Home | History | Annotate | Line # | Download | only in ttm
      1 /*	$NetBSD: ttm_page_alloc_dma.c,v 1.3 2021/12/18 23:45:44 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2011 (c) Oracle Corp.
      5 
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sub license,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the
     14  * next paragraph) shall be included in all copies or substantial portions
     15  * of the Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     23  * DEALINGS IN THE SOFTWARE.
     24  *
     25  * Author: Konrad Rzeszutek Wilk <konrad.wilk (at) oracle.com>
     26  */
     27 
     28 /*
     29  * A simple DMA pool losely based on dmapool.c. It has certain advantages
     30  * over the DMA pools:
     31  * - Pool collects resently freed pages for reuse (and hooks up to
     32  *   the shrinker).
     33  * - Tracks currently in use pages
     34  * - Tracks whether the page is UC, WB or cached (and reverts to WB
     35  *   when freed).
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: ttm_page_alloc_dma.c,v 1.3 2021/12/18 23:45:44 riastradh Exp $");
     40 
     41 #define pr_fmt(fmt) "[TTM] " fmt
     42 
     43 #include <linux/dma-mapping.h>
     44 #include <linux/list.h>
     45 #include <linux/seq_file.h> /* for seq_printf */
     46 #include <linux/slab.h>
     47 #include <linux/spinlock.h>
     48 #include <linux/highmem.h>
     49 #include <linux/mm_types.h>
     50 #include <linux/module.h>
     51 #include <linux/mm.h>
     52 #include <linux/atomic.h>
     53 #include <linux/device.h>
     54 #include <linux/kthread.h>
     55 #include <drm/ttm/ttm_bo_driver.h>
     56 #include <drm/ttm/ttm_page_alloc.h>
     57 #include <drm/ttm/ttm_set_memory.h>
     58 
     59 #define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(struct page *))
     60 #define SMALL_ALLOCATION		4
     61 #define FREE_ALL_PAGES			(~0U)
     62 #define VADDR_FLAG_HUGE_POOL		1UL
     63 #define VADDR_FLAG_UPDATED_COUNT	2UL
     64 
     65 enum pool_type {
     66 	IS_UNDEFINED	= 0,
     67 	IS_WC		= 1 << 1,
     68 	IS_UC		= 1 << 2,
     69 	IS_CACHED	= 1 << 3,
     70 	IS_DMA32	= 1 << 4,
     71 	IS_HUGE		= 1 << 5
     72 };
     73 
     74 /*
     75  * The pool structure. There are up to nine pools:
     76  *  - generic (not restricted to DMA32):
     77  *      - write combined, uncached, cached.
     78  *  - dma32 (up to 2^32 - so up 4GB):
     79  *      - write combined, uncached, cached.
     80  *  - huge (not restricted to DMA32):
     81  *      - write combined, uncached, cached.
     82  * for each 'struct device'. The 'cached' is for pages that are actively used.
     83  * The other ones can be shrunk by the shrinker API if neccessary.
     84  * @pools: The 'struct device->dma_pools' link.
     85  * @type: Type of the pool
     86  * @lock: Protects the free_list from concurrnet access. Must be
     87  * used with irqsave/irqrestore variants because pool allocator maybe called
     88  * from delayed work.
     89  * @free_list: Pool of pages that are free to be used. No order requirements.
     90  * @dev: The device that is associated with these pools.
     91  * @size: Size used during DMA allocation.
     92  * @npages_free: Count of available pages for re-use.
     93  * @npages_in_use: Count of pages that are in use.
     94  * @nfrees: Stats when pool is shrinking.
     95  * @nrefills: Stats when the pool is grown.
     96  * @gfp_flags: Flags to pass for alloc_page.
     97  * @name: Name of the pool.
     98  * @dev_name: Name derieved from dev - similar to how dev_info works.
     99  *   Used during shutdown as the dev_info during release is unavailable.
    100  */
    101 struct dma_pool {
    102 	struct list_head pools; /* The 'struct device->dma_pools link */
    103 	enum pool_type type;
    104 	spinlock_t lock;
    105 	struct list_head free_list;
    106 	struct device *dev;
    107 	unsigned size;
    108 	unsigned npages_free;
    109 	unsigned npages_in_use;
    110 	unsigned long nfrees; /* Stats when shrunk. */
    111 	unsigned long nrefills; /* Stats when grown. */
    112 	gfp_t gfp_flags;
    113 	char name[13]; /* "cached dma32" */
    114 	char dev_name[64]; /* Constructed from dev */
    115 };
    116 
    117 /*
    118  * The accounting page keeping track of the allocated page along with
    119  * the DMA address.
    120  * @page_list: The link to the 'page_list' in 'struct dma_pool'.
    121  * @vaddr: The virtual address of the page and a flag if the page belongs to a
    122  * huge pool
    123  * @dma: The bus address of the page. If the page is not allocated
    124  *   via the DMA API, it will be -1.
    125  */
    126 struct dma_page {
    127 	struct list_head page_list;
    128 	unsigned long vaddr;
    129 	struct page *p;
    130 	dma_addr_t dma;
    131 };
    132 
    133 /*
    134  * Limits for the pool. They are handled without locks because only place where
    135  * they may change is in sysfs store. They won't have immediate effect anyway
    136  * so forcing serialization to access them is pointless.
    137  */
    138 
    139 struct ttm_pool_opts {
    140 	unsigned	alloc_size;
    141 	unsigned	max_size;
    142 	unsigned	small;
    143 };
    144 
    145 /*
    146  * Contains the list of all of the 'struct device' and their corresponding
    147  * DMA pools. Guarded by _mutex->lock.
    148  * @pools: The link to 'struct ttm_pool_manager->pools'
    149  * @dev: The 'struct device' associated with the 'pool'
    150  * @pool: The 'struct dma_pool' associated with the 'dev'
    151  */
    152 struct device_pools {
    153 	struct list_head pools;
    154 	struct device *dev;
    155 	struct dma_pool *pool;
    156 };
    157 
    158 /*
    159  * struct ttm_pool_manager - Holds memory pools for fast allocation
    160  *
    161  * @lock: Lock used when adding/removing from pools
    162  * @pools: List of 'struct device' and 'struct dma_pool' tuples.
    163  * @options: Limits for the pool.
    164  * @npools: Total amount of pools in existence.
    165  * @shrinker: The structure used by [un|]register_shrinker
    166  */
    167 struct ttm_pool_manager {
    168 	struct mutex		lock;
    169 	struct list_head	pools;
    170 	struct ttm_pool_opts	options;
    171 	unsigned		npools;
    172 	struct shrinker		mm_shrink;
    173 	struct kobject		kobj;
    174 };
    175 
    176 static struct ttm_pool_manager *_manager;
    177 
    178 static struct attribute ttm_page_pool_max = {
    179 	.name = "pool_max_size",
    180 	.mode = S_IRUGO | S_IWUSR
    181 };
    182 static struct attribute ttm_page_pool_small = {
    183 	.name = "pool_small_allocation",
    184 	.mode = S_IRUGO | S_IWUSR
    185 };
    186 static struct attribute ttm_page_pool_alloc_size = {
    187 	.name = "pool_allocation_size",
    188 	.mode = S_IRUGO | S_IWUSR
    189 };
    190 
    191 static struct attribute *ttm_pool_attrs[] = {
    192 	&ttm_page_pool_max,
    193 	&ttm_page_pool_small,
    194 	&ttm_page_pool_alloc_size,
    195 	NULL
    196 };
    197 
    198 static void ttm_pool_kobj_release(struct kobject *kobj)
    199 {
    200 	struct ttm_pool_manager *m =
    201 		container_of(kobj, struct ttm_pool_manager, kobj);
    202 	kfree(m);
    203 }
    204 
    205 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
    206 			      const char *buffer, size_t size)
    207 {
    208 	struct ttm_pool_manager *m =
    209 		container_of(kobj, struct ttm_pool_manager, kobj);
    210 	int chars;
    211 	unsigned val;
    212 
    213 	chars = sscanf(buffer, "%u", &val);
    214 	if (chars == 0)
    215 		return size;
    216 
    217 	/* Convert kb to number of pages */
    218 	val = val / (PAGE_SIZE >> 10);
    219 
    220 	if (attr == &ttm_page_pool_max) {
    221 		m->options.max_size = val;
    222 	} else if (attr == &ttm_page_pool_small) {
    223 		m->options.small = val;
    224 	} else if (attr == &ttm_page_pool_alloc_size) {
    225 		if (val > NUM_PAGES_TO_ALLOC*8) {
    226 			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
    227 			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
    228 			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
    229 			return size;
    230 		} else if (val > NUM_PAGES_TO_ALLOC) {
    231 			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
    232 				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
    233 		}
    234 		m->options.alloc_size = val;
    235 	}
    236 
    237 	return size;
    238 }
    239 
    240 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
    241 			     char *buffer)
    242 {
    243 	struct ttm_pool_manager *m =
    244 		container_of(kobj, struct ttm_pool_manager, kobj);
    245 	unsigned val = 0;
    246 
    247 	if (attr == &ttm_page_pool_max)
    248 		val = m->options.max_size;
    249 	else if (attr == &ttm_page_pool_small)
    250 		val = m->options.small;
    251 	else if (attr == &ttm_page_pool_alloc_size)
    252 		val = m->options.alloc_size;
    253 
    254 	val = val * (PAGE_SIZE >> 10);
    255 
    256 	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
    257 }
    258 
    259 static const struct sysfs_ops ttm_pool_sysfs_ops = {
    260 	.show = &ttm_pool_show,
    261 	.store = &ttm_pool_store,
    262 };
    263 
    264 static struct kobj_type ttm_pool_kobj_type = {
    265 	.release = &ttm_pool_kobj_release,
    266 	.sysfs_ops = &ttm_pool_sysfs_ops,
    267 	.default_attrs = ttm_pool_attrs,
    268 };
    269 
    270 static int ttm_set_pages_caching(struct dma_pool *pool,
    271 				 struct page **pages, unsigned cpages)
    272 {
    273 	int r = 0;
    274 	/* Set page caching */
    275 	if (pool->type & IS_UC) {
    276 		r = ttm_set_pages_array_uc(pages, cpages);
    277 		if (r)
    278 			pr_err("%s: Failed to set %d pages to uc!\n",
    279 			       pool->dev_name, cpages);
    280 	}
    281 	if (pool->type & IS_WC) {
    282 		r = ttm_set_pages_array_wc(pages, cpages);
    283 		if (r)
    284 			pr_err("%s: Failed to set %d pages to wc!\n",
    285 			       pool->dev_name, cpages);
    286 	}
    287 	return r;
    288 }
    289 
    290 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
    291 {
    292 	unsigned long attrs = 0;
    293 	dma_addr_t dma = d_page->dma;
    294 	d_page->vaddr &= ~VADDR_FLAG_HUGE_POOL;
    295 	if (pool->type & IS_HUGE)
    296 		attrs = DMA_ATTR_NO_WARN;
    297 
    298 	dma_free_attrs(pool->dev, pool->size, (void *)d_page->vaddr, dma, attrs);
    299 
    300 	kfree(d_page);
    301 	d_page = NULL;
    302 }
    303 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
    304 {
    305 	struct dma_page *d_page;
    306 	unsigned long attrs = 0;
    307 	void *vaddr;
    308 
    309 	d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
    310 	if (!d_page)
    311 		return NULL;
    312 
    313 	if (pool->type & IS_HUGE)
    314 		attrs = DMA_ATTR_NO_WARN;
    315 
    316 	vaddr = dma_alloc_attrs(pool->dev, pool->size, &d_page->dma,
    317 				pool->gfp_flags, attrs);
    318 	if (vaddr) {
    319 		if (is_vmalloc_addr(vaddr))
    320 			d_page->p = vmalloc_to_page(vaddr);
    321 		else
    322 			d_page->p = virt_to_page(vaddr);
    323 		d_page->vaddr = (unsigned long)vaddr;
    324 		if (pool->type & IS_HUGE)
    325 			d_page->vaddr |= VADDR_FLAG_HUGE_POOL;
    326 	} else {
    327 		kfree(d_page);
    328 		d_page = NULL;
    329 	}
    330 	return d_page;
    331 }
    332 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
    333 {
    334 	enum pool_type type = IS_UNDEFINED;
    335 
    336 	if (flags & TTM_PAGE_FLAG_DMA32)
    337 		type |= IS_DMA32;
    338 	if (cstate == tt_cached)
    339 		type |= IS_CACHED;
    340 	else if (cstate == tt_uncached)
    341 		type |= IS_UC;
    342 	else
    343 		type |= IS_WC;
    344 
    345 	return type;
    346 }
    347 
    348 static void ttm_pool_update_free_locked(struct dma_pool *pool,
    349 					unsigned freed_pages)
    350 {
    351 	pool->npages_free -= freed_pages;
    352 	pool->nfrees += freed_pages;
    353 
    354 }
    355 
    356 /* set memory back to wb and free the pages. */
    357 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
    358 {
    359 	struct page *page = d_page->p;
    360 	unsigned num_pages;
    361 
    362 	/* Don't set WB on WB page pool. */
    363 	if (!(pool->type & IS_CACHED)) {
    364 		num_pages = pool->size / PAGE_SIZE;
    365 		if (ttm_set_pages_wb(page, num_pages))
    366 			pr_err("%s: Failed to set %d pages to wb!\n",
    367 			       pool->dev_name, num_pages);
    368 	}
    369 
    370 	list_del(&d_page->page_list);
    371 	__ttm_dma_free_page(pool, d_page);
    372 }
    373 
    374 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
    375 			      struct page *pages[], unsigned npages)
    376 {
    377 	struct dma_page *d_page, *tmp;
    378 
    379 	if (pool->type & IS_HUGE) {
    380 		list_for_each_entry_safe(d_page, tmp, d_pages, page_list)
    381 			ttm_dma_page_put(pool, d_page);
    382 
    383 		return;
    384 	}
    385 
    386 	/* Don't set WB on WB page pool. */
    387 	if (npages && !(pool->type & IS_CACHED) &&
    388 	    ttm_set_pages_array_wb(pages, npages))
    389 		pr_err("%s: Failed to set %d pages to wb!\n",
    390 		       pool->dev_name, npages);
    391 
    392 	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
    393 		list_del(&d_page->page_list);
    394 		__ttm_dma_free_page(pool, d_page);
    395 	}
    396 }
    397 
    398 /*
    399  * Free pages from pool.
    400  *
    401  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
    402  * number of pages in one go.
    403  *
    404  * @pool: to free the pages from
    405  * @nr_free: If set to true will free all pages in pool
    406  * @use_static: Safe to use static buffer
    407  **/
    408 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
    409 				       bool use_static)
    410 {
    411 	static struct page *static_buf[NUM_PAGES_TO_ALLOC];
    412 	unsigned long irq_flags;
    413 	struct dma_page *dma_p, *tmp;
    414 	struct page **pages_to_free;
    415 	struct list_head d_pages;
    416 	unsigned freed_pages = 0,
    417 		 npages_to_free = nr_free;
    418 
    419 	if (NUM_PAGES_TO_ALLOC < nr_free)
    420 		npages_to_free = NUM_PAGES_TO_ALLOC;
    421 
    422 	if (use_static)
    423 		pages_to_free = static_buf;
    424 	else
    425 		pages_to_free = kmalloc_array(npages_to_free,
    426 					      sizeof(struct page *),
    427 					      GFP_KERNEL);
    428 
    429 	if (!pages_to_free) {
    430 		pr_debug("%s: Failed to allocate memory for pool free operation\n",
    431 		       pool->dev_name);
    432 		return 0;
    433 	}
    434 	INIT_LIST_HEAD(&d_pages);
    435 restart:
    436 	spin_lock_irqsave(&pool->lock, irq_flags);
    437 
    438 	/* We picking the oldest ones off the list */
    439 	list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
    440 					 page_list) {
    441 		if (freed_pages >= npages_to_free)
    442 			break;
    443 
    444 		/* Move the dma_page from one list to another. */
    445 		list_move(&dma_p->page_list, &d_pages);
    446 
    447 		pages_to_free[freed_pages++] = dma_p->p;
    448 		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
    449 		if (freed_pages >= NUM_PAGES_TO_ALLOC) {
    450 
    451 			ttm_pool_update_free_locked(pool, freed_pages);
    452 			/**
    453 			 * Because changing page caching is costly
    454 			 * we unlock the pool to prevent stalling.
    455 			 */
    456 			spin_unlock_irqrestore(&pool->lock, irq_flags);
    457 
    458 			ttm_dma_pages_put(pool, &d_pages, pages_to_free,
    459 					  freed_pages);
    460 
    461 			INIT_LIST_HEAD(&d_pages);
    462 
    463 			if (likely(nr_free != FREE_ALL_PAGES))
    464 				nr_free -= freed_pages;
    465 
    466 			if (NUM_PAGES_TO_ALLOC >= nr_free)
    467 				npages_to_free = nr_free;
    468 			else
    469 				npages_to_free = NUM_PAGES_TO_ALLOC;
    470 
    471 			freed_pages = 0;
    472 
    473 			/* free all so restart the processing */
    474 			if (nr_free)
    475 				goto restart;
    476 
    477 			/* Not allowed to fall through or break because
    478 			 * following context is inside spinlock while we are
    479 			 * outside here.
    480 			 */
    481 			goto out;
    482 
    483 		}
    484 	}
    485 
    486 	/* remove range of pages from the pool */
    487 	if (freed_pages) {
    488 		ttm_pool_update_free_locked(pool, freed_pages);
    489 		nr_free -= freed_pages;
    490 	}
    491 
    492 	spin_unlock_irqrestore(&pool->lock, irq_flags);
    493 
    494 	if (freed_pages)
    495 		ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
    496 out:
    497 	if (pages_to_free != static_buf)
    498 		kfree(pages_to_free);
    499 	return nr_free;
    500 }
    501 
    502 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
    503 {
    504 	struct device_pools *p;
    505 	struct dma_pool *pool;
    506 
    507 	if (!dev)
    508 		return;
    509 
    510 	mutex_lock(&_manager->lock);
    511 	list_for_each_entry_reverse(p, &_manager->pools, pools) {
    512 		if (p->dev != dev)
    513 			continue;
    514 		pool = p->pool;
    515 		if (pool->type != type)
    516 			continue;
    517 
    518 		list_del(&p->pools);
    519 		kfree(p);
    520 		_manager->npools--;
    521 		break;
    522 	}
    523 	list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
    524 		if (pool->type != type)
    525 			continue;
    526 		/* Takes a spinlock.. */
    527 		/* OK to use static buffer since global mutex is held. */
    528 		ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
    529 		WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
    530 		/* This code path is called after _all_ references to the
    531 		 * struct device has been dropped - so nobody should be
    532 		 * touching it. In case somebody is trying to _add_ we are
    533 		 * guarded by the mutex. */
    534 		list_del(&pool->pools);
    535 		kfree(pool);
    536 		break;
    537 	}
    538 	mutex_unlock(&_manager->lock);
    539 }
    540 
    541 /*
    542  * On free-ing of the 'struct device' this deconstructor is run.
    543  * Albeit the pool might have already been freed earlier.
    544  */
    545 static void ttm_dma_pool_release(struct device *dev, void *res)
    546 {
    547 	struct dma_pool *pool = *(struct dma_pool **)res;
    548 
    549 	if (pool)
    550 		ttm_dma_free_pool(dev, pool->type);
    551 }
    552 
    553 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
    554 {
    555 	return *(struct dma_pool **)res == match_data;
    556 }
    557 
    558 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
    559 					  enum pool_type type)
    560 {
    561 	const char *n[] = {"wc", "uc", "cached", " dma32", "huge"};
    562 	enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_HUGE};
    563 	struct device_pools *sec_pool = NULL;
    564 	struct dma_pool *pool = NULL, **ptr;
    565 	unsigned i;
    566 	int ret = -ENODEV;
    567 	char *p;
    568 
    569 	if (!dev)
    570 		return NULL;
    571 
    572 	ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
    573 	if (!ptr)
    574 		return NULL;
    575 
    576 	ret = -ENOMEM;
    577 
    578 	pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
    579 			    dev_to_node(dev));
    580 	if (!pool)
    581 		goto err_mem;
    582 
    583 	sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
    584 				dev_to_node(dev));
    585 	if (!sec_pool)
    586 		goto err_mem;
    587 
    588 	INIT_LIST_HEAD(&sec_pool->pools);
    589 	sec_pool->dev = dev;
    590 	sec_pool->pool =  pool;
    591 
    592 	INIT_LIST_HEAD(&pool->free_list);
    593 	INIT_LIST_HEAD(&pool->pools);
    594 	spin_lock_init(&pool->lock);
    595 	pool->dev = dev;
    596 	pool->npages_free = pool->npages_in_use = 0;
    597 	pool->nfrees = 0;
    598 	pool->gfp_flags = flags;
    599 	if (type & IS_HUGE)
    600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    601 		pool->size = HPAGE_PMD_SIZE;
    602 #else
    603 		BUG();
    604 #endif
    605 	else
    606 		pool->size = PAGE_SIZE;
    607 	pool->type = type;
    608 	pool->nrefills = 0;
    609 	p = pool->name;
    610 	for (i = 0; i < ARRAY_SIZE(t); i++) {
    611 		if (type & t[i]) {
    612 			p += snprintf(p, sizeof(pool->name) - (p - pool->name),
    613 				      "%s", n[i]);
    614 		}
    615 	}
    616 	*p = 0;
    617 	/* We copy the name for pr_ calls b/c when dma_pool_destroy is called
    618 	 * - the kobj->name has already been deallocated.*/
    619 	snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
    620 		 dev_driver_string(dev), dev_name(dev));
    621 	mutex_lock(&_manager->lock);
    622 	/* You can get the dma_pool from either the global: */
    623 	list_add(&sec_pool->pools, &_manager->pools);
    624 	_manager->npools++;
    625 	/* or from 'struct device': */
    626 	list_add(&pool->pools, &dev->dma_pools);
    627 	mutex_unlock(&_manager->lock);
    628 
    629 	*ptr = pool;
    630 	devres_add(dev, ptr);
    631 
    632 	return pool;
    633 err_mem:
    634 	devres_free(ptr);
    635 	kfree(sec_pool);
    636 	kfree(pool);
    637 	return ERR_PTR(ret);
    638 }
    639 
    640 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
    641 					  enum pool_type type)
    642 {
    643 	struct dma_pool *pool, *tmp;
    644 
    645 	if (type == IS_UNDEFINED)
    646 		return NULL;
    647 
    648 	/* NB: We iterate on the 'struct dev' which has no spinlock, but
    649 	 * it does have a kref which we have taken. The kref is taken during
    650 	 * graphic driver loading - in the drm_pci_init it calls either
    651 	 * pci_dev_get or pci_register_driver which both end up taking a kref
    652 	 * on 'struct device'.
    653 	 *
    654 	 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
    655 	 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
    656 	 * thing is at that point of time there are no pages associated with the
    657 	 * driver so this function will not be called.
    658 	 */
    659 	list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools)
    660 		if (pool->type == type)
    661 			return pool;
    662 	return NULL;
    663 }
    664 
    665 /*
    666  * Free pages the pages that failed to change the caching state. If there
    667  * are pages that have changed their caching state already put them to the
    668  * pool.
    669  */
    670 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
    671 						 struct list_head *d_pages,
    672 						 struct page **failed_pages,
    673 						 unsigned cpages)
    674 {
    675 	struct dma_page *d_page, *tmp;
    676 	struct page *p;
    677 	unsigned i = 0;
    678 
    679 	p = failed_pages[0];
    680 	if (!p)
    681 		return;
    682 	/* Find the failed page. */
    683 	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
    684 		if (d_page->p != p)
    685 			continue;
    686 		/* .. and then progress over the full list. */
    687 		list_del(&d_page->page_list);
    688 		__ttm_dma_free_page(pool, d_page);
    689 		if (++i < cpages)
    690 			p = failed_pages[i];
    691 		else
    692 			break;
    693 	}
    694 
    695 }
    696 
    697 /*
    698  * Allocate 'count' pages, and put 'need' number of them on the
    699  * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
    700  * The full list of pages should also be on 'd_pages'.
    701  * We return zero for success, and negative numbers as errors.
    702  */
    703 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
    704 					struct list_head *d_pages,
    705 					unsigned count)
    706 {
    707 	struct page **caching_array;
    708 	struct dma_page *dma_p;
    709 	struct page *p;
    710 	int r = 0;
    711 	unsigned i, j, npages, cpages;
    712 	unsigned max_cpages = min(count,
    713 			(unsigned)(PAGE_SIZE/sizeof(struct page *)));
    714 
    715 	/* allocate array for page caching change */
    716 	caching_array = kmalloc_array(max_cpages, sizeof(struct page *),
    717 				      GFP_KERNEL);
    718 
    719 	if (!caching_array) {
    720 		pr_debug("%s: Unable to allocate table for new pages\n",
    721 		       pool->dev_name);
    722 		return -ENOMEM;
    723 	}
    724 
    725 	if (count > 1)
    726 		pr_debug("%s: (%s:%d) Getting %d pages\n",
    727 			 pool->dev_name, pool->name, current->pid, count);
    728 
    729 	for (i = 0, cpages = 0; i < count; ++i) {
    730 		dma_p = __ttm_dma_alloc_page(pool);
    731 		if (!dma_p) {
    732 			pr_debug("%s: Unable to get page %u\n",
    733 				 pool->dev_name, i);
    734 
    735 			/* store already allocated pages in the pool after
    736 			 * setting the caching state */
    737 			if (cpages) {
    738 				r = ttm_set_pages_caching(pool, caching_array,
    739 							  cpages);
    740 				if (r)
    741 					ttm_dma_handle_caching_state_failure(
    742 						pool, d_pages, caching_array,
    743 						cpages);
    744 			}
    745 			r = -ENOMEM;
    746 			goto out;
    747 		}
    748 		p = dma_p->p;
    749 		list_add(&dma_p->page_list, d_pages);
    750 
    751 #ifdef CONFIG_HIGHMEM
    752 		/* gfp flags of highmem page should never be dma32 so we
    753 		 * we should be fine in such case
    754 		 */
    755 		if (PageHighMem(p))
    756 			continue;
    757 #endif
    758 
    759 		npages = pool->size / PAGE_SIZE;
    760 		for (j = 0; j < npages; ++j) {
    761 			caching_array[cpages++] = p + j;
    762 			if (cpages == max_cpages) {
    763 				/* Note: Cannot hold the spinlock */
    764 				r = ttm_set_pages_caching(pool, caching_array,
    765 							  cpages);
    766 				if (r) {
    767 					ttm_dma_handle_caching_state_failure(
    768 					     pool, d_pages, caching_array,
    769 					     cpages);
    770 					goto out;
    771 				}
    772 				cpages = 0;
    773 			}
    774 		}
    775 	}
    776 
    777 	if (cpages) {
    778 		r = ttm_set_pages_caching(pool, caching_array, cpages);
    779 		if (r)
    780 			ttm_dma_handle_caching_state_failure(pool, d_pages,
    781 					caching_array, cpages);
    782 	}
    783 out:
    784 	kfree(caching_array);
    785 	return r;
    786 }
    787 
    788 /*
    789  * @return count of pages still required to fulfill the request.
    790  */
    791 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
    792 					 unsigned long *irq_flags)
    793 {
    794 	unsigned count = _manager->options.small;
    795 	int r = pool->npages_free;
    796 
    797 	if (count > pool->npages_free) {
    798 		struct list_head d_pages;
    799 
    800 		INIT_LIST_HEAD(&d_pages);
    801 
    802 		spin_unlock_irqrestore(&pool->lock, *irq_flags);
    803 
    804 		/* Returns how many more are neccessary to fulfill the
    805 		 * request. */
    806 		r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
    807 
    808 		spin_lock_irqsave(&pool->lock, *irq_flags);
    809 		if (!r) {
    810 			/* Add the fresh to the end.. */
    811 			list_splice(&d_pages, &pool->free_list);
    812 			++pool->nrefills;
    813 			pool->npages_free += count;
    814 			r = count;
    815 		} else {
    816 			struct dma_page *d_page;
    817 			unsigned cpages = 0;
    818 
    819 			pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
    820 				 pool->dev_name, pool->name, r);
    821 
    822 			list_for_each_entry(d_page, &d_pages, page_list) {
    823 				cpages++;
    824 			}
    825 			list_splice_tail(&d_pages, &pool->free_list);
    826 			pool->npages_free += cpages;
    827 			r = cpages;
    828 		}
    829 	}
    830 	return r;
    831 }
    832 
    833 /*
    834  * The populate list is actually a stack (not that is matters as TTM
    835  * allocates one page at a time.
    836  * return dma_page pointer if success, otherwise NULL.
    837  */
    838 static struct dma_page *ttm_dma_pool_get_pages(struct dma_pool *pool,
    839 				  struct ttm_dma_tt *ttm_dma,
    840 				  unsigned index)
    841 {
    842 	struct dma_page *d_page = NULL;
    843 	struct ttm_tt *ttm = &ttm_dma->ttm;
    844 	unsigned long irq_flags;
    845 	int count;
    846 
    847 	spin_lock_irqsave(&pool->lock, irq_flags);
    848 	count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
    849 	if (count) {
    850 		d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
    851 		ttm->pages[index] = d_page->p;
    852 		ttm_dma->dma_address[index] = d_page->dma;
    853 		list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
    854 		pool->npages_in_use += 1;
    855 		pool->npages_free -= 1;
    856 	}
    857 	spin_unlock_irqrestore(&pool->lock, irq_flags);
    858 	return d_page;
    859 }
    860 
    861 static gfp_t ttm_dma_pool_gfp_flags(struct ttm_dma_tt *ttm_dma, bool huge)
    862 {
    863 	struct ttm_tt *ttm = &ttm_dma->ttm;
    864 	gfp_t gfp_flags;
    865 
    866 	if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
    867 		gfp_flags = GFP_USER | GFP_DMA32;
    868 	else
    869 		gfp_flags = GFP_HIGHUSER;
    870 	if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
    871 		gfp_flags |= __GFP_ZERO;
    872 
    873 	if (huge) {
    874 		gfp_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
    875 			__GFP_KSWAPD_RECLAIM;
    876 		gfp_flags &= ~__GFP_MOVABLE;
    877 		gfp_flags &= ~__GFP_COMP;
    878 	}
    879 
    880 	if (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY)
    881 		gfp_flags |= __GFP_RETRY_MAYFAIL;
    882 
    883 	return gfp_flags;
    884 }
    885 
    886 /*
    887  * On success pages list will hold count number of correctly
    888  * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
    889  */
    890 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev,
    891 			struct ttm_operation_ctx *ctx)
    892 {
    893 	struct ttm_mem_global *mem_glob = &ttm_mem_glob;
    894 	struct ttm_tt *ttm = &ttm_dma->ttm;
    895 	unsigned long num_pages = ttm->num_pages;
    896 	struct dma_pool *pool;
    897 	struct dma_page *d_page;
    898 	enum pool_type type;
    899 	unsigned i;
    900 	int ret;
    901 
    902 	if (ttm->state != tt_unpopulated)
    903 		return 0;
    904 
    905 	if (ttm_check_under_lowerlimit(mem_glob, num_pages, ctx))
    906 		return -ENOMEM;
    907 
    908 	INIT_LIST_HEAD(&ttm_dma->pages_list);
    909 	i = 0;
    910 
    911 	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
    912 
    913 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    914 	if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
    915 		goto skip_huge;
    916 
    917 	pool = ttm_dma_find_pool(dev, type | IS_HUGE);
    918 	if (!pool) {
    919 		gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, true);
    920 
    921 		pool = ttm_dma_pool_init(dev, gfp_flags, type | IS_HUGE);
    922 		if (IS_ERR_OR_NULL(pool))
    923 			goto skip_huge;
    924 	}
    925 
    926 	while (num_pages >= HPAGE_PMD_NR) {
    927 		unsigned j;
    928 
    929 		d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
    930 		if (!d_page)
    931 			break;
    932 
    933 		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
    934 						pool->size, ctx);
    935 		if (unlikely(ret != 0)) {
    936 			ttm_dma_unpopulate(ttm_dma, dev);
    937 			return -ENOMEM;
    938 		}
    939 
    940 		d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
    941 		for (j = i + 1; j < (i + HPAGE_PMD_NR); ++j) {
    942 			ttm->pages[j] = ttm->pages[j - 1] + 1;
    943 			ttm_dma->dma_address[j] = ttm_dma->dma_address[j - 1] +
    944 				PAGE_SIZE;
    945 		}
    946 
    947 		i += HPAGE_PMD_NR;
    948 		num_pages -= HPAGE_PMD_NR;
    949 	}
    950 
    951 skip_huge:
    952 #endif
    953 
    954 	pool = ttm_dma_find_pool(dev, type);
    955 	if (!pool) {
    956 		gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, false);
    957 
    958 		pool = ttm_dma_pool_init(dev, gfp_flags, type);
    959 		if (IS_ERR_OR_NULL(pool))
    960 			return -ENOMEM;
    961 	}
    962 
    963 	while (num_pages) {
    964 		d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
    965 		if (!d_page) {
    966 			ttm_dma_unpopulate(ttm_dma, dev);
    967 			return -ENOMEM;
    968 		}
    969 
    970 		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
    971 						pool->size, ctx);
    972 		if (unlikely(ret != 0)) {
    973 			ttm_dma_unpopulate(ttm_dma, dev);
    974 			return -ENOMEM;
    975 		}
    976 
    977 		d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
    978 		++i;
    979 		--num_pages;
    980 	}
    981 
    982 	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
    983 		ret = ttm_tt_swapin(ttm);
    984 		if (unlikely(ret != 0)) {
    985 			ttm_dma_unpopulate(ttm_dma, dev);
    986 			return ret;
    987 		}
    988 	}
    989 
    990 	ttm->state = tt_unbound;
    991 	return 0;
    992 }
    993 EXPORT_SYMBOL_GPL(ttm_dma_populate);
    994 
    995 /* Put all pages in pages list to correct pool to wait for reuse */
    996 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
    997 {
    998 	struct ttm_mem_global *mem_glob = &ttm_mem_glob;
    999 	struct ttm_tt *ttm = &ttm_dma->ttm;
   1000 	struct dma_pool *pool;
   1001 	struct dma_page *d_page, *next;
   1002 	enum pool_type type;
   1003 	bool is_cached = false;
   1004 	unsigned count, i, npages = 0;
   1005 	unsigned long irq_flags;
   1006 
   1007 	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
   1008 
   1009 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
   1010 	pool = ttm_dma_find_pool(dev, type | IS_HUGE);
   1011 	if (pool) {
   1012 		count = 0;
   1013 		list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
   1014 					 page_list) {
   1015 			if (!(d_page->vaddr & VADDR_FLAG_HUGE_POOL))
   1016 				continue;
   1017 
   1018 			count++;
   1019 			if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
   1020 				ttm_mem_global_free_page(mem_glob, d_page->p,
   1021 							 pool->size);
   1022 				d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
   1023 			}
   1024 			ttm_dma_page_put(pool, d_page);
   1025 		}
   1026 
   1027 		spin_lock_irqsave(&pool->lock, irq_flags);
   1028 		pool->npages_in_use -= count;
   1029 		pool->nfrees += count;
   1030 		spin_unlock_irqrestore(&pool->lock, irq_flags);
   1031 	}
   1032 #endif
   1033 
   1034 	pool = ttm_dma_find_pool(dev, type);
   1035 	if (!pool)
   1036 		return;
   1037 
   1038 	is_cached = (ttm_dma_find_pool(pool->dev,
   1039 		     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
   1040 
   1041 	/* make sure pages array match list and count number of pages */
   1042 	count = 0;
   1043 	list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
   1044 				 page_list) {
   1045 		ttm->pages[count] = d_page->p;
   1046 		count++;
   1047 
   1048 		if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
   1049 			ttm_mem_global_free_page(mem_glob, d_page->p,
   1050 						 pool->size);
   1051 			d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
   1052 		}
   1053 
   1054 		if (is_cached)
   1055 			ttm_dma_page_put(pool, d_page);
   1056 	}
   1057 
   1058 	spin_lock_irqsave(&pool->lock, irq_flags);
   1059 	pool->npages_in_use -= count;
   1060 	if (is_cached) {
   1061 		pool->nfrees += count;
   1062 	} else {
   1063 		pool->npages_free += count;
   1064 		list_splice(&ttm_dma->pages_list, &pool->free_list);
   1065 		/*
   1066 		 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
   1067 		 * to free in order to minimize calls to set_memory_wb().
   1068 		 */
   1069 		if (pool->npages_free >= (_manager->options.max_size +
   1070 					  NUM_PAGES_TO_ALLOC))
   1071 			npages = pool->npages_free - _manager->options.max_size;
   1072 	}
   1073 	spin_unlock_irqrestore(&pool->lock, irq_flags);
   1074 
   1075 	INIT_LIST_HEAD(&ttm_dma->pages_list);
   1076 	for (i = 0; i < ttm->num_pages; i++) {
   1077 		ttm->pages[i] = NULL;
   1078 		ttm_dma->dma_address[i] = 0;
   1079 	}
   1080 
   1081 	/* shrink pool if necessary (only on !is_cached pools)*/
   1082 	if (npages)
   1083 		ttm_dma_page_pool_free(pool, npages, false);
   1084 	ttm->state = tt_unpopulated;
   1085 }
   1086 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
   1087 
   1088 /**
   1089  * Callback for mm to request pool to reduce number of page held.
   1090  *
   1091  * XXX: (dchinner) Deadlock warning!
   1092  *
   1093  * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
   1094  * shrinkers
   1095  */
   1096 static unsigned long
   1097 ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
   1098 {
   1099 	static unsigned start_pool;
   1100 	unsigned idx = 0;
   1101 	unsigned pool_offset;
   1102 	unsigned shrink_pages = sc->nr_to_scan;
   1103 	struct device_pools *p;
   1104 	unsigned long freed = 0;
   1105 
   1106 	if (list_empty(&_manager->pools))
   1107 		return SHRINK_STOP;
   1108 
   1109 	if (!mutex_trylock(&_manager->lock))
   1110 		return SHRINK_STOP;
   1111 	if (!_manager->npools)
   1112 		goto out;
   1113 	pool_offset = ++start_pool % _manager->npools;
   1114 	list_for_each_entry(p, &_manager->pools, pools) {
   1115 		unsigned nr_free;
   1116 
   1117 		if (!p->dev)
   1118 			continue;
   1119 		if (shrink_pages == 0)
   1120 			break;
   1121 		/* Do it in round-robin fashion. */
   1122 		if (++idx < pool_offset)
   1123 			continue;
   1124 		nr_free = shrink_pages;
   1125 		/* OK to use static buffer since global mutex is held. */
   1126 		shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
   1127 		freed += nr_free - shrink_pages;
   1128 
   1129 		pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
   1130 			 p->pool->dev_name, p->pool->name, current->pid,
   1131 			 nr_free, shrink_pages);
   1132 	}
   1133 out:
   1134 	mutex_unlock(&_manager->lock);
   1135 	return freed;
   1136 }
   1137 
   1138 static unsigned long
   1139 ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
   1140 {
   1141 	struct device_pools *p;
   1142 	unsigned long count = 0;
   1143 
   1144 	if (!mutex_trylock(&_manager->lock))
   1145 		return 0;
   1146 	list_for_each_entry(p, &_manager->pools, pools)
   1147 		count += p->pool->npages_free;
   1148 	mutex_unlock(&_manager->lock);
   1149 	return count;
   1150 }
   1151 
   1152 static int ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
   1153 {
   1154 	manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
   1155 	manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
   1156 	manager->mm_shrink.seeks = 1;
   1157 	return register_shrinker(&manager->mm_shrink);
   1158 }
   1159 
   1160 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
   1161 {
   1162 	unregister_shrinker(&manager->mm_shrink);
   1163 }
   1164 
   1165 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
   1166 {
   1167 	int ret;
   1168 
   1169 	WARN_ON(_manager);
   1170 
   1171 	pr_info("Initializing DMA pool allocator\n");
   1172 
   1173 	_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
   1174 	if (!_manager)
   1175 		return -ENOMEM;
   1176 
   1177 	mutex_init(&_manager->lock);
   1178 	INIT_LIST_HEAD(&_manager->pools);
   1179 
   1180 	_manager->options.max_size = max_pages;
   1181 	_manager->options.small = SMALL_ALLOCATION;
   1182 	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
   1183 
   1184 	/* This takes care of auto-freeing the _manager */
   1185 	ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
   1186 				   &glob->kobj, "dma_pool");
   1187 	if (unlikely(ret != 0))
   1188 		goto error;
   1189 
   1190 	ret = ttm_dma_pool_mm_shrink_init(_manager);
   1191 	if (unlikely(ret != 0))
   1192 		goto error;
   1193 	return 0;
   1194 
   1195 error:
   1196 	kobject_put(&_manager->kobj);
   1197 	_manager = NULL;
   1198 	return ret;
   1199 }
   1200 
   1201 void ttm_dma_page_alloc_fini(void)
   1202 {
   1203 	struct device_pools *p, *t;
   1204 
   1205 	pr_info("Finalizing DMA pool allocator\n");
   1206 	ttm_dma_pool_mm_shrink_fini(_manager);
   1207 
   1208 	list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
   1209 		dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
   1210 			current->pid);
   1211 		WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
   1212 			ttm_dma_pool_match, p->pool));
   1213 		ttm_dma_free_pool(p->dev, p->pool->type);
   1214 	}
   1215 	kobject_put(&_manager->kobj);
   1216 	_manager = NULL;
   1217 }
   1218 
   1219 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
   1220 {
   1221 	struct device_pools *p;
   1222 	struct dma_pool *pool = NULL;
   1223 
   1224 	if (!_manager) {
   1225 		seq_printf(m, "No pool allocator running.\n");
   1226 		return 0;
   1227 	}
   1228 	seq_printf(m, "         pool      refills   pages freed    inuse available     name\n");
   1229 	mutex_lock(&_manager->lock);
   1230 	list_for_each_entry(p, &_manager->pools, pools) {
   1231 		struct device *dev = p->dev;
   1232 		if (!dev)
   1233 			continue;
   1234 		pool = p->pool;
   1235 		seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
   1236 				pool->name, pool->nrefills,
   1237 				pool->nfrees, pool->npages_in_use,
   1238 				pool->npages_free,
   1239 				pool->dev_name);
   1240 	}
   1241 	mutex_unlock(&_manager->lock);
   1242 	return 0;
   1243 }
   1244 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
   1245