1 /* $NetBSD: amdgpu_dcn20_mpc.c,v 1.2 2021/12/18 23:45:03 riastradh Exp $ */ 2 3 /* 4 * Copyright 2012-15 Advanced Micro Devices, Inc. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: AMD 25 * 26 */ 27 28 #include <sys/cdefs.h> 29 __KERNEL_RCSID(0, "$NetBSD: amdgpu_dcn20_mpc.c,v 1.2 2021/12/18 23:45:03 riastradh Exp $"); 30 31 #include "dcn20_mpc.h" 32 33 #include "reg_helper.h" 34 #include "dc.h" 35 #include "mem_input.h" 36 #include "dcn10/dcn10_cm_common.h" 37 38 #define REG(reg)\ 39 mpc20->mpc_regs->reg 40 41 #define IND_REG(index) \ 42 (index) 43 44 #define CTX \ 45 mpc20->base.ctx 46 47 #undef FN 48 #define FN(reg_name, field_name) \ 49 mpc20->mpc_shift->field_name, mpc20->mpc_mask->field_name 50 51 #define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0])) 52 53 void mpc2_update_blending( 54 struct mpc *mpc, 55 struct mpcc_blnd_cfg *blnd_cfg, 56 int mpcc_id) 57 { 58 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 59 60 struct mpcc *mpcc = mpc1_get_mpcc(mpc, mpcc_id); 61 62 REG_UPDATE_7(MPCC_CONTROL[mpcc_id], 63 MPCC_ALPHA_BLND_MODE, blnd_cfg->alpha_mode, 64 MPCC_ALPHA_MULTIPLIED_MODE, blnd_cfg->pre_multiplied_alpha, 65 MPCC_BLND_ACTIVE_OVERLAP_ONLY, blnd_cfg->overlap_only, 66 MPCC_GLOBAL_ALPHA, blnd_cfg->global_alpha, 67 MPCC_GLOBAL_GAIN, blnd_cfg->global_gain, 68 MPCC_BG_BPC, blnd_cfg->background_color_bpc, 69 MPCC_BOT_GAIN_MODE, blnd_cfg->bottom_gain_mode); 70 71 REG_SET(MPCC_TOP_GAIN[mpcc_id], 0, MPCC_TOP_GAIN, blnd_cfg->top_gain); 72 REG_SET(MPCC_BOT_GAIN_INSIDE[mpcc_id], 0, MPCC_BOT_GAIN_INSIDE, blnd_cfg->bottom_inside_gain); 73 REG_SET(MPCC_BOT_GAIN_OUTSIDE[mpcc_id], 0, MPCC_BOT_GAIN_OUTSIDE, blnd_cfg->bottom_outside_gain); 74 75 mpc1_set_bg_color(mpc, &blnd_cfg->black_color, mpcc_id); 76 mpcc->blnd_cfg = *blnd_cfg; 77 } 78 79 void mpc2_set_denorm( 80 struct mpc *mpc, 81 int opp_id, 82 enum dc_color_depth output_depth) 83 { 84 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 85 int denorm_mode = 0; 86 87 switch (output_depth) { 88 case COLOR_DEPTH_666: 89 denorm_mode = 1; 90 break; 91 case COLOR_DEPTH_888: 92 denorm_mode = 2; 93 break; 94 case COLOR_DEPTH_999: 95 denorm_mode = 3; 96 break; 97 case COLOR_DEPTH_101010: 98 denorm_mode = 4; 99 break; 100 case COLOR_DEPTH_111111: 101 denorm_mode = 5; 102 break; 103 case COLOR_DEPTH_121212: 104 denorm_mode = 6; 105 break; 106 case COLOR_DEPTH_141414: 107 case COLOR_DEPTH_161616: 108 default: 109 /* not valid used case! */ 110 break; 111 } 112 113 REG_UPDATE(DENORM_CONTROL[opp_id], 114 MPC_OUT_DENORM_MODE, denorm_mode); 115 } 116 117 void mpc2_set_denorm_clamp( 118 struct mpc *mpc, 119 int opp_id, 120 struct mpc_denorm_clamp denorm_clamp) 121 { 122 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 123 124 REG_UPDATE_2(DENORM_CONTROL[opp_id], 125 MPC_OUT_DENORM_CLAMP_MAX_R_CR, denorm_clamp.clamp_max_r_cr, 126 MPC_OUT_DENORM_CLAMP_MIN_R_CR, denorm_clamp.clamp_min_r_cr); 127 REG_UPDATE_2(DENORM_CLAMP_G_Y[opp_id], 128 MPC_OUT_DENORM_CLAMP_MAX_G_Y, denorm_clamp.clamp_max_g_y, 129 MPC_OUT_DENORM_CLAMP_MIN_G_Y, denorm_clamp.clamp_min_g_y); 130 REG_UPDATE_2(DENORM_CLAMP_B_CB[opp_id], 131 MPC_OUT_DENORM_CLAMP_MAX_B_CB, denorm_clamp.clamp_max_b_cb, 132 MPC_OUT_DENORM_CLAMP_MIN_B_CB, denorm_clamp.clamp_min_b_cb); 133 } 134 135 136 137 void mpc2_set_output_csc( 138 struct mpc *mpc, 139 int opp_id, 140 const uint16_t *regval, 141 enum mpc_output_csc_mode ocsc_mode) 142 { 143 uint32_t cur_mode; 144 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 145 struct color_matrices_reg ocsc_regs; 146 147 if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE) { 148 REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode); 149 return; 150 } 151 152 if (regval == NULL) { 153 BREAK_TO_DEBUGGER(); 154 return; 155 } 156 157 /* determine which CSC coefficients (A or B) we are using 158 * currently. select the alternate set to double buffer 159 * the CSC update so CSC is updated on frame boundary 160 */ 161 IX_REG_GET(MPC_OCSC_TEST_DEBUG_INDEX, MPC_OCSC_TEST_DEBUG_DATA, 162 MPC_OCSC_TEST_DEBUG_DATA_STATUS_IDX, 163 MPC_OCSC_TEST_DEBUG_DATA_OCSC_MODE, &cur_mode); 164 165 if (cur_mode != MPC_OUTPUT_CSC_COEF_A) 166 ocsc_mode = MPC_OUTPUT_CSC_COEF_A; 167 else 168 ocsc_mode = MPC_OUTPUT_CSC_COEF_B; 169 170 ocsc_regs.shifts.csc_c11 = mpc20->mpc_shift->MPC_OCSC_C11_A; 171 ocsc_regs.masks.csc_c11 = mpc20->mpc_mask->MPC_OCSC_C11_A; 172 ocsc_regs.shifts.csc_c12 = mpc20->mpc_shift->MPC_OCSC_C12_A; 173 ocsc_regs.masks.csc_c12 = mpc20->mpc_mask->MPC_OCSC_C12_A; 174 175 if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) { 176 ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]); 177 ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]); 178 } else { 179 ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]); 180 ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]); 181 } 182 183 cm_helper_program_color_matrices( 184 mpc20->base.ctx, 185 regval, 186 &ocsc_regs); 187 188 REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode); 189 } 190 191 void mpc2_set_ocsc_default( 192 struct mpc *mpc, 193 int opp_id, 194 enum dc_color_space color_space, 195 enum mpc_output_csc_mode ocsc_mode) 196 { 197 uint32_t cur_mode; 198 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 199 uint32_t arr_size; 200 struct color_matrices_reg ocsc_regs; 201 const uint16_t *regval = NULL; 202 203 if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE) { 204 REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode); 205 return; 206 } 207 208 regval = find_color_matrix(color_space, &arr_size); 209 210 if (regval == NULL) { 211 BREAK_TO_DEBUGGER(); 212 return; 213 } 214 215 /* determine which CSC coefficients (A or B) we are using 216 * currently. select the alternate set to double buffer 217 * the CSC update so CSC is updated on frame boundary 218 */ 219 IX_REG_GET(MPC_OCSC_TEST_DEBUG_INDEX, MPC_OCSC_TEST_DEBUG_DATA, 220 MPC_OCSC_TEST_DEBUG_DATA_STATUS_IDX, 221 MPC_OCSC_TEST_DEBUG_DATA_OCSC_MODE, &cur_mode); 222 223 if (cur_mode != MPC_OUTPUT_CSC_COEF_A) 224 ocsc_mode = MPC_OUTPUT_CSC_COEF_A; 225 else 226 ocsc_mode = MPC_OUTPUT_CSC_COEF_B; 227 228 ocsc_regs.shifts.csc_c11 = mpc20->mpc_shift->MPC_OCSC_C11_A; 229 ocsc_regs.masks.csc_c11 = mpc20->mpc_mask->MPC_OCSC_C11_A; 230 ocsc_regs.shifts.csc_c12 = mpc20->mpc_shift->MPC_OCSC_C12_A; 231 ocsc_regs.masks.csc_c12 = mpc20->mpc_mask->MPC_OCSC_C12_A; 232 233 234 if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) { 235 ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]); 236 ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]); 237 } else { 238 ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]); 239 ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]); 240 } 241 242 cm_helper_program_color_matrices( 243 mpc20->base.ctx, 244 regval, 245 &ocsc_regs); 246 247 REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode); 248 } 249 250 static void mpc2_ogam_get_reg_field( 251 struct mpc *mpc, 252 struct xfer_func_reg *reg) 253 { 254 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 255 256 reg->shifts.exp_region0_lut_offset = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET; 257 reg->masks.exp_region0_lut_offset = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET; 258 reg->shifts.exp_region0_num_segments = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; 259 reg->masks.exp_region0_num_segments = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; 260 reg->shifts.exp_region1_lut_offset = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET; 261 reg->masks.exp_region1_lut_offset = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET; 262 reg->shifts.exp_region1_num_segments = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; 263 reg->masks.exp_region1_num_segments = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; 264 reg->shifts.field_region_end = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_B; 265 reg->masks.field_region_end = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_B; 266 reg->shifts.field_region_end_slope = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B; 267 reg->masks.field_region_end_slope = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B; 268 reg->shifts.field_region_end_base = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B; 269 reg->masks.field_region_end_base = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B; 270 reg->shifts.field_region_linear_slope = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B; 271 reg->masks.field_region_linear_slope = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B; 272 reg->shifts.exp_region_start = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_B; 273 reg->masks.exp_region_start = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_B; 274 reg->shifts.exp_resion_start_segment = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B; 275 reg->masks.exp_resion_start_segment = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B; 276 } 277 278 void mpc20_power_on_ogam_lut( 279 struct mpc *mpc, int mpcc_id, 280 bool power_on) 281 { 282 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 283 284 REG_SET(MPCC_MEM_PWR_CTRL[mpcc_id], 0, 285 MPCC_OGAM_MEM_PWR_DIS, power_on == true ? 1:0); 286 287 } 288 289 static void mpc20_configure_ogam_lut( 290 struct mpc *mpc, int mpcc_id, 291 bool is_ram_a) 292 { 293 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 294 295 REG_UPDATE_2(MPCC_OGAM_LUT_RAM_CONTROL[mpcc_id], 296 MPCC_OGAM_LUT_WRITE_EN_MASK, 7, 297 MPCC_OGAM_LUT_RAM_SEL, is_ram_a == true ? 0:1); 298 299 REG_SET(MPCC_OGAM_LUT_INDEX[mpcc_id], 0, MPCC_OGAM_LUT_INDEX, 0); 300 } 301 302 static enum dc_lut_mode mpc20_get_ogam_current(struct mpc *mpc, int mpcc_id) 303 { 304 enum dc_lut_mode mode; 305 uint32_t state_mode; 306 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 307 308 REG_GET(MPCC_OGAM_LUT_RAM_CONTROL[mpcc_id], 309 MPCC_OGAM_CONFIG_STATUS, &state_mode); 310 311 switch (state_mode) { 312 case 0: 313 mode = LUT_BYPASS; 314 break; 315 case 1: 316 mode = LUT_RAM_A; 317 break; 318 case 2: 319 mode = LUT_RAM_B; 320 break; 321 default: 322 mode = LUT_BYPASS; 323 break; 324 } 325 return mode; 326 } 327 328 static void mpc2_program_lutb(struct mpc *mpc, int mpcc_id, 329 const struct pwl_params *params) 330 { 331 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 332 struct xfer_func_reg gam_regs; 333 334 mpc2_ogam_get_reg_field(mpc, &gam_regs); 335 336 gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMB_START_CNTL_B[mpcc_id]); 337 gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMB_START_CNTL_G[mpcc_id]); 338 gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMB_START_CNTL_R[mpcc_id]); 339 gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_B[mpcc_id]); 340 gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_G[mpcc_id]); 341 gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_R[mpcc_id]); 342 gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMB_END_CNTL1_B[mpcc_id]); 343 gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMB_END_CNTL2_B[mpcc_id]); 344 gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMB_END_CNTL1_G[mpcc_id]); 345 gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMB_END_CNTL2_G[mpcc_id]); 346 gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMB_END_CNTL1_R[mpcc_id]); 347 gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMB_END_CNTL2_R[mpcc_id]); 348 gam_regs.region_start = REG(MPCC_OGAM_RAMB_REGION_0_1[mpcc_id]); 349 gam_regs.region_end = REG(MPCC_OGAM_RAMB_REGION_32_33[mpcc_id]); 350 351 cm_helper_program_xfer_func(mpc20->base.ctx, params, &gam_regs); 352 353 } 354 355 static void mpc2_program_luta(struct mpc *mpc, int mpcc_id, 356 const struct pwl_params *params) 357 { 358 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 359 struct xfer_func_reg gam_regs; 360 361 mpc2_ogam_get_reg_field(mpc, &gam_regs); 362 363 gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMA_START_CNTL_B[mpcc_id]); 364 gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMA_START_CNTL_G[mpcc_id]); 365 gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMA_START_CNTL_R[mpcc_id]); 366 gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_B[mpcc_id]); 367 gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_G[mpcc_id]); 368 gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_R[mpcc_id]); 369 gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMA_END_CNTL1_B[mpcc_id]); 370 gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMA_END_CNTL2_B[mpcc_id]); 371 gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMA_END_CNTL1_G[mpcc_id]); 372 gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMA_END_CNTL2_G[mpcc_id]); 373 gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMA_END_CNTL1_R[mpcc_id]); 374 gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMA_END_CNTL2_R[mpcc_id]); 375 gam_regs.region_start = REG(MPCC_OGAM_RAMA_REGION_0_1[mpcc_id]); 376 gam_regs.region_end = REG(MPCC_OGAM_RAMA_REGION_32_33[mpcc_id]); 377 378 cm_helper_program_xfer_func(mpc20->base.ctx, params, &gam_regs); 379 380 } 381 382 static void mpc20_program_ogam_pwl( 383 struct mpc *mpc, int mpcc_id, 384 const struct pwl_result_data *rgb, 385 uint32_t num) 386 { 387 uint32_t i; 388 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 389 390 PERF_TRACE(); 391 REG_SEQ_START(); 392 393 for (i = 0 ; i < num; i++) { 394 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].red_reg); 395 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].green_reg); 396 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].blue_reg); 397 398 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, 399 MPCC_OGAM_LUT_DATA, rgb[i].delta_red_reg); 400 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, 401 MPCC_OGAM_LUT_DATA, rgb[i].delta_green_reg); 402 REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, 403 MPCC_OGAM_LUT_DATA, rgb[i].delta_blue_reg); 404 405 } 406 407 } 408 409 void apply_DEDCN20_305_wa( 410 struct mpc *mpc, 411 int mpcc_id, enum dc_lut_mode current_mode, 412 enum dc_lut_mode next_mode) 413 { 414 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 415 416 if (mpc->ctx->dc->debug.cm_in_bypass) { 417 REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0); 418 return; 419 } 420 421 if (mpc->ctx->dc->work_arounds.dedcn20_305_wa == false) { 422 /*hw fixed in new review*/ 423 return; 424 } 425 if (current_mode == LUT_BYPASS) 426 /*this will only work if OTG is locked. 427 *if we were to support OTG unlock case, 428 *the workaround will be more complex 429 */ 430 REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 431 next_mode == LUT_RAM_A ? 1:2); 432 } 433 434 void mpc2_set_output_gamma( 435 struct mpc *mpc, 436 int mpcc_id, 437 const struct pwl_params *params) 438 { 439 enum dc_lut_mode current_mode; 440 enum dc_lut_mode next_mode; 441 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 442 443 if (mpc->ctx->dc->debug.cm_in_bypass) { 444 REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0); 445 return; 446 } 447 448 if (params == NULL) { 449 REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0); 450 return; 451 } 452 453 current_mode = mpc20_get_ogam_current(mpc, mpcc_id); 454 if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A) 455 next_mode = LUT_RAM_B; 456 else 457 next_mode = LUT_RAM_A; 458 459 mpc20_power_on_ogam_lut(mpc, mpcc_id, true); 460 mpc20_configure_ogam_lut(mpc, mpcc_id, next_mode == LUT_RAM_A ? true:false); 461 462 if (next_mode == LUT_RAM_A) 463 mpc2_program_luta(mpc, mpcc_id, params); 464 else 465 mpc2_program_lutb(mpc, mpcc_id, params); 466 467 apply_DEDCN20_305_wa(mpc, mpcc_id, current_mode, next_mode); 468 469 mpc20_program_ogam_pwl( 470 mpc, mpcc_id, params->rgb_resulted, params->hw_points_num); 471 472 REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 473 next_mode == LUT_RAM_A ? 1:2); 474 } 475 void mpc2_assert_idle_mpcc(struct mpc *mpc, int id) 476 { 477 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 478 unsigned int mpc_disabled; 479 480 ASSERT(!(mpc20->mpcc_in_use_mask & 1 << id)); 481 REG_GET(MPCC_STATUS[id], MPCC_DISABLED, &mpc_disabled); 482 if (mpc_disabled) 483 return; 484 485 REG_WAIT(MPCC_STATUS[id], 486 MPCC_IDLE, 1, 487 1, 100000); 488 } 489 490 void mpc2_assert_mpcc_idle_before_connect(struct mpc *mpc, int mpcc_id) 491 { 492 struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); 493 unsigned int top_sel, mpc_busy, mpc_idle, mpc_disabled; 494 495 REG_GET(MPCC_TOP_SEL[mpcc_id], 496 MPCC_TOP_SEL, &top_sel); 497 498 REG_GET_3(MPCC_STATUS[mpcc_id], 499 MPCC_BUSY, &mpc_busy, 500 MPCC_IDLE, &mpc_idle, 501 MPCC_DISABLED, &mpc_disabled); 502 503 if (top_sel == 0xf) { 504 ASSERT(!mpc_busy); 505 ASSERT(mpc_idle); 506 ASSERT(mpc_disabled); 507 } else { 508 ASSERT(!mpc_disabled); 509 ASSERT(!mpc_idle); 510 } 511 512 REG_SEQ_SUBMIT(); 513 PERF_TRACE(); 514 REG_SEQ_WAIT_DONE(); 515 PERF_TRACE(); 516 } 517 518 static void mpc2_init_mpcc(struct mpcc *mpcc, int mpcc_inst) 519 { 520 mpcc->mpcc_id = mpcc_inst; 521 mpcc->dpp_id = 0xf; 522 mpcc->mpcc_bot = NULL; 523 mpcc->blnd_cfg.overlap_only = false; 524 mpcc->blnd_cfg.global_alpha = 0xff; 525 mpcc->blnd_cfg.global_gain = 0xff; 526 mpcc->blnd_cfg.background_color_bpc = 4; 527 mpcc->blnd_cfg.bottom_gain_mode = 0; 528 mpcc->blnd_cfg.top_gain = 0x1f000; 529 mpcc->blnd_cfg.bottom_inside_gain = 0x1f000; 530 mpcc->blnd_cfg.bottom_outside_gain = 0x1f000; 531 mpcc->sm_cfg.enable = false; 532 } 533 534 struct mpcc *mpc2_get_mpcc_for_dpp(struct mpc_tree *tree, int dpp_id) 535 { 536 struct mpcc *tmp_mpcc = tree->opp_list; 537 538 while (tmp_mpcc != NULL) { 539 if (tmp_mpcc->dpp_id == 0xf || tmp_mpcc->dpp_id == dpp_id) 540 return tmp_mpcc; 541 tmp_mpcc = tmp_mpcc->mpcc_bot; 542 } 543 return NULL; 544 } 545 546 const struct mpc_funcs dcn20_mpc_funcs = { 547 .read_mpcc_state = mpc1_read_mpcc_state, 548 .insert_plane = mpc1_insert_plane, 549 .remove_mpcc = mpc1_remove_mpcc, 550 .mpc_init = mpc1_mpc_init, 551 .mpc_init_single_inst = mpc1_mpc_init_single_inst, 552 .update_blending = mpc2_update_blending, 553 .get_mpcc_for_dpp = mpc2_get_mpcc_for_dpp, 554 .wait_for_idle = mpc2_assert_idle_mpcc, 555 .assert_mpcc_idle_before_connect = mpc2_assert_mpcc_idle_before_connect, 556 .init_mpcc_list_from_hw = mpc1_init_mpcc_list_from_hw, 557 .set_denorm = mpc2_set_denorm, 558 .set_denorm_clamp = mpc2_set_denorm_clamp, 559 .set_output_csc = mpc2_set_output_csc, 560 .set_ocsc_default = mpc2_set_ocsc_default, 561 .set_output_gamma = mpc2_set_output_gamma, 562 .power_on_mpc_mem_pwr = mpc20_power_on_ogam_lut, 563 }; 564 565 void dcn20_mpc_construct(struct dcn20_mpc *mpc20, 566 struct dc_context *ctx, 567 const struct dcn20_mpc_registers *mpc_regs, 568 const struct dcn20_mpc_shift *mpc_shift, 569 const struct dcn20_mpc_mask *mpc_mask, 570 int num_mpcc) 571 { 572 int i; 573 574 mpc20->base.ctx = ctx; 575 576 mpc20->base.funcs = &dcn20_mpc_funcs; 577 578 mpc20->mpc_regs = mpc_regs; 579 mpc20->mpc_shift = mpc_shift; 580 mpc20->mpc_mask = mpc_mask; 581 582 mpc20->mpcc_in_use_mask = 0; 583 mpc20->num_mpcc = num_mpcc; 584 585 for (i = 0; i < MAX_MPCC; i++) 586 mpc2_init_mpcc(&mpc20->base.mpcc_array[i], i); 587 } 588 589