1 /* $NetBSD: drm_drv.c,v 1.24 2022/10/15 15:19:28 riastradh Exp $ */ 2 3 /* 4 * Created: Fri Jan 19 10:48:35 2001 by faith (at) acm.org 5 * 6 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 7 * All Rights Reserved. 8 * 9 * Author Rickard E. (Rik) Faith <faith (at) valinux.com> 10 * 11 * Permission is hereby granted, free of charge, to any person obtaining a 12 * copy of this software and associated documentation files (the "Software"), 13 * to deal in the Software without restriction, including without limitation 14 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 15 * and/or sell copies of the Software, and to permit persons to whom the 16 * Software is furnished to do so, subject to the following conditions: 17 * 18 * The above copyright notice and this permission notice (including the next 19 * paragraph) shall be included in all copies or substantial portions of the 20 * Software. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 25 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 26 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 27 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 28 * DEALINGS IN THE SOFTWARE. 29 */ 30 31 #include <sys/cdefs.h> 32 __KERNEL_RCSID(0, "$NetBSD: drm_drv.c,v 1.24 2022/10/15 15:19:28 riastradh Exp $"); 33 34 #include <linux/debugfs.h> 35 #include <linux/fs.h> 36 #include <linux/module.h> 37 #include <linux/moduleparam.h> 38 #include <linux/mount.h> 39 #include <linux/pseudo_fs.h> 40 #include <linux/slab.h> 41 #include <linux/srcu.h> 42 43 #include <drm/drm_client.h> 44 #include <drm/drm_color_mgmt.h> 45 #include <drm/drm_drv.h> 46 #include <drm/drm_file.h> 47 #include <drm/drm_mode_object.h> 48 #include <drm/drm_print.h> 49 50 #include "drm_crtc_internal.h" 51 #include "drm_internal.h" 52 #include "drm_legacy.h" 53 54 #include <linux/nbsd-namespace.h> 55 56 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, Jos Fonseca, Jon Smirl"); 57 MODULE_DESCRIPTION("DRM shared core routines"); 58 MODULE_LICENSE("GPL and additional rights"); 59 60 #ifdef __NetBSD__ 61 spinlock_t drm_minor_lock; 62 struct idr drm_minors_idr; 63 #else 64 static DEFINE_SPINLOCK(drm_minor_lock); 65 static struct idr drm_minors_idr; 66 #endif 67 68 /* 69 * If the drm core fails to init for whatever reason, 70 * we should prevent any drivers from registering with it. 71 * It's best to check this at drm_dev_init(), as some drivers 72 * prefer to embed struct drm_device into their own device 73 * structure and call drm_dev_init() themselves. 74 */ 75 bool drm_core_init_complete = false; 76 77 #ifndef __NetBSD__ 78 static struct dentry *drm_debugfs_root; 79 #endif 80 81 #ifdef __NetBSD__ 82 struct srcu_struct drm_unplug_srcu; 83 #else 84 DEFINE_STATIC_SRCU(drm_unplug_srcu); 85 #endif 86 87 /* 88 * DRM Minors 89 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 90 * of them is represented by a drm_minor object. Depending on the capabilities 91 * of the device-driver, different interfaces are registered. 92 * 93 * Minors can be accessed via dev->$minor_name. This pointer is either 94 * NULL or a valid drm_minor pointer and stays valid as long as the device is 95 * valid. This means, DRM minors have the same life-time as the underlying 96 * device. However, this doesn't mean that the minor is active. Minors are 97 * registered and unregistered dynamically according to device-state. 98 */ 99 100 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 101 unsigned int type) 102 { 103 switch (type) { 104 case DRM_MINOR_PRIMARY: 105 return &dev->primary; 106 case DRM_MINOR_RENDER: 107 return &dev->render; 108 default: 109 BUG(); 110 } 111 } 112 113 static int drm_minor_alloc(struct drm_device *dev, unsigned int type) 114 { 115 struct drm_minor *minor; 116 unsigned long flags; 117 int r; 118 119 minor = kzalloc(sizeof(*minor), GFP_KERNEL); 120 if (!minor) 121 return -ENOMEM; 122 123 minor->type = type; 124 minor->dev = dev; 125 126 idr_preload(GFP_KERNEL); 127 spin_lock_irqsave(&drm_minor_lock, flags); 128 r = idr_alloc(&drm_minors_idr, 129 NULL, 130 64 * type, 131 64 * (type + 1), 132 GFP_NOWAIT); 133 spin_unlock_irqrestore(&drm_minor_lock, flags); 134 idr_preload_end(); 135 136 if (r < 0) 137 goto err_free; 138 139 minor->index = r; 140 141 #ifndef __NetBSD__ /* XXX drm sysfs */ 142 minor->kdev = drm_sysfs_minor_alloc(minor); 143 if (IS_ERR(minor->kdev)) { 144 r = PTR_ERR(minor->kdev); 145 goto err_index; 146 } 147 #endif 148 149 *drm_minor_get_slot(dev, type) = minor; 150 return 0; 151 152 err_index: __unused 153 spin_lock_irqsave(&drm_minor_lock, flags); 154 idr_remove(&drm_minors_idr, minor->index); 155 spin_unlock_irqrestore(&drm_minor_lock, flags); 156 err_free: 157 kfree(minor); 158 return r; 159 } 160 161 static void drm_minor_free(struct drm_device *dev, unsigned int type) 162 { 163 struct drm_minor **slot, *minor; 164 unsigned long flags; 165 166 slot = drm_minor_get_slot(dev, type); 167 minor = *slot; 168 if (!minor) 169 return; 170 171 #ifndef __NetBSD__ /* XXX drm sysfs */ 172 put_device(minor->kdev); 173 #endif 174 175 spin_lock_irqsave(&drm_minor_lock, flags); 176 idr_remove(&drm_minors_idr, minor->index); 177 spin_unlock_irqrestore(&drm_minor_lock, flags); 178 179 kfree(minor); 180 *slot = NULL; 181 } 182 183 static int drm_minor_register(struct drm_device *dev, unsigned int type) 184 { 185 struct drm_minor *minor; 186 unsigned long flags; 187 #ifndef __NetBSD__ 188 int ret; 189 #endif 190 191 DRM_DEBUG("\n"); 192 193 minor = *drm_minor_get_slot(dev, type); 194 if (!minor) 195 return 0; 196 197 #ifndef __NetBSD__ 198 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 199 if (ret) { 200 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 201 goto err_debugfs; 202 } 203 204 ret = device_add(minor->kdev); 205 if (ret) 206 goto err_debugfs; 207 #endif 208 209 /* replace NULL with @minor so lookups will succeed from now on */ 210 spin_lock_irqsave(&drm_minor_lock, flags); 211 idr_replace(&drm_minors_idr, minor, minor->index); 212 spin_unlock_irqrestore(&drm_minor_lock, flags); 213 214 DRM_DEBUG("new minor registered %d\n", minor->index); 215 return 0; 216 217 #ifndef __NetBSD__ 218 err_debugfs: 219 drm_debugfs_cleanup(minor); 220 return ret; 221 #endif 222 } 223 224 static void drm_minor_unregister(struct drm_device *dev, unsigned int type) 225 { 226 struct drm_minor *minor; 227 unsigned long flags; 228 229 minor = *drm_minor_get_slot(dev, type); 230 #ifdef __NetBSD__ 231 if (!minor) 232 #else 233 if (!minor || !device_is_registered(minor->kdev)) 234 #endif 235 return; 236 237 /* replace @minor with NULL so lookups will fail from now on */ 238 spin_lock_irqsave(&drm_minor_lock, flags); 239 idr_replace(&drm_minors_idr, NULL, minor->index); 240 spin_unlock_irqrestore(&drm_minor_lock, flags); 241 242 #ifndef __NetBSD__ 243 device_del(minor->kdev); 244 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 245 drm_debugfs_cleanup(minor); 246 #endif 247 } 248 249 /* 250 * Looks up the given minor-ID and returns the respective DRM-minor object. The 251 * refence-count of the underlying device is increased so you must release this 252 * object with drm_minor_release(). 253 * 254 * As long as you hold this minor, it is guaranteed that the object and the 255 * minor->dev pointer will stay valid! However, the device may get unplugged and 256 * unregistered while you hold the minor. 257 */ 258 struct drm_minor *drm_minor_acquire(unsigned int minor_id) 259 { 260 struct drm_minor *minor; 261 unsigned long flags; 262 263 spin_lock_irqsave(&drm_minor_lock, flags); 264 minor = idr_find(&drm_minors_idr, minor_id); 265 if (minor) 266 drm_dev_get(minor->dev); 267 spin_unlock_irqrestore(&drm_minor_lock, flags); 268 269 if (!minor) { 270 return ERR_PTR(-ENODEV); 271 } else if (drm_dev_is_unplugged(minor->dev)) { 272 drm_dev_put(minor->dev); 273 return ERR_PTR(-ENODEV); 274 } 275 276 return minor; 277 } 278 279 void drm_minor_release(struct drm_minor *minor) 280 { 281 drm_dev_put(minor->dev); 282 } 283 284 /** 285 * DOC: driver instance overview 286 * 287 * A device instance for a drm driver is represented by &struct drm_device. This 288 * is initialized with drm_dev_init(), usually from bus-specific ->probe() 289 * callbacks implemented by the driver. The driver then needs to initialize all 290 * the various subsystems for the drm device like memory management, vblank 291 * handling, modesetting support and intial output configuration plus obviously 292 * initialize all the corresponding hardware bits. Finally when everything is up 293 * and running and ready for userspace the device instance can be published 294 * using drm_dev_register(). 295 * 296 * There is also deprecated support for initalizing device instances using 297 * bus-specific helpers and the &drm_driver.load callback. But due to 298 * backwards-compatibility needs the device instance have to be published too 299 * early, which requires unpretty global locking to make safe and is therefore 300 * only support for existing drivers not yet converted to the new scheme. 301 * 302 * When cleaning up a device instance everything needs to be done in reverse: 303 * First unpublish the device instance with drm_dev_unregister(). Then clean up 304 * any other resources allocated at device initialization and drop the driver's 305 * reference to &drm_device using drm_dev_put(). 306 * 307 * Note that the lifetime rules for &drm_device instance has still a lot of 308 * historical baggage. Hence use the reference counting provided by 309 * drm_dev_get() and drm_dev_put() only carefully. 310 * 311 * Display driver example 312 * ~~~~~~~~~~~~~~~~~~~~~~ 313 * 314 * The following example shows a typical structure of a DRM display driver. 315 * The example focus on the probe() function and the other functions that is 316 * almost always present and serves as a demonstration of devm_drm_dev_init() 317 * usage with its accompanying drm_driver->release callback. 318 * 319 * .. code-block:: c 320 * 321 * struct driver_device { 322 * struct drm_device drm; 323 * void *userspace_facing; 324 * struct clk *pclk; 325 * }; 326 * 327 * static void driver_drm_release(struct drm_device *drm) 328 * { 329 * struct driver_device *priv = container_of(...); 330 * 331 * drm_mode_config_cleanup(drm); 332 * drm_dev_fini(drm); 333 * kfree(priv->userspace_facing); 334 * kfree(priv); 335 * } 336 * 337 * static struct drm_driver driver_drm_driver = { 338 * [...] 339 * .release = driver_drm_release, 340 * }; 341 * 342 * static int driver_probe(struct platform_device *pdev) 343 * { 344 * struct driver_device *priv; 345 * struct drm_device *drm; 346 * int ret; 347 * 348 * // devm_kzalloc() can't be used here because the drm_device ' 349 * // lifetime can exceed the device lifetime if driver unbind 350 * // happens when userspace still has open file descriptors. 351 * priv = kzalloc(sizeof(*priv), GFP_KERNEL); 352 * if (!priv) 353 * return -ENOMEM; 354 * 355 * drm = &priv->drm; 356 * 357 * ret = devm_drm_dev_init(&pdev->dev, drm, &driver_drm_driver); 358 * if (ret) { 359 * kfree(drm); 360 * return ret; 361 * } 362 * 363 * drm_mode_config_init(drm); 364 * 365 * priv->userspace_facing = kzalloc(..., GFP_KERNEL); 366 * if (!priv->userspace_facing) 367 * return -ENOMEM; 368 * 369 * priv->pclk = devm_clk_get(dev, "PCLK"); 370 * if (IS_ERR(priv->pclk)) 371 * return PTR_ERR(priv->pclk); 372 * 373 * // Further setup, display pipeline etc 374 * 375 * platform_set_drvdata(pdev, drm); 376 * 377 * drm_mode_config_reset(drm); 378 * 379 * ret = drm_dev_register(drm); 380 * if (ret) 381 * return ret; 382 * 383 * drm_fbdev_generic_setup(drm, 32); 384 * 385 * return 0; 386 * } 387 * 388 * // This function is called before the devm_ resources are released 389 * static int driver_remove(struct platform_device *pdev) 390 * { 391 * struct drm_device *drm = platform_get_drvdata(pdev); 392 * 393 * drm_dev_unregister(drm); 394 * drm_atomic_helper_shutdown(drm) 395 * 396 * return 0; 397 * } 398 * 399 * // This function is called on kernel restart and shutdown 400 * static void driver_shutdown(struct platform_device *pdev) 401 * { 402 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); 403 * } 404 * 405 * static int __maybe_unused driver_pm_suspend(struct device *dev) 406 * { 407 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); 408 * } 409 * 410 * static int __maybe_unused driver_pm_resume(struct device *dev) 411 * { 412 * drm_mode_config_helper_resume(dev_get_drvdata(dev)); 413 * 414 * return 0; 415 * } 416 * 417 * static const struct dev_pm_ops driver_pm_ops = { 418 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) 419 * }; 420 * 421 * static struct platform_driver driver_driver = { 422 * .driver = { 423 * [...] 424 * .pm = &driver_pm_ops, 425 * }, 426 * .probe = driver_probe, 427 * .remove = driver_remove, 428 * .shutdown = driver_shutdown, 429 * }; 430 * module_platform_driver(driver_driver); 431 * 432 * Drivers that want to support device unplugging (USB, DT overlay unload) should 433 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect 434 * regions that is accessing device resources to prevent use after they're 435 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one 436 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before 437 * drm_atomic_helper_shutdown() is called. This means that if the disable code 438 * paths are protected, they will not run on regular driver module unload, 439 * possibily leaving the hardware enabled. 440 */ 441 442 /** 443 * drm_put_dev - Unregister and release a DRM device 444 * @dev: DRM device 445 * 446 * Called at module unload time or when a PCI device is unplugged. 447 * 448 * Cleans up all DRM device, calling drm_lastclose(). 449 * 450 * Note: Use of this function is deprecated. It will eventually go away 451 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 452 * instead to make sure that the device isn't userspace accessible any more 453 * while teardown is in progress, ensuring that userspace can't access an 454 * inconsistent state. 455 */ 456 void drm_put_dev(struct drm_device *dev) 457 { 458 DRM_DEBUG("\n"); 459 460 if (!dev) { 461 DRM_ERROR("cleanup called no dev\n"); 462 return; 463 } 464 465 drm_dev_unregister(dev); 466 drm_dev_put(dev); 467 } 468 EXPORT_SYMBOL(drm_put_dev); 469 470 /** 471 * drm_dev_enter - Enter device critical section 472 * @dev: DRM device 473 * @idx: Pointer to index that will be passed to the matching drm_dev_exit() 474 * 475 * This function marks and protects the beginning of a section that should not 476 * be entered after the device has been unplugged. The section end is marked 477 * with drm_dev_exit(). Calls to this function can be nested. 478 * 479 * Returns: 480 * True if it is OK to enter the section, false otherwise. 481 */ 482 bool drm_dev_enter(struct drm_device *dev, int *idx) 483 { 484 *idx = srcu_read_lock(&drm_unplug_srcu); 485 486 if (dev->unplugged) { 487 srcu_read_unlock(&drm_unplug_srcu, *idx); 488 return false; 489 } 490 491 return true; 492 } 493 EXPORT_SYMBOL(drm_dev_enter); 494 495 /** 496 * drm_dev_exit - Exit device critical section 497 * @idx: index returned from drm_dev_enter() 498 * 499 * This function marks the end of a section that should not be entered after 500 * the device has been unplugged. 501 */ 502 void drm_dev_exit(int idx) 503 { 504 srcu_read_unlock(&drm_unplug_srcu, idx); 505 } 506 EXPORT_SYMBOL(drm_dev_exit); 507 508 /** 509 * drm_dev_unplug - unplug a DRM device 510 * @dev: DRM device 511 * 512 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 513 * userspace operations. Entry-points can use drm_dev_enter() and 514 * drm_dev_exit() to protect device resources in a race free manner. This 515 * essentially unregisters the device like drm_dev_unregister(), but can be 516 * called while there are still open users of @dev. 517 */ 518 void drm_dev_unplug(struct drm_device *dev) 519 { 520 /* 521 * After synchronizing any critical read section is guaranteed to see 522 * the new value of ->unplugged, and any critical section which might 523 * still have seen the old value of ->unplugged is guaranteed to have 524 * finished. 525 */ 526 dev->unplugged = true; 527 synchronize_srcu(&drm_unplug_srcu); 528 529 drm_dev_unregister(dev); 530 } 531 EXPORT_SYMBOL(drm_dev_unplug); 532 533 #ifdef __NetBSD__ 534 535 static void * 536 drm_fs_inode_new(void) 537 { 538 return NULL; 539 } 540 541 static void 542 drm_fs_inode_free(void *inode) 543 { 544 KASSERT(inode == NULL); 545 } 546 547 #else 548 549 /* 550 * DRM internal mount 551 * We want to be able to allocate our own "struct address_space" to control 552 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 553 * stand-alone address_space objects, so we need an underlying inode. As there 554 * is no way to allocate an independent inode easily, we need a fake internal 555 * VFS mount-point. 556 * 557 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 558 * frees it again. You are allowed to use iget() and iput() to get references to 559 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 560 * drm_fs_inode_free() call (which does not have to be the last iput()). 561 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 562 * between multiple inode-users. You could, technically, call 563 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 564 * iput(), but this way you'd end up with a new vfsmount for each inode. 565 */ 566 567 static int drm_fs_cnt; 568 static struct vfsmount *drm_fs_mnt; 569 570 static int drm_fs_init_fs_context(struct fs_context *fc) 571 { 572 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM; 573 } 574 575 static struct file_system_type drm_fs_type = { 576 .name = "drm", 577 .owner = THIS_MODULE, 578 .init_fs_context = drm_fs_init_fs_context, 579 .kill_sb = kill_anon_super, 580 }; 581 582 static struct inode *drm_fs_inode_new(void) 583 { 584 struct inode *inode; 585 int r; 586 587 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 588 if (r < 0) { 589 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 590 return ERR_PTR(r); 591 } 592 593 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 594 if (IS_ERR(inode)) 595 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 596 597 return inode; 598 } 599 600 static void drm_fs_inode_free(struct inode *inode) 601 { 602 if (inode) { 603 iput(inode); 604 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 605 } 606 } 607 608 #endif 609 610 /** 611 * DOC: component helper usage recommendations 612 * 613 * DRM drivers that drive hardware where a logical device consists of a pile of 614 * independent hardware blocks are recommended to use the :ref:`component helper 615 * library<component>`. For consistency and better options for code reuse the 616 * following guidelines apply: 617 * 618 * - The entire device initialization procedure should be run from the 619 * &component_master_ops.master_bind callback, starting with drm_dev_init(), 620 * then binding all components with component_bind_all() and finishing with 621 * drm_dev_register(). 622 * 623 * - The opaque pointer passed to all components through component_bind_all() 624 * should point at &struct drm_device of the device instance, not some driver 625 * specific private structure. 626 * 627 * - The component helper fills the niche where further standardization of 628 * interfaces is not practical. When there already is, or will be, a 629 * standardized interface like &drm_bridge or &drm_panel, providing its own 630 * functions to find such components at driver load time, like 631 * drm_of_find_panel_or_bridge(), then the component helper should not be 632 * used. 633 */ 634 635 /** 636 * drm_dev_init - Initialise new DRM device 637 * @dev: DRM device 638 * @driver: DRM driver 639 * @parent: Parent device object 640 * 641 * Initialize a new DRM device. No device registration is done. 642 * Call drm_dev_register() to advertice the device to user space and register it 643 * with other core subsystems. This should be done last in the device 644 * initialization sequence to make sure userspace can't access an inconsistent 645 * state. 646 * 647 * The initial ref-count of the object is 1. Use drm_dev_get() and 648 * drm_dev_put() to take and drop further ref-counts. 649 * 650 * It is recommended that drivers embed &struct drm_device into their own device 651 * structure. 652 * 653 * Drivers that do not want to allocate their own device struct 654 * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers 655 * that do embed &struct drm_device it must be placed first in the overall 656 * structure, and the overall structure must be allocated using kmalloc(): The 657 * drm core's release function unconditionally calls kfree() on the @dev pointer 658 * when the final reference is released. To override this behaviour, and so 659 * allow embedding of the drm_device inside the driver's device struct at an 660 * arbitrary offset, you must supply a &drm_driver.release callback and control 661 * the finalization explicitly. 662 * 663 * RETURNS: 664 * 0 on success, or error code on failure. 665 */ 666 int drm_dev_init(struct drm_device *dev, 667 struct drm_driver *driver, 668 struct device *parent) 669 { 670 int ret; 671 672 if (!drm_core_init_complete) { 673 DRM_ERROR("DRM core is not initialized\n"); 674 return -ENODEV; 675 } 676 677 if (WARN_ON(!parent)) 678 return -EINVAL; 679 680 kref_init(&dev->ref); 681 dev->dev = get_device(parent); 682 dev->driver = driver; 683 684 /* no per-device feature limits by default */ 685 dev->driver_features = ~0u; 686 687 drm_legacy_init_members(dev); 688 INIT_LIST_HEAD(&dev->filelist); 689 INIT_LIST_HEAD(&dev->filelist_internal); 690 INIT_LIST_HEAD(&dev->clientlist); 691 INIT_LIST_HEAD(&dev->vblank_event_list); 692 693 spin_lock_init(&dev->event_lock); 694 mutex_init(&dev->struct_mutex); 695 mutex_init(&dev->filelist_mutex); 696 mutex_init(&dev->clientlist_mutex); 697 mutex_init(&dev->master_mutex); 698 #ifdef __NetBSD__ 699 mutex_init(&dev->suspend_lock); 700 DRM_INIT_WAITQUEUE(&dev->suspend_cv, "drmsusp"); 701 dev->active_ioctls = 0; 702 dev->suspender = NULL; 703 #endif 704 705 dev->sc_monitor_hotplug.smpsw_name = PSWITCH_HK_DISPLAY_CYCLE; 706 dev->sc_monitor_hotplug.smpsw_type = PSWITCH_TYPE_HOTKEY; 707 ret = sysmon_pswitch_register(&dev->sc_monitor_hotplug); 708 if (ret) 709 goto err_pswitch; 710 711 dev->anon_inode = drm_fs_inode_new(); 712 if (IS_ERR(dev->anon_inode)) { 713 ret = PTR_ERR(dev->anon_inode); 714 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 715 goto err_free; 716 } 717 718 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 719 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 720 if (ret) 721 goto err_minors; 722 } 723 724 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 725 if (ret) 726 goto err_minors; 727 728 ret = drm_legacy_create_map_hash(dev); 729 if (ret) 730 goto err_minors; 731 732 drm_legacy_ctxbitmap_init(dev); 733 734 if (drm_core_check_feature(dev, DRIVER_GEM)) { 735 ret = drm_gem_init(dev); 736 if (ret) { 737 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 738 goto err_ctxbitmap; 739 } 740 } 741 742 ret = drm_dev_set_unique(dev, dev_name(parent)); 743 if (ret) 744 goto err_setunique; 745 746 return 0; 747 748 err_setunique: 749 if (drm_core_check_feature(dev, DRIVER_GEM)) 750 drm_gem_destroy(dev); 751 err_ctxbitmap: 752 drm_legacy_ctxbitmap_cleanup(dev); 753 drm_legacy_remove_map_hash(dev); 754 err_minors: 755 drm_minor_free(dev, DRM_MINOR_PRIMARY); 756 drm_minor_free(dev, DRM_MINOR_RENDER); 757 drm_fs_inode_free(dev->anon_inode); 758 err_free: 759 #ifdef __NetBSD__ 760 sysmon_pswitch_unregister(&dev->sc_monitor_hotplug); 761 err_pswitch: 762 #endif 763 #ifndef __NetBSD__ /* XXX drm sysfs */ 764 put_device(dev->dev); 765 #endif 766 #ifdef __NetBSD__ 767 KASSERT(dev->suspender == NULL); 768 KASSERT(dev->active_ioctls == 0); 769 DRM_DESTROY_WAITQUEUE(&dev->suspend_cv); 770 mutex_destroy(&dev->suspend_lock); 771 #endif 772 mutex_destroy(&dev->master_mutex); 773 mutex_destroy(&dev->clientlist_mutex); 774 mutex_destroy(&dev->filelist_mutex); 775 mutex_destroy(&dev->struct_mutex); 776 spin_lock_destroy(&dev->event_lock); 777 drm_legacy_destroy_members(dev); 778 return ret; 779 } 780 EXPORT_SYMBOL(drm_dev_init); 781 782 #ifndef __NetBSD__ 783 784 static void devm_drm_dev_init_release(void *data) 785 { 786 drm_dev_put(data); 787 } 788 789 /** 790 * devm_drm_dev_init - Resource managed drm_dev_init() 791 * @parent: Parent device object 792 * @dev: DRM device 793 * @driver: DRM driver 794 * 795 * Managed drm_dev_init(). The DRM device initialized with this function is 796 * automatically put on driver detach using drm_dev_put(). You must supply a 797 * &drm_driver.release callback to control the finalization explicitly. 798 * 799 * RETURNS: 800 * 0 on success, or error code on failure. 801 */ 802 int devm_drm_dev_init(struct device *parent, 803 struct drm_device *dev, 804 struct drm_driver *driver) 805 { 806 int ret; 807 808 if (WARN_ON(!driver->release)) 809 return -EINVAL; 810 811 ret = drm_dev_init(dev, driver, parent); 812 if (ret) 813 return ret; 814 815 ret = devm_add_action(parent, devm_drm_dev_init_release, dev); 816 if (ret) 817 devm_drm_dev_init_release(dev); 818 819 return ret; 820 } 821 EXPORT_SYMBOL(devm_drm_dev_init); 822 823 #endif 824 825 /** 826 * drm_dev_fini - Finalize a dead DRM device 827 * @dev: DRM device 828 * 829 * Finalize a dead DRM device. This is the converse to drm_dev_init() and 830 * frees up all data allocated by it. All driver private data should be 831 * finalized first. Note that this function does not free the @dev, that is 832 * left to the caller. 833 * 834 * The ref-count of @dev must be zero, and drm_dev_fini() should only be called 835 * from a &drm_driver.release callback. 836 */ 837 void drm_dev_fini(struct drm_device *dev) 838 { 839 drm_vblank_cleanup(dev); 840 841 if (drm_core_check_feature(dev, DRIVER_GEM)) 842 drm_gem_destroy(dev); 843 844 drm_legacy_ctxbitmap_cleanup(dev); 845 drm_legacy_remove_map_hash(dev); 846 drm_fs_inode_free(dev->anon_inode); 847 848 drm_minor_free(dev, DRM_MINOR_PRIMARY); 849 drm_minor_free(dev, DRM_MINOR_RENDER); 850 851 #ifdef __NetBSD__ 852 sysmon_pswitch_unregister(&dev->sc_monitor_hotplug); 853 #endif 854 855 #ifndef __NetBSD__ /* XXX drm sysfs */ 856 put_device(dev->dev); 857 #endif 858 859 #ifdef __NetBSD__ 860 KASSERT(dev->suspender == NULL); 861 KASSERT(dev->active_ioctls == 0); 862 DRM_DESTROY_WAITQUEUE(&dev->suspend_cv); 863 mutex_destroy(&dev->suspend_lock); 864 #endif 865 866 mutex_destroy(&dev->master_mutex); 867 mutex_destroy(&dev->clientlist_mutex); 868 mutex_destroy(&dev->filelist_mutex); 869 mutex_destroy(&dev->struct_mutex); 870 spin_lock_destroy(&dev->event_lock); 871 drm_legacy_destroy_members(dev); 872 kfree(dev->unique); 873 } 874 EXPORT_SYMBOL(drm_dev_fini); 875 876 /** 877 * drm_dev_alloc - Allocate new DRM device 878 * @driver: DRM driver to allocate device for 879 * @parent: Parent device object 880 * 881 * Allocate and initialize a new DRM device. No device registration is done. 882 * Call drm_dev_register() to advertice the device to user space and register it 883 * with other core subsystems. This should be done last in the device 884 * initialization sequence to make sure userspace can't access an inconsistent 885 * state. 886 * 887 * The initial ref-count of the object is 1. Use drm_dev_get() and 888 * drm_dev_put() to take and drop further ref-counts. 889 * 890 * Note that for purely virtual devices @parent can be NULL. 891 * 892 * Drivers that wish to subclass or embed &struct drm_device into their 893 * own struct should look at using drm_dev_init() instead. 894 * 895 * RETURNS: 896 * Pointer to new DRM device, or ERR_PTR on failure. 897 */ 898 struct drm_device *drm_dev_alloc(struct drm_driver *driver, 899 struct device *parent) 900 { 901 struct drm_device *dev; 902 int ret; 903 904 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 905 if (!dev) 906 return ERR_PTR(-ENOMEM); 907 908 ret = drm_dev_init(dev, driver, parent); 909 if (ret) { 910 kfree(dev); 911 return ERR_PTR(ret); 912 } 913 914 return dev; 915 } 916 EXPORT_SYMBOL(drm_dev_alloc); 917 918 static void drm_dev_release(struct kref *ref) 919 { 920 struct drm_device *dev = container_of(ref, struct drm_device, ref); 921 922 if (dev->driver->release) { 923 dev->driver->release(dev); 924 } else { 925 drm_dev_fini(dev); 926 kfree(dev); 927 } 928 } 929 930 /** 931 * drm_dev_get - Take reference of a DRM device 932 * @dev: device to take reference of or NULL 933 * 934 * This increases the ref-count of @dev by one. You *must* already own a 935 * reference when calling this. Use drm_dev_put() to drop this reference 936 * again. 937 * 938 * This function never fails. However, this function does not provide *any* 939 * guarantee whether the device is alive or running. It only provides a 940 * reference to the object and the memory associated with it. 941 */ 942 void drm_dev_get(struct drm_device *dev) 943 { 944 if (dev) 945 kref_get(&dev->ref); 946 } 947 EXPORT_SYMBOL(drm_dev_get); 948 949 /** 950 * drm_dev_put - Drop reference of a DRM device 951 * @dev: device to drop reference of or NULL 952 * 953 * This decreases the ref-count of @dev by one. The device is destroyed if the 954 * ref-count drops to zero. 955 */ 956 void drm_dev_put(struct drm_device *dev) 957 { 958 if (dev) 959 kref_put(&dev->ref, drm_dev_release); 960 } 961 EXPORT_SYMBOL(drm_dev_put); 962 963 static int create_compat_control_link(struct drm_device *dev) 964 { 965 struct drm_minor *minor; 966 char *name; 967 int ret; 968 969 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 970 return 0; 971 972 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 973 if (!minor) 974 return 0; 975 976 /* 977 * Some existing userspace out there uses the existing of the controlD* 978 * sysfs files to figure out whether it's a modeset driver. It only does 979 * readdir, hence a symlink is sufficient (and the least confusing 980 * option). Otherwise controlD* is entirely unused. 981 * 982 * Old controlD chardev have been allocated in the range 983 * 64-127. 984 */ 985 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 986 if (!name) 987 return -ENOMEM; 988 989 #ifdef __NetBSD__ /* XXX sysfs */ 990 ret = 0; 991 #else 992 ret = sysfs_create_link(minor->kdev->kobj.parent, 993 &minor->kdev->kobj, 994 name); 995 #endif 996 997 kfree(name); 998 999 return ret; 1000 } 1001 1002 static void remove_compat_control_link(struct drm_device *dev) 1003 { 1004 struct drm_minor *minor; 1005 char *name; 1006 1007 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1008 return; 1009 1010 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 1011 if (!minor) 1012 return; 1013 1014 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 1015 if (!name) 1016 return; 1017 1018 #ifndef __NetBSD__ /* XXX sysfs */ 1019 sysfs_remove_link(minor->kdev->kobj.parent, name); 1020 #endif 1021 1022 kfree(name); 1023 } 1024 1025 /** 1026 * drm_dev_register - Register DRM device 1027 * @dev: Device to register 1028 * @flags: Flags passed to the driver's .load() function 1029 * 1030 * Register the DRM device @dev with the system, advertise device to user-space 1031 * and start normal device operation. @dev must be initialized via drm_dev_init() 1032 * previously. 1033 * 1034 * Never call this twice on any device! 1035 * 1036 * NOTE: To ensure backward compatibility with existing drivers method this 1037 * function calls the &drm_driver.load method after registering the device 1038 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 1039 * therefore deprecated, drivers must perform all initialization before calling 1040 * drm_dev_register(). 1041 * 1042 * RETURNS: 1043 * 0 on success, negative error code on failure. 1044 */ 1045 int drm_dev_register(struct drm_device *dev, unsigned long flags) 1046 { 1047 struct drm_driver *driver = dev->driver; 1048 int ret; 1049 1050 #ifndef __NetBSD__ 1051 mutex_lock(&drm_global_mutex); 1052 #endif 1053 1054 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 1055 if (ret) 1056 goto err_minors; 1057 1058 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 1059 if (ret) 1060 goto err_minors; 1061 1062 ret = create_compat_control_link(dev); 1063 if (ret) 1064 goto err_minors; 1065 1066 dev->registered = true; 1067 1068 if (dev->driver->load) { 1069 ret = dev->driver->load(dev, flags); 1070 if (ret) 1071 goto err_minors; 1072 } 1073 1074 if (drm_core_check_feature(dev, DRIVER_MODESET)) 1075 drm_modeset_register_all(dev); 1076 1077 ret = 0; 1078 1079 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", 1080 driver->name, driver->major, driver->minor, 1081 driver->patchlevel, driver->date, 1082 dev->dev ? dev_name(dev->dev) : "virtual device", 1083 dev->primary->index); 1084 1085 goto out_unlock; 1086 1087 err_minors: 1088 remove_compat_control_link(dev); 1089 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1090 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1091 out_unlock: 1092 #ifndef __NetBSD__ 1093 mutex_unlock(&drm_global_mutex); 1094 #endif 1095 return ret; 1096 } 1097 EXPORT_SYMBOL(drm_dev_register); 1098 1099 /** 1100 * drm_dev_unregister - Unregister DRM device 1101 * @dev: Device to unregister 1102 * 1103 * Unregister the DRM device from the system. This does the reverse of 1104 * drm_dev_register() but does not deallocate the device. The caller must call 1105 * drm_dev_put() to drop their final reference. 1106 * 1107 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 1108 * which can be called while there are still open users of @dev. 1109 * 1110 * This should be called first in the device teardown code to make sure 1111 * userspace can't access the device instance any more. 1112 */ 1113 void drm_dev_unregister(struct drm_device *dev) 1114 { 1115 if (drm_core_check_feature(dev, DRIVER_LEGACY)) 1116 drm_lastclose(dev); 1117 1118 dev->registered = false; 1119 1120 drm_client_dev_unregister(dev); 1121 1122 if (drm_core_check_feature(dev, DRIVER_MODESET)) 1123 drm_modeset_unregister_all(dev); 1124 1125 if (dev->driver->unload) 1126 dev->driver->unload(dev); 1127 1128 #ifndef __NetBSD__ /* Moved to drm_pci. */ 1129 if (dev->agp) 1130 drm_pci_agp_destroy(dev); 1131 #endif 1132 1133 drm_legacy_rmmaps(dev); 1134 1135 remove_compat_control_link(dev); 1136 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1137 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1138 } 1139 EXPORT_SYMBOL(drm_dev_unregister); 1140 1141 /** 1142 * drm_dev_set_unique - Set the unique name of a DRM device 1143 * @dev: device of which to set the unique name 1144 * @name: unique name 1145 * 1146 * Sets the unique name of a DRM device using the specified string. This is 1147 * already done by drm_dev_init(), drivers should only override the default 1148 * unique name for backwards compatibility reasons. 1149 * 1150 * Return: 0 on success or a negative error code on failure. 1151 */ 1152 int drm_dev_set_unique(struct drm_device *dev, const char *name) 1153 { 1154 kfree(dev->unique); 1155 dev->unique = kstrdup(name, GFP_KERNEL); 1156 1157 return dev->unique ? 0 : -ENOMEM; 1158 } 1159 EXPORT_SYMBOL(drm_dev_set_unique); 1160 1161 #ifndef __NetBSD__ 1162 1163 /* 1164 * DRM Core 1165 * The DRM core module initializes all global DRM objects and makes them 1166 * available to drivers. Once setup, drivers can probe their respective 1167 * devices. 1168 * Currently, core management includes: 1169 * - The "DRM-Global" key/value database 1170 * - Global ID management for connectors 1171 * - DRM major number allocation 1172 * - DRM minor management 1173 * - DRM sysfs class 1174 * - DRM debugfs root 1175 * 1176 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 1177 * interface registered on a DRM device, you can request minor numbers from DRM 1178 * core. DRM core takes care of major-number management and char-dev 1179 * registration. A stub ->open() callback forwards any open() requests to the 1180 * registered minor. 1181 */ 1182 1183 static int drm_stub_open(struct inode *inode, struct file *filp) 1184 { 1185 const struct file_operations *new_fops; 1186 struct drm_minor *minor; 1187 int err; 1188 1189 DRM_DEBUG("\n"); 1190 1191 mutex_lock(&drm_global_mutex); 1192 minor = drm_minor_acquire(iminor(inode)); 1193 if (IS_ERR(minor)) { 1194 err = PTR_ERR(minor); 1195 goto out_unlock; 1196 } 1197 1198 new_fops = fops_get(minor->dev->driver->fops); 1199 if (!new_fops) { 1200 err = -ENODEV; 1201 goto out_release; 1202 } 1203 1204 replace_fops(filp, new_fops); 1205 if (filp->f_op->open) 1206 err = filp->f_op->open(inode, filp); 1207 else 1208 err = 0; 1209 1210 out_release: 1211 drm_minor_release(minor); 1212 out_unlock: 1213 mutex_unlock(&drm_global_mutex); 1214 return err; 1215 } 1216 1217 static const struct file_operations drm_stub_fops = { 1218 .owner = THIS_MODULE, 1219 .open = drm_stub_open, 1220 .llseek = noop_llseek, 1221 }; 1222 1223 static void drm_core_exit(void) 1224 { 1225 unregister_chrdev(DRM_MAJOR, "drm"); 1226 debugfs_remove(drm_debugfs_root); 1227 drm_sysfs_destroy(); 1228 idr_destroy(&drm_minors_idr); 1229 drm_connector_ida_destroy(); 1230 } 1231 1232 static int __init drm_core_init(void) 1233 { 1234 int ret; 1235 1236 drm_connector_ida_init(); 1237 idr_init(&drm_minors_idr); 1238 1239 ret = drm_sysfs_init(); 1240 if (ret < 0) { 1241 DRM_ERROR("Cannot create DRM class: %d\n", ret); 1242 goto error; 1243 } 1244 1245 drm_debugfs_root = debugfs_create_dir("dri", NULL); 1246 1247 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 1248 if (ret < 0) 1249 goto error; 1250 1251 drm_core_init_complete = true; 1252 1253 DRM_DEBUG("Initialized\n"); 1254 return 0; 1255 1256 error: 1257 drm_core_exit(); 1258 return ret; 1259 } 1260 1261 module_init(drm_core_init); 1262 module_exit(drm_core_exit); 1263 1264 #endif 1265