464 	KASSERT(cv_is_valid(cv));
    465 
    466 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv)))) {
    467 		/*
    468 		 * Compiler turns into a tail call usually, i.e. jmp,
    469 		 * because the arguments are the same and no locals.
    470 		 */
    471 		cv_wakeup_one(cv);
    472 	}
    473 }
    474 
    475 /*
    476  * cv_wakeup_one:
    477  *
    478  *	Slow path for cv_signal().  Deliberately marked __noinline to
    479  *	prevent the compiler pulling it in to cv_signal(), which adds
    480  *	extra prologue and epilogue code.
    481  */
    482 static __noinline void
    483 cv_wakeup_one(kcondvar_t *cv)
    484 {
    485 	sleepq_t *sq;
    486 	kmutex_t *mp;
    487 	lwp_t *l;
    488 
    489 	mp = sleepq_hashlock(cv);
    490 	sq = CV_SLEEPQ(cv);
    491 	if (__predict_true((l = LIST_FIRST(sq)) != NULL)) {
    492 		KASSERT(l->l_sleepq == sq);
    493 		KASSERT(l->l_mutex == mp);
    494 		KASSERT(l->l_wchan == cv);
    495 		sleepq_remove(sq, l, true);
    496 	}
    497 	mutex_spin_exit(mp);
    498 }
    499 
    500 /*
    501  * cv_broadcast:
    502  *
    503  *	Wake all LWPs waiting on a condition variable.  Must be called with
    504  *	the interlocking mutex held or just after it has been released (so
    505  *	the awoken LWP will see the changed condition).
    506  */
    507 void
    508 cv_broadcast(kcondvar_t *cv)
    509 {
    510 
    511 	KASSERT(cv_is_valid(cv));
    512 
    513 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv)))) {
    514 		/*
    515 		 * Compiler turns into a tail call usually, i.e. jmp,
    516 		 * because the arguments are the same and no locals.
    517 		 */
    518 		cv_wakeup_all(cv);
    519 	}
    520 }
    521 
    522 /*
    523  * cv_wakeup_all:
    524  *
    525  *	Slow path for cv_broadcast().  Deliberately marked __noinline to
    526  *	prevent the compiler pulling it in to cv_broadcast(), which adds
    527  *	extra prologue and epilogue code.
    528  */
    529 static __noinline void
    530 cv_wakeup_all(kcondvar_t *cv)
    531 {
    532 	sleepq_t *sq;
    533 	kmutex_t *mp;
    534 	lwp_t *l;
    535 
    536 	mp = sleepq_hashlock(cv);
    537 	sq = CV_SLEEPQ(cv);
    538 	while ((l = LIST_FIRST(sq)) != NULL) {
    539 		KASSERT(l->l_sleepq == sq);
    540 		KASSERT(l->l_mutex == mp);
    541 		KASSERT(l->l_wchan == cv);
    542 		sleepq_remove(sq, l, true);
    543 	}
    544 	mutex_spin_exit(mp);
    545 }
    546 
    547 /*
    548  * cv_has_waiters:
    549  *
    550  *	For diagnostic assertions: return non-zero if a condition
    551  *	variable has waiters.
    552  */
    553 bool
    554 cv_has_waiters(kcondvar_t *cv)
    555 {
    556 
    557 	return !LIST_EMPTY(CV_SLEEPQ(cv));
    558 }
    559 
    560 /*
    561  * cv_is_valid:
    562  *
    563  *	For diagnostic assertions: return non-zero if a condition
    564  *	variable appears to be valid.  No locks need be held.
    565  */
    566 bool
    567 cv_is_valid(kcondvar_t *cv)
    568 {
    569 
    570 	return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
    571 }
    572