1 /* $NetBSD: kfd_device_queue_manager.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $ */ 2 3 /* 4 * Copyright 2014 Advanced Micro Devices, Inc. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: kfd_device_queue_manager.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $"); 28 29 #include <linux/ratelimit.h> 30 #include <linux/printk.h> 31 #include <linux/slab.h> 32 #include <linux/list.h> 33 #include <linux/types.h> 34 #include <linux/bitops.h> 35 #include <linux/sched.h> 36 #include "kfd_priv.h" 37 #include "kfd_device_queue_manager.h" 38 #include "kfd_mqd_manager.h" 39 #include "cik_regs.h" 40 #include "kfd_kernel_queue.h" 41 #include "amdgpu_amdkfd.h" 42 43 /* Size of the per-pipe EOP queue */ 44 #define CIK_HPD_EOP_BYTES_LOG2 11 45 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) 46 47 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, 48 unsigned int pasid, unsigned int vmid); 49 50 static int execute_queues_cpsch(struct device_queue_manager *dqm, 51 enum kfd_unmap_queues_filter filter, 52 uint32_t filter_param); 53 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 54 enum kfd_unmap_queues_filter filter, 55 uint32_t filter_param); 56 57 static int map_queues_cpsch(struct device_queue_manager *dqm); 58 59 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 60 struct queue *q); 61 62 static inline void deallocate_hqd(struct device_queue_manager *dqm, 63 struct queue *q); 64 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q); 65 static int allocate_sdma_queue(struct device_queue_manager *dqm, 66 struct queue *q); 67 static void kfd_process_hw_exception(struct work_struct *work); 68 69 static inline 70 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) 71 { 72 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI) 73 return KFD_MQD_TYPE_SDMA; 74 return KFD_MQD_TYPE_CP; 75 } 76 77 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe) 78 { 79 int i; 80 int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec 81 + pipe * dqm->dev->shared_resources.num_queue_per_pipe; 82 83 /* queue is available for KFD usage if bit is 1 */ 84 for (i = 0; i < dqm->dev->shared_resources.num_queue_per_pipe; ++i) 85 if (test_bit(pipe_offset + i, 86 dqm->dev->shared_resources.queue_bitmap)) 87 return true; 88 return false; 89 } 90 91 unsigned int get_queues_num(struct device_queue_manager *dqm) 92 { 93 return bitmap_weight(dqm->dev->shared_resources.queue_bitmap, 94 KGD_MAX_QUEUES); 95 } 96 97 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm) 98 { 99 return dqm->dev->shared_resources.num_queue_per_pipe; 100 } 101 102 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm) 103 { 104 return dqm->dev->shared_resources.num_pipe_per_mec; 105 } 106 107 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm) 108 { 109 return dqm->dev->device_info->num_sdma_engines; 110 } 111 112 static unsigned int get_num_xgmi_sdma_engines(struct device_queue_manager *dqm) 113 { 114 return dqm->dev->device_info->num_xgmi_sdma_engines; 115 } 116 117 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm) 118 { 119 return dqm->dev->device_info->num_sdma_engines 120 * dqm->dev->device_info->num_sdma_queues_per_engine; 121 } 122 123 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm) 124 { 125 return dqm->dev->device_info->num_xgmi_sdma_engines 126 * dqm->dev->device_info->num_sdma_queues_per_engine; 127 } 128 129 void program_sh_mem_settings(struct device_queue_manager *dqm, 130 struct qcm_process_device *qpd) 131 { 132 return dqm->dev->kfd2kgd->program_sh_mem_settings( 133 dqm->dev->kgd, qpd->vmid, 134 qpd->sh_mem_config, 135 qpd->sh_mem_ape1_base, 136 qpd->sh_mem_ape1_limit, 137 qpd->sh_mem_bases); 138 } 139 140 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q) 141 { 142 struct kfd_dev *dev = qpd->dqm->dev; 143 144 if (!KFD_IS_SOC15(dev->device_info->asic_family)) { 145 /* On pre-SOC15 chips we need to use the queue ID to 146 * preserve the user mode ABI. 147 */ 148 q->doorbell_id = q->properties.queue_id; 149 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 150 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 151 /* For SDMA queues on SOC15 with 8-byte doorbell, use static 152 * doorbell assignments based on the engine and queue id. 153 * The doobell index distance between RLC (2*i) and (2*i+1) 154 * for a SDMA engine is 512. 155 */ 156 uint32_t *idx_offset = 157 dev->shared_resources.sdma_doorbell_idx; 158 159 q->doorbell_id = idx_offset[q->properties.sdma_engine_id] 160 + (q->properties.sdma_queue_id & 1) 161 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET 162 + (q->properties.sdma_queue_id >> 1); 163 } else { 164 /* For CP queues on SOC15 reserve a free doorbell ID */ 165 unsigned int found; 166 167 found = find_first_zero_bit(qpd->doorbell_bitmap, 168 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 169 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) { 170 pr_debug("No doorbells available"); 171 return -EBUSY; 172 } 173 set_bit(found, qpd->doorbell_bitmap); 174 q->doorbell_id = found; 175 } 176 177 q->properties.doorbell_off = 178 kfd_get_doorbell_dw_offset_in_bar(dev, q->process, 179 q->doorbell_id); 180 181 return 0; 182 } 183 184 static void deallocate_doorbell(struct qcm_process_device *qpd, 185 struct queue *q) 186 { 187 unsigned int old; 188 struct kfd_dev *dev = qpd->dqm->dev; 189 190 if (!KFD_IS_SOC15(dev->device_info->asic_family) || 191 q->properties.type == KFD_QUEUE_TYPE_SDMA || 192 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 193 return; 194 195 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap); 196 WARN_ON(!old); 197 } 198 199 static int allocate_vmid(struct device_queue_manager *dqm, 200 struct qcm_process_device *qpd, 201 struct queue *q) 202 { 203 int allocated_vmid = -1, i; 204 205 for (i = dqm->dev->vm_info.first_vmid_kfd; 206 i <= dqm->dev->vm_info.last_vmid_kfd; i++) { 207 if (!dqm->vmid_pasid[i]) { 208 allocated_vmid = i; 209 break; 210 } 211 } 212 213 if (allocated_vmid < 0) { 214 pr_err("no more vmid to allocate\n"); 215 return -ENOSPC; 216 } 217 218 pr_debug("vmid allocated: %d\n", allocated_vmid); 219 220 dqm->vmid_pasid[allocated_vmid] = q->process->pasid; 221 222 set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid); 223 224 qpd->vmid = allocated_vmid; 225 q->properties.vmid = allocated_vmid; 226 227 program_sh_mem_settings(dqm, qpd); 228 229 /* qpd->page_table_base is set earlier when register_process() 230 * is called, i.e. when the first queue is created. 231 */ 232 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd, 233 qpd->vmid, 234 qpd->page_table_base); 235 /* invalidate the VM context after pasid and vmid mapping is set up */ 236 kfd_flush_tlb(qpd_to_pdd(qpd)); 237 238 if (dqm->dev->kfd2kgd->set_scratch_backing_va) 239 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->kgd, 240 qpd->sh_hidden_private_base, qpd->vmid); 241 242 return 0; 243 } 244 245 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev, 246 struct qcm_process_device *qpd) 247 { 248 const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf; 249 int ret; 250 251 if (!qpd->ib_kaddr) 252 return -ENOMEM; 253 254 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr); 255 if (ret) 256 return ret; 257 258 return amdgpu_amdkfd_submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid, 259 qpd->ib_base, (uint32_t *)qpd->ib_kaddr, 260 pmf->release_mem_size / sizeof(uint32_t)); 261 } 262 263 static void deallocate_vmid(struct device_queue_manager *dqm, 264 struct qcm_process_device *qpd, 265 struct queue *q) 266 { 267 /* On GFX v7, CP doesn't flush TC at dequeue */ 268 if (q->device->device_info->asic_family == CHIP_HAWAII) 269 if (flush_texture_cache_nocpsch(q->device, qpd)) 270 pr_err("Failed to flush TC\n"); 271 272 kfd_flush_tlb(qpd_to_pdd(qpd)); 273 274 /* Release the vmid mapping */ 275 set_pasid_vmid_mapping(dqm, 0, qpd->vmid); 276 dqm->vmid_pasid[qpd->vmid] = 0; 277 278 qpd->vmid = 0; 279 q->properties.vmid = 0; 280 } 281 282 static int create_queue_nocpsch(struct device_queue_manager *dqm, 283 struct queue *q, 284 struct qcm_process_device *qpd) 285 { 286 struct mqd_manager *mqd_mgr; 287 int retval; 288 289 print_queue(q); 290 291 dqm_lock(dqm); 292 293 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 294 pr_warn("Can't create new usermode queue because %d queues were already created\n", 295 dqm->total_queue_count); 296 retval = -EPERM; 297 goto out_unlock; 298 } 299 300 if (list_empty(&qpd->queues_list)) { 301 retval = allocate_vmid(dqm, qpd, q); 302 if (retval) 303 goto out_unlock; 304 } 305 q->properties.vmid = qpd->vmid; 306 /* 307 * Eviction state logic: mark all queues as evicted, even ones 308 * not currently active. Restoring inactive queues later only 309 * updates the is_evicted flag but is a no-op otherwise. 310 */ 311 q->properties.is_evicted = !!qpd->evicted; 312 313 q->properties.tba_addr = qpd->tba_addr; 314 q->properties.tma_addr = qpd->tma_addr; 315 316 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 317 q->properties.type)]; 318 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 319 retval = allocate_hqd(dqm, q); 320 if (retval) 321 goto deallocate_vmid; 322 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n", 323 q->pipe, q->queue); 324 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 325 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 326 retval = allocate_sdma_queue(dqm, q); 327 if (retval) 328 goto deallocate_vmid; 329 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 330 } 331 332 retval = allocate_doorbell(qpd, q); 333 if (retval) 334 goto out_deallocate_hqd; 335 336 /* Temporarily release dqm lock to avoid a circular lock dependency */ 337 dqm_unlock(dqm); 338 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 339 dqm_lock(dqm); 340 341 if (!q->mqd_mem_obj) { 342 retval = -ENOMEM; 343 goto out_deallocate_doorbell; 344 } 345 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 346 &q->gart_mqd_addr, &q->properties); 347 if (q->properties.is_active) { 348 if (!dqm->sched_running) { 349 WARN_ONCE(1, "Load non-HWS mqd while stopped\n"); 350 goto add_queue_to_list; 351 } 352 353 if (WARN(q->process->mm != current->mm, 354 "should only run in user thread")) 355 retval = -EFAULT; 356 else 357 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 358 q->queue, &q->properties, current->mm); 359 if (retval) 360 goto out_free_mqd; 361 } 362 363 add_queue_to_list: 364 list_add(&q->list, &qpd->queues_list); 365 qpd->queue_count++; 366 if (q->properties.is_active) 367 dqm->queue_count++; 368 369 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 370 dqm->sdma_queue_count++; 371 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 372 dqm->xgmi_sdma_queue_count++; 373 374 /* 375 * Unconditionally increment this counter, regardless of the queue's 376 * type or whether the queue is active. 377 */ 378 dqm->total_queue_count++; 379 pr_debug("Total of %d queues are accountable so far\n", 380 dqm->total_queue_count); 381 goto out_unlock; 382 383 out_free_mqd: 384 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 385 out_deallocate_doorbell: 386 deallocate_doorbell(qpd, q); 387 out_deallocate_hqd: 388 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 389 deallocate_hqd(dqm, q); 390 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 391 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 392 deallocate_sdma_queue(dqm, q); 393 deallocate_vmid: 394 if (list_empty(&qpd->queues_list)) 395 deallocate_vmid(dqm, qpd, q); 396 out_unlock: 397 dqm_unlock(dqm); 398 return retval; 399 } 400 401 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) 402 { 403 bool set; 404 int pipe, bit, i; 405 406 set = false; 407 408 for (pipe = dqm->next_pipe_to_allocate, i = 0; 409 i < get_pipes_per_mec(dqm); 410 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) { 411 412 if (!is_pipe_enabled(dqm, 0, pipe)) 413 continue; 414 415 if (dqm->allocated_queues[pipe] != 0) { 416 bit = ffs(dqm->allocated_queues[pipe]) - 1; 417 dqm->allocated_queues[pipe] &= ~(1 << bit); 418 q->pipe = pipe; 419 q->queue = bit; 420 set = true; 421 break; 422 } 423 } 424 425 if (!set) 426 return -EBUSY; 427 428 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue); 429 /* horizontal hqd allocation */ 430 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm); 431 432 return 0; 433 } 434 435 static inline void deallocate_hqd(struct device_queue_manager *dqm, 436 struct queue *q) 437 { 438 dqm->allocated_queues[q->pipe] |= (1 << q->queue); 439 } 440 441 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked 442 * to avoid asynchronized access 443 */ 444 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm, 445 struct qcm_process_device *qpd, 446 struct queue *q) 447 { 448 int retval; 449 struct mqd_manager *mqd_mgr; 450 451 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 452 q->properties.type)]; 453 454 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 455 deallocate_hqd(dqm, q); 456 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 457 dqm->sdma_queue_count--; 458 deallocate_sdma_queue(dqm, q); 459 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 460 dqm->xgmi_sdma_queue_count--; 461 deallocate_sdma_queue(dqm, q); 462 } else { 463 pr_debug("q->properties.type %d is invalid\n", 464 q->properties.type); 465 return -EINVAL; 466 } 467 dqm->total_queue_count--; 468 469 deallocate_doorbell(qpd, q); 470 471 if (!dqm->sched_running) { 472 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n"); 473 return 0; 474 } 475 476 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 477 KFD_PREEMPT_TYPE_WAVEFRONT_RESET, 478 KFD_UNMAP_LATENCY_MS, 479 q->pipe, q->queue); 480 if (retval == -ETIME) 481 qpd->reset_wavefronts = true; 482 483 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 484 485 list_del(&q->list); 486 if (list_empty(&qpd->queues_list)) { 487 if (qpd->reset_wavefronts) { 488 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n", 489 dqm->dev); 490 /* dbgdev_wave_reset_wavefronts has to be called before 491 * deallocate_vmid(), i.e. when vmid is still in use. 492 */ 493 dbgdev_wave_reset_wavefronts(dqm->dev, 494 qpd->pqm->process); 495 qpd->reset_wavefronts = false; 496 } 497 498 deallocate_vmid(dqm, qpd, q); 499 } 500 qpd->queue_count--; 501 if (q->properties.is_active) 502 dqm->queue_count--; 503 504 return retval; 505 } 506 507 static int destroy_queue_nocpsch(struct device_queue_manager *dqm, 508 struct qcm_process_device *qpd, 509 struct queue *q) 510 { 511 int retval; 512 513 dqm_lock(dqm); 514 retval = destroy_queue_nocpsch_locked(dqm, qpd, q); 515 dqm_unlock(dqm); 516 517 return retval; 518 } 519 520 static int update_queue(struct device_queue_manager *dqm, struct queue *q) 521 { 522 int retval = 0; 523 struct mqd_manager *mqd_mgr; 524 struct kfd_process_device *pdd; 525 bool prev_active = false; 526 527 dqm_lock(dqm); 528 pdd = kfd_get_process_device_data(q->device, q->process); 529 if (!pdd) { 530 retval = -ENODEV; 531 goto out_unlock; 532 } 533 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 534 q->properties.type)]; 535 536 /* Save previous activity state for counters */ 537 prev_active = q->properties.is_active; 538 539 /* Make sure the queue is unmapped before updating the MQD */ 540 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 541 retval = unmap_queues_cpsch(dqm, 542 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 543 if (retval) { 544 pr_err("unmap queue failed\n"); 545 goto out_unlock; 546 } 547 } else if (prev_active && 548 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 549 q->properties.type == KFD_QUEUE_TYPE_SDMA || 550 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 551 552 if (!dqm->sched_running) { 553 WARN_ONCE(1, "Update non-HWS queue while stopped\n"); 554 goto out_unlock; 555 } 556 557 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 558 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN, 559 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 560 if (retval) { 561 pr_err("destroy mqd failed\n"); 562 goto out_unlock; 563 } 564 } 565 566 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties); 567 568 /* 569 * check active state vs. the previous state and modify 570 * counter accordingly. map_queues_cpsch uses the 571 * dqm->queue_count to determine whether a new runlist must be 572 * uploaded. 573 */ 574 if (q->properties.is_active && !prev_active) 575 dqm->queue_count++; 576 else if (!q->properties.is_active && prev_active) 577 dqm->queue_count--; 578 579 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) 580 retval = map_queues_cpsch(dqm); 581 else if (q->properties.is_active && 582 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 583 q->properties.type == KFD_QUEUE_TYPE_SDMA || 584 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 585 if (WARN(q->process->mm != current->mm, 586 "should only run in user thread")) 587 retval = -EFAULT; 588 else 589 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 590 q->pipe, q->queue, 591 &q->properties, current->mm); 592 } 593 594 out_unlock: 595 dqm_unlock(dqm); 596 return retval; 597 } 598 599 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm, 600 struct qcm_process_device *qpd) 601 { 602 struct queue *q; 603 struct mqd_manager *mqd_mgr; 604 struct kfd_process_device *pdd; 605 int retval, ret = 0; 606 607 dqm_lock(dqm); 608 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 609 goto out; 610 611 pdd = qpd_to_pdd(qpd); 612 pr_info_ratelimited("Evicting PASID 0x%x queues\n", 613 pdd->process->pasid); 614 615 /* Mark all queues as evicted. Deactivate all active queues on 616 * the qpd. 617 */ 618 list_for_each_entry(q, &qpd->queues_list, list) { 619 q->properties.is_evicted = true; 620 if (!q->properties.is_active) 621 continue; 622 623 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 624 q->properties.type)]; 625 q->properties.is_active = false; 626 dqm->queue_count--; 627 628 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n")) 629 continue; 630 631 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 632 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN, 633 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 634 if (retval && !ret) 635 /* Return the first error, but keep going to 636 * maintain a consistent eviction state 637 */ 638 ret = retval; 639 } 640 641 out: 642 dqm_unlock(dqm); 643 return ret; 644 } 645 646 static int evict_process_queues_cpsch(struct device_queue_manager *dqm, 647 struct qcm_process_device *qpd) 648 { 649 struct queue *q; 650 struct kfd_process_device *pdd; 651 int retval = 0; 652 653 dqm_lock(dqm); 654 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 655 goto out; 656 657 pdd = qpd_to_pdd(qpd); 658 pr_info_ratelimited("Evicting PASID 0x%x queues\n", 659 pdd->process->pasid); 660 661 /* Mark all queues as evicted. Deactivate all active queues on 662 * the qpd. 663 */ 664 list_for_each_entry(q, &qpd->queues_list, list) { 665 q->properties.is_evicted = true; 666 if (!q->properties.is_active) 667 continue; 668 669 q->properties.is_active = false; 670 dqm->queue_count--; 671 } 672 retval = execute_queues_cpsch(dqm, 673 qpd->is_debug ? 674 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES : 675 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 676 677 out: 678 dqm_unlock(dqm); 679 return retval; 680 } 681 682 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm, 683 struct qcm_process_device *qpd) 684 { 685 struct mm_struct *mm = NULL; 686 struct queue *q; 687 struct mqd_manager *mqd_mgr; 688 struct kfd_process_device *pdd; 689 uint64_t pd_base; 690 int retval, ret = 0; 691 692 pdd = qpd_to_pdd(qpd); 693 /* Retrieve PD base */ 694 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); 695 696 dqm_lock(dqm); 697 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 698 goto out; 699 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 700 qpd->evicted--; 701 goto out; 702 } 703 704 pr_info_ratelimited("Restoring PASID 0x%x queues\n", 705 pdd->process->pasid); 706 707 /* Update PD Base in QPD */ 708 qpd->page_table_base = pd_base; 709 pr_debug("Updated PD address to 0x%llx\n", pd_base); 710 711 if (!list_empty(&qpd->queues_list)) { 712 dqm->dev->kfd2kgd->set_vm_context_page_table_base( 713 dqm->dev->kgd, 714 qpd->vmid, 715 qpd->page_table_base); 716 kfd_flush_tlb(pdd); 717 } 718 719 /* Take a safe reference to the mm_struct, which may otherwise 720 * disappear even while the kfd_process is still referenced. 721 */ 722 mm = get_task_mm(pdd->process->lead_thread); 723 if (!mm) { 724 ret = -EFAULT; 725 goto out; 726 } 727 728 /* Remove the eviction flags. Activate queues that are not 729 * inactive for other reasons. 730 */ 731 list_for_each_entry(q, &qpd->queues_list, list) { 732 q->properties.is_evicted = false; 733 if (!QUEUE_IS_ACTIVE(q->properties)) 734 continue; 735 736 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 737 q->properties.type)]; 738 q->properties.is_active = true; 739 dqm->queue_count++; 740 741 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n")) 742 continue; 743 744 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 745 q->queue, &q->properties, mm); 746 if (retval && !ret) 747 /* Return the first error, but keep going to 748 * maintain a consistent eviction state 749 */ 750 ret = retval; 751 } 752 qpd->evicted = 0; 753 out: 754 if (mm) 755 mmput(mm); 756 dqm_unlock(dqm); 757 return ret; 758 } 759 760 static int restore_process_queues_cpsch(struct device_queue_manager *dqm, 761 struct qcm_process_device *qpd) 762 { 763 struct queue *q; 764 struct kfd_process_device *pdd; 765 uint64_t pd_base; 766 int retval = 0; 767 768 pdd = qpd_to_pdd(qpd); 769 /* Retrieve PD base */ 770 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); 771 772 dqm_lock(dqm); 773 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 774 goto out; 775 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 776 qpd->evicted--; 777 goto out; 778 } 779 780 pr_info_ratelimited("Restoring PASID 0x%x queues\n", 781 pdd->process->pasid); 782 783 /* Update PD Base in QPD */ 784 qpd->page_table_base = pd_base; 785 pr_debug("Updated PD address to 0x%llx\n", pd_base); 786 787 /* activate all active queues on the qpd */ 788 list_for_each_entry(q, &qpd->queues_list, list) { 789 q->properties.is_evicted = false; 790 if (!QUEUE_IS_ACTIVE(q->properties)) 791 continue; 792 793 q->properties.is_active = true; 794 dqm->queue_count++; 795 } 796 retval = execute_queues_cpsch(dqm, 797 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 798 qpd->evicted = 0; 799 out: 800 dqm_unlock(dqm); 801 return retval; 802 } 803 804 static int register_process(struct device_queue_manager *dqm, 805 struct qcm_process_device *qpd) 806 { 807 struct device_process_node *n; 808 struct kfd_process_device *pdd; 809 uint64_t pd_base; 810 int retval; 811 812 n = kzalloc(sizeof(*n), GFP_KERNEL); 813 if (!n) 814 return -ENOMEM; 815 816 n->qpd = qpd; 817 818 pdd = qpd_to_pdd(qpd); 819 /* Retrieve PD base */ 820 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); 821 822 dqm_lock(dqm); 823 list_add(&n->list, &dqm->queues); 824 825 /* Update PD Base in QPD */ 826 qpd->page_table_base = pd_base; 827 pr_debug("Updated PD address to 0x%llx\n", pd_base); 828 829 retval = dqm->asic_ops.update_qpd(dqm, qpd); 830 831 dqm->processes_count++; 832 833 dqm_unlock(dqm); 834 835 /* Outside the DQM lock because under the DQM lock we can't do 836 * reclaim or take other locks that others hold while reclaiming. 837 */ 838 kfd_inc_compute_active(dqm->dev); 839 840 return retval; 841 } 842 843 static int unregister_process(struct device_queue_manager *dqm, 844 struct qcm_process_device *qpd) 845 { 846 int retval; 847 struct device_process_node *cur, *next; 848 849 pr_debug("qpd->queues_list is %s\n", 850 list_empty(&qpd->queues_list) ? "empty" : "not empty"); 851 852 retval = 0; 853 dqm_lock(dqm); 854 855 list_for_each_entry_safe(cur, next, &dqm->queues, list) { 856 if (qpd == cur->qpd) { 857 list_del(&cur->list); 858 kfree(cur); 859 dqm->processes_count--; 860 goto out; 861 } 862 } 863 /* qpd not found in dqm list */ 864 retval = 1; 865 out: 866 dqm_unlock(dqm); 867 868 /* Outside the DQM lock because under the DQM lock we can't do 869 * reclaim or take other locks that others hold while reclaiming. 870 */ 871 if (!retval) 872 kfd_dec_compute_active(dqm->dev); 873 874 return retval; 875 } 876 877 static int 878 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid, 879 unsigned int vmid) 880 { 881 return dqm->dev->kfd2kgd->set_pasid_vmid_mapping( 882 dqm->dev->kgd, pasid, vmid); 883 } 884 885 static void init_interrupts(struct device_queue_manager *dqm) 886 { 887 unsigned int i; 888 889 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) 890 if (is_pipe_enabled(dqm, 0, i)) 891 dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i); 892 } 893 894 static int initialize_nocpsch(struct device_queue_manager *dqm) 895 { 896 int pipe, queue; 897 898 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 899 900 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm), 901 sizeof(unsigned int), GFP_KERNEL); 902 if (!dqm->allocated_queues) 903 return -ENOMEM; 904 905 mutex_init(&dqm->lock_hidden); 906 INIT_LIST_HEAD(&dqm->queues); 907 dqm->queue_count = dqm->next_pipe_to_allocate = 0; 908 dqm->sdma_queue_count = 0; 909 dqm->xgmi_sdma_queue_count = 0; 910 911 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 912 int pipe_offset = pipe * get_queues_per_pipe(dqm); 913 914 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) 915 if (test_bit(pipe_offset + queue, 916 dqm->dev->shared_resources.queue_bitmap)) 917 dqm->allocated_queues[pipe] |= 1 << queue; 918 } 919 920 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid)); 921 922 dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm)); 923 dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm)); 924 925 return 0; 926 } 927 928 static void uninitialize(struct device_queue_manager *dqm) 929 { 930 int i; 931 932 WARN_ON(dqm->queue_count > 0 || dqm->processes_count > 0); 933 934 kfree(dqm->allocated_queues); 935 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) 936 kfree(dqm->mqd_mgrs[i]); 937 mutex_destroy(&dqm->lock_hidden); 938 } 939 940 static int start_nocpsch(struct device_queue_manager *dqm) 941 { 942 pr_info("SW scheduler is used"); 943 init_interrupts(dqm); 944 945 if (dqm->dev->device_info->asic_family == CHIP_HAWAII) 946 return pm_init(&dqm->packets, dqm); 947 dqm->sched_running = true; 948 949 return 0; 950 } 951 952 static int stop_nocpsch(struct device_queue_manager *dqm) 953 { 954 if (dqm->dev->device_info->asic_family == CHIP_HAWAII) 955 pm_uninit(&dqm->packets, false); 956 dqm->sched_running = false; 957 958 return 0; 959 } 960 961 static void pre_reset(struct device_queue_manager *dqm) 962 { 963 dqm_lock(dqm); 964 dqm->is_resetting = true; 965 dqm_unlock(dqm); 966 } 967 968 static int allocate_sdma_queue(struct device_queue_manager *dqm, 969 struct queue *q) 970 { 971 int bit; 972 973 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 974 if (dqm->sdma_bitmap == 0) 975 return -ENOMEM; 976 bit = __ffs64(dqm->sdma_bitmap); 977 dqm->sdma_bitmap &= ~(1ULL << bit); 978 q->sdma_id = bit; 979 q->properties.sdma_engine_id = q->sdma_id % 980 get_num_sdma_engines(dqm); 981 q->properties.sdma_queue_id = q->sdma_id / 982 get_num_sdma_engines(dqm); 983 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 984 if (dqm->xgmi_sdma_bitmap == 0) 985 return -ENOMEM; 986 bit = __ffs64(dqm->xgmi_sdma_bitmap); 987 dqm->xgmi_sdma_bitmap &= ~(1ULL << bit); 988 q->sdma_id = bit; 989 /* sdma_engine_id is sdma id including 990 * both PCIe-optimized SDMAs and XGMI- 991 * optimized SDMAs. The calculation below 992 * assumes the first N engines are always 993 * PCIe-optimized ones 994 */ 995 q->properties.sdma_engine_id = get_num_sdma_engines(dqm) + 996 q->sdma_id % get_num_xgmi_sdma_engines(dqm); 997 q->properties.sdma_queue_id = q->sdma_id / 998 get_num_xgmi_sdma_engines(dqm); 999 } 1000 1001 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id); 1002 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id); 1003 1004 return 0; 1005 } 1006 1007 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 1008 struct queue *q) 1009 { 1010 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1011 if (q->sdma_id >= get_num_sdma_queues(dqm)) 1012 return; 1013 dqm->sdma_bitmap |= (1ULL << q->sdma_id); 1014 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1015 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm)) 1016 return; 1017 dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id); 1018 } 1019 } 1020 1021 /* 1022 * Device Queue Manager implementation for cp scheduler 1023 */ 1024 1025 static int set_sched_resources(struct device_queue_manager *dqm) 1026 { 1027 int i, mec; 1028 struct scheduling_resources res; 1029 1030 res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap; 1031 1032 res.queue_mask = 0; 1033 for (i = 0; i < KGD_MAX_QUEUES; ++i) { 1034 mec = (i / dqm->dev->shared_resources.num_queue_per_pipe) 1035 / dqm->dev->shared_resources.num_pipe_per_mec; 1036 1037 if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap)) 1038 continue; 1039 1040 /* only acquire queues from the first MEC */ 1041 if (mec > 0) 1042 continue; 1043 1044 /* This situation may be hit in the future if a new HW 1045 * generation exposes more than 64 queues. If so, the 1046 * definition of res.queue_mask needs updating 1047 */ 1048 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) { 1049 pr_err("Invalid queue enabled by amdgpu: %d\n", i); 1050 break; 1051 } 1052 1053 res.queue_mask |= (1ull << i); 1054 } 1055 res.gws_mask = ~0ull; 1056 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0; 1057 1058 pr_debug("Scheduling resources:\n" 1059 "vmid mask: 0x%8X\n" 1060 "queue mask: 0x%8llX\n", 1061 res.vmid_mask, res.queue_mask); 1062 1063 return pm_send_set_resources(&dqm->packets, &res); 1064 } 1065 1066 static int initialize_cpsch(struct device_queue_manager *dqm) 1067 { 1068 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1069 1070 mutex_init(&dqm->lock_hidden); 1071 INIT_LIST_HEAD(&dqm->queues); 1072 dqm->queue_count = dqm->processes_count = 0; 1073 dqm->sdma_queue_count = 0; 1074 dqm->xgmi_sdma_queue_count = 0; 1075 dqm->active_runlist = false; 1076 dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm)); 1077 dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm)); 1078 1079 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception); 1080 1081 return 0; 1082 } 1083 1084 static int start_cpsch(struct device_queue_manager *dqm) 1085 { 1086 int retval; 1087 1088 retval = 0; 1089 1090 retval = pm_init(&dqm->packets, dqm); 1091 if (retval) 1092 goto fail_packet_manager_init; 1093 1094 retval = set_sched_resources(dqm); 1095 if (retval) 1096 goto fail_set_sched_resources; 1097 1098 pr_debug("Allocating fence memory\n"); 1099 1100 /* allocate fence memory on the gart */ 1101 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), 1102 &dqm->fence_mem); 1103 1104 if (retval) 1105 goto fail_allocate_vidmem; 1106 1107 dqm->fence_addr = dqm->fence_mem->cpu_ptr; 1108 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; 1109 1110 init_interrupts(dqm); 1111 1112 dqm_lock(dqm); 1113 /* clear hang status when driver try to start the hw scheduler */ 1114 dqm->is_hws_hang = false; 1115 dqm->is_resetting = false; 1116 dqm->sched_running = true; 1117 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1118 dqm_unlock(dqm); 1119 1120 return 0; 1121 fail_allocate_vidmem: 1122 fail_set_sched_resources: 1123 pm_uninit(&dqm->packets, false); 1124 fail_packet_manager_init: 1125 return retval; 1126 } 1127 1128 static int stop_cpsch(struct device_queue_manager *dqm) 1129 { 1130 bool hanging; 1131 1132 dqm_lock(dqm); 1133 if (!dqm->is_hws_hang) 1134 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 1135 hanging = dqm->is_hws_hang || dqm->is_resetting; 1136 dqm->sched_running = false; 1137 dqm_unlock(dqm); 1138 1139 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1140 pm_uninit(&dqm->packets, hanging); 1141 1142 return 0; 1143 } 1144 1145 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, 1146 struct kernel_queue *kq, 1147 struct qcm_process_device *qpd) 1148 { 1149 dqm_lock(dqm); 1150 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1151 pr_warn("Can't create new kernel queue because %d queues were already created\n", 1152 dqm->total_queue_count); 1153 dqm_unlock(dqm); 1154 return -EPERM; 1155 } 1156 1157 /* 1158 * Unconditionally increment this counter, regardless of the queue's 1159 * type or whether the queue is active. 1160 */ 1161 dqm->total_queue_count++; 1162 pr_debug("Total of %d queues are accountable so far\n", 1163 dqm->total_queue_count); 1164 1165 list_add(&kq->list, &qpd->priv_queue_list); 1166 dqm->queue_count++; 1167 qpd->is_debug = true; 1168 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1169 dqm_unlock(dqm); 1170 1171 return 0; 1172 } 1173 1174 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, 1175 struct kernel_queue *kq, 1176 struct qcm_process_device *qpd) 1177 { 1178 dqm_lock(dqm); 1179 list_del(&kq->list); 1180 dqm->queue_count--; 1181 qpd->is_debug = false; 1182 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 1183 /* 1184 * Unconditionally decrement this counter, regardless of the queue's 1185 * type. 1186 */ 1187 dqm->total_queue_count--; 1188 pr_debug("Total of %d queues are accountable so far\n", 1189 dqm->total_queue_count); 1190 dqm_unlock(dqm); 1191 } 1192 1193 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, 1194 struct qcm_process_device *qpd) 1195 { 1196 int retval; 1197 struct mqd_manager *mqd_mgr; 1198 1199 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1200 pr_warn("Can't create new usermode queue because %d queues were already created\n", 1201 dqm->total_queue_count); 1202 retval = -EPERM; 1203 goto out; 1204 } 1205 1206 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1207 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1208 dqm_lock(dqm); 1209 retval = allocate_sdma_queue(dqm, q); 1210 dqm_unlock(dqm); 1211 if (retval) 1212 goto out; 1213 } 1214 1215 retval = allocate_doorbell(qpd, q); 1216 if (retval) 1217 goto out_deallocate_sdma_queue; 1218 1219 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1220 q->properties.type)]; 1221 1222 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1223 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 1224 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 1225 q->properties.tba_addr = qpd->tba_addr; 1226 q->properties.tma_addr = qpd->tma_addr; 1227 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 1228 if (!q->mqd_mem_obj) { 1229 retval = -ENOMEM; 1230 goto out_deallocate_doorbell; 1231 } 1232 1233 dqm_lock(dqm); 1234 /* 1235 * Eviction state logic: mark all queues as evicted, even ones 1236 * not currently active. Restoring inactive queues later only 1237 * updates the is_evicted flag but is a no-op otherwise. 1238 */ 1239 q->properties.is_evicted = !!qpd->evicted; 1240 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 1241 &q->gart_mqd_addr, &q->properties); 1242 1243 list_add(&q->list, &qpd->queues_list); 1244 qpd->queue_count++; 1245 1246 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 1247 dqm->sdma_queue_count++; 1248 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 1249 dqm->xgmi_sdma_queue_count++; 1250 1251 if (q->properties.is_active) { 1252 dqm->queue_count++; 1253 retval = execute_queues_cpsch(dqm, 1254 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1255 } 1256 1257 /* 1258 * Unconditionally increment this counter, regardless of the queue's 1259 * type or whether the queue is active. 1260 */ 1261 dqm->total_queue_count++; 1262 1263 pr_debug("Total of %d queues are accountable so far\n", 1264 dqm->total_queue_count); 1265 1266 dqm_unlock(dqm); 1267 return retval; 1268 1269 out_deallocate_doorbell: 1270 deallocate_doorbell(qpd, q); 1271 out_deallocate_sdma_queue: 1272 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1273 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1274 dqm_lock(dqm); 1275 deallocate_sdma_queue(dqm, q); 1276 dqm_unlock(dqm); 1277 } 1278 out: 1279 return retval; 1280 } 1281 1282 int amdkfd_fence_wait_timeout(unsigned int *fence_addr, 1283 unsigned int fence_value, 1284 unsigned int timeout_ms) 1285 { 1286 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies; 1287 1288 while (*fence_addr != fence_value) { 1289 if (time_after(jiffies, end_jiffies)) { 1290 pr_err("qcm fence wait loop timeout expired\n"); 1291 /* In HWS case, this is used to halt the driver thread 1292 * in order not to mess up CP states before doing 1293 * scandumps for FW debugging. 1294 */ 1295 while (halt_if_hws_hang) 1296 schedule(); 1297 1298 return -ETIME; 1299 } 1300 schedule(); 1301 } 1302 1303 return 0; 1304 } 1305 1306 static int unmap_sdma_queues(struct device_queue_manager *dqm) 1307 { 1308 int i, retval = 0; 1309 1310 for (i = 0; i < dqm->dev->device_info->num_sdma_engines + 1311 dqm->dev->device_info->num_xgmi_sdma_engines; i++) { 1312 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA, 1313 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false, i); 1314 if (retval) 1315 return retval; 1316 } 1317 return retval; 1318 } 1319 1320 /* dqm->lock mutex has to be locked before calling this function */ 1321 static int map_queues_cpsch(struct device_queue_manager *dqm) 1322 { 1323 int retval; 1324 1325 if (!dqm->sched_running) 1326 return 0; 1327 if (dqm->queue_count <= 0 || dqm->processes_count <= 0) 1328 return 0; 1329 if (dqm->active_runlist) 1330 return 0; 1331 1332 retval = pm_send_runlist(&dqm->packets, &dqm->queues); 1333 pr_debug("%s sent runlist\n", __func__); 1334 if (retval) { 1335 pr_err("failed to execute runlist\n"); 1336 return retval; 1337 } 1338 dqm->active_runlist = true; 1339 1340 return retval; 1341 } 1342 1343 /* dqm->lock mutex has to be locked before calling this function */ 1344 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 1345 enum kfd_unmap_queues_filter filter, 1346 uint32_t filter_param) 1347 { 1348 int retval = 0; 1349 1350 if (!dqm->sched_running) 1351 return 0; 1352 if (dqm->is_hws_hang) 1353 return -EIO; 1354 if (!dqm->active_runlist) 1355 return retval; 1356 1357 pr_debug("Before destroying queues, sdma queue count is : %u, xgmi sdma queue count is : %u\n", 1358 dqm->sdma_queue_count, dqm->xgmi_sdma_queue_count); 1359 1360 if (dqm->sdma_queue_count > 0 || dqm->xgmi_sdma_queue_count) 1361 unmap_sdma_queues(dqm); 1362 1363 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE, 1364 filter, filter_param, false, 0); 1365 if (retval) 1366 return retval; 1367 1368 *dqm->fence_addr = KFD_FENCE_INIT; 1369 pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr, 1370 KFD_FENCE_COMPLETED); 1371 /* should be timed out */ 1372 retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED, 1373 queue_preemption_timeout_ms); 1374 if (retval) { 1375 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n"); 1376 dqm->is_hws_hang = true; 1377 /* It's possible we're detecting a HWS hang in the 1378 * middle of a GPU reset. No need to schedule another 1379 * reset in this case. 1380 */ 1381 if (!dqm->is_resetting) 1382 schedule_work(&dqm->hw_exception_work); 1383 return retval; 1384 } 1385 1386 pm_release_ib(&dqm->packets); 1387 dqm->active_runlist = false; 1388 1389 return retval; 1390 } 1391 1392 /* dqm->lock mutex has to be locked before calling this function */ 1393 static int execute_queues_cpsch(struct device_queue_manager *dqm, 1394 enum kfd_unmap_queues_filter filter, 1395 uint32_t filter_param) 1396 { 1397 int retval; 1398 1399 if (dqm->is_hws_hang) 1400 return -EIO; 1401 retval = unmap_queues_cpsch(dqm, filter, filter_param); 1402 if (retval) 1403 return retval; 1404 1405 return map_queues_cpsch(dqm); 1406 } 1407 1408 static int destroy_queue_cpsch(struct device_queue_manager *dqm, 1409 struct qcm_process_device *qpd, 1410 struct queue *q) 1411 { 1412 int retval; 1413 struct mqd_manager *mqd_mgr; 1414 1415 retval = 0; 1416 1417 /* remove queue from list to prevent rescheduling after preemption */ 1418 dqm_lock(dqm); 1419 1420 if (qpd->is_debug) { 1421 /* 1422 * error, currently we do not allow to destroy a queue 1423 * of a currently debugged process 1424 */ 1425 retval = -EBUSY; 1426 goto failed_try_destroy_debugged_queue; 1427 1428 } 1429 1430 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1431 q->properties.type)]; 1432 1433 deallocate_doorbell(qpd, q); 1434 1435 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1436 dqm->sdma_queue_count--; 1437 deallocate_sdma_queue(dqm, q); 1438 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1439 dqm->xgmi_sdma_queue_count--; 1440 deallocate_sdma_queue(dqm, q); 1441 } 1442 1443 list_del(&q->list); 1444 qpd->queue_count--; 1445 if (q->properties.is_active) { 1446 dqm->queue_count--; 1447 retval = execute_queues_cpsch(dqm, 1448 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1449 if (retval == -ETIME) 1450 qpd->reset_wavefronts = true; 1451 } 1452 1453 /* 1454 * Unconditionally decrement this counter, regardless of the queue's 1455 * type 1456 */ 1457 dqm->total_queue_count--; 1458 pr_debug("Total of %d queues are accountable so far\n", 1459 dqm->total_queue_count); 1460 1461 dqm_unlock(dqm); 1462 1463 /* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */ 1464 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 1465 1466 return retval; 1467 1468 failed_try_destroy_debugged_queue: 1469 1470 dqm_unlock(dqm); 1471 return retval; 1472 } 1473 1474 /* 1475 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to 1476 * stay in user mode. 1477 */ 1478 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL 1479 /* APE1 limit is inclusive and 64K aligned. */ 1480 #define APE1_LIMIT_ALIGNMENT 0xFFFF 1481 1482 static bool set_cache_memory_policy(struct device_queue_manager *dqm, 1483 struct qcm_process_device *qpd, 1484 enum cache_policy default_policy, 1485 enum cache_policy alternate_policy, 1486 void __user *alternate_aperture_base, 1487 uint64_t alternate_aperture_size) 1488 { 1489 bool retval = true; 1490 1491 if (!dqm->asic_ops.set_cache_memory_policy) 1492 return retval; 1493 1494 dqm_lock(dqm); 1495 1496 if (alternate_aperture_size == 0) { 1497 /* base > limit disables APE1 */ 1498 qpd->sh_mem_ape1_base = 1; 1499 qpd->sh_mem_ape1_limit = 0; 1500 } else { 1501 /* 1502 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]}, 1503 * SH_MEM_APE1_BASE[31:0], 0x0000 } 1504 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]}, 1505 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF } 1506 * Verify that the base and size parameters can be 1507 * represented in this format and convert them. 1508 * Additionally restrict APE1 to user-mode addresses. 1509 */ 1510 1511 uint64_t base = (uintptr_t)alternate_aperture_base; 1512 uint64_t limit = base + alternate_aperture_size - 1; 1513 1514 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 || 1515 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) { 1516 retval = false; 1517 goto out; 1518 } 1519 1520 qpd->sh_mem_ape1_base = base >> 16; 1521 qpd->sh_mem_ape1_limit = limit >> 16; 1522 } 1523 1524 retval = dqm->asic_ops.set_cache_memory_policy( 1525 dqm, 1526 qpd, 1527 default_policy, 1528 alternate_policy, 1529 alternate_aperture_base, 1530 alternate_aperture_size); 1531 1532 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) 1533 program_sh_mem_settings(dqm, qpd); 1534 1535 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", 1536 qpd->sh_mem_config, qpd->sh_mem_ape1_base, 1537 qpd->sh_mem_ape1_limit); 1538 1539 out: 1540 dqm_unlock(dqm); 1541 return retval; 1542 } 1543 1544 static int set_trap_handler(struct device_queue_manager *dqm, 1545 struct qcm_process_device *qpd, 1546 uint64_t tba_addr, 1547 uint64_t tma_addr) 1548 { 1549 uint64_t *tma; 1550 1551 if (dqm->dev->cwsr_enabled) { 1552 /* Jump from CWSR trap handler to user trap */ 1553 tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1554 tma[0] = tba_addr; 1555 tma[1] = tma_addr; 1556 } else { 1557 qpd->tba_addr = tba_addr; 1558 qpd->tma_addr = tma_addr; 1559 } 1560 1561 return 0; 1562 } 1563 1564 static int process_termination_nocpsch(struct device_queue_manager *dqm, 1565 struct qcm_process_device *qpd) 1566 { 1567 struct queue *q, *next; 1568 struct device_process_node *cur, *next_dpn; 1569 int retval = 0; 1570 bool found = false; 1571 1572 dqm_lock(dqm); 1573 1574 /* Clear all user mode queues */ 1575 list_for_each_entry_safe(q, next, &qpd->queues_list, list) { 1576 int ret; 1577 1578 ret = destroy_queue_nocpsch_locked(dqm, qpd, q); 1579 if (ret) 1580 retval = ret; 1581 } 1582 1583 /* Unregister process */ 1584 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 1585 if (qpd == cur->qpd) { 1586 list_del(&cur->list); 1587 kfree(cur); 1588 dqm->processes_count--; 1589 found = true; 1590 break; 1591 } 1592 } 1593 1594 dqm_unlock(dqm); 1595 1596 /* Outside the DQM lock because under the DQM lock we can't do 1597 * reclaim or take other locks that others hold while reclaiming. 1598 */ 1599 if (found) 1600 kfd_dec_compute_active(dqm->dev); 1601 1602 return retval; 1603 } 1604 1605 static int get_wave_state(struct device_queue_manager *dqm, 1606 struct queue *q, 1607 void __user *ctl_stack, 1608 u32 *ctl_stack_used_size, 1609 u32 *save_area_used_size) 1610 { 1611 struct mqd_manager *mqd_mgr; 1612 int r; 1613 1614 dqm_lock(dqm); 1615 1616 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE || 1617 q->properties.is_active || !q->device->cwsr_enabled) { 1618 r = -EINVAL; 1619 goto dqm_unlock; 1620 } 1621 1622 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 1623 1624 if (!mqd_mgr->get_wave_state) { 1625 r = -EINVAL; 1626 goto dqm_unlock; 1627 } 1628 1629 r = mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack, 1630 ctl_stack_used_size, save_area_used_size); 1631 1632 dqm_unlock: 1633 dqm_unlock(dqm); 1634 return r; 1635 } 1636 1637 static int process_termination_cpsch(struct device_queue_manager *dqm, 1638 struct qcm_process_device *qpd) 1639 { 1640 int retval; 1641 struct queue *q, *next; 1642 struct kernel_queue *kq, *kq_next; 1643 struct mqd_manager *mqd_mgr; 1644 struct device_process_node *cur, *next_dpn; 1645 enum kfd_unmap_queues_filter filter = 1646 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES; 1647 bool found = false; 1648 1649 retval = 0; 1650 1651 dqm_lock(dqm); 1652 1653 /* Clean all kernel queues */ 1654 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) { 1655 list_del(&kq->list); 1656 dqm->queue_count--; 1657 qpd->is_debug = false; 1658 dqm->total_queue_count--; 1659 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES; 1660 } 1661 1662 /* Clear all user mode queues */ 1663 list_for_each_entry(q, &qpd->queues_list, list) { 1664 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1665 dqm->sdma_queue_count--; 1666 deallocate_sdma_queue(dqm, q); 1667 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1668 dqm->xgmi_sdma_queue_count--; 1669 deallocate_sdma_queue(dqm, q); 1670 } 1671 1672 if (q->properties.is_active) 1673 dqm->queue_count--; 1674 1675 dqm->total_queue_count--; 1676 } 1677 1678 /* Unregister process */ 1679 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 1680 if (qpd == cur->qpd) { 1681 list_del(&cur->list); 1682 kfree(cur); 1683 dqm->processes_count--; 1684 found = true; 1685 break; 1686 } 1687 } 1688 1689 retval = execute_queues_cpsch(dqm, filter, 0); 1690 if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) { 1691 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev); 1692 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); 1693 qpd->reset_wavefronts = false; 1694 } 1695 1696 dqm_unlock(dqm); 1697 1698 /* Outside the DQM lock because under the DQM lock we can't do 1699 * reclaim or take other locks that others hold while reclaiming. 1700 */ 1701 if (found) 1702 kfd_dec_compute_active(dqm->dev); 1703 1704 /* Lastly, free mqd resources. 1705 * Do free_mqd() after dqm_unlock to avoid circular locking. 1706 */ 1707 list_for_each_entry_safe(q, next, &qpd->queues_list, list) { 1708 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1709 q->properties.type)]; 1710 list_del(&q->list); 1711 qpd->queue_count--; 1712 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 1713 } 1714 1715 return retval; 1716 } 1717 1718 static int init_mqd_managers(struct device_queue_manager *dqm) 1719 { 1720 int i, j; 1721 struct mqd_manager *mqd_mgr; 1722 1723 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) { 1724 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev); 1725 if (!mqd_mgr) { 1726 pr_err("mqd manager [%d] initialization failed\n", i); 1727 goto out_free; 1728 } 1729 dqm->mqd_mgrs[i] = mqd_mgr; 1730 } 1731 1732 return 0; 1733 1734 out_free: 1735 for (j = 0; j < i; j++) { 1736 kfree(dqm->mqd_mgrs[j]); 1737 dqm->mqd_mgrs[j] = NULL; 1738 } 1739 1740 return -ENOMEM; 1741 } 1742 1743 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/ 1744 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm) 1745 { 1746 int retval; 1747 struct kfd_dev *dev = dqm->dev; 1748 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd; 1749 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size * 1750 (dev->device_info->num_sdma_engines + 1751 dev->device_info->num_xgmi_sdma_engines) * 1752 dev->device_info->num_sdma_queues_per_engine + 1753 dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size; 1754 1755 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->kgd, size, 1756 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr), 1757 (void *)&(mem_obj->cpu_ptr), true); 1758 1759 return retval; 1760 } 1761 1762 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev) 1763 { 1764 struct device_queue_manager *dqm; 1765 1766 pr_debug("Loading device queue manager\n"); 1767 1768 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL); 1769 if (!dqm) 1770 return NULL; 1771 1772 switch (dev->device_info->asic_family) { 1773 /* HWS is not available on Hawaii. */ 1774 case CHIP_HAWAII: 1775 /* HWS depends on CWSR for timely dequeue. CWSR is not 1776 * available on Tonga. 1777 * 1778 * FIXME: This argument also applies to Kaveri. 1779 */ 1780 case CHIP_TONGA: 1781 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS; 1782 break; 1783 default: 1784 dqm->sched_policy = sched_policy; 1785 break; 1786 } 1787 1788 dqm->dev = dev; 1789 switch (dqm->sched_policy) { 1790 case KFD_SCHED_POLICY_HWS: 1791 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: 1792 /* initialize dqm for cp scheduling */ 1793 dqm->ops.create_queue = create_queue_cpsch; 1794 dqm->ops.initialize = initialize_cpsch; 1795 dqm->ops.start = start_cpsch; 1796 dqm->ops.stop = stop_cpsch; 1797 dqm->ops.pre_reset = pre_reset; 1798 dqm->ops.destroy_queue = destroy_queue_cpsch; 1799 dqm->ops.update_queue = update_queue; 1800 dqm->ops.register_process = register_process; 1801 dqm->ops.unregister_process = unregister_process; 1802 dqm->ops.uninitialize = uninitialize; 1803 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; 1804 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; 1805 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 1806 dqm->ops.set_trap_handler = set_trap_handler; 1807 dqm->ops.process_termination = process_termination_cpsch; 1808 dqm->ops.evict_process_queues = evict_process_queues_cpsch; 1809 dqm->ops.restore_process_queues = restore_process_queues_cpsch; 1810 dqm->ops.get_wave_state = get_wave_state; 1811 break; 1812 case KFD_SCHED_POLICY_NO_HWS: 1813 /* initialize dqm for no cp scheduling */ 1814 dqm->ops.start = start_nocpsch; 1815 dqm->ops.stop = stop_nocpsch; 1816 dqm->ops.pre_reset = pre_reset; 1817 dqm->ops.create_queue = create_queue_nocpsch; 1818 dqm->ops.destroy_queue = destroy_queue_nocpsch; 1819 dqm->ops.update_queue = update_queue; 1820 dqm->ops.register_process = register_process; 1821 dqm->ops.unregister_process = unregister_process; 1822 dqm->ops.initialize = initialize_nocpsch; 1823 dqm->ops.uninitialize = uninitialize; 1824 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 1825 dqm->ops.set_trap_handler = set_trap_handler; 1826 dqm->ops.process_termination = process_termination_nocpsch; 1827 dqm->ops.evict_process_queues = evict_process_queues_nocpsch; 1828 dqm->ops.restore_process_queues = 1829 restore_process_queues_nocpsch; 1830 dqm->ops.get_wave_state = get_wave_state; 1831 break; 1832 default: 1833 pr_err("Invalid scheduling policy %d\n", dqm->sched_policy); 1834 goto out_free; 1835 } 1836 1837 switch (dev->device_info->asic_family) { 1838 case CHIP_CARRIZO: 1839 device_queue_manager_init_vi(&dqm->asic_ops); 1840 break; 1841 1842 case CHIP_KAVERI: 1843 device_queue_manager_init_cik(&dqm->asic_ops); 1844 break; 1845 1846 case CHIP_HAWAII: 1847 device_queue_manager_init_cik_hawaii(&dqm->asic_ops); 1848 break; 1849 1850 case CHIP_TONGA: 1851 case CHIP_FIJI: 1852 case CHIP_POLARIS10: 1853 case CHIP_POLARIS11: 1854 case CHIP_POLARIS12: 1855 case CHIP_VEGAM: 1856 device_queue_manager_init_vi_tonga(&dqm->asic_ops); 1857 break; 1858 1859 case CHIP_VEGA10: 1860 case CHIP_VEGA12: 1861 case CHIP_VEGA20: 1862 case CHIP_RAVEN: 1863 case CHIP_RENOIR: 1864 case CHIP_ARCTURUS: 1865 device_queue_manager_init_v9(&dqm->asic_ops); 1866 break; 1867 case CHIP_NAVI10: 1868 case CHIP_NAVI12: 1869 case CHIP_NAVI14: 1870 device_queue_manager_init_v10_navi10(&dqm->asic_ops); 1871 break; 1872 default: 1873 WARN(1, "Unexpected ASIC family %u", 1874 dev->device_info->asic_family); 1875 goto out_free; 1876 } 1877 1878 if (init_mqd_managers(dqm)) 1879 goto out_free; 1880 1881 if (allocate_hiq_sdma_mqd(dqm)) { 1882 pr_err("Failed to allocate hiq sdma mqd trunk buffer\n"); 1883 goto out_free; 1884 } 1885 1886 if (!dqm->ops.initialize(dqm)) 1887 return dqm; 1888 1889 out_free: 1890 kfree(dqm); 1891 return NULL; 1892 } 1893 1894 static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev, 1895 struct kfd_mem_obj *mqd) 1896 { 1897 WARN(!mqd, "No hiq sdma mqd trunk to free"); 1898 1899 amdgpu_amdkfd_free_gtt_mem(dev->kgd, mqd->gtt_mem); 1900 } 1901 1902 void device_queue_manager_uninit(struct device_queue_manager *dqm) 1903 { 1904 dqm->ops.uninitialize(dqm); 1905 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd); 1906 kfree(dqm); 1907 } 1908 1909 int kfd_process_vm_fault(struct device_queue_manager *dqm, 1910 unsigned int pasid) 1911 { 1912 struct kfd_process_device *pdd; 1913 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1914 int ret = 0; 1915 1916 if (!p) 1917 return -EINVAL; 1918 pdd = kfd_get_process_device_data(dqm->dev, p); 1919 if (pdd) 1920 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd); 1921 kfd_unref_process(p); 1922 1923 return ret; 1924 } 1925 1926 static void kfd_process_hw_exception(struct work_struct *work) 1927 { 1928 struct device_queue_manager *dqm = container_of(work, 1929 struct device_queue_manager, hw_exception_work); 1930 amdgpu_amdkfd_gpu_reset(dqm->dev->kgd); 1931 } 1932 1933 #if defined(CONFIG_DEBUG_FS) 1934 1935 static void seq_reg_dump(struct seq_file *m, 1936 uint32_t (*dump)[2], uint32_t n_regs) 1937 { 1938 uint32_t i, count; 1939 1940 for (i = 0, count = 0; i < n_regs; i++) { 1941 if (count == 0 || 1942 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) { 1943 seq_printf(m, "%s %08x: %08x", 1944 i ? "\n" : "", 1945 dump[i][0], dump[i][1]); 1946 count = 7; 1947 } else { 1948 seq_printf(m, " %08x", dump[i][1]); 1949 count--; 1950 } 1951 } 1952 1953 seq_puts(m, "\n"); 1954 } 1955 1956 int dqm_debugfs_hqds(struct seq_file *m, void *data) 1957 { 1958 struct device_queue_manager *dqm = data; 1959 uint32_t (*dump)[2], n_regs; 1960 int pipe, queue; 1961 int r = 0; 1962 1963 if (!dqm->sched_running) { 1964 seq_printf(m, " Device is stopped\n"); 1965 1966 return 0; 1967 } 1968 1969 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd, 1970 KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE, 1971 &dump, &n_regs); 1972 if (!r) { 1973 seq_printf(m, " HIQ on MEC %d Pipe %d Queue %d\n", 1974 KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1, 1975 KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm), 1976 KFD_CIK_HIQ_QUEUE); 1977 seq_reg_dump(m, dump, n_regs); 1978 1979 kfree(dump); 1980 } 1981 1982 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 1983 int pipe_offset = pipe * get_queues_per_pipe(dqm); 1984 1985 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) { 1986 if (!test_bit(pipe_offset + queue, 1987 dqm->dev->shared_resources.queue_bitmap)) 1988 continue; 1989 1990 r = dqm->dev->kfd2kgd->hqd_dump( 1991 dqm->dev->kgd, pipe, queue, &dump, &n_regs); 1992 if (r) 1993 break; 1994 1995 seq_printf(m, " CP Pipe %d, Queue %d\n", 1996 pipe, queue); 1997 seq_reg_dump(m, dump, n_regs); 1998 1999 kfree(dump); 2000 } 2001 } 2002 2003 for (pipe = 0; pipe < get_num_sdma_engines(dqm) + 2004 get_num_xgmi_sdma_engines(dqm); pipe++) { 2005 for (queue = 0; 2006 queue < dqm->dev->device_info->num_sdma_queues_per_engine; 2007 queue++) { 2008 r = dqm->dev->kfd2kgd->hqd_sdma_dump( 2009 dqm->dev->kgd, pipe, queue, &dump, &n_regs); 2010 if (r) 2011 break; 2012 2013 seq_printf(m, " SDMA Engine %d, RLC %d\n", 2014 pipe, queue); 2015 seq_reg_dump(m, dump, n_regs); 2016 2017 kfree(dump); 2018 } 2019 } 2020 2021 return r; 2022 } 2023 2024 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm) 2025 { 2026 int r = 0; 2027 2028 dqm_lock(dqm); 2029 dqm->active_runlist = true; 2030 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 2031 dqm_unlock(dqm); 2032 2033 return r; 2034 } 2035 2036 #endif 2037