Home | History | Annotate | Line # | Download | only in dist
      1 /*	$NetBSD: dwc2_core.c,v 1.14 2025/04/12 08:22:31 mlelstv Exp $	*/
      2 
      3 /*
      4  * core.c - DesignWare HS OTG Controller common routines
      5  *
      6  * Copyright (C) 2004-2013 Synopsys, Inc.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions, and the following disclaimer,
     13  *    without modification.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. The names of the above-listed copyright holders may not be used
     18  *    to endorse or promote products derived from this software without
     19  *    specific prior written permission.
     20  *
     21  * ALTERNATIVELY, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") as published by the Free Software
     23  * Foundation; either version 2 of the License, or (at your option) any
     24  * later version.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     27  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     28  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     30  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     31  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     32  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     33  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     34  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     35  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     36  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * The Core code provides basic services for accessing and managing the
     41  * DWC_otg hardware. These services are used by both the Host Controller
     42  * Driver and the Peripheral Controller Driver.
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: dwc2_core.c,v 1.14 2025/04/12 08:22:31 mlelstv Exp $");
     47 
     48 #include <sys/types.h>
     49 #include <sys/bus.h>
     50 #include <sys/proc.h>
     51 #include <sys/callout.h>
     52 #include <sys/mutex.h>
     53 #include <sys/pool.h>
     54 
     55 #include <dev/usb/usb.h>
     56 #include <dev/usb/usbdi.h>
     57 #include <dev/usb/usbdivar.h>
     58 #include <dev/usb/usb_mem.h>
     59 
     60 #include <linux/kernel.h>
     61 #include <linux/list.h>
     62 
     63 #include <dwc2/dwc2.h>
     64 #include <dwc2/dwc2var.h>
     65 
     66 #include "dwc2_core.h"
     67 #include "dwc2_hcd.h"
     68 
     69 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
     70 /**
     71  * dwc2_backup_host_registers() - Backup controller host registers.
     72  * When suspending usb bus, registers needs to be backuped
     73  * if controller power is disabled once suspended.
     74  *
     75  * @hsotg: Programming view of the DWC_otg controller
     76  */
     77 static int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
     78 {
     79 	struct dwc2_hregs_backup *hr;
     80 	int i;
     81 
     82 	dev_dbg(hsotg->dev, "%s\n", __func__);
     83 
     84 	/* Backup Host regs */
     85 	hr = &hsotg->hr_backup;
     86 	hr->hcfg = DWC2_READ_4(hsotg, HCFG);
     87 	hr->haintmsk = DWC2_READ_4(hsotg, HAINTMSK);
     88 	for (i = 0; i < hsotg->core_params->host_channels; ++i)
     89 		hr->hcintmsk[i] = DWC2_READ_4(hsotg, HCINTMSK(i));
     90 
     91 	hr->hprt0 = DWC2_READ_4(hsotg, HPRT0);
     92 	hr->hfir = DWC2_READ_4(hsotg, HFIR);
     93 	hr->valid = true;
     94 
     95 	return 0;
     96 }
     97 
     98 /**
     99  * dwc2_restore_host_registers() - Restore controller host registers.
    100  * When resuming usb bus, device registers needs to be restored
    101  * if controller power were disabled.
    102  *
    103  * @hsotg: Programming view of the DWC_otg controller
    104  */
    105 static int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
    106 {
    107 	struct dwc2_hregs_backup *hr;
    108 	int i;
    109 
    110 	dev_dbg(hsotg->dev, "%s\n", __func__);
    111 
    112 	/* Restore host regs */
    113 	hr = &hsotg->hr_backup;
    114 	if (!hr->valid) {
    115 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
    116 				__func__);
    117 		return -EINVAL;
    118 	}
    119 	hr->valid = false;
    120 
    121 	DWC2_WRITE_4(hsotg, HCFG, hr->hcfg);
    122 	DWC2_WRITE_4(hsotg, HAINTMSK, hr->haintmsk);
    123 
    124 	for (i = 0; i < hsotg->core_params->host_channels; ++i)
    125 		DWC2_WRITE_4(hsotg, HCINTMSK(i), hr->hcintmsk[i]);
    126 
    127 	DWC2_WRITE_4(hsotg, HPRT0, hr->hprt0);
    128 	DWC2_WRITE_4(hsotg, HFIR, hr->hfir);
    129 	hsotg->frame_number = 0;
    130 
    131 	return 0;
    132 }
    133 #else
    134 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
    135 { return 0; }
    136 
    137 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
    138 { return 0; }
    139 #endif
    140 
    141 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
    142 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
    143 /**
    144  * dwc2_backup_device_registers() - Backup controller device registers.
    145  * When suspending usb bus, registers needs to be backuped
    146  * if controller power is disabled once suspended.
    147  *
    148  * @hsotg: Programming view of the DWC_otg controller
    149  */
    150 static int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
    151 {
    152 	struct dwc2_dregs_backup *dr;
    153 	int i;
    154 
    155 	dev_dbg(hsotg->dev, "%s\n", __func__);
    156 
    157 	/* Backup dev regs */
    158 	dr = &hsotg->dr_backup;
    159 
    160 	dr->dcfg = DWC2_READ_4(hsotg, DCFG);
    161 	dr->dctl = DWC2_READ_4(hsotg, DCTL);
    162 	dr->daintmsk = DWC2_READ_4(hsotg, DAINTMSK);
    163 	dr->diepmsk = DWC2_READ_4(hsotg, DIEPMSK);
    164 	dr->doepmsk = DWC2_READ_4(hsotg, DOEPMSK);
    165 
    166 	for (i = 0; i < hsotg->num_of_eps; i++) {
    167 		/* Backup IN EPs */
    168 		dr->diepctl[i] = DWC2_READ_4(hsotg, DIEPCTL(i));
    169 
    170 		/* Ensure DATA PID is correctly configured */
    171 		if (dr->diepctl[i] & DXEPCTL_DPID)
    172 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
    173 		else
    174 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
    175 
    176 		dr->dieptsiz[i] = DWC2_READ_4(hsotg, DIEPTSIZ(i));
    177 		dr->diepdma[i] = DWC2_READ_4(hsotg, DIEPDMA(i));
    178 
    179 		/* Backup OUT EPs */
    180 		dr->doepctl[i] = DWC2_READ_4(hsotg, DOEPCTL(i));
    181 
    182 		/* Ensure DATA PID is correctly configured */
    183 		if (dr->doepctl[i] & DXEPCTL_DPID)
    184 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
    185 		else
    186 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
    187 
    188 		dr->doeptsiz[i] = DWC2_READ_4(hsotg, DOEPTSIZ(i));
    189 		dr->doepdma[i] = DWC2_READ_4(hsotg, DOEPDMA(i));
    190 	}
    191 	dr->valid = true;
    192 	return 0;
    193 }
    194 
    195 /**
    196  * dwc2_restore_device_registers() - Restore controller device registers.
    197  * When resuming usb bus, device registers needs to be restored
    198  * if controller power were disabled.
    199  *
    200  * @hsotg: Programming view of the DWC_otg controller
    201  */
    202 static int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
    203 {
    204 	struct dwc2_dregs_backup *dr;
    205 	u32 dctl;
    206 	int i;
    207 
    208 	dev_dbg(hsotg->dev, "%s\n", __func__);
    209 
    210 	/* Restore dev regs */
    211 	dr = &hsotg->dr_backup;
    212 	if (!dr->valid) {
    213 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
    214 				__func__);
    215 		return -EINVAL;
    216 	}
    217 	dr->valid = false;
    218 
    219 	DWC2_WRITE_4(hsotg, DCFG, dr->dcfg);
    220 	DWC2_WRITE_4(hsotg, DCTL, dr->dctl);
    221 	DWC2_WRITE_4(hsotg, DAINTMSK, dr->daintmsk);
    222 	DWC2_WRITE_4(hsotg, DIEPMSK, dr->diepmsk);
    223 	DWC2_WRITE_4(hsotg, DOEPMSK, dr->doepmsk);
    224 
    225 	for (i = 0; i < hsotg->num_of_eps; i++) {
    226 		/* Restore IN EPs */
    227 		DWC2_WRITE_4(hsotg, DIEPCTL(i), dr->diepctl[i]);
    228 		DWC2_WRITE_4(hsotg, DIEPTSIZ(i), dr->dieptsiz[i]);
    229 		DWC2_WRITE_4(hsotg, DIEPDMA(i), dr->diepdma[i]);
    230 
    231 		/* Restore OUT EPs */
    232 		DWC2_WRITE_4(hsotg, DOEPCTL(i), dr->doepctl[i]);
    233 		DWC2_WRITE_4(hsotg, DOEPTSIZ(i), dr->doeptsiz[i]);
    234 		DWC2_WRITE_4(hsotg, DOEPDMA(i), dr->doepdma[i]);
    235 	}
    236 
    237 	/* Set the Power-On Programming done bit */
    238 	dctl = DWC2_READ_4(hsotg, DCTL);
    239 	dctl |= DCTL_PWRONPRGDONE;
    240 	DWC2_WRITE_4(hsotg, DCTL, dctl);
    241 
    242 	return 0;
    243 }
    244 #else
    245 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
    246 { return 0; }
    247 
    248 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
    249 { return 0; }
    250 #endif
    251 
    252 /**
    253  * dwc2_backup_global_registers() - Backup global controller registers.
    254  * When suspending usb bus, registers needs to be backuped
    255  * if controller power is disabled once suspended.
    256  *
    257  * @hsotg: Programming view of the DWC_otg controller
    258  */
    259 static int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg)
    260 {
    261 	struct dwc2_gregs_backup *gr;
    262 	int i;
    263 
    264 	/* Backup global regs */
    265 	gr = &hsotg->gr_backup;
    266 
    267 	gr->gotgctl = DWC2_READ_4(hsotg, GOTGCTL);
    268 	gr->gintmsk = DWC2_READ_4(hsotg, GINTMSK);
    269 	gr->gahbcfg = DWC2_READ_4(hsotg, GAHBCFG);
    270 	gr->gusbcfg = DWC2_READ_4(hsotg, GUSBCFG);
    271 	gr->grxfsiz = DWC2_READ_4(hsotg, GRXFSIZ);
    272 	gr->gnptxfsiz = DWC2_READ_4(hsotg, GNPTXFSIZ);
    273 	gr->hptxfsiz = DWC2_READ_4(hsotg, HPTXFSIZ);
    274 	gr->gdfifocfg = DWC2_READ_4(hsotg, GDFIFOCFG);
    275 	for (i = 0; i < MAX_EPS_CHANNELS; i++)
    276 		gr->dtxfsiz[i] = DWC2_READ_4(hsotg, DPTXFSIZN(i));
    277 
    278 	gr->valid = true;
    279 	return 0;
    280 }
    281 
    282 /**
    283  * dwc2_restore_global_registers() - Restore controller global registers.
    284  * When resuming usb bus, device registers needs to be restored
    285  * if controller power were disabled.
    286  *
    287  * @hsotg: Programming view of the DWC_otg controller
    288  */
    289 static int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg)
    290 {
    291 	struct dwc2_gregs_backup *gr;
    292 	int i;
    293 
    294 	dev_dbg(hsotg->dev, "%s\n", __func__);
    295 
    296 	/* Restore global regs */
    297 	gr = &hsotg->gr_backup;
    298 	if (!gr->valid) {
    299 		dev_err(hsotg->dev, "%s: no global registers to restore\n",
    300 				__func__);
    301 		return -EINVAL;
    302 	}
    303 	gr->valid = false;
    304 
    305 	DWC2_WRITE_4(hsotg, GINTSTS, 0xffffffff);
    306 	DWC2_WRITE_4(hsotg, GOTGCTL, gr->gotgctl);
    307 	DWC2_WRITE_4(hsotg, GINTMSK, gr->gintmsk);
    308 	DWC2_WRITE_4(hsotg, GUSBCFG, gr->gusbcfg);
    309 	DWC2_WRITE_4(hsotg, GAHBCFG, gr->gahbcfg);
    310 	DWC2_WRITE_4(hsotg, GRXFSIZ, gr->grxfsiz);
    311 	DWC2_WRITE_4(hsotg, GNPTXFSIZ, gr->gnptxfsiz);
    312 	DWC2_WRITE_4(hsotg, HPTXFSIZ, gr->hptxfsiz);
    313 	DWC2_WRITE_4(hsotg, GDFIFOCFG, gr->gdfifocfg);
    314 	for (i = 0; i < MAX_EPS_CHANNELS; i++)
    315 		DWC2_WRITE_4(hsotg, DPTXFSIZN(i), gr->dtxfsiz[i]);
    316 
    317 	return 0;
    318 }
    319 
    320 /**
    321  * dwc2_exit_hibernation() - Exit controller from Partial Power Down.
    322  *
    323  * @hsotg: Programming view of the DWC_otg controller
    324  * @restore: Controller registers need to be restored
    325  */
    326 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore)
    327 {
    328 	u32 pcgcctl;
    329 	int ret = 0;
    330 
    331 	if (!hsotg->core_params->hibernation)
    332 		return -ENOTSUPP;
    333 
    334 	pcgcctl = DWC2_READ_4(hsotg, PCGCTL);
    335 	pcgcctl &= ~PCGCTL_STOPPCLK;
    336 	DWC2_WRITE_4(hsotg, PCGCTL, pcgcctl);
    337 
    338 	pcgcctl = DWC2_READ_4(hsotg, PCGCTL);
    339 	pcgcctl &= ~PCGCTL_PWRCLMP;
    340 	DWC2_WRITE_4(hsotg, PCGCTL, pcgcctl);
    341 
    342 	pcgcctl = DWC2_READ_4(hsotg, PCGCTL);
    343 	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
    344 	DWC2_WRITE_4(hsotg, PCGCTL, pcgcctl);
    345 
    346 	udelay(100);
    347 	if (restore) {
    348 		ret = dwc2_restore_global_registers(hsotg);
    349 		if (ret) {
    350 			dev_err(hsotg->dev, "%s: failed to restore registers\n",
    351 					__func__);
    352 			return ret;
    353 		}
    354 		if (dwc2_is_host_mode(hsotg)) {
    355 			ret = dwc2_restore_host_registers(hsotg);
    356 			if (ret) {
    357 				dev_err(hsotg->dev, "%s: failed to restore host registers\n",
    358 						__func__);
    359 				return ret;
    360 			}
    361 		} else {
    362 			ret = dwc2_restore_device_registers(hsotg);
    363 			if (ret) {
    364 				dev_err(hsotg->dev, "%s: failed to restore device registers\n",
    365 						__func__);
    366 				return ret;
    367 			}
    368 		}
    369 	}
    370 
    371 	return ret;
    372 }
    373 
    374 /**
    375  * dwc2_enter_hibernation() - Put controller in Partial Power Down.
    376  *
    377  * @hsotg: Programming view of the DWC_otg controller
    378  */
    379 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg)
    380 {
    381 	u32 pcgcctl;
    382 	int ret = 0;
    383 
    384 	if (!hsotg->core_params->hibernation)
    385 		return -ENOTSUPP;
    386 
    387 	/* Backup all registers */
    388 	ret = dwc2_backup_global_registers(hsotg);
    389 	if (ret) {
    390 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
    391 				__func__);
    392 		return ret;
    393 	}
    394 
    395 	if (dwc2_is_host_mode(hsotg)) {
    396 		ret = dwc2_backup_host_registers(hsotg);
    397 		if (ret) {
    398 			dev_err(hsotg->dev, "%s: failed to backup host registers\n",
    399 					__func__);
    400 			return ret;
    401 		}
    402 	} else {
    403 		ret = dwc2_backup_device_registers(hsotg);
    404 		if (ret) {
    405 			dev_err(hsotg->dev, "%s: failed to backup device registers\n",
    406 					__func__);
    407 			return ret;
    408 		}
    409 	}
    410 
    411 	/*
    412 	 * Clear any pending interrupts since dwc2 will not be able to
    413 	 * clear them after entering hibernation.
    414 	 */
    415 	DWC2_WRITE_4(hsotg, GINTSTS, 0xffffffff);
    416 
    417 	/* Put the controller in low power state */
    418 	pcgcctl = DWC2_READ_4(hsotg, PCGCTL);
    419 
    420 	pcgcctl |= PCGCTL_PWRCLMP;
    421 	DWC2_WRITE_4(hsotg, PCGCTL, pcgcctl);
    422 	ndelay(20);
    423 
    424 	pcgcctl |= PCGCTL_RSTPDWNMODULE;
    425 	DWC2_WRITE_4(hsotg, PCGCTL, pcgcctl);
    426 	ndelay(20);
    427 
    428 	pcgcctl |= PCGCTL_STOPPCLK;
    429 	DWC2_WRITE_4(hsotg, PCGCTL, pcgcctl);
    430 
    431 	return ret;
    432 }
    433 
    434 /**
    435  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
    436  * used in both device and host modes
    437  *
    438  * @hsotg: Programming view of the DWC_otg controller
    439  */
    440 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
    441 {
    442 	u32 intmsk;
    443 
    444 	/* Clear any pending OTG Interrupts */
    445 	DWC2_WRITE_4(hsotg, GOTGINT, 0xffffffff);
    446 
    447 	/* Clear any pending interrupts */
    448 	DWC2_WRITE_4(hsotg, GINTSTS, 0xffffffff);
    449 
    450 	/* Enable the interrupts in the GINTMSK */
    451 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
    452 
    453 	if (hsotg->core_params->dma_enable <= 0)
    454 		intmsk |= GINTSTS_RXFLVL;
    455 	if (hsotg->core_params->external_id_pin_ctl <= 0)
    456 		intmsk |= GINTSTS_CONIDSTSCHNG;
    457 
    458 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
    459 		  GINTSTS_SESSREQINT;
    460 
    461 	DWC2_WRITE_4(hsotg, GINTMSK, intmsk);
    462 }
    463 
    464 /*
    465  * Initializes the FSLSPClkSel field of the HCFG register depending on the
    466  * PHY type
    467  */
    468 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
    469 {
    470 	u32 hcfg, val;
    471 
    472 	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
    473 	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
    474 	     hsotg->core_params->ulpi_fs_ls > 0) ||
    475 	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
    476 		/* Full speed PHY */
    477 		val = HCFG_FSLSPCLKSEL_48_MHZ;
    478 	} else {
    479 		/* High speed PHY running at full speed or high speed */
    480 		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
    481 	}
    482 
    483 	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
    484 	hcfg = DWC2_READ_4(hsotg, HCFG);
    485 	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
    486 	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
    487 	DWC2_WRITE_4(hsotg, HCFG, hcfg);
    488 }
    489 
    490 /*
    491  * Do core a soft reset of the core.  Be careful with this because it
    492  * resets all the internal state machines of the core.
    493  */
    494 int dwc2_core_reset(struct dwc2_hsotg *hsotg)
    495 {
    496 	u32 greset;
    497 	int count = 0;
    498 
    499 	dev_vdbg(hsotg->dev, "%s()\n", __func__);
    500 
    501 	/* Core Soft Reset */
    502 	greset = DWC2_READ_4(hsotg, GRSTCTL);
    503 	greset |= GRSTCTL_CSFTRST;
    504 	DWC2_WRITE_4(hsotg, GRSTCTL, greset);
    505 	do {
    506 		udelay(1);
    507 		greset = DWC2_READ_4(hsotg, GRSTCTL);
    508 		if (++count > 50) {
    509 			dev_warn(hsotg->dev,
    510 				 "%s() HANG! Soft Reset GRSTCTL=%0x\n",
    511 				 __func__, greset);
    512 			return -EBUSY;
    513 		}
    514 	} while (greset & GRSTCTL_CSFTRST);
    515 
    516 	/* Wait for AHB master IDLE state */
    517 	count = 0;
    518 	do {
    519 		udelay(1);
    520 		greset = DWC2_READ_4(hsotg, GRSTCTL);
    521 		if (++count > 50) {
    522 			dev_warn(hsotg->dev,
    523 				 "%s() HANG! AHB Idle GRSTCTL=%0x\n",
    524 				 __func__, greset);
    525 			return -EBUSY;
    526 		}
    527 	} while (!(greset & GRSTCTL_AHBIDLE));
    528 
    529 	return 0;
    530 }
    531 
    532 /*
    533  * Force the mode of the controller.
    534  *
    535  * Forcing the mode is needed for two cases:
    536  *
    537  * 1) If the dr_mode is set to either HOST or PERIPHERAL we force the
    538  * controller to stay in a particular mode regardless of ID pin
    539  * changes. We do this usually after a core reset.
    540  *
    541  * 2) During probe we want to read reset values of the hw
    542  * configuration registers that are only available in either host or
    543  * device mode. We may need to force the mode if the current mode does
    544  * not allow us to access the register in the mode that we want.
    545  *
    546  * In either case it only makes sense to force the mode if the
    547  * controller hardware is OTG capable.
    548  *
    549  * Checks are done in this function to determine whether doing a force
    550  * would be valid or not.
    551  *
    552  * If a force is done, it requires a 25ms delay to take effect.
    553  *
    554  * Returns true if the mode was forced.
    555  */
    556 static bool dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host)
    557 {
    558 	u32 gusbcfg;
    559 	u32 set;
    560 	u32 clear;
    561 
    562 	dev_dbg(hsotg->dev, "Forcing mode to %s\n", host ? "host" : "device");
    563 
    564 	/*
    565 	 * Force mode has no effect if the hardware is not OTG.
    566 	 */
    567 	if (!dwc2_hw_is_otg(hsotg))
    568 		return false;
    569 
    570 	/*
    571 	 * If dr_mode is either peripheral or host only, there is no
    572 	 * need to ever force the mode to the opposite mode.
    573 	 */
    574 	if (host && hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
    575 		WARN_ON(1);
    576 		return false;
    577 	}
    578 
    579 	if (!host && hsotg->dr_mode == USB_DR_MODE_HOST) {
    580 		WARN_ON(1);
    581 		return false;
    582 	}
    583 
    584 	gusbcfg = DWC2_READ_4(hsotg, GUSBCFG);
    585 
    586 	set = host ? GUSBCFG_FORCEHOSTMODE : GUSBCFG_FORCEDEVMODE;
    587 	clear = host ? GUSBCFG_FORCEDEVMODE : GUSBCFG_FORCEHOSTMODE;
    588 
    589 	gusbcfg &= ~clear;
    590 	gusbcfg |= set;
    591 	DWC2_WRITE_4(hsotg, GUSBCFG, gusbcfg);
    592 
    593 	msleep(25);
    594 	return true;
    595 }
    596 
    597 /*
    598  * Clears the force mode bits.
    599  */
    600 static void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg)
    601 {
    602 	u32 gusbcfg;
    603 
    604 	gusbcfg = DWC2_READ_4(hsotg, GUSBCFG);
    605 	gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
    606 	gusbcfg &= ~GUSBCFG_FORCEDEVMODE;
    607 	DWC2_WRITE_4(hsotg, GUSBCFG, gusbcfg);
    608 
    609 	/*
    610 	 * NOTE: This long sleep is _very_ important, otherwise the core will
    611 	 * not stay in host mode after a connector ID change!
    612 	 */
    613 	msleep(25);
    614 }
    615 
    616 /*
    617  * Sets or clears force mode based on the dr_mode parameter.
    618  */
    619 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg)
    620 {
    621 	switch (hsotg->dr_mode) {
    622 	case USB_DR_MODE_HOST:
    623 		dwc2_force_mode(hsotg, true);
    624 		break;
    625 	case USB_DR_MODE_PERIPHERAL:
    626 		dwc2_force_mode(hsotg, false);
    627 		break;
    628 	case USB_DR_MODE_OTG:
    629 		dwc2_clear_force_mode(hsotg);
    630 		break;
    631 	default:
    632 		dev_warn(hsotg->dev, "%s() Invalid dr_mode=%d\n",
    633 			 __func__, hsotg->dr_mode);
    634 		break;
    635 	}
    636 }
    637 
    638 /*
    639  * Do core a soft reset of the core.  Be careful with this because it
    640  * resets all the internal state machines of the core.
    641  *
    642  * Additionally this will apply force mode as per the hsotg->dr_mode
    643  * parameter.
    644  */
    645 int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg)
    646 {
    647 	int retval;
    648 
    649 	retval = dwc2_core_reset(hsotg);
    650 	if (retval)
    651 		return retval;
    652 
    653 	dwc2_force_dr_mode(hsotg);
    654 	return 0;
    655 }
    656 
    657 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
    658 {
    659 	u32 usbcfg, i2cctl;
    660 	int retval = 0;
    661 
    662 	/*
    663 	 * core_init() is now called on every switch so only call the
    664 	 * following for the first time through
    665 	 */
    666 	if (select_phy) {
    667 		dev_dbg(hsotg->dev, "FS PHY selected\n");
    668 
    669 		usbcfg = DWC2_READ_4(hsotg, GUSBCFG);
    670 		if (!(usbcfg & GUSBCFG_PHYSEL)) {
    671 			usbcfg |= GUSBCFG_PHYSEL;
    672 			DWC2_WRITE_4(hsotg, GUSBCFG, usbcfg);
    673 
    674 			/* Reset after a PHY select */
    675 			retval = dwc2_core_reset_and_force_dr_mode(hsotg);
    676 
    677 			if (retval) {
    678 				dev_err(hsotg->dev,
    679 					"%s: Reset failed, aborting", __func__);
    680 				return retval;
    681 			}
    682 		}
    683 	}
    684 
    685 	/*
    686 	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
    687 	 * do this on HNP Dev/Host mode switches (done in dev_init and
    688 	 * host_init).
    689 	 */
    690 	if (dwc2_is_host_mode(hsotg))
    691 		dwc2_init_fs_ls_pclk_sel(hsotg);
    692 
    693 	if (hsotg->core_params->i2c_enable > 0) {
    694 		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
    695 
    696 		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
    697 		usbcfg = DWC2_READ_4(hsotg, GUSBCFG);
    698 		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
    699 		DWC2_WRITE_4(hsotg, GUSBCFG, usbcfg);
    700 
    701 		/* Program GI2CCTL.I2CEn */
    702 		i2cctl = DWC2_READ_4(hsotg, GI2CCTL);
    703 		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
    704 		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
    705 		i2cctl &= ~GI2CCTL_I2CEN;
    706 		DWC2_WRITE_4(hsotg, GI2CCTL, i2cctl);
    707 		i2cctl |= GI2CCTL_I2CEN;
    708 		DWC2_WRITE_4(hsotg, GI2CCTL, i2cctl);
    709 	}
    710 
    711 	return retval;
    712 }
    713 
    714 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
    715 {
    716 	u32 usbcfg, usbcfg_old;
    717 	int retval = 0;
    718 
    719 	if (!select_phy)
    720 		return 0;
    721 
    722 	usbcfg = usbcfg_old = DWC2_READ_4(hsotg, GUSBCFG);
    723 
    724 	/*
    725 	 * HS PHY parameters. These parameters are preserved during soft reset
    726 	 * so only program the first time. Do a soft reset immediately after
    727 	 * setting phyif.
    728 	 */
    729 	switch (hsotg->core_params->phy_type) {
    730 	case DWC2_PHY_TYPE_PARAM_ULPI:
    731 		/* ULPI interface */
    732 		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
    733 		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
    734 		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
    735 		if (hsotg->core_params->phy_ulpi_ddr > 0)
    736 			usbcfg |= GUSBCFG_DDRSEL;
    737 		break;
    738 	case DWC2_PHY_TYPE_PARAM_UTMI:
    739 		/* UTMI+ interface */
    740 		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
    741 		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
    742 		if (hsotg->core_params->phy_utmi_width == 16)
    743 			usbcfg |= GUSBCFG_PHYIF16;
    744 		break;
    745 	default:
    746 		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
    747 		break;
    748 	}
    749 
    750 	if (usbcfg != usbcfg_old) {
    751 		DWC2_WRITE_4(hsotg, GUSBCFG, usbcfg);
    752 
    753 		/* Reset after setting the PHY parameters */
    754 		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
    755 		if (retval) {
    756 			dev_err(hsotg->dev,
    757 				"%s: Reset failed, aborting", __func__);
    758 			return retval;
    759 		}
    760 	}
    761 
    762 	return retval;
    763 }
    764 
    765 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
    766 {
    767 	u32 usbcfg;
    768 	int retval = 0;
    769 
    770 	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
    771 	    hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
    772 		/* If FS mode with FS PHY */
    773 		retval = dwc2_fs_phy_init(hsotg, select_phy);
    774 		if (retval)
    775 			return retval;
    776 	} else {
    777 		/* High speed PHY */
    778 		retval = dwc2_hs_phy_init(hsotg, select_phy);
    779 		if (retval)
    780 			return retval;
    781 	}
    782 
    783 	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
    784 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
    785 	    hsotg->core_params->ulpi_fs_ls > 0) {
    786 		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
    787 		usbcfg = DWC2_READ_4(hsotg, GUSBCFG);
    788 		usbcfg |= GUSBCFG_ULPI_FS_LS;
    789 		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
    790 		DWC2_WRITE_4(hsotg, GUSBCFG, usbcfg);
    791 	} else {
    792 		usbcfg = DWC2_READ_4(hsotg, GUSBCFG);
    793 		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
    794 		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
    795 		DWC2_WRITE_4(hsotg, GUSBCFG, usbcfg);
    796 	}
    797 
    798 	return retval;
    799 }
    800 
    801 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
    802 {
    803 	struct dwc2_softc *sc = hsotg->hsotg_sc;
    804 	u32 ahbcfg = DWC2_READ_4(hsotg, GAHBCFG);
    805 
    806 	switch (hsotg->hw_params.arch) {
    807 	case GHWCFG2_EXT_DMA_ARCH:
    808 		dev_dbg(hsotg->dev, "External DMA Mode\n");
    809 		if (!sc->sc_set_dma_addr) {
    810 			dev_err(hsotg->dev, "External DMA Mode not supported\n");
    811 			return -EINVAL;
    812 		}
    813 		if (hsotg->core_params->ahbcfg != -1) {
    814 			ahbcfg &= GAHBCFG_CTRL_MASK;
    815 			ahbcfg |= hsotg->core_params->ahbcfg &
    816 				  ~GAHBCFG_CTRL_MASK;
    817 		}
    818 		break;
    819 
    820 	case GHWCFG2_INT_DMA_ARCH:
    821 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
    822 		if (hsotg->core_params->ahbcfg != -1) {
    823 			ahbcfg &= GAHBCFG_CTRL_MASK;
    824 			ahbcfg |= hsotg->core_params->ahbcfg &
    825 				  ~GAHBCFG_CTRL_MASK;
    826 		}
    827 		break;
    828 
    829 	case GHWCFG2_SLAVE_ONLY_ARCH:
    830 	default:
    831 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
    832 		break;
    833 	}
    834 
    835 	dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
    836 		hsotg->core_params->dma_enable,
    837 		hsotg->core_params->dma_desc_enable);
    838 
    839 	if (hsotg->core_params->dma_enable > 0) {
    840 		if (hsotg->core_params->dma_desc_enable > 0)
    841 			dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
    842 		else
    843 			dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
    844 	} else {
    845 		dev_dbg(hsotg->dev, "Using Slave mode\n");
    846 		hsotg->core_params->dma_desc_enable = 0;
    847 	}
    848 
    849 	if (hsotg->core_params->dma_enable > 0)
    850 		ahbcfg |= GAHBCFG_DMA_EN;
    851 
    852 	DWC2_WRITE_4(hsotg, GAHBCFG, ahbcfg);
    853 
    854 	return 0;
    855 }
    856 
    857 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
    858 {
    859 	u32 usbcfg;
    860 
    861 	usbcfg = DWC2_READ_4(hsotg, GUSBCFG);
    862 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
    863 
    864 	switch (hsotg->hw_params.op_mode) {
    865 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
    866 		if (hsotg->core_params->otg_cap ==
    867 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
    868 			usbcfg |= GUSBCFG_HNPCAP;
    869 		if (hsotg->core_params->otg_cap !=
    870 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
    871 			usbcfg |= GUSBCFG_SRPCAP;
    872 		break;
    873 
    874 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
    875 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
    876 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
    877 		if (hsotg->core_params->otg_cap !=
    878 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
    879 			usbcfg |= GUSBCFG_SRPCAP;
    880 		break;
    881 
    882 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
    883 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
    884 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
    885 	default:
    886 		break;
    887 	}
    888 
    889 	DWC2_WRITE_4(hsotg, GUSBCFG, usbcfg);
    890 }
    891 
    892 /**
    893  * dwc2_core_init() - Initializes the DWC_otg controller registers and
    894  * prepares the core for device mode or host mode operation
    895  *
    896  * @hsotg:         Programming view of the DWC_otg controller
    897  * @initial_setup: If true then this is the first init for this instance.
    898  */
    899 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
    900 {
    901 	u32 usbcfg, otgctl;
    902 	int retval;
    903 
    904 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
    905 
    906 	usbcfg = DWC2_READ_4(hsotg, GUSBCFG);
    907 
    908 	/* Set ULPI External VBUS bit if needed */
    909 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
    910 	if (hsotg->core_params->phy_ulpi_ext_vbus ==
    911 				DWC2_PHY_ULPI_EXTERNAL_VBUS)
    912 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
    913 
    914 	/* Set external TS Dline pulsing bit if needed */
    915 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
    916 	if (hsotg->core_params->ts_dline > 0)
    917 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
    918 
    919 	DWC2_WRITE_4(hsotg, GUSBCFG, usbcfg);
    920 
    921 	/*
    922 	 * Reset the Controller
    923 	 *
    924 	 * We only need to reset the controller if this is a re-init.
    925 	 * For the first init we know for sure that earlier code reset us (it
    926 	 * needed to in order to properly detect various parameters).
    927 	 */
    928 	if (!initial_setup) {
    929 		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
    930 		if (retval) {
    931 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
    932 					__func__);
    933 			return retval;
    934 		}
    935 	}
    936 
    937 	/*
    938 	 * This needs to happen in FS mode before any other programming occurs
    939 	 */
    940 	retval = dwc2_phy_init(hsotg, initial_setup);
    941 	if (retval)
    942 		return retval;
    943 
    944 	/* Program the GAHBCFG Register */
    945 	retval = dwc2_gahbcfg_init(hsotg);
    946 	if (retval)
    947 		return retval;
    948 
    949 	/* Program the GUSBCFG register */
    950 	dwc2_gusbcfg_init(hsotg);
    951 
    952 	/* Program the GOTGCTL register */
    953 	otgctl = DWC2_READ_4(hsotg, GOTGCTL);
    954 	otgctl &= ~GOTGCTL_OTGVER;
    955 	if (hsotg->core_params->otg_ver > 0)
    956 		otgctl |= GOTGCTL_OTGVER;
    957 	DWC2_WRITE_4(hsotg, GOTGCTL, otgctl);
    958 	dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);
    959 
    960 	/* Clear the SRP success bit for FS-I2c */
    961 	hsotg->srp_success = 0;
    962 
    963 	/* Enable common interrupts */
    964 	dwc2_enable_common_interrupts(hsotg);
    965 
    966 	/*
    967 	 * Do device or host initialization based on mode during PCD and
    968 	 * HCD initialization
    969 	 */
    970 	if (dwc2_is_host_mode(hsotg)) {
    971 		dev_dbg(hsotg->dev, "Host Mode\n");
    972 		hsotg->op_state = OTG_STATE_A_HOST;
    973 	} else {
    974 		dev_dbg(hsotg->dev, "Device Mode\n");
    975 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
    976 	}
    977 
    978 	return 0;
    979 }
    980 
    981 /**
    982  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
    983  *
    984  * @hsotg: Programming view of DWC_otg controller
    985  */
    986 void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
    987 {
    988 	u32 intmsk;
    989 
    990 	dev_dbg(hsotg->dev, "%s()\n", __func__);
    991 
    992 	/* Disable all interrupts */
    993 	DWC2_WRITE_4(hsotg, GINTMSK, 0);
    994 	DWC2_WRITE_4(hsotg, HAINTMSK, 0);
    995 
    996 	/* Enable the common interrupts */
    997 	dwc2_enable_common_interrupts(hsotg);
    998 
    999 	/* Enable host mode interrupts without disturbing common interrupts */
   1000 	intmsk = DWC2_READ_4(hsotg, GINTMSK);
   1001 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
   1002 	DWC2_WRITE_4(hsotg, GINTMSK, intmsk);
   1003 }
   1004 
   1005 /**
   1006  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
   1007  *
   1008  * @hsotg: Programming view of DWC_otg controller
   1009  */
   1010 void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
   1011 {
   1012 	u32 intmsk = DWC2_READ_4(hsotg, GINTMSK);
   1013 
   1014 	/* Disable host mode interrupts without disturbing common interrupts */
   1015 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
   1016 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
   1017 	DWC2_WRITE_4(hsotg, GINTMSK, intmsk);
   1018 }
   1019 
   1020 /*
   1021  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
   1022  * For system that have a total fifo depth that is smaller than the default
   1023  * RX + TX fifo size.
   1024  *
   1025  * @hsotg: Programming view of DWC_otg controller
   1026  */
   1027 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
   1028 {
   1029 	struct dwc2_core_params *params = hsotg->core_params;
   1030 	struct dwc2_hw_params *hw = &hsotg->hw_params;
   1031 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
   1032 
   1033 	total_fifo_size = hw->total_fifo_size;
   1034 	rxfsiz = params->host_rx_fifo_size;
   1035 	nptxfsiz = params->host_nperio_tx_fifo_size;
   1036 	ptxfsiz = params->host_perio_tx_fifo_size;
   1037 
   1038 	/*
   1039 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
   1040 	 * allocation with support for high bandwidth endpoints. Synopsys
   1041 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
   1042 	 * non-periodic as 512.
   1043 	 */
   1044 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
   1045 		/*
   1046 		 * For Buffer DMA mode/Scatter Gather DMA mode
   1047 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
   1048 		 * with n = number of host channel.
   1049 		 * 2 * ((1024/4) + 2) = 516
   1050 		 */
   1051 		rxfsiz = 516 + hw->host_channels;
   1052 
   1053 		/*
   1054 		 * min non-periodic tx fifo depth
   1055 		 * 2 * (largest non-periodic USB packet used / 4)
   1056 		 * 2 * (512/4) = 256
   1057 		 */
   1058 		nptxfsiz = 256;
   1059 
   1060 		/*
   1061 		 * min periodic tx fifo depth
   1062 		 * (largest packet size*MC)/4
   1063 		 * (1024 * 3)/4 = 768
   1064 		 */
   1065 		ptxfsiz = 768;
   1066 
   1067 		params->host_rx_fifo_size = rxfsiz;
   1068 		params->host_nperio_tx_fifo_size = nptxfsiz;
   1069 		params->host_perio_tx_fifo_size = ptxfsiz;
   1070 	}
   1071 
   1072 	/*
   1073 	 * If the summation of RX, NPTX and PTX fifo sizes is still
   1074 	 * bigger than the total_fifo_size, then we have a problem.
   1075 	 *
   1076 	 * We won't be able to allocate as many endpoints. Right now,
   1077 	 * we're just printing an error message, but ideally this FIFO
   1078 	 * allocation algorithm would be improved in the future.
   1079 	 *
   1080 	 * FIXME improve this FIFO allocation algorithm.
   1081 	 */
   1082 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
   1083 		dev_err(hsotg->dev, "invalid fifo sizes\n");
   1084 }
   1085 
   1086 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
   1087 {
   1088 	struct dwc2_core_params *params = hsotg->core_params;
   1089 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
   1090 
   1091 	if (!params->enable_dynamic_fifo)
   1092 		return;
   1093 
   1094 	dwc2_calculate_dynamic_fifo(hsotg);
   1095 
   1096 	/* Rx FIFO */
   1097 	grxfsiz = DWC2_READ_4(hsotg, GRXFSIZ);
   1098 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
   1099 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
   1100 	grxfsiz |= params->host_rx_fifo_size <<
   1101 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
   1102 	DWC2_WRITE_4(hsotg, GRXFSIZ, grxfsiz);
   1103 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
   1104 		DWC2_READ_4(hsotg, GRXFSIZ));
   1105 
   1106 	/* Non-periodic Tx FIFO */
   1107 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
   1108 		DWC2_READ_4(hsotg, GNPTXFSIZ));
   1109 	nptxfsiz = params->host_nperio_tx_fifo_size <<
   1110 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
   1111 	nptxfsiz |= params->host_rx_fifo_size <<
   1112 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
   1113 	DWC2_WRITE_4(hsotg, GNPTXFSIZ, nptxfsiz);
   1114 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
   1115 		DWC2_READ_4(hsotg, GNPTXFSIZ));
   1116 
   1117 	/* Periodic Tx FIFO */
   1118 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
   1119 		DWC2_READ_4(hsotg, HPTXFSIZ));
   1120 	hptxfsiz = params->host_perio_tx_fifo_size <<
   1121 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
   1122 	hptxfsiz |= (params->host_rx_fifo_size +
   1123 		     params->host_nperio_tx_fifo_size) <<
   1124 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
   1125 	DWC2_WRITE_4(hsotg, HPTXFSIZ, hptxfsiz);
   1126 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
   1127 		DWC2_READ_4(hsotg, HPTXFSIZ));
   1128 
   1129 	if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
   1130 	    hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
   1131 		/*
   1132 		 * Global DFIFOCFG calculation for Host mode -
   1133 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
   1134 		 */
   1135 		dfifocfg = DWC2_READ_4(hsotg, GDFIFOCFG);
   1136 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
   1137 		dfifocfg |= (params->host_rx_fifo_size +
   1138 			     params->host_nperio_tx_fifo_size +
   1139 			     params->host_perio_tx_fifo_size) <<
   1140 			    GDFIFOCFG_EPINFOBASE_SHIFT &
   1141 			    GDFIFOCFG_EPINFOBASE_MASK;
   1142 		DWC2_WRITE_4(hsotg, GDFIFOCFG, dfifocfg);
   1143 	}
   1144 }
   1145 
   1146 /**
   1147  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
   1148  * Host mode
   1149  *
   1150  * @hsotg: Programming view of DWC_otg controller
   1151  *
   1152  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
   1153  * request queues. Host channels are reset to ensure that they are ready for
   1154  * performing transfers.
   1155  */
   1156 void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
   1157 {
   1158 	u32 hcfg, hfir, otgctl;
   1159 
   1160 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
   1161 
   1162 	/* Restart the Phy Clock */
   1163 	DWC2_WRITE_4(hsotg, PCGCTL, 0);
   1164 
   1165 	/* Initialize Host Configuration Register */
   1166 	dwc2_init_fs_ls_pclk_sel(hsotg);
   1167 	if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
   1168 		hcfg = DWC2_READ_4(hsotg, HCFG);
   1169 		hcfg |= HCFG_FSLSSUPP;
   1170 		DWC2_WRITE_4(hsotg, HCFG, hcfg);
   1171 	}
   1172 
   1173 	/*
   1174 	 * This bit allows dynamic reloading of the HFIR register during
   1175 	 * runtime. This bit needs to be programmed during initial configuration
   1176 	 * and its value must not be changed during runtime.
   1177 	 */
   1178 	if (hsotg->core_params->reload_ctl > 0) {
   1179 		hfir = DWC2_READ_4(hsotg, HFIR);
   1180 		hfir |= HFIR_RLDCTRL;
   1181 		DWC2_WRITE_4(hsotg, HFIR, hfir);
   1182 	}
   1183 
   1184 	if (hsotg->core_params->dma_desc_enable > 0) {
   1185 		u32 op_mode = hsotg->hw_params.op_mode;
   1186 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
   1187 		    !hsotg->hw_params.dma_desc_enable ||
   1188 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
   1189 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
   1190 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
   1191 			dev_err(hsotg->dev,
   1192 				"Hardware does not support descriptor DMA mode -\n");
   1193 			dev_err(hsotg->dev,
   1194 				"falling back to buffer DMA mode.\n");
   1195 			hsotg->core_params->dma_desc_enable = 0;
   1196 		} else {
   1197 			hcfg = DWC2_READ_4(hsotg, HCFG);
   1198 			hcfg |= HCFG_DESCDMA;
   1199 			DWC2_WRITE_4(hsotg, HCFG, hcfg);
   1200 		}
   1201 	}
   1202 
   1203 	/* Configure data FIFO sizes */
   1204 	dwc2_config_fifos(hsotg);
   1205 
   1206 	/* TODO - check this */
   1207 	/* Clear Host Set HNP Enable in the OTG Control Register */
   1208 	otgctl = DWC2_READ_4(hsotg, GOTGCTL);
   1209 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
   1210 	DWC2_WRITE_4(hsotg, GOTGCTL, otgctl);
   1211 
   1212 	/* Make sure the FIFOs are flushed */
   1213 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
   1214 	dwc2_flush_rx_fifo(hsotg);
   1215 
   1216 	/* Clear Host Set HNP Enable in the OTG Control Register */
   1217 	otgctl = DWC2_READ_4(hsotg, GOTGCTL);
   1218 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
   1219 	DWC2_WRITE_4(hsotg, GOTGCTL, otgctl);
   1220 
   1221 	if (hsotg->core_params->dma_desc_enable <= 0) {
   1222 		int num_channels, i;
   1223 		u32 hcchar;
   1224 
   1225 		/* Flush out any leftover queued requests */
   1226 		num_channels = hsotg->core_params->host_channels;
   1227 		for (i = 0; i < num_channels; i++) {
   1228 			hcchar = DWC2_READ_4(hsotg, HCCHAR(i));
   1229 			hcchar &= ~HCCHAR_CHENA;
   1230 			hcchar |= HCCHAR_CHDIS;
   1231 			hcchar &= ~HCCHAR_EPDIR;
   1232 			DWC2_WRITE_4(hsotg, HCCHAR(i), hcchar);
   1233 		}
   1234 
   1235 		/* Halt all channels to put them into a known state */
   1236 		for (i = 0; i < num_channels; i++) {
   1237 			int count = 0;
   1238 
   1239 			hcchar = DWC2_READ_4(hsotg, HCCHAR(i));
   1240 			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
   1241 			hcchar &= ~HCCHAR_EPDIR;
   1242 			DWC2_WRITE_4(hsotg, HCCHAR(i), hcchar);
   1243 			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
   1244 				__func__, i);
   1245 			do {
   1246 				hcchar = DWC2_READ_4(hsotg, HCCHAR(i));
   1247 				if (++count > 1000) {
   1248 					dev_err(hsotg->dev,
   1249 						"Unable to clear enable on channel %d\n",
   1250 						i);
   1251 					break;
   1252 				}
   1253 				udelay(1);
   1254 			} while (hcchar & HCCHAR_CHENA);
   1255 		}
   1256 	}
   1257 
   1258 	/* Turn on the vbus power */
   1259 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
   1260 	if (hsotg->op_state == OTG_STATE_A_HOST) {
   1261 		u32 hprt0 = dwc2_read_hprt0(hsotg);
   1262 
   1263 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
   1264 			!!(hprt0 & HPRT0_PWR));
   1265 		if (!(hprt0 & HPRT0_PWR)) {
   1266 			hprt0 |= HPRT0_PWR;
   1267 			DWC2_WRITE_4(hsotg, HPRT0, hprt0);
   1268 		}
   1269 	}
   1270 
   1271 	dwc2_enable_host_interrupts(hsotg);
   1272 }
   1273 
   1274 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
   1275 				      struct dwc2_host_chan *chan)
   1276 {
   1277 	u32 hcintmsk = HCINTMSK_CHHLTD;
   1278 
   1279 	switch (chan->ep_type) {
   1280 	case USB_ENDPOINT_XFER_CONTROL:
   1281 	case USB_ENDPOINT_XFER_BULK:
   1282 		dev_vdbg(hsotg->dev, "control/bulk\n");
   1283 		hcintmsk |= HCINTMSK_XFERCOMPL;
   1284 		hcintmsk |= HCINTMSK_STALL;
   1285 		hcintmsk |= HCINTMSK_XACTERR;
   1286 		hcintmsk |= HCINTMSK_DATATGLERR;
   1287 		if (chan->ep_is_in) {
   1288 			hcintmsk |= HCINTMSK_BBLERR;
   1289 		} else {
   1290 			hcintmsk |= HCINTMSK_NAK;
   1291 			hcintmsk |= HCINTMSK_NYET;
   1292 			if (chan->do_ping)
   1293 				hcintmsk |= HCINTMSK_ACK;
   1294 		}
   1295 
   1296 		if (chan->do_split) {
   1297 			hcintmsk |= HCINTMSK_NAK;
   1298 			if (chan->complete_split)
   1299 				hcintmsk |= HCINTMSK_NYET;
   1300 			else
   1301 				hcintmsk |= HCINTMSK_ACK;
   1302 		}
   1303 
   1304 		if (chan->error_state)
   1305 			hcintmsk |= HCINTMSK_ACK;
   1306 		break;
   1307 
   1308 	case USB_ENDPOINT_XFER_INT:
   1309 		if (dbg_perio())
   1310 			dev_vdbg(hsotg->dev, "intr\n");
   1311 		hcintmsk |= HCINTMSK_XFERCOMPL;
   1312 		hcintmsk |= HCINTMSK_NAK;
   1313 		hcintmsk |= HCINTMSK_STALL;
   1314 		hcintmsk |= HCINTMSK_XACTERR;
   1315 		hcintmsk |= HCINTMSK_DATATGLERR;
   1316 		hcintmsk |= HCINTMSK_FRMOVRUN;
   1317 
   1318 		if (chan->ep_is_in)
   1319 			hcintmsk |= HCINTMSK_BBLERR;
   1320 		if (chan->error_state)
   1321 			hcintmsk |= HCINTMSK_ACK;
   1322 		if (chan->do_split) {
   1323 			if (chan->complete_split)
   1324 				hcintmsk |= HCINTMSK_NYET;
   1325 			else
   1326 				hcintmsk |= HCINTMSK_ACK;
   1327 		}
   1328 		break;
   1329 
   1330 	case USB_ENDPOINT_XFER_ISOC:
   1331 		if (dbg_perio())
   1332 			dev_vdbg(hsotg->dev, "isoc\n");
   1333 		hcintmsk |= HCINTMSK_XFERCOMPL;
   1334 		hcintmsk |= HCINTMSK_FRMOVRUN;
   1335 		hcintmsk |= HCINTMSK_ACK;
   1336 
   1337 		if (chan->ep_is_in) {
   1338 			hcintmsk |= HCINTMSK_XACTERR;
   1339 			hcintmsk |= HCINTMSK_BBLERR;
   1340 		}
   1341 		break;
   1342 	default:
   1343 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
   1344 		break;
   1345 	}
   1346 
   1347 	DWC2_WRITE_4(hsotg, HCINTMSK(chan->hc_num), hcintmsk);
   1348 	if (dbg_hc(chan))
   1349 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
   1350 }
   1351 
   1352 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
   1353 				    struct dwc2_host_chan *chan)
   1354 {
   1355 	u32 hcintmsk = HCINTMSK_CHHLTD;
   1356 
   1357 	/*
   1358 	 * For Descriptor DMA mode core halts the channel on AHB error.
   1359 	 * Interrupt is not required.
   1360 	 */
   1361 	if (hsotg->core_params->dma_desc_enable <= 0) {
   1362 		if (dbg_hc(chan))
   1363 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
   1364 		hcintmsk |= HCINTMSK_AHBERR;
   1365 	} else {
   1366 		if (dbg_hc(chan))
   1367 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
   1368 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
   1369 			hcintmsk |= HCINTMSK_XFERCOMPL;
   1370 	}
   1371 
   1372 	if (chan->error_state && !chan->do_split &&
   1373 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
   1374 		if (dbg_hc(chan))
   1375 			dev_vdbg(hsotg->dev, "setting ACK\n");
   1376 		hcintmsk |= HCINTMSK_ACK;
   1377 		if (chan->ep_is_in) {
   1378 			hcintmsk |= HCINTMSK_DATATGLERR;
   1379 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
   1380 				hcintmsk |= HCINTMSK_NAK;
   1381 		}
   1382 	}
   1383 
   1384 	DWC2_WRITE_4(hsotg, HCINTMSK(chan->hc_num), hcintmsk);
   1385 	if (dbg_hc(chan))
   1386 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
   1387 }
   1388 
   1389 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
   1390 				struct dwc2_host_chan *chan)
   1391 {
   1392 	u32 intmsk;
   1393 
   1394 	if (hsotg->core_params->dma_enable > 0) {
   1395 		if (dbg_hc(chan))
   1396 			dev_vdbg(hsotg->dev, "DMA enabled\n");
   1397 		dwc2_hc_enable_dma_ints(hsotg, chan);
   1398 	} else {
   1399 		if (dbg_hc(chan))
   1400 			dev_vdbg(hsotg->dev, "DMA disabled\n");
   1401 		dwc2_hc_enable_slave_ints(hsotg, chan);
   1402 	}
   1403 
   1404 	/* Enable the top level host channel interrupt */
   1405 	intmsk = DWC2_READ_4(hsotg, HAINTMSK);
   1406 	intmsk |= 1 << chan->hc_num;
   1407 	DWC2_WRITE_4(hsotg, HAINTMSK, intmsk);
   1408 	if (dbg_hc(chan))
   1409 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
   1410 
   1411 	/* Make sure host channel interrupts are enabled */
   1412 	intmsk = DWC2_READ_4(hsotg, GINTMSK);
   1413 	intmsk |= GINTSTS_HCHINT;
   1414 	DWC2_WRITE_4(hsotg, GINTMSK, intmsk);
   1415 	if (dbg_hc(chan))
   1416 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
   1417 }
   1418 
   1419 /**
   1420  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
   1421  * a specific endpoint
   1422  *
   1423  * @hsotg: Programming view of DWC_otg controller
   1424  * @chan:  Information needed to initialize the host channel
   1425  *
   1426  * The HCCHARn register is set up with the characteristics specified in chan.
   1427  * Host channel interrupts that may need to be serviced while this transfer is
   1428  * in progress are enabled.
   1429  */
   1430 void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
   1431 {
   1432 	u8 hc_num = chan->hc_num;
   1433 	u32 hcintmsk;
   1434 	u32 hcchar;
   1435 	u32 hcsplt = 0;
   1436 
   1437 	if (dbg_hc(chan))
   1438 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
   1439 
   1440 	/* Clear old interrupt conditions for this host channel */
   1441 	hcintmsk = 0xffffffff;
   1442 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
   1443 	DWC2_WRITE_4(hsotg, HCINT(hc_num), hcintmsk);
   1444 
   1445 	/* Enable channel interrupts required for this transfer */
   1446 	dwc2_hc_enable_ints(hsotg, chan);
   1447 
   1448 	/*
   1449 	 * Program the HCCHARn register with the endpoint characteristics for
   1450 	 * the current transfer
   1451 	 */
   1452 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
   1453 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
   1454 	if (chan->ep_is_in)
   1455 		hcchar |= HCCHAR_EPDIR;
   1456 	if (chan->speed == USB_SPEED_LOW)
   1457 		hcchar |= HCCHAR_LSPDDEV;
   1458 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
   1459 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
   1460 	DWC2_WRITE_4(hsotg, HCCHAR(hc_num), hcchar);
   1461 	if (dbg_hc(chan)) {
   1462 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
   1463 			 hc_num, hcchar);
   1464 
   1465 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
   1466 			 __func__, hc_num);
   1467 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
   1468 			 chan->dev_addr);
   1469 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
   1470 			 chan->ep_num);
   1471 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
   1472 			 chan->ep_is_in);
   1473 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
   1474 			 chan->speed == USB_SPEED_LOW);
   1475 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
   1476 			 chan->ep_type);
   1477 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
   1478 			 chan->max_packet);
   1479 	}
   1480 
   1481 	/* Program the HCSPLT register for SPLITs */
   1482 	if (chan->do_split) {
   1483 		if (dbg_hc(chan))
   1484 			dev_vdbg(hsotg->dev,
   1485 				 "Programming HC %d with split --> %s\n",
   1486 				 hc_num,
   1487 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
   1488 		if (chan->complete_split)
   1489 			hcsplt |= HCSPLT_COMPSPLT;
   1490 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
   1491 			  HCSPLT_XACTPOS_MASK;
   1492 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
   1493 			  HCSPLT_HUBADDR_MASK;
   1494 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
   1495 			  HCSPLT_PRTADDR_MASK;
   1496 		if (dbg_hc(chan)) {
   1497 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
   1498 				 chan->complete_split);
   1499 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
   1500 				 chan->xact_pos);
   1501 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
   1502 				 chan->hub_addr);
   1503 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
   1504 				 chan->hub_port);
   1505 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
   1506 				 chan->ep_is_in);
   1507 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
   1508 				 chan->max_packet);
   1509 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
   1510 				 chan->xfer_len);
   1511 		}
   1512 	}
   1513 
   1514 	DWC2_WRITE_4(hsotg, HCSPLT(hc_num), hcsplt);
   1515 }
   1516 
   1517 /**
   1518  * dwc2_hc_halt() - Attempts to halt a host channel
   1519  *
   1520  * @hsotg:       Controller register interface
   1521  * @chan:        Host channel to halt
   1522  * @halt_status: Reason for halting the channel
   1523  *
   1524  * This function should only be called in Slave mode or to abort a transfer in
   1525  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
   1526  * controller halts the channel when the transfer is complete or a condition
   1527  * occurs that requires application intervention.
   1528  *
   1529  * In slave mode, checks for a free request queue entry, then sets the Channel
   1530  * Enable and Channel Disable bits of the Host Channel Characteristics
   1531  * register of the specified channel to intiate the halt. If there is no free
   1532  * request queue entry, sets only the Channel Disable bit of the HCCHARn
   1533  * register to flush requests for this channel. In the latter case, sets a
   1534  * flag to indicate that the host channel needs to be halted when a request
   1535  * queue slot is open.
   1536  *
   1537  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
   1538  * HCCHARn register. The controller ensures there is space in the request
   1539  * queue before submitting the halt request.
   1540  *
   1541  * Some time may elapse before the core flushes any posted requests for this
   1542  * host channel and halts. The Channel Halted interrupt handler completes the
   1543  * deactivation of the host channel.
   1544  */
   1545 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
   1546 		  enum dwc2_halt_status halt_status)
   1547 {
   1548 	u32 nptxsts, hptxsts, hcchar;
   1549 
   1550 	if (dbg_hc(chan))
   1551 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
   1552 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
   1553 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
   1554 
   1555 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
   1556 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
   1557 		/*
   1558 		 * Disable all channel interrupts except Ch Halted. The QTD
   1559 		 * and QH state associated with this transfer has been cleared
   1560 		 * (in the case of URB_DEQUEUE), so the channel needs to be
   1561 		 * shut down carefully to prevent crashes.
   1562 		 */
   1563 		u32 hcintmsk = HCINTMSK_CHHLTD;
   1564 
   1565 		dev_vdbg(hsotg->dev, "dequeue/error\n");
   1566 		DWC2_WRITE_4(hsotg, HCINTMSK(chan->hc_num), hcintmsk);
   1567 
   1568 		/*
   1569 		 * Make sure no other interrupts besides halt are currently
   1570 		 * pending. Handling another interrupt could cause a crash due
   1571 		 * to the QTD and QH state.
   1572 		 */
   1573 		DWC2_WRITE_4(hsotg, HCINT(chan->hc_num), ~hcintmsk);
   1574 
   1575 		/*
   1576 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
   1577 		 * even if the channel was already halted for some other
   1578 		 * reason
   1579 		 */
   1580 		chan->halt_status = halt_status;
   1581 
   1582 		hcchar = DWC2_READ_4(hsotg, HCCHAR(chan->hc_num));
   1583 		if (!(hcchar & HCCHAR_CHENA)) {
   1584 			/*
   1585 			 * The channel is either already halted or it hasn't
   1586 			 * started yet. In DMA mode, the transfer may halt if
   1587 			 * it finishes normally or a condition occurs that
   1588 			 * requires driver intervention. Don't want to halt
   1589 			 * the channel again. In either Slave or DMA mode,
   1590 			 * it's possible that the transfer has been assigned
   1591 			 * to a channel, but not started yet when an URB is
   1592 			 * dequeued. Don't want to halt a channel that hasn't
   1593 			 * started yet.
   1594 			 */
   1595 			return;
   1596 		}
   1597 	}
   1598 	if (chan->halt_pending) {
   1599 		/*
   1600 		 * A halt has already been issued for this channel. This might
   1601 		 * happen when a transfer is aborted by a higher level in
   1602 		 * the stack.
   1603 		 */
   1604 		dev_vdbg(hsotg->dev,
   1605 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
   1606 			 __func__, chan->hc_num);
   1607 		return;
   1608 	}
   1609 
   1610 	hcchar = DWC2_READ_4(hsotg, HCCHAR(chan->hc_num));
   1611 
   1612 	/* No need to set the bit in DDMA for disabling the channel */
   1613 	/* TODO check it everywhere channel is disabled */
   1614 	if (hsotg->core_params->dma_desc_enable <= 0) {
   1615 		if (dbg_hc(chan))
   1616 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
   1617 		hcchar |= HCCHAR_CHENA;
   1618 	} else {
   1619 		if (dbg_hc(chan))
   1620 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
   1621 	}
   1622 	hcchar |= HCCHAR_CHDIS;
   1623 
   1624 	if (hsotg->core_params->dma_enable <= 0) {
   1625 		if (dbg_hc(chan))
   1626 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
   1627 		hcchar |= HCCHAR_CHENA;
   1628 
   1629 		/* Check for space in the request queue to issue the halt */
   1630 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
   1631 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
   1632 			dev_vdbg(hsotg->dev, "control/bulk\n");
   1633 			nptxsts = DWC2_READ_4(hsotg, GNPTXSTS);
   1634 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
   1635 				dev_vdbg(hsotg->dev, "Disabling channel\n");
   1636 				hcchar &= ~HCCHAR_CHENA;
   1637 			}
   1638 		} else {
   1639 			if (dbg_perio())
   1640 				dev_vdbg(hsotg->dev, "isoc/intr\n");
   1641 			hptxsts = DWC2_READ_4(hsotg, HPTXSTS);
   1642 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
   1643 			    hsotg->queuing_high_bandwidth) {
   1644 				if (dbg_perio())
   1645 					dev_vdbg(hsotg->dev, "Disabling channel\n");
   1646 				hcchar &= ~HCCHAR_CHENA;
   1647 			}
   1648 		}
   1649 	} else {
   1650 		if (dbg_hc(chan))
   1651 			dev_vdbg(hsotg->dev, "DMA enabled\n");
   1652 	}
   1653 
   1654 	DWC2_WRITE_4(hsotg, HCCHAR(chan->hc_num), hcchar);
   1655 	chan->halt_status = halt_status;
   1656 
   1657 	if (hcchar & HCCHAR_CHENA) {
   1658 		if (dbg_hc(chan))
   1659 			dev_vdbg(hsotg->dev, "Channel enabled\n");
   1660 		chan->halt_pending = 1;
   1661 		chan->halt_on_queue = 0;
   1662 	} else {
   1663 		if (dbg_hc(chan))
   1664 			dev_vdbg(hsotg->dev, "Channel disabled\n");
   1665 		chan->halt_on_queue = 1;
   1666 	}
   1667 
   1668 	if (dbg_hc(chan)) {
   1669 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
   1670 			 chan->hc_num);
   1671 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
   1672 			 hcchar);
   1673 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
   1674 			 chan->halt_pending);
   1675 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
   1676 			 chan->halt_on_queue);
   1677 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
   1678 			 chan->halt_status);
   1679 	}
   1680 }
   1681 
   1682 /**
   1683  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
   1684  *
   1685  * @hsotg: Programming view of DWC_otg controller
   1686  * @chan:  Identifies the host channel to clean up
   1687  *
   1688  * This function is normally called after a transfer is done and the host
   1689  * channel is being released
   1690  */
   1691 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
   1692 {
   1693 	u32 hcintmsk;
   1694 
   1695 	chan->xfer_started = 0;
   1696 
   1697 	/*
   1698 	 * Clear channel interrupt enables and any unhandled channel interrupt
   1699 	 * conditions
   1700 	 */
   1701 	DWC2_WRITE_4(hsotg, HCINTMSK(chan->hc_num), 0);
   1702 	hcintmsk = 0xffffffff;
   1703 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
   1704 	DWC2_WRITE_4(hsotg, HCINT(chan->hc_num), hcintmsk);
   1705 }
   1706 
   1707 /**
   1708  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
   1709  * which frame a periodic transfer should occur
   1710  *
   1711  * @hsotg:  Programming view of DWC_otg controller
   1712  * @chan:   Identifies the host channel to set up and its properties
   1713  * @hcchar: Current value of the HCCHAR register for the specified host channel
   1714  *
   1715  * This function has no effect on non-periodic transfers
   1716  */
   1717 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
   1718 				       struct dwc2_host_chan *chan, u32 *hcchar)
   1719 {
   1720 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
   1721 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
   1722 		/* 1 if _next_ frame is odd, 0 if it's even */
   1723 		if (!(dwc2_hcd_get_frame_number(hsotg) & 0x1))
   1724 			*hcchar |= HCCHAR_ODDFRM;
   1725 	}
   1726 }
   1727 
   1728 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
   1729 {
   1730 	/* Set up the initial PID for the transfer */
   1731 	if (chan->speed == USB_SPEED_HIGH) {
   1732 		if (chan->ep_is_in) {
   1733 			if (chan->multi_count == 1)
   1734 				chan->data_pid_start = DWC2_HC_PID_DATA0;
   1735 			else if (chan->multi_count == 2)
   1736 				chan->data_pid_start = DWC2_HC_PID_DATA1;
   1737 			else
   1738 				chan->data_pid_start = DWC2_HC_PID_DATA2;
   1739 		} else {
   1740 			if (chan->multi_count == 1)
   1741 				chan->data_pid_start = DWC2_HC_PID_DATA0;
   1742 			else
   1743 				chan->data_pid_start = DWC2_HC_PID_MDATA;
   1744 		}
   1745 	} else {
   1746 		chan->data_pid_start = DWC2_HC_PID_DATA0;
   1747 	}
   1748 }
   1749 
   1750 /**
   1751  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
   1752  * the Host Channel
   1753  *
   1754  * @hsotg: Programming view of DWC_otg controller
   1755  * @chan:  Information needed to initialize the host channel
   1756  *
   1757  * This function should only be called in Slave mode. For a channel associated
   1758  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
   1759  * associated with a periodic EP, the periodic Tx FIFO is written.
   1760  *
   1761  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
   1762  * the number of bytes written to the Tx FIFO.
   1763  */
   1764 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
   1765 				 struct dwc2_host_chan *chan)
   1766 {
   1767 	u32 i;
   1768 	u32 remaining_count;
   1769 	u32 byte_count;
   1770 	u32 dword_count;
   1771 	u32 *data_buf = (u32 *)chan->xfer_buf;
   1772 	u32 data_fifo;
   1773 
   1774 	if (dbg_hc(chan))
   1775 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
   1776 
   1777 	data_fifo = HCFIFO(chan->hc_num);
   1778 
   1779 	remaining_count = chan->xfer_len - chan->xfer_count;
   1780 	if (remaining_count > chan->max_packet)
   1781 		byte_count = chan->max_packet;
   1782 	else
   1783 		byte_count = remaining_count;
   1784 
   1785 	dword_count = (byte_count + 3) / 4;
   1786 
   1787 	if (((unsigned long)data_buf & 0x3) == 0) {
   1788 		/* xfer_buf is DWORD aligned */
   1789 		for (i = 0; i < dword_count; i++, data_buf++)
   1790 			DWC2_WRITE_4(hsotg, data_fifo, *data_buf);
   1791 	} else {
   1792 		/* xfer_buf is not DWORD aligned */
   1793 		for (i = 0; i < dword_count; i++, data_buf++) {
   1794 			u32 data = data_buf[0] | data_buf[1] << 8 |
   1795 				   data_buf[2] << 16 | data_buf[3] << 24;
   1796 			DWC2_WRITE_4(hsotg, data_fifo, data);
   1797 		}
   1798 	}
   1799 
   1800 	chan->xfer_count += byte_count;
   1801 	chan->xfer_buf += byte_count;
   1802 }
   1803 
   1804 /**
   1805  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
   1806  * channel and starts the transfer
   1807  *
   1808  * @hsotg: Programming view of DWC_otg controller
   1809  * @chan:  Information needed to initialize the host channel. The xfer_len value
   1810  *         may be reduced to accommodate the max widths of the XferSize and
   1811  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
   1812  *         changed to reflect the final xfer_len value.
   1813  *
   1814  * This function may be called in either Slave mode or DMA mode. In Slave mode,
   1815  * the caller must ensure that there is sufficient space in the request queue
   1816  * and Tx Data FIFO.
   1817  *
   1818  * For an OUT transfer in Slave mode, it loads a data packet into the
   1819  * appropriate FIFO. If necessary, additional data packets are loaded in the
   1820  * Host ISR.
   1821  *
   1822  * For an IN transfer in Slave mode, a data packet is requested. The data
   1823  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
   1824  * additional data packets are requested in the Host ISR.
   1825  *
   1826  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
   1827  * register along with a packet count of 1 and the channel is enabled. This
   1828  * causes a single PING transaction to occur. Other fields in HCTSIZ are
   1829  * simply set to 0 since no data transfer occurs in this case.
   1830  *
   1831  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
   1832  * all the information required to perform the subsequent data transfer. In
   1833  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
   1834  * controller performs the entire PING protocol, then starts the data
   1835  * transfer.
   1836  */
   1837 void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
   1838 			    struct dwc2_host_chan *chan)
   1839 {
   1840 	u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
   1841 	u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
   1842 	u32 hcchar;
   1843 	u32 hctsiz = 0;
   1844 	u16 num_packets;
   1845 	u32 ec_mc;
   1846 
   1847 	if (dbg_hc(chan))
   1848 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
   1849 
   1850 	if (chan->do_ping) {
   1851 		if (hsotg->core_params->dma_enable <= 0) {
   1852 			if (dbg_hc(chan))
   1853 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
   1854 			dwc2_hc_do_ping(hsotg, chan);
   1855 			chan->xfer_started = 1;
   1856 			return;
   1857 		} else {
   1858 			if (dbg_hc(chan))
   1859 				dev_vdbg(hsotg->dev, "ping, DMA\n");
   1860 			hctsiz |= TSIZ_DOPNG;
   1861 		}
   1862 	}
   1863 
   1864 	if (chan->do_split) {
   1865 		if (dbg_hc(chan))
   1866 			dev_vdbg(hsotg->dev, "split\n");
   1867 		num_packets = 1;
   1868 
   1869 		if (chan->complete_split && !chan->ep_is_in)
   1870 			/*
   1871 			 * For CSPLIT OUT Transfer, set the size to 0 so the
   1872 			 * core doesn't expect any data written to the FIFO
   1873 			 */
   1874 			chan->xfer_len = 0;
   1875 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
   1876 			chan->xfer_len = chan->max_packet;
   1877 		else if (!chan->ep_is_in && chan->xfer_len > 188)
   1878 			chan->xfer_len = 188;
   1879 
   1880 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
   1881 			  TSIZ_XFERSIZE_MASK;
   1882 
   1883 		/* For split set ec_mc for immediate retries */
   1884 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
   1885 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
   1886 			ec_mc = 3;
   1887 		else
   1888 			ec_mc = 1;
   1889 	} else {
   1890 		if (dbg_hc(chan))
   1891 			dev_vdbg(hsotg->dev, "no split\n");
   1892 		/*
   1893 		 * Ensure that the transfer length and packet count will fit
   1894 		 * in the widths allocated for them in the HCTSIZn register
   1895 		 */
   1896 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
   1897 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
   1898 			/*
   1899 			 * Make sure the transfer size is no larger than one
   1900 			 * (micro)frame's worth of data. (A check was done
   1901 			 * when the periodic transfer was accepted to ensure
   1902 			 * that a (micro)frame's worth of data can be
   1903 			 * programmed into a channel.)
   1904 			 */
   1905 			u32 max_periodic_len =
   1906 				chan->multi_count * chan->max_packet;
   1907 
   1908 			if (chan->xfer_len > max_periodic_len)
   1909 				chan->xfer_len = max_periodic_len;
   1910 		} else if (chan->xfer_len > max_hc_xfer_size) {
   1911 			/*
   1912 			 * Make sure that xfer_len is a multiple of max packet
   1913 			 * size
   1914 			 */
   1915 			chan->xfer_len =
   1916 				max_hc_xfer_size - chan->max_packet + 1;
   1917 		}
   1918 
   1919 		if (chan->xfer_len > 0) {
   1920 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
   1921 					chan->max_packet;
   1922 			if (num_packets > max_hc_pkt_count) {
   1923 				num_packets = max_hc_pkt_count;
   1924 				chan->xfer_len = num_packets * chan->max_packet;
   1925 			}
   1926 		} else {
   1927 			/* Need 1 packet for transfer length of 0 */
   1928 			num_packets = 1;
   1929 		}
   1930 
   1931 		if (chan->ep_is_in)
   1932 			/*
   1933 			 * Always program an integral # of max packets for IN
   1934 			 * transfers
   1935 			 */
   1936 			chan->xfer_len = num_packets * chan->max_packet;
   1937 
   1938 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
   1939 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
   1940 			/*
   1941 			 * Make sure that the multi_count field matches the
   1942 			 * actual transfer length
   1943 			 */
   1944 			chan->multi_count = num_packets;
   1945 
   1946 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
   1947 			dwc2_set_pid_isoc(chan);
   1948 
   1949 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
   1950 			  TSIZ_XFERSIZE_MASK;
   1951 
   1952 		/* The ec_mc gets the multi_count for non-split */
   1953 		ec_mc = chan->multi_count;
   1954 	}
   1955 
   1956 	chan->start_pkt_count = num_packets;
   1957 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
   1958 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
   1959 		  TSIZ_SC_MC_PID_MASK;
   1960 	DWC2_WRITE_4(hsotg, HCTSIZ(chan->hc_num), hctsiz);
   1961 	if (dbg_hc(chan)) {
   1962 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
   1963 			 hctsiz, chan->hc_num);
   1964 
   1965 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
   1966 			 chan->hc_num);
   1967 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
   1968 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
   1969 			 TSIZ_XFERSIZE_SHIFT);
   1970 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
   1971 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
   1972 			 TSIZ_PKTCNT_SHIFT);
   1973 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
   1974 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
   1975 			 TSIZ_SC_MC_PID_SHIFT);
   1976 	}
   1977 
   1978 	if (hsotg->core_params->dma_enable > 0) {
   1979 		dma_addr_t dma_addr;
   1980 
   1981 		if (chan->align_buf) {
   1982 			if (dbg_hc(chan))
   1983 				dev_vdbg(hsotg->dev, "align_buf\n");
   1984 			dma_addr = chan->align_buf;
   1985 		} else {
   1986 			dma_addr = chan->xfer_dma;
   1987 		}
   1988 		if (hsotg->hsotg_sc->sc_set_dma_addr == NULL) {
   1989 			DWC2_WRITE_4(hsotg, HCDMA(chan->hc_num),
   1990 			    (u32)dma_addr);
   1991 			if (dbg_hc(chan))
   1992 				dev_vdbg(hsotg->dev,
   1993 				    "Wrote %08lx to HCDMA(%d)\n",
   1994 				     (unsigned long)dma_addr,
   1995 				    chan->hc_num);
   1996 		} else {
   1997 			(void)(*hsotg->hsotg_sc->sc_set_dma_addr)(
   1998 			    hsotg->dev, dma_addr, chan->hc_num);
   1999 		}
   2000 	}
   2001 
   2002 	/* Start the split */
   2003 	if (chan->do_split) {
   2004 		u32 hcsplt = DWC2_READ_4(hsotg, HCSPLT(chan->hc_num));
   2005 
   2006 		hcsplt |= HCSPLT_SPLTENA;
   2007 		DWC2_WRITE_4(hsotg, HCSPLT(chan->hc_num), hcsplt);
   2008 	}
   2009 
   2010 	hcchar = DWC2_READ_4(hsotg, HCCHAR(chan->hc_num));
   2011 	hcchar &= ~HCCHAR_MULTICNT_MASK;
   2012 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
   2013 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
   2014 
   2015 	if (hcchar & HCCHAR_CHDIS)
   2016 		dev_warn(hsotg->dev,
   2017 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
   2018 			 __func__, chan->hc_num, hcchar);
   2019 
   2020 	/* Set host channel enable after all other setup is complete */
   2021 	hcchar |= HCCHAR_CHENA;
   2022 	hcchar &= ~HCCHAR_CHDIS;
   2023 
   2024 	if (dbg_hc(chan))
   2025 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
   2026 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
   2027 			 HCCHAR_MULTICNT_SHIFT);
   2028 
   2029 	DWC2_WRITE_4(hsotg, HCCHAR(chan->hc_num), hcchar);
   2030 	if (dbg_hc(chan))
   2031 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
   2032 			 chan->hc_num);
   2033 
   2034 	chan->xfer_started = 1;
   2035 	chan->requests++;
   2036 
   2037 	if (hsotg->core_params->dma_enable <= 0 &&
   2038 	    !chan->ep_is_in && chan->xfer_len > 0)
   2039 		/* Load OUT packet into the appropriate Tx FIFO */
   2040 		dwc2_hc_write_packet(hsotg, chan);
   2041 }
   2042 
   2043 /**
   2044  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
   2045  * host channel and starts the transfer in Descriptor DMA mode
   2046  *
   2047  * @hsotg: Programming view of DWC_otg controller
   2048  * @chan:  Information needed to initialize the host channel
   2049  *
   2050  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
   2051  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
   2052  * with micro-frame bitmap.
   2053  *
   2054  * Initializes HCDMA register with descriptor list address and CTD value then
   2055  * starts the transfer via enabling the channel.
   2056  */
   2057 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
   2058 				 struct dwc2_host_chan *chan)
   2059 {
   2060 	u32 hcchar;
   2061 	u32 hctsiz = 0;
   2062 
   2063 	if (chan->do_ping)
   2064 		hctsiz |= TSIZ_DOPNG;
   2065 
   2066 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
   2067 		dwc2_set_pid_isoc(chan);
   2068 
   2069 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
   2070 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
   2071 		  TSIZ_SC_MC_PID_MASK;
   2072 
   2073 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
   2074 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
   2075 
   2076 	/* Non-zero only for high-speed interrupt endpoints */
   2077 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
   2078 
   2079 	if (dbg_hc(chan)) {
   2080 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
   2081 			 chan->hc_num);
   2082 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
   2083 			 chan->data_pid_start);
   2084 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
   2085 	}
   2086 
   2087 	DWC2_WRITE_4(hsotg, HCTSIZ(chan->hc_num), hctsiz);
   2088 
   2089 	usb_syncmem(&chan->desc_list_usbdma, 0, chan->desc_list_sz,
   2090 	    BUS_DMASYNC_PREWRITE);
   2091 
   2092 	if (hsotg->hsotg_sc->sc_set_dma_addr == NULL) {
   2093 		DWC2_WRITE_4(hsotg, HCDMA(chan->hc_num), chan->desc_list_addr);
   2094 		if (dbg_hc(chan))
   2095 			dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
   2096 				&chan->desc_list_addr, chan->hc_num);
   2097 	} else {
   2098 		(void)(*hsotg->hsotg_sc->sc_set_dma_addr)(
   2099 		    hsotg->dev, chan->desc_list_addr, chan->hc_num);
   2100 		if (dbg_hc(chan))
   2101 			dev_vdbg(hsotg->dev, "Wrote %pad to ext dma(%d)\n",
   2102 				&chan->desc_list_addr, chan->hc_num);
   2103 	}
   2104 
   2105 	hcchar = DWC2_READ_4(hsotg, HCCHAR(chan->hc_num));
   2106 	hcchar &= ~HCCHAR_MULTICNT_MASK;
   2107 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
   2108 		  HCCHAR_MULTICNT_MASK;
   2109 
   2110 	if (hcchar & HCCHAR_CHDIS)
   2111 		dev_warn(hsotg->dev,
   2112 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
   2113 			 __func__, chan->hc_num, hcchar);
   2114 
   2115 	/* Set host channel enable after all other setup is complete */
   2116 	hcchar |= HCCHAR_CHENA;
   2117 	hcchar &= ~HCCHAR_CHDIS;
   2118 
   2119 	if (dbg_hc(chan))
   2120 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
   2121 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
   2122 			 HCCHAR_MULTICNT_SHIFT);
   2123 
   2124 	DWC2_WRITE_4(hsotg, HCCHAR(chan->hc_num), hcchar);
   2125 	if (dbg_hc(chan))
   2126 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
   2127 			 chan->hc_num);
   2128 
   2129 	chan->xfer_started = 1;
   2130 	chan->requests++;
   2131 }
   2132 
   2133 /**
   2134  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
   2135  * a previous call to dwc2_hc_start_transfer()
   2136  *
   2137  * @hsotg: Programming view of DWC_otg controller
   2138  * @chan:  Information needed to initialize the host channel
   2139  *
   2140  * The caller must ensure there is sufficient space in the request queue and Tx
   2141  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
   2142  * the controller acts autonomously to complete transfers programmed to a host
   2143  * channel.
   2144  *
   2145  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
   2146  * if there is any data remaining to be queued. For an IN transfer, another
   2147  * data packet is always requested. For the SETUP phase of a control transfer,
   2148  * this function does nothing.
   2149  *
   2150  * Return: 1 if a new request is queued, 0 if no more requests are required
   2151  * for this transfer
   2152  */
   2153 int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
   2154 			      struct dwc2_host_chan *chan)
   2155 {
   2156 	if (dbg_hc(chan))
   2157 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
   2158 			 chan->hc_num);
   2159 
   2160 	if (chan->do_split)
   2161 		/* SPLITs always queue just once per channel */
   2162 		return 0;
   2163 
   2164 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
   2165 		/* SETUPs are queued only once since they can't be NAK'd */
   2166 		return 0;
   2167 
   2168 	if (chan->ep_is_in) {
   2169 		/*
   2170 		 * Always queue another request for other IN transfers. If
   2171 		 * back-to-back INs are issued and NAKs are received for both,
   2172 		 * the driver may still be processing the first NAK when the
   2173 		 * second NAK is received. When the interrupt handler clears
   2174 		 * the NAK interrupt for the first NAK, the second NAK will
   2175 		 * not be seen. So we can't depend on the NAK interrupt
   2176 		 * handler to requeue a NAK'd request. Instead, IN requests
   2177 		 * are issued each time this function is called. When the
   2178 		 * transfer completes, the extra requests for the channel will
   2179 		 * be flushed.
   2180 		 */
   2181 		u32 hcchar = DWC2_READ_4(hsotg, HCCHAR(chan->hc_num));
   2182 
   2183 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
   2184 		hcchar |= HCCHAR_CHENA;
   2185 		hcchar &= ~HCCHAR_CHDIS;
   2186 		if (dbg_hc(chan))
   2187 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
   2188 				 hcchar);
   2189 		DWC2_WRITE_4(hsotg, HCCHAR(chan->hc_num), hcchar);
   2190 		chan->requests++;
   2191 		return 1;
   2192 	}
   2193 
   2194 	/* OUT transfers */
   2195 
   2196 	if (chan->xfer_count < chan->xfer_len) {
   2197 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
   2198 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
   2199 			u32 hcchar = DWC2_READ_4(hsotg, HCCHAR(chan->hc_num));
   2200 
   2201 			dwc2_hc_set_even_odd_frame(hsotg, chan,
   2202 						   &hcchar);
   2203 		}
   2204 
   2205 		/* Load OUT packet into the appropriate Tx FIFO */
   2206 		dwc2_hc_write_packet(hsotg, chan);
   2207 		chan->requests++;
   2208 		return 1;
   2209 	}
   2210 
   2211 	return 0;
   2212 }
   2213 
   2214 /**
   2215  * dwc2_hc_do_ping() - Starts a PING transfer
   2216  *
   2217  * @hsotg: Programming view of DWC_otg controller
   2218  * @chan:  Information needed to initialize the host channel
   2219  *
   2220  * This function should only be called in Slave mode. The Do Ping bit is set in
   2221  * the HCTSIZ register, then the channel is enabled.
   2222  */
   2223 void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
   2224 {
   2225 	u32 hcchar;
   2226 	u32 hctsiz;
   2227 
   2228 	if (dbg_hc(chan))
   2229 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
   2230 			 chan->hc_num);
   2231 
   2232 
   2233 	hctsiz = TSIZ_DOPNG;
   2234 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
   2235 	DWC2_WRITE_4(hsotg, HCTSIZ(chan->hc_num), hctsiz);
   2236 
   2237 	hcchar = DWC2_READ_4(hsotg, HCCHAR(chan->hc_num));
   2238 	hcchar |= HCCHAR_CHENA;
   2239 	hcchar &= ~HCCHAR_CHDIS;
   2240 	DWC2_WRITE_4(hsotg, HCCHAR(chan->hc_num), hcchar);
   2241 }
   2242 
   2243 /**
   2244  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
   2245  * the HFIR register according to PHY type and speed
   2246  *
   2247  * @hsotg: Programming view of DWC_otg controller
   2248  *
   2249  * NOTE: The caller can modify the value of the HFIR register only after the
   2250  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
   2251  * has been set
   2252  */
   2253 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
   2254 {
   2255 	u32 usbcfg;
   2256 	u32 hprt0;
   2257 	int clock = 60;	/* default value */
   2258 
   2259 	usbcfg = DWC2_READ_4(hsotg, GUSBCFG);
   2260 	hprt0 = DWC2_READ_4(hsotg, HPRT0);
   2261 
   2262 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
   2263 	    !(usbcfg & GUSBCFG_PHYIF16))
   2264 		clock = 60;
   2265 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
   2266 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
   2267 		clock = 48;
   2268 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
   2269 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
   2270 		clock = 30;
   2271 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
   2272 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
   2273 		clock = 60;
   2274 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
   2275 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
   2276 		clock = 48;
   2277 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
   2278 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
   2279 		clock = 48;
   2280 	if ((usbcfg & GUSBCFG_PHYSEL) &&
   2281 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
   2282 		clock = 48;
   2283 
   2284 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
   2285 		/* High speed case */
   2286 		return 125 * clock - 1;
   2287 	else
   2288 		/* FS/LS case */
   2289 		return 1000 * clock - 1;
   2290 }
   2291 
   2292 /**
   2293  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
   2294  * buffer
   2295  *
   2296  * @core_if: Programming view of DWC_otg controller
   2297  * @dest:    Destination buffer for the packet
   2298  * @bytes:   Number of bytes to copy to the destination
   2299  */
   2300 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
   2301 {
   2302 	bus_size_t fifo = HCFIFO(0);
   2303 	u32 *data_buf = (u32 *)dest;
   2304 	int word_count = (bytes + 3) / 4;
   2305 	int i;
   2306 
   2307 	/*
   2308 	 * Todo: Account for the case where dest is not dword aligned. This
   2309 	 * requires reading data from the FIFO into a u32 temp buffer, then
   2310 	 * moving it into the data buffer.
   2311 	 */
   2312 
   2313 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
   2314 
   2315 	for (i = 0; i < word_count; i++, data_buf++)
   2316 		*data_buf = DWC2_READ_4(hsotg, fifo);
   2317 }
   2318 
   2319 /**
   2320  * dwc2_dump_host_registers() - Prints the host registers
   2321  *
   2322  * @hsotg: Programming view of DWC_otg controller
   2323  *
   2324  * NOTE: This function will be removed once the peripheral controller code
   2325  * is integrated and the driver is stable
   2326  */
   2327 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg)
   2328 {
   2329 #ifdef DWC2_DEBUG
   2330 	bus_size_t addr;
   2331 	int i;
   2332 
   2333 	dev_dbg(hsotg->dev, "Host Global Registers\n");
   2334 	addr = HCFG;
   2335 	dev_dbg(hsotg->dev, "HCFG	 @0x%08lX : 0x%08X\n",
   2336 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2337 	addr = HFIR;
   2338 	dev_dbg(hsotg->dev, "HFIR	 @0x%08lX : 0x%08X\n",
   2339 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2340 	addr = HFNUM;
   2341 	dev_dbg(hsotg->dev, "HFNUM	 @0x%08lX : 0x%08X\n",
   2342 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2343 	addr = HPTXSTS;
   2344 	dev_dbg(hsotg->dev, "HPTXSTS	 @0x%08lX : 0x%08X\n",
   2345 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2346 	addr = HAINT;
   2347 	dev_dbg(hsotg->dev, "HAINT	 @0x%08lX : 0x%08X\n",
   2348 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2349 	addr = HAINTMSK;
   2350 	dev_dbg(hsotg->dev, "HAINTMSK	 @0x%08lX : 0x%08X\n",
   2351 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2352 	if (hsotg->core_params->dma_desc_enable > 0) {
   2353 		addr = HFLBADDR;
   2354 		dev_dbg(hsotg->dev, "HFLBADDR @0x%08lX : 0x%08X\n",
   2355 			(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2356 	}
   2357 
   2358 	addr = HPRT0;
   2359 	dev_dbg(hsotg->dev, "HPRT0	 @0x%08lX : 0x%08X\n",
   2360 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2361 
   2362 	for (i = 0; i < hsotg->core_params->host_channels; i++) {
   2363 		dev_dbg(hsotg->dev, "Host Channel %d Specific Registers\n", i);
   2364 		addr = HCCHAR(i);
   2365 		dev_dbg(hsotg->dev, "HCCHAR	 @0x%08lX : 0x%08X\n",
   2366 			(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2367 		addr = HCSPLT(i);
   2368 		dev_dbg(hsotg->dev, "HCSPLT	 @0x%08lX : 0x%08X\n",
   2369 			(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2370 		addr = HCINT(i);
   2371 		dev_dbg(hsotg->dev, "HCINT	 @0x%08lX : 0x%08X\n",
   2372 			(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2373 		addr = HCINTMSK(i);
   2374 		dev_dbg(hsotg->dev, "HCINTMSK	 @0x%08lX : 0x%08X\n",
   2375 			(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2376 		addr = HCTSIZ(i);
   2377 		dev_dbg(hsotg->dev, "HCTSIZ	 @0x%08lX : 0x%08X\n",
   2378 			(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2379 		addr = HCDMA(i);
   2380 		dev_dbg(hsotg->dev, "HCDMA	 @0x%08lX : 0x%08X\n",
   2381 			(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2382 		if (hsotg->core_params->dma_desc_enable > 0) {
   2383 			addr = HCDMAB(i);
   2384 			dev_dbg(hsotg->dev, "HCDMAB	 @0x%08lX : 0x%08X\n",
   2385 				(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2386 		}
   2387 	}
   2388 #endif
   2389 }
   2390 
   2391 /**
   2392  * dwc2_dump_global_registers() - Prints the core global registers
   2393  *
   2394  * @hsotg: Programming view of DWC_otg controller
   2395  *
   2396  * NOTE: This function will be removed once the peripheral controller code
   2397  * is integrated and the driver is stable
   2398  */
   2399 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg)
   2400 {
   2401 #ifdef DWC2_DEBUG
   2402 	bus_size_t addr;
   2403 
   2404 	dev_dbg(hsotg->dev, "Core Global Registers\n");
   2405 	addr = GOTGCTL;
   2406 	dev_dbg(hsotg->dev, "GOTGCTL	 @0x%08lX : 0x%08X\n",
   2407 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2408 	addr = GOTGINT;
   2409 	dev_dbg(hsotg->dev, "GOTGINT	 @0x%08lX : 0x%08X\n",
   2410 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2411 	addr = GAHBCFG;
   2412 	dev_dbg(hsotg->dev, "GAHBCFG	 @0x%08lX : 0x%08X\n",
   2413 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2414 	addr = GUSBCFG;
   2415 	dev_dbg(hsotg->dev, "GUSBCFG	 @0x%08lX : 0x%08X\n",
   2416 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2417 	addr = GRSTCTL;
   2418 	dev_dbg(hsotg->dev, "GRSTCTL	 @0x%08lX : 0x%08X\n",
   2419 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2420 	addr = GINTSTS;
   2421 	dev_dbg(hsotg->dev, "GINTSTS	 @0x%08lX : 0x%08X\n",
   2422 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2423 	addr = GINTMSK;
   2424 	dev_dbg(hsotg->dev, "GINTMSK	 @0x%08lX : 0x%08X\n",
   2425 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2426 	addr = GRXSTSR;
   2427 	dev_dbg(hsotg->dev, "GRXSTSR	 @0x%08lX : 0x%08X\n",
   2428 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2429 	addr = GRXFSIZ;
   2430 	dev_dbg(hsotg->dev, "GRXFSIZ	 @0x%08lX : 0x%08X\n",
   2431 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2432 	addr = GNPTXFSIZ;
   2433 	dev_dbg(hsotg->dev, "GNPTXFSIZ	 @0x%08lX : 0x%08X\n",
   2434 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2435 	addr = GNPTXSTS;
   2436 	dev_dbg(hsotg->dev, "GNPTXSTS	 @0x%08lX : 0x%08X\n",
   2437 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2438 	addr = GI2CCTL;
   2439 	dev_dbg(hsotg->dev, "GI2CCTL	 @0x%08lX : 0x%08X\n",
   2440 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2441 	addr = GPVNDCTL;
   2442 	dev_dbg(hsotg->dev, "GPVNDCTL	 @0x%08lX : 0x%08X\n",
   2443 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2444 	addr = GGPIO;
   2445 	dev_dbg(hsotg->dev, "GGPIO	 @0x%08lX : 0x%08X\n",
   2446 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2447 	addr = GUID;
   2448 	dev_dbg(hsotg->dev, "GUID	 @0x%08lX : 0x%08X\n",
   2449 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2450 	addr = GSNPSID;
   2451 	dev_dbg(hsotg->dev, "GSNPSID	 @0x%08lX : 0x%08X\n",
   2452 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2453 	addr = GHWCFG1;
   2454 	dev_dbg(hsotg->dev, "GHWCFG1	 @0x%08lX : 0x%08X\n",
   2455 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2456 	addr = GHWCFG2;
   2457 	dev_dbg(hsotg->dev, "GHWCFG2	 @0x%08lX : 0x%08X\n",
   2458 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2459 	addr = GHWCFG3;
   2460 	dev_dbg(hsotg->dev, "GHWCFG3	 @0x%08lX : 0x%08X\n",
   2461 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2462 	addr = GHWCFG4;
   2463 	dev_dbg(hsotg->dev, "GHWCFG4	 @0x%08lX : 0x%08X\n",
   2464 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2465 	addr = GLPMCFG;
   2466 	dev_dbg(hsotg->dev, "GLPMCFG	 @0x%08lX : 0x%08X\n",
   2467 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2468 	addr = GPWRDN;
   2469 	dev_dbg(hsotg->dev, "GPWRDN	 @0x%08lX : 0x%08X\n",
   2470 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2471 	addr = GDFIFOCFG;
   2472 	dev_dbg(hsotg->dev, "GDFIFOCFG	 @0x%08lX : 0x%08X\n",
   2473 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2474 	addr = HPTXFSIZ;
   2475 	dev_dbg(hsotg->dev, "HPTXFSIZ	 @0x%08lX : 0x%08X\n",
   2476 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2477 
   2478 	addr = PCGCTL;
   2479 	dev_dbg(hsotg->dev, "PCGCTL	 @0x%08lX : 0x%08X\n",
   2480 		(unsigned long)addr, DWC2_READ_4(hsotg, addr));
   2481 #endif
   2482 }
   2483 
   2484 /**
   2485  * dwc2_flush_tx_fifo() - Flushes a Tx FIFO
   2486  *
   2487  * @hsotg: Programming view of DWC_otg controller
   2488  * @num:   Tx FIFO to flush
   2489  */
   2490 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num)
   2491 {
   2492 	u32 greset;
   2493 	int count = 0;
   2494 
   2495 	dev_vdbg(hsotg->dev, "Flush Tx FIFO %d\n", num);
   2496 
   2497 	greset = GRSTCTL_TXFFLSH;
   2498 	greset |= num << GRSTCTL_TXFNUM_SHIFT & GRSTCTL_TXFNUM_MASK;
   2499 	DWC2_WRITE_4(hsotg, GRSTCTL, greset);
   2500 
   2501 	do {
   2502 		greset = DWC2_READ_4(hsotg, GRSTCTL);
   2503 		if (++count > 10000) {
   2504 			dev_warn(hsotg->dev,
   2505 				 "%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
   2506 				 __func__, greset,
   2507 				 DWC2_READ_4(hsotg, GNPTXSTS));
   2508 			break;
   2509 		}
   2510 		udelay(1);
   2511 	} while (greset & GRSTCTL_TXFFLSH);
   2512 
   2513 	/* Wait for at least 3 PHY Clocks */
   2514 	udelay(1);
   2515 }
   2516 
   2517 /**
   2518  * dwc2_flush_rx_fifo() - Flushes the Rx FIFO
   2519  *
   2520  * @hsotg: Programming view of DWC_otg controller
   2521  */
   2522 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg)
   2523 {
   2524 	u32 greset;
   2525 	int count = 0;
   2526 
   2527 	dev_vdbg(hsotg->dev, "%s()\n", __func__);
   2528 
   2529 	greset = GRSTCTL_RXFFLSH;
   2530 	DWC2_WRITE_4(hsotg, GRSTCTL, greset);
   2531 
   2532 	do {
   2533 		greset = DWC2_READ_4(hsotg, GRSTCTL);
   2534 		if (++count > 10000) {
   2535 			dev_warn(hsotg->dev, "%s() HANG! GRSTCTL=%0x\n",
   2536 				 __func__, greset);
   2537 			break;
   2538 		}
   2539 		udelay(1);
   2540 	} while (greset & GRSTCTL_RXFFLSH);
   2541 
   2542 	/* Wait for at least 3 PHY Clocks */
   2543 	udelay(1);
   2544 }
   2545 
   2546 #define DWC2_OUT_OF_BOUNDS(a, b, c)	((a) < (b) || (a) > (c))
   2547 
   2548 /* Parameter access functions */
   2549 void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val)
   2550 {
   2551 	int valid = 1;
   2552 
   2553 	switch (val) {
   2554 	case DWC2_CAP_PARAM_HNP_SRP_CAPABLE:
   2555 		if (hsotg->hw_params.op_mode != GHWCFG2_OP_MODE_HNP_SRP_CAPABLE)
   2556 			valid = 0;
   2557 		break;
   2558 	case DWC2_CAP_PARAM_SRP_ONLY_CAPABLE:
   2559 		switch (hsotg->hw_params.op_mode) {
   2560 		case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
   2561 		case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
   2562 		case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
   2563 		case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
   2564 			break;
   2565 		default:
   2566 			valid = 0;
   2567 			break;
   2568 		}
   2569 		break;
   2570 	case DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE:
   2571 		/* always valid */
   2572 		break;
   2573 	default:
   2574 		valid = 0;
   2575 		break;
   2576 	}
   2577 
   2578 	if (!valid) {
   2579 		if (val >= 0)
   2580 			dev_err(hsotg->dev,
   2581 				"%d invalid for otg_cap parameter. Check HW configuration.\n",
   2582 				val);
   2583 		switch (hsotg->hw_params.op_mode) {
   2584 		case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
   2585 			val = DWC2_CAP_PARAM_HNP_SRP_CAPABLE;
   2586 			break;
   2587 		case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
   2588 		case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
   2589 		case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
   2590 			val = DWC2_CAP_PARAM_SRP_ONLY_CAPABLE;
   2591 			break;
   2592 		default:
   2593 			val = DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE;
   2594 			break;
   2595 		}
   2596 		dev_dbg(hsotg->dev, "Setting otg_cap to %d\n", val);
   2597 	}
   2598 
   2599 	hsotg->core_params->otg_cap = val;
   2600 }
   2601 
   2602 void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val)
   2603 {
   2604 	int valid = 1;
   2605 
   2606 	if (val > 0 && hsotg->hw_params.arch == GHWCFG2_SLAVE_ONLY_ARCH)
   2607 		valid = 0;
   2608 	if (val < 0)
   2609 		valid = 0;
   2610 
   2611 	if (!valid) {
   2612 		if (val >= 0)
   2613 			dev_err(hsotg->dev,
   2614 				"%d invalid for dma_enable parameter. Check HW configuration.\n",
   2615 				val);
   2616 		val = hsotg->hw_params.arch != GHWCFG2_SLAVE_ONLY_ARCH;
   2617 		dev_dbg(hsotg->dev, "Setting dma_enable to %d\n", val);
   2618 	}
   2619 
   2620 	hsotg->core_params->dma_enable = val;
   2621 }
   2622 
   2623 void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val)
   2624 {
   2625 	int valid = 1;
   2626 
   2627 	if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
   2628 			!hsotg->hw_params.dma_desc_enable))
   2629 		valid = 0;
   2630 	if (val < 0)
   2631 		valid = 0;
   2632 
   2633 	if (!valid) {
   2634 		if (val >= 0)
   2635 			dev_err(hsotg->dev,
   2636 				"%d invalid for dma_desc_enable parameter. Check HW configuration.\n",
   2637 				val);
   2638 		val = (hsotg->core_params->dma_enable > 0 &&
   2639 			hsotg->hw_params.dma_desc_enable);
   2640 		dev_dbg(hsotg->dev, "Setting dma_desc_enable to %d\n", val);
   2641 	}
   2642 
   2643 	hsotg->core_params->dma_desc_enable = val;
   2644 }
   2645 
   2646 void dwc2_set_param_dma_desc_fs_enable(struct dwc2_hsotg *hsotg, int val)
   2647 {
   2648 	int valid = 1;
   2649 
   2650 	if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
   2651 			!hsotg->hw_params.dma_desc_enable))
   2652 		valid = 0;
   2653 	if (val < 0)
   2654 		valid = 0;
   2655 
   2656 	if (!valid) {
   2657 		if (val >= 0)
   2658 			dev_err(hsotg->dev,
   2659 				"%d invalid for dma_desc_fs_enable parameter. Check HW configuration.\n",
   2660 				val);
   2661 		val = (hsotg->core_params->dma_enable > 0 &&
   2662 			hsotg->hw_params.dma_desc_enable);
   2663 	}
   2664 
   2665 	hsotg->core_params->dma_desc_fs_enable = val;
   2666 	dev_dbg(hsotg->dev, "Setting dma_desc_fs_enable to %d\n", val);
   2667 }
   2668 
   2669 void dwc2_set_param_host_support_fs_ls_low_power(struct dwc2_hsotg *hsotg,
   2670 						 int val)
   2671 {
   2672 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
   2673 		if (val >= 0) {
   2674 			dev_err(hsotg->dev,
   2675 				"Wrong value for host_support_fs_low_power\n");
   2676 			dev_err(hsotg->dev,
   2677 				"host_support_fs_low_power must be 0 or 1\n");
   2678 		}
   2679 		val = 0;
   2680 		dev_dbg(hsotg->dev,
   2681 			"Setting host_support_fs_low_power to %d\n", val);
   2682 	}
   2683 
   2684 	hsotg->core_params->host_support_fs_ls_low_power = val;
   2685 }
   2686 
   2687 void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg, int val)
   2688 {
   2689 	int valid = 1;
   2690 
   2691 	if (val > 0 && !hsotg->hw_params.enable_dynamic_fifo)
   2692 		valid = 0;
   2693 	if (val < 0)
   2694 		valid = 0;
   2695 
   2696 	if (!valid) {
   2697 		if (val >= 0)
   2698 			dev_err(hsotg->dev,
   2699 				"%d invalid for enable_dynamic_fifo parameter. Check HW configuration.\n",
   2700 				val);
   2701 		val = hsotg->hw_params.enable_dynamic_fifo;
   2702 		dev_dbg(hsotg->dev, "Setting enable_dynamic_fifo to %d\n", val);
   2703 	}
   2704 
   2705 	hsotg->core_params->enable_dynamic_fifo = val;
   2706 }
   2707 
   2708 void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val)
   2709 {
   2710 	int valid = 1;
   2711 
   2712 	if (val < 16 || val > hsotg->hw_params.host_rx_fifo_size)
   2713 		valid = 0;
   2714 
   2715 	if (!valid) {
   2716 		if (val >= 0)
   2717 			dev_err(hsotg->dev,
   2718 				"%d invalid for host_rx_fifo_size. Check HW configuration.\n",
   2719 				val);
   2720 		val = hsotg->hw_params.host_rx_fifo_size;
   2721 		dev_dbg(hsotg->dev, "Setting host_rx_fifo_size to %d\n", val);
   2722 	}
   2723 
   2724 	hsotg->core_params->host_rx_fifo_size = val;
   2725 }
   2726 
   2727 void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
   2728 {
   2729 	int valid = 1;
   2730 
   2731 	if (val < 16 || val > hsotg->hw_params.host_nperio_tx_fifo_size)
   2732 		valid = 0;
   2733 
   2734 	if (!valid) {
   2735 		if (val >= 0)
   2736 			dev_err(hsotg->dev,
   2737 				"%d invalid for host_nperio_tx_fifo_size. Check HW configuration.\n",
   2738 				val);
   2739 		val = hsotg->hw_params.host_nperio_tx_fifo_size;
   2740 		dev_dbg(hsotg->dev, "Setting host_nperio_tx_fifo_size to %d\n",
   2741 			val);
   2742 	}
   2743 
   2744 	hsotg->core_params->host_nperio_tx_fifo_size = val;
   2745 }
   2746 
   2747 void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
   2748 {
   2749 	int valid = 1;
   2750 
   2751 	if (val < 16 || val > hsotg->hw_params.host_perio_tx_fifo_size)
   2752 		valid = 0;
   2753 
   2754 	if (!valid) {
   2755 		if (val >= 0)
   2756 			dev_err(hsotg->dev,
   2757 				"%d invalid for host_perio_tx_fifo_size. Check HW configuration.\n",
   2758 				val);
   2759 		val = hsotg->hw_params.host_perio_tx_fifo_size;
   2760 		dev_dbg(hsotg->dev, "Setting host_perio_tx_fifo_size to %d\n",
   2761 			val);
   2762 	}
   2763 
   2764 	hsotg->core_params->host_perio_tx_fifo_size = val;
   2765 }
   2766 
   2767 void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val)
   2768 {
   2769 	int valid = 1;
   2770 
   2771 	if (val < 2047 || val > hsotg->hw_params.max_transfer_size)
   2772 		valid = 0;
   2773 
   2774 	if (!valid) {
   2775 		if (val >= 0)
   2776 			dev_err(hsotg->dev,
   2777 				"%d invalid for max_transfer_size. Check HW configuration.\n",
   2778 				val);
   2779 		val = hsotg->hw_params.max_transfer_size;
   2780 		dev_dbg(hsotg->dev, "Setting max_transfer_size to %d\n", val);
   2781 	}
   2782 
   2783 	hsotg->core_params->max_transfer_size = val;
   2784 }
   2785 
   2786 void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val)
   2787 {
   2788 	int valid = 1;
   2789 
   2790 	if (val < 15 || val > hsotg->hw_params.max_packet_count)
   2791 		valid = 0;
   2792 
   2793 	if (!valid) {
   2794 		if (val >= 0)
   2795 			dev_err(hsotg->dev,
   2796 				"%d invalid for max_packet_count. Check HW configuration.\n",
   2797 				val);
   2798 		val = hsotg->hw_params.max_packet_count;
   2799 		dev_dbg(hsotg->dev, "Setting max_packet_count to %d\n", val);
   2800 	}
   2801 
   2802 	hsotg->core_params->max_packet_count = val;
   2803 }
   2804 
   2805 void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val)
   2806 {
   2807 	int valid = 1;
   2808 
   2809 	if (val < 1 || val > hsotg->hw_params.host_channels)
   2810 		valid = 0;
   2811 
   2812 	if (!valid) {
   2813 		if (val >= 0)
   2814 			dev_err(hsotg->dev,
   2815 				"%d invalid for host_channels. Check HW configuration.\n",
   2816 				val);
   2817 		val = hsotg->hw_params.host_channels;
   2818 		dev_dbg(hsotg->dev, "Setting host_channels to %d\n", val);
   2819 	}
   2820 
   2821 	hsotg->core_params->host_channels = val;
   2822 }
   2823 
   2824 void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val)
   2825 {
   2826 	int valid = 0;
   2827 	u32 hs_phy_type, fs_phy_type;
   2828 
   2829 	if (DWC2_OUT_OF_BOUNDS(val, DWC2_PHY_TYPE_PARAM_FS,
   2830 			       DWC2_PHY_TYPE_PARAM_ULPI)) {
   2831 		if (val >= 0) {
   2832 			dev_err(hsotg->dev, "Wrong value for phy_type\n");
   2833 			dev_err(hsotg->dev, "phy_type must be 0, 1 or 2\n");
   2834 		}
   2835 
   2836 		valid = 0;
   2837 	}
   2838 
   2839 	hs_phy_type = hsotg->hw_params.hs_phy_type;
   2840 	fs_phy_type = hsotg->hw_params.fs_phy_type;
   2841 	if (val == DWC2_PHY_TYPE_PARAM_UTMI &&
   2842 	    (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
   2843 	     hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
   2844 		valid = 1;
   2845 	else if (val == DWC2_PHY_TYPE_PARAM_ULPI &&
   2846 		 (hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI ||
   2847 		  hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
   2848 		valid = 1;
   2849 	else if (val == DWC2_PHY_TYPE_PARAM_FS &&
   2850 		 fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
   2851 		valid = 1;
   2852 
   2853 	if (!valid) {
   2854 		if (val >= 0)
   2855 			dev_err(hsotg->dev,
   2856 				"%d invalid for phy_type. Check HW configuration.\n",
   2857 				val);
   2858 		val = DWC2_PHY_TYPE_PARAM_FS;
   2859 		if (hs_phy_type != GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED) {
   2860 			if (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
   2861 			    hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI)
   2862 				val = DWC2_PHY_TYPE_PARAM_UTMI;
   2863 			else
   2864 				val = DWC2_PHY_TYPE_PARAM_ULPI;
   2865 		}
   2866 		dev_dbg(hsotg->dev, "Setting phy_type to %d\n", val);
   2867 	}
   2868 
   2869 	hsotg->core_params->phy_type = val;
   2870 }
   2871 
   2872 static int dwc2_get_param_phy_type(struct dwc2_hsotg *hsotg)
   2873 {
   2874 	return hsotg->core_params->phy_type;
   2875 }
   2876 
   2877 void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val)
   2878 {
   2879 	int valid = 1;
   2880 
   2881 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
   2882 		if (val >= 0) {
   2883 			dev_err(hsotg->dev, "Wrong value for speed parameter\n");
   2884 			dev_err(hsotg->dev, "max_speed parameter must be 0 or 1\n");
   2885 		}
   2886 		valid = 0;
   2887 	}
   2888 
   2889 	if (val == DWC2_SPEED_PARAM_HIGH &&
   2890 	    dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
   2891 		valid = 0;
   2892 
   2893 	if (!valid) {
   2894 		if (val >= 0)
   2895 			dev_err(hsotg->dev,
   2896 				"%d invalid for speed parameter. Check HW configuration.\n",
   2897 				val);
   2898 		val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS ?
   2899 				DWC2_SPEED_PARAM_FULL : DWC2_SPEED_PARAM_HIGH;
   2900 		dev_dbg(hsotg->dev, "Setting speed to %d\n", val);
   2901 	}
   2902 
   2903 	hsotg->core_params->speed = val;
   2904 }
   2905 
   2906 void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg, int val)
   2907 {
   2908 	int valid = 1;
   2909 
   2910 	if (DWC2_OUT_OF_BOUNDS(val, DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ,
   2911 			       DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) {
   2912 		if (val >= 0) {
   2913 			dev_err(hsotg->dev,
   2914 				"Wrong value for host_ls_low_power_phy_clk parameter\n");
   2915 			dev_err(hsotg->dev,
   2916 				"host_ls_low_power_phy_clk must be 0 or 1\n");
   2917 		}
   2918 		valid = 0;
   2919 	}
   2920 
   2921 	if (val == DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ &&
   2922 	    dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
   2923 		valid = 0;
   2924 
   2925 	if (!valid) {
   2926 		if (val >= 0)
   2927 			dev_err(hsotg->dev,
   2928 				"%d invalid for host_ls_low_power_phy_clk. Check HW configuration.\n",
   2929 				val);
   2930 		val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS
   2931 			? DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ
   2932 			: DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ;
   2933 		dev_dbg(hsotg->dev, "Setting host_ls_low_power_phy_clk to %d\n",
   2934 			val);
   2935 	}
   2936 
   2937 	hsotg->core_params->host_ls_low_power_phy_clk = val;
   2938 }
   2939 
   2940 void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val)
   2941 {
   2942 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
   2943 		if (val >= 0) {
   2944 			dev_err(hsotg->dev, "Wrong value for phy_ulpi_ddr\n");
   2945 			dev_err(hsotg->dev, "phy_upli_ddr must be 0 or 1\n");
   2946 		}
   2947 		val = 0;
   2948 		dev_dbg(hsotg->dev, "Setting phy_upli_ddr to %d\n", val);
   2949 	}
   2950 
   2951 	hsotg->core_params->phy_ulpi_ddr = val;
   2952 }
   2953 
   2954 void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val)
   2955 {
   2956 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
   2957 		if (val >= 0) {
   2958 			dev_err(hsotg->dev,
   2959 				"Wrong value for phy_ulpi_ext_vbus\n");
   2960 			dev_err(hsotg->dev,
   2961 				"phy_ulpi_ext_vbus must be 0 or 1\n");
   2962 		}
   2963 		val = 0;
   2964 		dev_dbg(hsotg->dev, "Setting phy_ulpi_ext_vbus to %d\n", val);
   2965 	}
   2966 
   2967 	hsotg->core_params->phy_ulpi_ext_vbus = val;
   2968 }
   2969 
   2970 void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val)
   2971 {
   2972 	int valid = 0;
   2973 
   2974 	switch (hsotg->hw_params.utmi_phy_data_width) {
   2975 	case GHWCFG4_UTMI_PHY_DATA_WIDTH_8:
   2976 		valid = (val == 8);
   2977 		break;
   2978 	case GHWCFG4_UTMI_PHY_DATA_WIDTH_16:
   2979 		valid = (val == 16);
   2980 		break;
   2981 	case GHWCFG4_UTMI_PHY_DATA_WIDTH_8_OR_16:
   2982 		valid = (val == 8 || val == 16);
   2983 		break;
   2984 	}
   2985 
   2986 	if (!valid) {
   2987 		if (val >= 0) {
   2988 			dev_err(hsotg->dev,
   2989 				"%d invalid for phy_utmi_width. Check HW configuration.\n",
   2990 				val);
   2991 		}
   2992 		val = (hsotg->hw_params.utmi_phy_data_width ==
   2993 		       GHWCFG4_UTMI_PHY_DATA_WIDTH_8) ? 8 : 16;
   2994 		dev_dbg(hsotg->dev, "Setting phy_utmi_width to %d\n", val);
   2995 	}
   2996 
   2997 	hsotg->core_params->phy_utmi_width = val;
   2998 }
   2999 
   3000 void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val)
   3001 {
   3002 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
   3003 		if (val >= 0) {
   3004 			dev_err(hsotg->dev, "Wrong value for ulpi_fs_ls\n");
   3005 			dev_err(hsotg->dev, "ulpi_fs_ls must be 0 or 1\n");
   3006 		}
   3007 		val = 0;
   3008 		dev_dbg(hsotg->dev, "Setting ulpi_fs_ls to %d\n", val);
   3009 	}
   3010 
   3011 	hsotg->core_params->ulpi_fs_ls = val;
   3012 }
   3013 
   3014 void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val)
   3015 {
   3016 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
   3017 		if (val >= 0) {
   3018 			dev_err(hsotg->dev, "Wrong value for ts_dline\n");
   3019 			dev_err(hsotg->dev, "ts_dline must be 0 or 1\n");
   3020 		}
   3021 		val = 0;
   3022 		dev_dbg(hsotg->dev, "Setting ts_dline to %d\n", val);
   3023 	}
   3024 
   3025 	hsotg->core_params->ts_dline = val;
   3026 }
   3027 
   3028 void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val)
   3029 {
   3030 	int valid = 1;
   3031 
   3032 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
   3033 		if (val >= 0) {
   3034 			dev_err(hsotg->dev, "Wrong value for i2c_enable\n");
   3035 			dev_err(hsotg->dev, "i2c_enable must be 0 or 1\n");
   3036 		}
   3037 
   3038 		valid = 0;
   3039 	}
   3040 
   3041 	if (val == 1 && !(hsotg->hw_params.i2c_enable))
   3042 		valid = 0;
   3043 
   3044 	if (!valid) {
   3045 		if (val >= 0)
   3046 			dev_err(hsotg->dev,
   3047 				"%d invalid for i2c_enable. Check HW configuration.\n",
   3048 				val);
   3049 		val = hsotg->hw_params.i2c_enable;
   3050 		dev_dbg(hsotg->dev, "Setting i2c_enable to %d\n", val);
   3051 	}
   3052 
   3053 	hsotg->core_params->i2c_enable = val;
   3054 }
   3055 
   3056 void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg, int val)
   3057 {
   3058 	int valid = 1;
   3059 
   3060 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
   3061 		if (val >= 0) {
   3062 			dev_err(hsotg->dev,
   3063 				"Wrong value for en_multiple_tx_fifo,\n");
   3064 			dev_err(hsotg->dev,
   3065 				"en_multiple_tx_fifo must be 0 or 1\n");
   3066 		}
   3067 		valid = 0;
   3068 	}
   3069 
   3070 	if (val == 1 && !hsotg->hw_params.en_multiple_tx_fifo)
   3071 		valid = 0;
   3072 
   3073 	if (!valid) {
   3074 		if (val >= 0)
   3075 			dev_err(hsotg->dev,
   3076 				"%d invalid for parameter en_multiple_tx_fifo. Check HW configuration.\n",
   3077 				val);
   3078 		val = hsotg->hw_params.en_multiple_tx_fifo;
   3079 		dev_dbg(hsotg->dev, "Setting en_multiple_tx_fifo to %d\n", val);
   3080 	}
   3081 
   3082 	hsotg->core_params->en_multiple_tx_fifo = val;
   3083 }
   3084 
   3085 void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val)
   3086 {
   3087 	int valid = 1;
   3088 
   3089 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
   3090 		if (val >= 0) {
   3091 			dev_err(hsotg->dev,
   3092 				"'%d' invalid for parameter reload_ctl\n", val);
   3093 			dev_err(hsotg->dev, "reload_ctl must be 0 or 1\n");
   3094 		}
   3095 		valid = 0;
   3096 	}
   3097 
   3098 	if (val == 1 && hsotg->hw_params.snpsid < DWC2_CORE_REV_2_92a)
   3099 		valid = 0;
   3100 
   3101 	if (!valid) {
   3102 		if (val >= 0)
   3103 			dev_err(hsotg->dev,
   3104 				"%d invalid for parameter reload_ctl. Check HW configuration.\n",
   3105 				val);
   3106 		val = hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_92a;
   3107 		dev_dbg(hsotg->dev, "Setting reload_ctl to %d\n", val);
   3108 	}
   3109 
   3110 	hsotg->core_params->reload_ctl = val;
   3111 }
   3112 
   3113 void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val)
   3114 {
   3115 	if (val != -1)
   3116 		hsotg->core_params->ahbcfg = val;
   3117 	else
   3118 		hsotg->core_params->ahbcfg = GAHBCFG_HBSTLEN_INCR4 <<
   3119 						GAHBCFG_HBSTLEN_SHIFT;
   3120 }
   3121 
   3122 void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val)
   3123 {
   3124 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
   3125 		if (val >= 0) {
   3126 			dev_err(hsotg->dev,
   3127 				"'%d' invalid for parameter otg_ver\n", val);
   3128 			dev_err(hsotg->dev,
   3129 				"otg_ver must be 0 (for OTG 1.3 support) or 1 (for OTG 2.0 support)\n");
   3130 		}
   3131 		val = 0;
   3132 		dev_dbg(hsotg->dev, "Setting otg_ver to %d\n", val);
   3133 	}
   3134 
   3135 	hsotg->core_params->otg_ver = val;
   3136 }
   3137 
   3138 static void dwc2_set_param_uframe_sched(struct dwc2_hsotg *hsotg, int val)
   3139 {
   3140 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
   3141 		if (val >= 0) {
   3142 			dev_err(hsotg->dev,
   3143 				"'%d' invalid for parameter uframe_sched\n",
   3144 				val);
   3145 			dev_err(hsotg->dev, "uframe_sched must be 0 or 1\n");
   3146 		}
   3147 		val = 1;
   3148 		dev_dbg(hsotg->dev, "Setting uframe_sched to %d\n", val);
   3149 	}
   3150 
   3151 	hsotg->core_params->uframe_sched = val;
   3152 }
   3153 
   3154 static void dwc2_set_param_external_id_pin_ctl(struct dwc2_hsotg *hsotg,
   3155 		int val)
   3156 {
   3157 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
   3158 		if (val >= 0) {
   3159 			dev_err(hsotg->dev,
   3160 				"'%d' invalid for parameter external_id_pin_ctl\n",
   3161 				val);
   3162 			dev_err(hsotg->dev, "external_id_pin_ctl must be 0 or 1\n");
   3163 		}
   3164 		val = 0;
   3165 		dev_dbg(hsotg->dev, "Setting external_id_pin_ctl to %d\n", val);
   3166 	}
   3167 
   3168 	hsotg->core_params->external_id_pin_ctl = val;
   3169 }
   3170 
   3171 static void dwc2_set_param_hibernation(struct dwc2_hsotg *hsotg,
   3172 		int val)
   3173 {
   3174 	if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
   3175 		if (val >= 0) {
   3176 			dev_err(hsotg->dev,
   3177 				"'%d' invalid for parameter hibernation\n",
   3178 				val);
   3179 			dev_err(hsotg->dev, "hibernation must be 0 or 1\n");
   3180 		}
   3181 		val = 0;
   3182 		dev_dbg(hsotg->dev, "Setting hibernation to %d\n", val);
   3183 	}
   3184 
   3185 	hsotg->core_params->hibernation = val;
   3186 }
   3187 
   3188 /*
   3189  * This function is called during module intialization to pass module parameters
   3190  * for the DWC_otg core.
   3191  */
   3192 void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
   3193 			 const struct dwc2_core_params *params)
   3194 {
   3195 	dev_dbg(hsotg->dev, "%s()\n", __func__);
   3196 
   3197 	dwc2_set_param_otg_cap(hsotg, params->otg_cap);
   3198 	dwc2_set_param_dma_enable(hsotg, params->dma_enable);
   3199 	dwc2_set_param_dma_desc_enable(hsotg, params->dma_desc_enable);
   3200 	dwc2_set_param_dma_desc_fs_enable(hsotg, params->dma_desc_fs_enable);
   3201 	dwc2_set_param_host_support_fs_ls_low_power(hsotg,
   3202 			params->host_support_fs_ls_low_power);
   3203 	dwc2_set_param_enable_dynamic_fifo(hsotg,
   3204 			params->enable_dynamic_fifo);
   3205 	dwc2_set_param_host_rx_fifo_size(hsotg,
   3206 			params->host_rx_fifo_size);
   3207 	dwc2_set_param_host_nperio_tx_fifo_size(hsotg,
   3208 			params->host_nperio_tx_fifo_size);
   3209 	dwc2_set_param_host_perio_tx_fifo_size(hsotg,
   3210 			params->host_perio_tx_fifo_size);
   3211 	dwc2_set_param_max_transfer_size(hsotg,
   3212 			params->max_transfer_size);
   3213 	dwc2_set_param_max_packet_count(hsotg,
   3214 			params->max_packet_count);
   3215 	dwc2_set_param_host_channels(hsotg, params->host_channels);
   3216 	dwc2_set_param_phy_type(hsotg, params->phy_type);
   3217 	dwc2_set_param_speed(hsotg, params->speed);
   3218 	dwc2_set_param_host_ls_low_power_phy_clk(hsotg,
   3219 			params->host_ls_low_power_phy_clk);
   3220 	dwc2_set_param_phy_ulpi_ddr(hsotg, params->phy_ulpi_ddr);
   3221 	dwc2_set_param_phy_ulpi_ext_vbus(hsotg,
   3222 			params->phy_ulpi_ext_vbus);
   3223 	dwc2_set_param_phy_utmi_width(hsotg, params->phy_utmi_width);
   3224 	dwc2_set_param_ulpi_fs_ls(hsotg, params->ulpi_fs_ls);
   3225 	dwc2_set_param_ts_dline(hsotg, params->ts_dline);
   3226 	dwc2_set_param_i2c_enable(hsotg, params->i2c_enable);
   3227 	dwc2_set_param_en_multiple_tx_fifo(hsotg,
   3228 			params->en_multiple_tx_fifo);
   3229 	dwc2_set_param_reload_ctl(hsotg, params->reload_ctl);
   3230 	dwc2_set_param_ahbcfg(hsotg, params->ahbcfg);
   3231 	dwc2_set_param_otg_ver(hsotg, params->otg_ver);
   3232 	dwc2_set_param_uframe_sched(hsotg, params->uframe_sched);
   3233 	dwc2_set_param_external_id_pin_ctl(hsotg, params->external_id_pin_ctl);
   3234 	dwc2_set_param_hibernation(hsotg, params->hibernation);
   3235 }
   3236 
   3237 /*
   3238  * Forces either host or device mode if the controller is not
   3239  * currently in that mode.
   3240  *
   3241  * Returns true if the mode was forced.
   3242  */
   3243 static bool dwc2_force_mode_if_needed(struct dwc2_hsotg *hsotg, bool host)
   3244 {
   3245 	if (host && dwc2_is_host_mode(hsotg))
   3246 		return false;
   3247 	else if (!host && dwc2_is_device_mode(hsotg))
   3248 		return false;
   3249 
   3250 	return dwc2_force_mode(hsotg, host);
   3251 }
   3252 
   3253 /*
   3254  * Gets host hardware parameters. Forces host mode if not currently in
   3255  * host mode. Should be called immediately after a core soft reset in
   3256  * order to get the reset values.
   3257  */
   3258 static void dwc2_get_host_hwparams(struct dwc2_hsotg *hsotg)
   3259 {
   3260 	struct dwc2_hw_params *hw = &hsotg->hw_params;
   3261 	u32 gnptxfsiz;
   3262 	u32 hptxfsiz;
   3263 	bool forced;
   3264 
   3265 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
   3266 		return;
   3267 
   3268 	forced = dwc2_force_mode_if_needed(hsotg, true);
   3269 
   3270 	gnptxfsiz = DWC2_READ_4(hsotg, GNPTXFSIZ);
   3271 	hptxfsiz = DWC2_READ_4(hsotg, HPTXFSIZ);
   3272 	dev_dbg(hsotg->dev, "gnptxfsiz=%08x\n", gnptxfsiz);
   3273 	dev_dbg(hsotg->dev, "hptxfsiz=%08x\n", hptxfsiz);
   3274 
   3275 	if (forced)
   3276 		dwc2_clear_force_mode(hsotg);
   3277 
   3278 	hw->host_nperio_tx_fifo_size = (gnptxfsiz & FIFOSIZE_DEPTH_MASK) >>
   3279 				       FIFOSIZE_DEPTH_SHIFT;
   3280 	hw->host_perio_tx_fifo_size = (hptxfsiz & FIFOSIZE_DEPTH_MASK) >>
   3281 				      FIFOSIZE_DEPTH_SHIFT;
   3282 }
   3283 
   3284 /*
   3285  * Gets device hardware parameters. Forces device mode if not
   3286  * currently in device mode. Should be called immediately after a core
   3287  * soft reset in order to get the reset values.
   3288  */
   3289 static void dwc2_get_dev_hwparams(struct dwc2_hsotg *hsotg)
   3290 {
   3291 	struct dwc2_hw_params *hw = &hsotg->hw_params;
   3292 	bool forced;
   3293 	u32 gnptxfsiz;
   3294 
   3295 	if (hsotg->dr_mode == USB_DR_MODE_HOST)
   3296 		return;
   3297 
   3298 	forced = dwc2_force_mode_if_needed(hsotg, false);
   3299 
   3300 	gnptxfsiz = DWC2_READ_4(hsotg, GNPTXFSIZ);
   3301 	dev_dbg(hsotg->dev, "gnptxfsiz=%08x\n", gnptxfsiz);
   3302 
   3303 	if (forced)
   3304 		dwc2_clear_force_mode(hsotg);
   3305 
   3306 	hw->dev_nperio_tx_fifo_size = (gnptxfsiz & FIFOSIZE_DEPTH_MASK) >>
   3307 				       FIFOSIZE_DEPTH_SHIFT;
   3308 }
   3309 
   3310 /**
   3311  * During device initialization, read various hardware configuration
   3312  * registers and interpret the contents.
   3313  */
   3314 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg)
   3315 {
   3316 	struct dwc2_hw_params *hw = &hsotg->hw_params;
   3317 	unsigned width;
   3318 	u32 hwcfg1, hwcfg2, hwcfg3, hwcfg4;
   3319 	u32 grxfsiz;
   3320 
   3321 	/*
   3322 	 * Attempt to ensure this device is really a DWC_otg Controller.
   3323 	 * Read and verify the GSNPSID register contents. The value should be
   3324 	 * 0x45f42xxx or 0x45f43xxx, which corresponds to either "OT2" or "OT3",
   3325 	 * as in "OTG version 2.xx" or "OTG version 3.xx".
   3326 	 */
   3327 	hw->snpsid = DWC2_READ_4(hsotg, GSNPSID);
   3328 	if ((hw->snpsid & 0xfffff000) != 0x4f542000 &&
   3329 	    (hw->snpsid & 0xfffff000) != 0x4f543000) {
   3330 		dev_err(hsotg->dev, "Bad value for GSNPSID: 0x%08x\n",
   3331 			hw->snpsid);
   3332 		return -ENODEV;
   3333 	}
   3334 
   3335 	dev_dbg(hsotg->dev, "Core Release: %1x.%1x%1x%1x (snpsid=%x)\n",
   3336 		hw->snpsid >> 12 & 0xf, hw->snpsid >> 8 & 0xf,
   3337 		hw->snpsid >> 4 & 0xf, hw->snpsid & 0xf, hw->snpsid);
   3338 
   3339 	hwcfg1 = DWC2_READ_4(hsotg, GHWCFG1);
   3340 	hwcfg2 = DWC2_READ_4(hsotg, GHWCFG2);
   3341 	hwcfg3 = DWC2_READ_4(hsotg, GHWCFG3);
   3342 	hwcfg4 = DWC2_READ_4(hsotg, GHWCFG4);
   3343 	grxfsiz = DWC2_READ_4(hsotg, GRXFSIZ);
   3344 
   3345 	dev_dbg(hsotg->dev, "hwcfg1=%08x\n", hwcfg1);
   3346 	dev_dbg(hsotg->dev, "hwcfg2=%08x\n", hwcfg2);
   3347 	dev_dbg(hsotg->dev, "hwcfg3=%08x\n", hwcfg3);
   3348 	dev_dbg(hsotg->dev, "hwcfg4=%08x\n", hwcfg4);
   3349 	dev_dbg(hsotg->dev, "grxfsiz=%08x\n", grxfsiz);
   3350 
   3351 	/*
   3352 	 * Host specific hardware parameters. Reading these parameters
   3353 	 * requires the controller to be in host mode. The mode will
   3354 	 * be forced, if necessary, to read these values.
   3355 	 */
   3356 	dwc2_get_host_hwparams(hsotg);
   3357 	dwc2_get_dev_hwparams(hsotg);
   3358 
   3359 	/* hwcfg1 */
   3360 	hw->dev_ep_dirs = hwcfg1;
   3361 
   3362 	/* hwcfg2 */
   3363 	hw->op_mode = (hwcfg2 & GHWCFG2_OP_MODE_MASK) >>
   3364 		      GHWCFG2_OP_MODE_SHIFT;
   3365 	hw->arch = (hwcfg2 & GHWCFG2_ARCHITECTURE_MASK) >>
   3366 		   GHWCFG2_ARCHITECTURE_SHIFT;
   3367 	hw->enable_dynamic_fifo = !!(hwcfg2 & GHWCFG2_DYNAMIC_FIFO);
   3368 	hw->host_channels = 1 + ((hwcfg2 & GHWCFG2_NUM_HOST_CHAN_MASK) >>
   3369 				GHWCFG2_NUM_HOST_CHAN_SHIFT);
   3370 	hw->hs_phy_type = (hwcfg2 & GHWCFG2_HS_PHY_TYPE_MASK) >>
   3371 			  GHWCFG2_HS_PHY_TYPE_SHIFT;
   3372 	hw->fs_phy_type = (hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK) >>
   3373 			  GHWCFG2_FS_PHY_TYPE_SHIFT;
   3374 	hw->num_dev_ep = (hwcfg2 & GHWCFG2_NUM_DEV_EP_MASK) >>
   3375 			 GHWCFG2_NUM_DEV_EP_SHIFT;
   3376 	hw->nperio_tx_q_depth =
   3377 		(hwcfg2 & GHWCFG2_NONPERIO_TX_Q_DEPTH_MASK) >>
   3378 		GHWCFG2_NONPERIO_TX_Q_DEPTH_SHIFT << 1;
   3379 	hw->host_perio_tx_q_depth =
   3380 		(hwcfg2 & GHWCFG2_HOST_PERIO_TX_Q_DEPTH_MASK) >>
   3381 		GHWCFG2_HOST_PERIO_TX_Q_DEPTH_SHIFT << 1;
   3382 	hw->dev_token_q_depth =
   3383 		(hwcfg2 & GHWCFG2_DEV_TOKEN_Q_DEPTH_MASK) >>
   3384 		GHWCFG2_DEV_TOKEN_Q_DEPTH_SHIFT;
   3385 
   3386 	/* hwcfg3 */
   3387 	width = (hwcfg3 & GHWCFG3_XFER_SIZE_CNTR_WIDTH_MASK) >>
   3388 		GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT;
   3389 	hw->max_transfer_size = (1 << (width + 11)) - 1;
   3390 	/*
   3391 	 * Clip max_transfer_size to 65535. dwc2_hc_setup_align_buf() allocates
   3392 	 * coherent buffers with this size, and if it's too large we can
   3393 	 * exhaust the coherent DMA pool.
   3394 	 */
   3395 	if (hw->max_transfer_size > 65535)
   3396 		hw->max_transfer_size = 65535;
   3397 	width = (hwcfg3 & GHWCFG3_PACKET_SIZE_CNTR_WIDTH_MASK) >>
   3398 		GHWCFG3_PACKET_SIZE_CNTR_WIDTH_SHIFT;
   3399 	hw->max_packet_count = (1 << (width + 4)) - 1;
   3400 	hw->i2c_enable = !!(hwcfg3 & GHWCFG3_I2C);
   3401 	hw->total_fifo_size = (hwcfg3 & GHWCFG3_DFIFO_DEPTH_MASK) >>
   3402 			      GHWCFG3_DFIFO_DEPTH_SHIFT;
   3403 
   3404 	/* hwcfg4 */
   3405 	hw->en_multiple_tx_fifo = !!(hwcfg4 & GHWCFG4_DED_FIFO_EN);
   3406 	hw->num_dev_perio_in_ep = (hwcfg4 & GHWCFG4_NUM_DEV_PERIO_IN_EP_MASK) >>
   3407 				  GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT;
   3408 	hw->dma_desc_enable = !!(hwcfg4 & GHWCFG4_DESC_DMA);
   3409 	hw->power_optimized = !!(hwcfg4 & GHWCFG4_POWER_OPTIMIZ);
   3410 	hw->utmi_phy_data_width = (hwcfg4 & GHWCFG4_UTMI_PHY_DATA_WIDTH_MASK) >>
   3411 				  GHWCFG4_UTMI_PHY_DATA_WIDTH_SHIFT;
   3412 
   3413 	/* fifo sizes */
   3414 	hw->host_rx_fifo_size = (grxfsiz & GRXFSIZ_DEPTH_MASK) >>
   3415 				GRXFSIZ_DEPTH_SHIFT;
   3416 
   3417 	dev_dbg(hsotg->dev, "Detected values from hardware:\n");
   3418 	dev_dbg(hsotg->dev, "  op_mode=%d\n",
   3419 		hw->op_mode);
   3420 	dev_dbg(hsotg->dev, "  arch=%d\n",
   3421 		hw->arch);
   3422 	dev_dbg(hsotg->dev, "  dma_desc_enable=%d\n",
   3423 		hw->dma_desc_enable);
   3424 	dev_dbg(hsotg->dev, "  power_optimized=%d\n",
   3425 		hw->power_optimized);
   3426 	dev_dbg(hsotg->dev, "  i2c_enable=%d\n",
   3427 		hw->i2c_enable);
   3428 	dev_dbg(hsotg->dev, "  hs_phy_type=%d\n",
   3429 		hw->hs_phy_type);
   3430 	dev_dbg(hsotg->dev, "  fs_phy_type=%d\n",
   3431 		hw->fs_phy_type);
   3432 	dev_dbg(hsotg->dev, "  utmi_phy_data_width=%d\n",
   3433 		hw->utmi_phy_data_width);
   3434 	dev_dbg(hsotg->dev, "  num_dev_ep=%d\n",
   3435 		hw->num_dev_ep);
   3436 	dev_dbg(hsotg->dev, "  num_dev_perio_in_ep=%d\n",
   3437 		hw->num_dev_perio_in_ep);
   3438 	dev_dbg(hsotg->dev, "  host_channels=%d\n",
   3439 		hw->host_channels);
   3440 	dev_dbg(hsotg->dev, "  max_transfer_size=%d\n",
   3441 		hw->max_transfer_size);
   3442 	dev_dbg(hsotg->dev, "  max_packet_count=%d\n",
   3443 		hw->max_packet_count);
   3444 	dev_dbg(hsotg->dev, "  nperio_tx_q_depth=0x%0x\n",
   3445 		hw->nperio_tx_q_depth);
   3446 	dev_dbg(hsotg->dev, "  host_perio_tx_q_depth=0x%0x\n",
   3447 		hw->host_perio_tx_q_depth);
   3448 	dev_dbg(hsotg->dev, "  dev_token_q_depth=0x%0x\n",
   3449 		hw->dev_token_q_depth);
   3450 	dev_dbg(hsotg->dev, "  enable_dynamic_fifo=%d\n",
   3451 		hw->enable_dynamic_fifo);
   3452 	dev_dbg(hsotg->dev, "  en_multiple_tx_fifo=%d\n",
   3453 		hw->en_multiple_tx_fifo);
   3454 	dev_dbg(hsotg->dev, "  total_fifo_size=%d\n",
   3455 		hw->total_fifo_size);
   3456 	dev_dbg(hsotg->dev, "  host_rx_fifo_size=%d\n",
   3457 		hw->host_rx_fifo_size);
   3458 	dev_dbg(hsotg->dev, "  host_nperio_tx_fifo_size=%d\n",
   3459 		hw->host_nperio_tx_fifo_size);
   3460 	dev_dbg(hsotg->dev, "  host_perio_tx_fifo_size=%d\n",
   3461 		hw->host_perio_tx_fifo_size);
   3462 	dev_dbg(hsotg->dev, "\n");
   3463 
   3464 	return 0;
   3465 }
   3466 
   3467 /*
   3468  * Sets all parameters to the given value.
   3469  *
   3470  * Assumes that the dwc2_core_params struct contains only integers.
   3471  */
   3472 void dwc2_set_all_params(struct dwc2_core_params *params, int value)
   3473 {
   3474 	int *p = (int *)params;
   3475 	size_t size = sizeof(*params) / sizeof(*p);
   3476 	int i;
   3477 
   3478 	for (i = 0; i < size; i++)
   3479 		p[i] = value;
   3480 }
   3481 
   3482 
   3483 u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg)
   3484 {
   3485 	return hsotg->core_params->otg_ver == 1 ? 0x0200 : 0x0103;
   3486 }
   3487 
   3488 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg)
   3489 {
   3490 	if (DWC2_READ_4(hsotg, GSNPSID) == 0xffffffff)
   3491 		return false;
   3492 	else
   3493 		return true;
   3494 }
   3495 
   3496 /**
   3497  * dwc2_enable_global_interrupts() - Enables the controller's Global
   3498  * Interrupt in the AHB Config register
   3499  *
   3500  * @hsotg: Programming view of DWC_otg controller
   3501  */
   3502 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hsotg)
   3503 {
   3504 	u32 ahbcfg = DWC2_READ_4(hsotg, GAHBCFG);
   3505 
   3506 	ahbcfg |= GAHBCFG_GLBL_INTR_EN;
   3507 	DWC2_WRITE_4(hsotg, GAHBCFG, ahbcfg);
   3508 }
   3509 
   3510 /**
   3511  * dwc2_disable_global_interrupts() - Disables the controller's Global
   3512  * Interrupt in the AHB Config register
   3513  *
   3514  * @hsotg: Programming view of DWC_otg controller
   3515  */
   3516 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hsotg)
   3517 {
   3518 	u32 ahbcfg = DWC2_READ_4(hsotg, GAHBCFG);
   3519 
   3520 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
   3521 	DWC2_WRITE_4(hsotg, GAHBCFG, ahbcfg);
   3522 }
   3523 
   3524 /* Returns the controller's GHWCFG2.OTG_MODE. */
   3525 unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg)
   3526 {
   3527 	u32 ghwcfg2 = DWC2_READ_4(hsotg, GHWCFG2);
   3528 
   3529 	return (ghwcfg2 & GHWCFG2_OP_MODE_MASK) >>
   3530 		GHWCFG2_OP_MODE_SHIFT;
   3531 }
   3532 
   3533 /* Returns true if the controller is capable of DRD. */
   3534 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg)
   3535 {
   3536 	unsigned op_mode = dwc2_op_mode(hsotg);
   3537 
   3538 	return (op_mode == GHWCFG2_OP_MODE_HNP_SRP_CAPABLE) ||
   3539 		(op_mode == GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE) ||
   3540 		(op_mode == GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE);
   3541 }
   3542 
   3543 /* Returns true if the controller is host-only. */
   3544 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg)
   3545 {
   3546 	unsigned op_mode = dwc2_op_mode(hsotg);
   3547 
   3548 	return (op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_HOST) ||
   3549 		(op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST);
   3550 }
   3551 
   3552 /* Returns true if the controller is device-only. */
   3553 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg)
   3554 {
   3555 	unsigned op_mode = dwc2_op_mode(hsotg);
   3556 
   3557 	return (op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
   3558 		(op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE);
   3559 }
   3560