Home | History | Annotate | Line # | Download | only in ic
      1 /*	$NetBSD: dm9000.c,v 1.40 2025/07/09 21:25:35 andvar Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2009 Paul Fleischer
      5  * All rights reserved.
      6  *
      7  * 1. Redistributions of source code must retain the above copyright
      8  *    notice, this list of conditions and the following disclaimer.
      9  * 2. Redistributions in binary form must reproduce the above copyright
     10  *    notice, this list of conditions and the following disclaimer in the
     11  *    documentation and/or other materials provided with the distribution.
     12  * 3. The name of the company nor the name of the author may be used to
     13  *    endorse or promote products derived from this software without specific
     14  *    prior written permission.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /* based on sys/dev/ic/cs89x0.c */
     30 /*
     31  * Copyright (c) 2004 Christopher Gilbert
     32  * All rights reserved.
     33  *
     34  * 1. Redistributions of source code must retain the above copyright
     35  *    notice, this list of conditions and the following disclaimer.
     36  * 2. Redistributions in binary form must reproduce the above copyright
     37  *    notice, this list of conditions and the following disclaimer in the
     38  *    documentation and/or other materials provided with the distribution.
     39  * 3. The name of the company nor the name of the author may be used to
     40  *    endorse or promote products derived from this software without specific
     41  *    prior written permission.
     42  *
     43  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     44  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     45  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     46  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     47  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     48  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     49  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     50  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     51  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     52  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     53  * SUCH DAMAGE.
     54  */
     55 
     56 /*
     57  * Copyright 1997
     58  * Digital Equipment Corporation. All rights reserved.
     59  *
     60  * This software is furnished under license and may be used and
     61  * copied only in accordance with the following terms and conditions.
     62  * Subject to these conditions, you may download, copy, install,
     63  * use, modify and distribute this software in source and/or binary
     64  * form. No title or ownership is transferred hereby.
     65  *
     66  * 1) Any source code used, modified or distributed must reproduce
     67  *    and retain this copyright notice and list of conditions as
     68  *    they appear in the source file.
     69  *
     70  * 2) No right is granted to use any trade name, trademark, or logo of
     71  *    Digital Equipment Corporation. Neither the "Digital Equipment
     72  *    Corporation" name nor any trademark or logo of Digital Equipment
     73  *    Corporation may be used to endorse or promote products derived
     74  *    from this software without the prior written permission of
     75  *    Digital Equipment Corporation.
     76  *
     77  * 3) This software is provided "AS-IS" and any express or implied
     78  *    warranties, including but not limited to, any implied warranties
     79  *    of merchantability, fitness for a particular purpose, or
     80  *    non-infringement are disclaimed. In no event shall DIGITAL be
     81  *    liable for any damages whatsoever, and in particular, DIGITAL
     82  *    shall not be liable for special, indirect, consequential, or
     83  *    incidental damages or damages for lost profits, loss of
     84  *    revenue or loss of use, whether such damages arise in contract,
     85  *    negligence, tort, under statute, in equity, at law or otherwise,
     86  *    even if advised of the possibility of such damage.
     87  */
     88 
     89 #include <sys/cdefs.h>
     90 
     91 #include <sys/param.h>
     92 #include <sys/bus.h>
     93 #include <sys/intr.h>
     94 #include <sys/device.h>
     95 #include <sys/mbuf.h>
     96 #include <sys/sockio.h>
     97 #include <sys/errno.h>
     98 #include <sys/cprng.h>
     99 #include <sys/rndsource.h>
    100 #include <sys/kernel.h>
    101 #include <sys/systm.h>
    102 
    103 #include <net/if.h>
    104 #include <net/if_dl.h>
    105 #include <net/if_ether.h>
    106 #include <net/if_media.h>
    107 #include <dev/mii/mii.h>
    108 #include <dev/mii/miivar.h>
    109 #include <net/bpf.h>
    110 
    111 #include <dev/ic/dm9000var.h>
    112 #include <dev/ic/dm9000reg.h>
    113 
    114 #if 1
    115 #undef DM9000_DEBUG
    116 #undef DM9000_TX_DEBUG
    117 #undef DM9000_TX_DATA_DEBUG
    118 #undef DM9000_RX_DEBUG
    119 #undef  DM9000_RX_DATA_DEBUG
    120 #else
    121 #define DM9000_DEBUG
    122 #define  DM9000_TX_DEBUG
    123 #define DM9000_TX_DATA_DEBUG
    124 #define DM9000_RX_DEBUG
    125 #define  DM9000_RX_DATA_DEBUG
    126 #endif
    127 
    128 #ifdef DM9000_DEBUG
    129 #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    130 #else
    131 #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
    132 #endif
    133 
    134 #ifdef DM9000_TX_DEBUG
    135 #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    136 #else
    137 #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    138 #endif
    139 
    140 #ifdef DM9000_RX_DEBUG
    141 #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    142 #else
    143 #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    144 #endif
    145 
    146 #ifdef DM9000_RX_DATA_DEBUG
    147 #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    148 #else
    149 #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    150 #endif
    151 
    152 #ifdef DM9000_TX_DATA_DEBUG
    153 #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    154 #else
    155 #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    156 #endif
    157 
    158 static void dme_reset(struct dme_softc *);
    159 static int dme_init(struct ifnet *);
    160 static void dme_stop(struct ifnet *, int);
    161 static void dme_start(struct ifnet *);
    162 static int dme_ioctl(struct ifnet *, u_long, void *);
    163 
    164 static void dme_set_rcvfilt(struct dme_softc *);
    165 static void mii_statchg(struct ifnet *);
    166 static void lnkchg(struct dme_softc *);
    167 static void phy_tick(void *);
    168 static int mii_readreg(device_t, int, int, uint16_t *);
    169 static int mii_writereg(device_t, int, int, uint16_t);
    170 
    171 static void dme_prepare(struct ifnet *);
    172 static void dme_transmit(struct ifnet *);
    173 static void dme_receive(struct ifnet *);
    174 
    175 static int pkt_read_2(struct dme_softc *, struct mbuf **);
    176 static int pkt_write_2(struct dme_softc *, struct mbuf *);
    177 static int pkt_read_1(struct dme_softc *, struct mbuf **);
    178 static int pkt_write_1(struct dme_softc *, struct mbuf *);
    179 #define PKT_READ(ii,m) (*(ii)->sc_pkt_read)((ii),(m))
    180 #define PKT_WRITE(ii,m) (*(ii)->sc_pkt_write)((ii),(m))
    181 
    182 #define ETHER_IS_ONE(x) \
    183 	   (((x)[0] & (x)[1] & (x)[2] & (x)[3] & (x)[4] & (x)[5]) == 255)
    184 #define ETHER_IS_ZERO(x) \
    185 	   (((x)[0] | (x)[1] | (x)[2] | (x)[3] | (x)[4] | (x)[5]) == 0)
    186 
    187 int
    188 dme_attach(struct dme_softc *sc, const uint8_t *notusedanymore)
    189 {
    190 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    191 	struct mii_data *mii = &sc->sc_mii;
    192 	struct ifmedia *ifm = &mii->mii_media;
    193 	uint8_t b[2];
    194 	uint16_t io_mode;
    195 	uint8_t enaddr[ETHER_ADDR_LEN];
    196 	prop_dictionary_t dict;
    197 	prop_data_t ea;
    198 
    199 	dme_read_c(sc, DM9000_VID0, b, 2);
    200 	sc->sc_vendor_id = le16toh((uint16_t)b[1] << 8 | b[0]);
    201 	dme_read_c(sc, DM9000_PID0, b, 2);
    202 	sc->sc_product_id = le16toh((uint16_t)b[1] << 8 | b[0]);
    203 
    204 	/* TODO: Check the vendor ID as well */
    205 	if (sc->sc_product_id != 0x9000) {
    206 		panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
    207 		    sc->sc_product_id);
    208 	}
    209 #if 1 || DM9000_DEBUG
    210 	{
    211 		dme_read_c(sc, DM9000_PAB0, enaddr, 6);
    212 		aprint_normal_dev(sc->sc_dev,
    213 		    "DM9000 was configured with MAC address: %s\n",
    214 		    ether_sprintf(enaddr));
    215 	}
    216 #endif
    217 	dict = device_properties(sc->sc_dev);
    218 	ea = (dict) ? prop_dictionary_get(dict, "mac-address") : NULL;
    219 	if (ea != NULL) {
    220 	       /*
    221 		 * If the MAC address is overridden by a device property,
    222 		 * use that.
    223 		 */
    224 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
    225 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
    226 		memcpy(enaddr, prop_data_value(ea), ETHER_ADDR_LEN);
    227 		aprint_debug_dev(sc->sc_dev, "got MAC address!\n");
    228 	} else {
    229 		/*
    230 		 * If we did not get an externally configure address,
    231 		 * try to read one from the current setup, before
    232 		 * resetting the chip.
    233 		 */
    234 		dme_read_c(sc, DM9000_PAB0, enaddr, 6);
    235 		if (ETHER_IS_ONE(enaddr) || ETHER_IS_ZERO(enaddr)) {
    236 			/* make a random MAC address */
    237 			uint32_t maclo = 0x00f2 | (cprng_strong32() << 16);
    238 			uint32_t machi = cprng_strong32();
    239 			enaddr[0] = maclo;
    240 			enaddr[1] = maclo >> 8;
    241 			enaddr[2] = maclo >> 16;
    242 			enaddr[3] = maclo >> 26;
    243 			enaddr[4] = machi;
    244 			enaddr[5] = machi >> 8;
    245 		}
    246 	}
    247 	/* TODO: perform explicit EEPROM read op if it's available */
    248 
    249 	dme_reset(sc);
    250 
    251 	mii->mii_ifp = ifp;
    252 	mii->mii_readreg = mii_readreg;
    253 	mii->mii_writereg = mii_writereg;
    254 	mii->mii_statchg = mii_statchg;
    255 
    256 	/* assume davicom PHY at 1. ext PHY could be hooked but only at 0-3 */
    257 	sc->sc_ethercom.ec_mii = mii;
    258 	ifmedia_init(ifm, 0, ether_mediachange, ether_mediastatus);
    259 	mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY 1 */,
    260 		MII_OFFSET_ANY, 0);
    261 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    262 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
    263 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
    264 	} else
    265 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
    266 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
    267 
    268 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    269 	ifp->if_softc = sc;
    270 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    271 	ifp->if_init = dme_init;
    272 	ifp->if_start = dme_start;
    273 	ifp->if_stop = dme_stop;
    274 	ifp->if_ioctl = dme_ioctl;
    275 	ifp->if_watchdog = NULL; /* no watchdog used */
    276 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
    277 	IFQ_SET_READY(&ifp->if_snd);
    278 
    279 	if_attach(ifp);
    280 	ether_ifattach(ifp, enaddr);
    281 	if_deferred_start_init(ifp, NULL);
    282 
    283 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    284             RND_TYPE_NET, RND_FLAG_DEFAULT);
    285 
    286 	/* might be unnecessary as link change interrupt works well */
    287 	callout_init(&sc->sc_link_callout, 0);
    288 	callout_setfunc(&sc->sc_link_callout, phy_tick, sc);
    289 
    290 	io_mode = (dme_read(sc, DM9000_ISR) &
    291 	    DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
    292 
    293 	/* frame body read/write ops in 2 byte quantity or byte-wise. */
    294 	DPRINTF(("DM9000 Operation Mode: "));
    295 	switch (io_mode) {
    296 	case DM9000_MODE_8BIT:
    297 		DPRINTF(("8-bit mode"));
    298 		sc->sc_data_width = 1;
    299 		sc->sc_pkt_write = pkt_write_1;
    300 		sc->sc_pkt_read = pkt_read_1;
    301 		break;
    302 	case DM9000_MODE_16BIT:
    303 		DPRINTF(("16-bit mode"));
    304 		sc->sc_data_width = 2;
    305 		sc->sc_pkt_write = pkt_write_2;
    306 		sc->sc_pkt_read = pkt_read_2;
    307 		break;
    308 	case DM9000_MODE_32BIT:
    309 		DPRINTF(("32-bit mode"));
    310 		sc->sc_data_width = 4;
    311 		panic("32bit mode is unsupported\n");
    312 		break;
    313 	default:
    314 		DPRINTF(("Invalid mode"));
    315 		break;
    316 	}
    317 	DPRINTF(("\n"));
    318 
    319 	return 0;
    320 }
    321 
    322 int
    323 dme_detach(struct dme_softc *sc)
    324 {
    325 	return 0;
    326 }
    327 
    328 /* Software Initialize/Reset of the DM9000 */
    329 static void
    330 dme_reset(struct dme_softc *sc)
    331 {
    332 	uint8_t misc;
    333 
    334 	/* We only re-initialized the PHY in this function the first time it is
    335 	 * called. */
    336 	if (!sc->sc_phy_initialized) {
    337 		/* PHY Reset */
    338 		mii_writereg(sc->sc_dev, 1, MII_BMCR, BMCR_RESET);
    339 
    340 		/* PHY Power Down */
    341 		misc = dme_read(sc, DM9000_GPR);
    342 		dme_write(sc, DM9000_GPR, misc | DM9000_GPR_PHY_PWROFF);
    343 	}
    344 
    345 	/* Reset the DM9000 twice, as described in section 2 of the Programming
    346 	 * Guide.
    347 	 * The PHY is initialized and enabled between those two resets.
    348 	 */
    349 
    350 	/* Software Reset */
    351 	dme_write(sc, DM9000_NCR,
    352 	    DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
    353 	delay(20);
    354 	dme_write(sc, DM9000_NCR, 0x0);
    355 
    356 	if (!sc->sc_phy_initialized) {
    357 		/* PHY Enable */
    358 		misc = dme_read(sc, DM9000_GPR);
    359 		dme_write(sc, DM9000_GPR, misc & ~DM9000_GPR_PHY_PWROFF);
    360 		misc = dme_read(sc, DM9000_GPCR);
    361 		dme_write(sc, DM9000_GPCR, misc | DM9000_GPCR_GPIO0_OUT);
    362 
    363 		dme_write(sc, DM9000_NCR,
    364 		    DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
    365 		delay(20);
    366 		dme_write(sc, DM9000_NCR, 0x0);
    367 	}
    368 
    369 	/* Select internal PHY, no wakeup event, no collision mode,
    370 	 * normal loopback mode.
    371 	 */
    372 	dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL);
    373 
    374 	/* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
    375 	dme_read(sc, DM9000_NSR);
    376 
    377 	/* Enable wraparound of read/write pointer, frame received latch,
    378 	 * and frame transmitted latch.
    379 	 */
    380 	dme_write(sc, DM9000_IMR,
    381 	    DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
    382 
    383 	dme_write(sc, DM9000_RCR,
    384 	    DM9000_RCR_DIS_CRC | DM9000_RCR_DIS_LONG | DM9000_RCR_WTDIS);
    385 
    386 	sc->sc_phy_initialized = 1;
    387 }
    388 
    389 static int
    390 dme_init(struct ifnet *ifp)
    391 {
    392 	struct dme_softc *sc = ifp->if_softc;
    393 
    394 	dme_stop(ifp, 0);
    395 	dme_reset(sc);
    396 	dme_write_c(sc, DM9000_PAB0, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
    397 	dme_set_rcvfilt(sc);
    398 	(void)ether_mediachange(ifp);
    399 
    400 	sc->txbusy = sc->txready = 0;
    401 
    402 	ifp->if_flags |= IFF_RUNNING;
    403 	callout_schedule(&sc->sc_link_callout, hz);
    404 
    405 	return 0;
    406 }
    407 
    408 /* Configure multicast filter */
    409 static void
    410 dme_set_rcvfilt(struct dme_softc *sc)
    411 {
    412 	struct ethercom	*ec = &sc->sc_ethercom;
    413 	struct ifnet *ifp = &ec->ec_if;
    414 	struct ether_multi *enm;
    415 	struct ether_multistep step;
    416 	uint8_t mchash[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; /* 64bit mchash */
    417 	uint32_t h = 0;
    418 	int rcr;
    419 
    420 	rcr = dme_read(sc, DM9000_RCR);
    421 	rcr &= ~(DM9000_RCR_PRMSC | DM9000_RCR_ALL);
    422 	dme_write(sc, DM9000_RCR, rcr &~ DM9000_RCR_RXEN);
    423 
    424 	ETHER_LOCK(ec);
    425 	if (ifp->if_flags & IFF_PROMISC) {
    426 		ec->ec_flags |= ETHER_F_ALLMULTI;
    427 		ETHER_UNLOCK(ec);
    428 		/* run promisc. mode */
    429 		rcr |= DM9000_RCR_PRMSC;
    430 		goto update;
    431 	}
    432 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
    433 	ETHER_FIRST_MULTI(step, ec, enm);
    434 	while (enm != NULL) {
    435 		if (memcpy(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
    436 			/*
    437 			 * We must listen to a range of multicast addresses.
    438 			 * For now, just accept all multicasts, rather than
    439 			 * trying to set only those filter bits needed to match
    440 			 * the range.  (At this time, the only use of address
    441 			 * ranges is for IP multicast routing, for which the
    442 			 * range is big enough to require all bits set.)
    443 			 */
    444 			ec->ec_flags |= ETHER_F_ALLMULTI;
    445 			ETHER_UNLOCK(ec);
    446 			memset(mchash, 0xff, sizeof(mchash)); /* necessary? */
    447 			/* accept all multicast frame */
    448 			rcr |= DM9000_RCR_ALL;
    449 			goto update;
    450 		}
    451 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
    452 		/* 3(5:3) and 3(2:0) sampling to have uint8_t[8] */
    453 		mchash[h / 8] |= 1 << (h % 8);
    454 		ETHER_NEXT_MULTI(step, enm);
    455 	}
    456 	ETHER_UNLOCK(ec);
    457 	/* DM9000 receive filter is always on */
    458 	mchash[7] |= 0x80; /* to catch bcast frame */
    459  update:
    460 	dme_write_c(sc, DM9000_MAB0, mchash, sizeof(mchash));
    461 	dme_write(sc, DM9000_RCR, rcr | DM9000_RCR_RXEN);
    462 	return;
    463 }
    464 
    465 void
    466 lnkchg(struct dme_softc *sc)
    467 {
    468 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    469 	struct ifmediareq ifmr;
    470 
    471 	ether_mediastatus(ifp, &ifmr);
    472 }
    473 
    474 static void
    475 mii_statchg(struct ifnet *ifp)
    476 {
    477 	struct dme_softc *sc = ifp->if_softc;
    478 	struct mii_data *mii = &sc->sc_mii;
    479 	uint8_t fcr, ncr;
    480 
    481 #if 0
    482 	const uint8_t Mbps[2] = { 10, 100 };
    483 	uint8_t nsr = dme_read(sc, DM9000_NSR);
    484 	int spd = Mbps[!!(nsr & DM9000_NSR_SPEED)];
    485 	/* speed/duplexity available also in reg 0x11 of internal PHY */
    486 	if (nsr & DM9000_NSR_LINKST)
    487 		printf("link up,spd%d", spd);
    488 	else
    489 		printf("link down");
    490 
    491 	/* show resolved mii(4) parameters */
    492 	printf("MII spd%d",
    493 	    (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
    494 	if (mii->mii_media_active & IFM_FDX)
    495 		printf(",full-duplex");
    496 	printf("\n");
    497 #endif
    498 
    499 	/* Adjust duplexity and PAUSE flow control. */
    500 	fcr = dme_read(sc, DM9000_FCR) &~ DM9000_FCR_FLCE;
    501 	ncr = dme_read(sc, DM9000_NCR) &~ DM9000_NCR_FDX;
    502 	if ((mii->mii_media_active & IFM_FDX)
    503 	    && (mii->mii_media_active & IFM_FLOW)) {
    504 		fcr |= DM9000_FCR_FLCE;
    505 		ncr |= DM9000_NCR_FDX;
    506 	}
    507 	dme_write(sc, DM9000_FCR, fcr);
    508 	dme_write(sc, DM9000_NCR, ncr);
    509 }
    510 
    511 static void
    512 phy_tick(void *arg)
    513 {
    514 	struct dme_softc *sc = arg;
    515 	struct mii_data *mii = &sc->sc_mii;
    516 	int s;
    517 
    518 	s = splnet();
    519 	mii_tick(mii);
    520 	splx(s);
    521 
    522 	callout_schedule(&sc->sc_link_callout, hz);
    523 }
    524 
    525 static int
    526 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
    527 {
    528 	struct dme_softc *sc = device_private(self);
    529 
    530 	if (phy != 1)
    531 		return EINVAL;
    532 
    533 	/* Select Register to read*/
    534 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
    535 	    (reg & DM9000_EPAR_EROA_MASK));
    536 	/* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
    537 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
    538 
    539 	/* Wait until access to PHY has completed */
    540 	while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
    541 		;
    542 
    543 	/* Reset ERPRR-bit */
    544 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
    545 
    546 	*val = dme_read(sc, DM9000_EPDRL) | (dme_read(sc, DM9000_EPDRH) << 8);
    547 	return 0;
    548 }
    549 
    550 static int
    551 mii_writereg(device_t self, int phy, int reg, uint16_t val)
    552 {
    553 	struct dme_softc *sc = device_private(self);
    554 
    555 	if (phy != 1)
    556 		return EINVAL;
    557 
    558 	/* Select Register to write */
    559 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
    560 	    (reg & DM9000_EPAR_EROA_MASK));
    561 
    562 	/* Write data to the two data registers */
    563 	dme_write(sc, DM9000_EPDRL, val & 0xFF);
    564 	dme_write(sc, DM9000_EPDRH, (val >> 8) & 0xFF);
    565 
    566 	/* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
    567 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
    568 
    569 	/* Wait until access to PHY has completed */
    570 	while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
    571 		;
    572 
    573 	/* Reset ERPRR-bit */
    574 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
    575 
    576 	return 0;
    577 }
    578 
    579 void
    580 dme_stop(struct ifnet *ifp, int disable)
    581 {
    582 	struct dme_softc *sc = ifp->if_softc;
    583 
    584 	/* Not quite sure what to do when called with disable == 0 */
    585 	if (disable) {
    586 		/* Disable RX */
    587 		dme_write(sc, DM9000_RCR, 0x0);
    588 	}
    589 	mii_down(&sc->sc_mii);
    590 	callout_stop(&sc->sc_link_callout);
    591 
    592 	ifp->if_flags &= ~IFF_RUNNING;
    593 	ifp->if_timer = 0;
    594 }
    595 
    596 static void
    597 dme_start(struct ifnet *ifp)
    598 {
    599 	struct dme_softc *sc = ifp->if_softc;
    600 
    601 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
    602 		return;
    603 	}
    604 	if (!sc->txready) {
    605 		dme_prepare(ifp);
    606 	}
    607 	if (sc->txbusy) {
    608 		/*
    609 		 * We need to wait until the current frame has
    610 		 * been transmitted.
    611 		 */
    612 		return;
    613 	}
    614 	if (sc->txready) {
    615 		/* We are ready to transmit right away */
    616 		dme_transmit(ifp);
    617 	}
    618 	dme_prepare(ifp); /* Prepare next one */
    619 }
    620 
    621 /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
    622 static void
    623 dme_prepare(struct ifnet *ifp)
    624 {
    625 	struct dme_softc *sc = ifp->if_softc;
    626 	uint16_t length;
    627 	struct mbuf *m;
    628 
    629 	KASSERT(!sc->txready);
    630 
    631 	IFQ_DEQUEUE(&ifp->if_snd, m);
    632 	if (m == NULL) {
    633 		TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
    634 		return; /* Nothing to transmit */
    635 	}
    636 
    637 	/* Element has now been removed from the queue, so we better send it */
    638 
    639 	bpf_mtap(ifp, m, BPF_D_OUT);
    640 
    641 	/* Setup the DM9000 to accept the writes, and then write each buf in
    642 	   the chain. */
    643 
    644 	TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
    645 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
    646 	length = PKT_WRITE(sc, m);
    647 	bpf_mtap(ifp, m, BPF_D_OUT);
    648 	TX_DATA_DPRINTF(("\n"));
    649 
    650 	if (length % sc->sc_data_width != 0)
    651 		panic("dme_prepare: length is not compatible with IO_MODE");
    652 
    653 	sc->txready_length = length;
    654 	sc->txready = 1;
    655 	m_freem(m);
    656 }
    657 
    658 /* Transmit prepared data */
    659 static void
    660 dme_transmit(struct ifnet *ifp)
    661 {
    662 	struct dme_softc *sc = ifp->if_softc;
    663 
    664 	TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
    665 		sc->txready, sc->txbusy));
    666 
    667 	/* prime frame length first */
    668 	dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
    669 	dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff);
    670 	/* read isr next */
    671 	dme_read(sc, DM9000_ISR);
    672 	/* finally issue a request to send */
    673 	dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
    674 	sc->txready = 0;
    675 	sc->txbusy = 1;
    676 	sc->txready_length = 0;
    677 }
    678 
    679 /* Receive data */
    680 static void
    681 dme_receive(struct ifnet *ifp)
    682 {
    683 	struct dme_softc *sc = ifp->if_softc;
    684 	struct mbuf *m;
    685 	uint8_t avail, rsr;
    686 
    687 	DPRINTF(("inside dme_receive\n"));
    688 
    689 	/* frame has just arrived, retrieve it */
    690 	/* called right after Rx frame available interrupt */
    691 	do {
    692 		/* "no increment" read to get the avail byte without
    693 		   moving past it. */
    694 		bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
    695 			DM9000_MRCMDX);
    696 		/* Read twice */
    697 		avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
    698 		avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
    699 		avail &= 03;	/* 1:0 we only want these bits */
    700 		if (avail == 01) {
    701 			/* Read with address increment. */
    702 			bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
    703 				DM9000_MRCMD);
    704 			rsr = PKT_READ(sc, &m);
    705 			if (m == NULL) {
    706 				/* failed to allocate a receive buffer */
    707 				RX_DPRINTF(("dme_receive: "
    708 					"Error allocating buffer\n"));
    709 				if_statinc(ifp, if_ierrors);
    710 				continue;
    711 			}
    712 			if (rsr & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
    713 				/* Error while receiving the frame,
    714 				 * discard it and keep track of counters
    715 				 */
    716 				RX_DPRINTF(("dme_receive: "
    717 					"Error reciving frame\n"));
    718 				if_statinc(ifp, if_ierrors);
    719 				continue;
    720 			}
    721 			if (rsr & DM9000_RSR_LCS) {
    722 				if_statinc(ifp, if_collisions);
    723 				continue;
    724 			}
    725 			/* pick and forward this frame to ifq */
    726 			if_percpuq_enqueue(ifp->if_percpuq, m);
    727 		} else if (avail != 00) {
    728 			/* Should this be logged somehow? */
    729 			printf("%s: Resetting chip\n",
    730 			       device_xname(sc->sc_dev));
    731 			dme_reset(sc);
    732 			break;
    733 		}
    734 	} while (avail == 01);
    735 	/* frame received successfully */
    736 }
    737 
    738 int
    739 dme_intr(void *arg)
    740 {
    741 	struct dme_softc *sc = arg;
    742 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    743 	uint8_t isr, nsr, tsr;
    744 
    745 	DPRINTF(("dme_intr: Begin\n"));
    746 
    747 	/* Disable interrupts */
    748 	dme_write(sc, DM9000_IMR, DM9000_IMR_PAR);
    749 
    750 	isr = dme_read(sc, DM9000_ISR);
    751 	dme_write(sc, DM9000_ISR, isr); /* write to clear */
    752 
    753 	if (isr & DM9000_ISR_PRS) {
    754 		KASSERT(ifp->if_flags & IFF_RUNNING);
    755 		dme_receive(ifp);
    756 	}
    757 	if (isr & DM9000_ISR_LNKCHNG)
    758 		lnkchg(sc);
    759 	if (isr & DM9000_ISR_PTS) {
    760 		tsr = 0x01; /* Initialize to an error value */
    761 
    762 		/* A frame has been transmitted */
    763 		sc->txbusy = 0;
    764 
    765 		nsr = dme_read(sc, DM9000_NSR);
    766 		if (nsr & DM9000_NSR_TX1END) {
    767 			tsr = dme_read(sc, DM9000_TSR1);
    768 			TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
    769 		} else if (nsr & DM9000_NSR_TX2END) {
    770 			tsr = dme_read(sc, DM9000_TSR2);
    771 			TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
    772 		}
    773 
    774 		if (tsr == 0x0) {
    775 			/* Frame successfully sent */
    776 			if_statinc(ifp, if_opackets);
    777 		} else {
    778 			if_statinc(ifp, if_oerrors);
    779 		}
    780 
    781 		/* If we have nothing ready to transmit, prepare something */
    782 		if (!sc->txready)
    783 			dme_prepare(ifp);
    784 
    785 		if (sc->txready)
    786 			dme_transmit(ifp);
    787 
    788 		/* Prepare the next frame */
    789 		dme_prepare(ifp);
    790 
    791 		if_schedule_deferred_start(ifp);
    792 	}
    793 
    794 	/* Enable interrupts again */
    795 	dme_write(sc, DM9000_IMR,
    796 	    DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
    797 
    798 	DPRINTF(("dme_intr: End\n"));
    799 
    800 	return (isr != 0);
    801 }
    802 
    803 static int
    804 dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    805 {
    806 	struct dme_softc *sc = ifp->if_softc;
    807 	struct ifreq *ifr = (struct ifreq *)data;
    808 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    809 	int s, error;
    810 
    811 	s = splnet();
    812 	switch (cmd) {
    813 	case SIOCSIFMEDIA:
    814 		/* Flow control requires full-duplex mode. */
    815 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
    816 		    (ifr->ifr_media & IFM_FDX) == 0)
    817 			ifr->ifr_media &= ~IFM_ETH_FMASK;
    818 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
    819 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
    820 				ifr->ifr_media |=
    821 					IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
    822 			}
    823 		}
    824 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
    825 		break;
    826 	default:
    827 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    828 			break;
    829 		error = 0;
    830 		if (cmd == SIOCSIFCAP)
    831 			error = if_init(ifp);
    832 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    833 			;
    834 		else if (ifp->if_flags && IFF_RUNNING) {
    835 			/* Address list has changed, reconfigure filter */
    836 			dme_set_rcvfilt(sc);
    837 		}
    838 		break;
    839 	}
    840 	splx(s);
    841 	return error;
    842 }
    843 
    844 static struct mbuf *
    845 dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
    846 {
    847 	struct dme_softc *sc = ifp->if_softc;
    848 	struct mbuf *m;
    849 	int pad, quantum;
    850 
    851 	quantum = sc->sc_data_width;
    852 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    853 	if (m == NULL)
    854 		return NULL;
    855 
    856 	m_set_rcvif(m, ifp);
    857 	/* Ensure that we always allocate an even number of
    858 	 * bytes in order to avoid writing beyond the buffer
    859 	 */
    860 	m->m_pkthdr.len = frame_length + (frame_length % quantum);
    861 	pad = ALIGN(sizeof(struct ether_header)) -
    862 		sizeof(struct ether_header);
    863 	/* All our frames have the CRC attached */
    864 	m->m_flags |= M_HASFCS;
    865 	if (m->m_pkthdr.len + pad > MHLEN) {
    866 		MCLGET(m, M_DONTWAIT);
    867 		if ((m->m_flags & M_EXT) == 0) {
    868 			m_freem(m);
    869 			return NULL;
    870 		}
    871 	}
    872 
    873 	m->m_data += pad;
    874 	m->m_len = frame_length + (frame_length % quantum);
    875 
    876 	return m;
    877 }
    878 
    879 static int
    880 pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
    881 {
    882 	int left_over_count = 0; /* Number of bytes from previous mbuf, which
    883 				    need to be written with the next.*/
    884 	uint16_t left_over_buf = 0;
    885 	int length = 0;
    886 	struct mbuf *buf;
    887 	uint8_t *write_ptr;
    888 
    889 	/* We expect that the DM9000 has been setup to accept writes before
    890 	   this function is called. */
    891 
    892 	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
    893 		int to_write = buf->m_len;
    894 
    895 		length += to_write;
    896 
    897 		write_ptr = buf->m_data;
    898 		while (to_write > 0 ||
    899 		    (buf->m_next == NULL && left_over_count > 0)) {
    900 			if (left_over_count > 0) {
    901 				uint8_t b = 0;
    902 				DPRINTF(("pkt_write_16: "
    903 					 "Writing left over byte\n"));
    904 
    905 				if (to_write > 0) {
    906 					b = *write_ptr;
    907 					to_write--;
    908 					write_ptr++;
    909 
    910 					DPRINTF(("Took single byte\n"));
    911 				} else {
    912 					DPRINTF(("Leftover in last run\n"));
    913 					length++;
    914 				}
    915 
    916 				/* Does shift direction depend on endianness? */
    917 				left_over_buf = left_over_buf | (b << 8);
    918 
    919 				bus_space_write_2(sc->sc_iot, sc->sc_ioh,
    920 						  sc->dme_data, left_over_buf);
    921 				TX_DATA_DPRINTF(("%02X ", left_over_buf));
    922 				left_over_count = 0;
    923 			} else if ((long)write_ptr % 2 != 0) {
    924 				/* Misaligned data */
    925 				DPRINTF(("pkt_write_16: "
    926 					 "Detected misaligned data\n"));
    927 				left_over_buf = *write_ptr;
    928 				left_over_count = 1;
    929 				write_ptr++;
    930 				to_write--;
    931 			} else {
    932 				int i;
    933 				uint16_t *dptr = (uint16_t *)write_ptr;
    934 
    935 				/* A block of aligned data. */
    936 				for (i = 0; i < to_write / 2; i++) {
    937 					/* buf will be half-word aligned
    938 					 * all the time
    939 					 */
    940 					bus_space_write_2(sc->sc_iot,
    941 					    sc->sc_ioh, sc->dme_data, *dptr);
    942 					TX_DATA_DPRINTF(("%02X %02X ",
    943 					    *dptr & 0xFF, (*dptr >> 8) & 0xFF));
    944 					dptr++;
    945 				}
    946 
    947 				write_ptr += i * 2;
    948 				if (to_write % 2 != 0) {
    949 					DPRINTF(("pkt_write_16: "
    950 						 "to_write %% 2: %d\n",
    951 						 to_write % 2));
    952 					left_over_count = 1;
    953 					/* XXX: Does this depend on
    954 					 * the endianness?
    955 					 */
    956 					left_over_buf = *write_ptr;
    957 
    958 					write_ptr++;
    959 					to_write--;
    960 					DPRINTF(("pkt_write_16: "
    961 						 "to_write (after): %d\n",
    962 						 to_write));
    963 					DPRINTF(("pkt_write_16: i * 2: %d\n",
    964 						 i*2));
    965 				}
    966 				to_write -= i * 2;
    967 			}
    968 		} /* while (...) */
    969 	} /* for (...) */
    970 
    971 	return length;
    972 }
    973 
    974 static int
    975 pkt_read_2(struct dme_softc *sc, struct mbuf **outBuf)
    976 {
    977 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    978 	uint8_t rx_status;
    979 	struct mbuf *m;
    980 	uint16_t data;
    981 	uint16_t frame_length;
    982 	uint16_t i;
    983 	uint16_t *buf;
    984 
    985 	data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
    986 	rx_status = data & 0xFF;
    987 
    988 	frame_length = bus_space_read_2(sc->sc_iot,
    989 					sc->sc_ioh, sc->dme_data);
    990 	if (frame_length > ETHER_MAX_LEN) {
    991 		printf("Got frame of length: %d\n", frame_length);
    992 		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
    993 		panic("Something is rotten");
    994 	}
    995 	RX_DPRINTF(("dme_receive: rx_statux: 0x%x, frame_length: %d\n",
    996 		rx_status, frame_length));
    997 
    998 	m = dme_alloc_receive_buffer(ifp, frame_length);
    999 	if (m == NULL) {
   1000 		/*
   1001 		 * didn't get a receive buffer, so we read the rest of the
   1002 		 * frame, throw it away and return an error
   1003 		 */
   1004 		for (i = 0; i < frame_length; i += 2) {
   1005 			data = bus_space_read_2(sc->sc_iot,
   1006 					sc->sc_ioh, sc->dme_data);
   1007 		}
   1008 		*outBuf = NULL;
   1009 		return 0;
   1010 	}
   1011 
   1012 	buf = mtod(m, uint16_t*);
   1013 
   1014 	RX_DPRINTF(("dme_receive: "));
   1015 
   1016 	for (i = 0; i < frame_length; i += 2) {
   1017 		data = bus_space_read_2(sc->sc_iot,
   1018 					sc->sc_ioh, sc->dme_data);
   1019 		if ( (frame_length % 2 != 0) &&
   1020 		     (i == frame_length - 1) ) {
   1021 			data = data & 0xff;
   1022 			RX_DPRINTF((" L "));
   1023 		}
   1024 		*buf = data;
   1025 		buf++;
   1026 		RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
   1027 				 (data >> 8) & 0xff));
   1028 	}
   1029 
   1030 	RX_DATA_DPRINTF(("\n"));
   1031 	RX_DPRINTF(("Read %d bytes\n", i));
   1032 
   1033 	*outBuf = m;
   1034 	return rx_status;
   1035 }
   1036 
   1037 static int
   1038 pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
   1039 {
   1040 	int length = 0, i;
   1041 	struct mbuf *buf;
   1042 	uint8_t *write_ptr;
   1043 
   1044 	/*
   1045 	 * We expect that the DM9000 has been setup to accept writes before
   1046 	 * this function is called.
   1047 	 */
   1048 
   1049 	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
   1050 		int to_write = buf->m_len;
   1051 
   1052 		length += to_write;
   1053 
   1054 		write_ptr = buf->m_data;
   1055 		for (i = 0; i < to_write; i++) {
   1056 			bus_space_write_1(sc->sc_iot, sc->sc_ioh,
   1057 			    sc->dme_data, *write_ptr);
   1058 			write_ptr++;
   1059 		}
   1060 	} /* for (...) */
   1061 
   1062 	return length;
   1063 }
   1064 
   1065 static int
   1066 pkt_read_1(struct dme_softc *sc, struct mbuf **outBuf)
   1067 {
   1068 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1069 	uint8_t rx_status;
   1070 	struct mbuf *m;
   1071 	uint8_t *buf;
   1072 	uint16_t frame_length;
   1073 	uint16_t i, reg;
   1074 	uint8_t data;
   1075 
   1076 	reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
   1077 	reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
   1078 	rx_status = reg & 0xFF;
   1079 
   1080 	reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
   1081 	reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
   1082 	frame_length = reg;
   1083 
   1084 	if (frame_length > ETHER_MAX_LEN) {
   1085 		printf("Got frame of length: %d\n", frame_length);
   1086 		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
   1087 		panic("Something is rotten");
   1088 	}
   1089 	RX_DPRINTF(("dme_receive: "
   1090 		    "rx_statux: 0x%x, frame_length: %d\n",
   1091 		    rx_status, frame_length));
   1092 
   1093 	m = dme_alloc_receive_buffer(ifp, frame_length);
   1094 	if (m == NULL) {
   1095 		/*
   1096 		 * didn't get a receive buffer, so we read the rest of the
   1097 		 * frame, throw it away and return an error
   1098 		 */
   1099 		for (i = 0; i < frame_length; i++ ) {
   1100 			data = bus_space_read_2(sc->sc_iot,
   1101 					sc->sc_ioh, sc->dme_data);
   1102 		}
   1103 		*outBuf = NULL;
   1104 		return 0;
   1105 	}
   1106 
   1107 	buf = mtod(m, uint8_t *);
   1108 
   1109 	RX_DPRINTF(("dme_receive: "));
   1110 	for (i = 0; i< frame_length; i += 1) {
   1111 		data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
   1112 		*buf = data;
   1113 		buf++;
   1114 		RX_DATA_DPRINTF(("%02X ", data));
   1115 	}
   1116 
   1117 	RX_DATA_DPRINTF(("\n"));
   1118 	RX_DPRINTF(("Read %d bytes\n", i));
   1119 
   1120 	*outBuf = m;
   1121 	return rx_status;
   1122 }
   1123