Home | History | Annotate | Line # | Download | only in ic
      1 /*	$NetBSD: elink3.c,v 1.154 2024/07/05 04:31:51 rin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
     35  * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
     36  * All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *      This product includes software developed by Herb Peyerl.
     49  * 4. The name of Herb Peyerl may not be used to endorse or promote products
     50  *    derived from this software without specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     55  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     56  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     57  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     61  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.154 2024/07/05 04:31:51 rin Exp $");
     66 
     67 #include "opt_inet.h"
     68 
     69 #include <sys/param.h>
     70 #include <sys/systm.h>
     71 #include <sys/callout.h>
     72 #include <sys/kernel.h>
     73 #include <sys/mbuf.h>
     74 #include <sys/socket.h>
     75 #include <sys/ioctl.h>
     76 #include <sys/errno.h>
     77 #include <sys/syslog.h>
     78 #include <sys/select.h>
     79 #include <sys/device.h>
     80 #include <sys/rndsource.h>
     81 
     82 #include <net/if.h>
     83 #include <net/if_dl.h>
     84 #include <net/if_ether.h>
     85 #include <net/if_media.h>
     86 #include <net/bpf.h>
     87 
     88 #include <sys/cpu.h>
     89 #include <sys/bus.h>
     90 #include <sys/intr.h>
     91 
     92 #include <dev/mii/mii.h>
     93 #include <dev/mii/miivar.h>
     94 #include <dev/mii/mii_bitbang.h>
     95 
     96 #include <dev/ic/elink3var.h>
     97 #include <dev/ic/elink3reg.h>
     98 
     99 #ifdef DEBUG
    100 int epdebug = 0;
    101 #endif
    102 
    103 /*
    104  * XXX endian workaround for big-endian CPUs  with pcmcia:
    105  * if stream methods for bus_space_multi are not provided, define them
    106  * using non-stream bus_space_{read,write}_multi_.
    107  * Assumes host CPU is same endian-ness as bus.
    108  */
    109 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
    110 #define bus_space_read_multi_stream_2	bus_space_read_multi_2
    111 #define bus_space_read_multi_stream_4	bus_space_read_multi_4
    112 #define bus_space_write_multi_stream_2	bus_space_write_multi_2
    113 #define bus_space_write_multi_stream_4	bus_space_write_multi_4
    114 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
    115 
    116 /*
    117  * Structure to map media-present bits in boards to ifmedia codes and
    118  * printable media names. Used for table-driven ifmedia initialization.
    119  */
    120 struct ep_media {
    121 	int	epm_mpbit;		/* media present bit */
    122 	const char *epm_name;		/* name of medium */
    123 	int	epm_ifmedia;		/* ifmedia word for medium */
    124 	int	epm_epmedia;		/* ELINKMEDIA_* constant */
    125 };
    126 
    127 /*
    128  * Media table for the Demon/Vortex/Boomerang chipsets.
    129  *
    130  * Note that MII on the Demon and Vortex (3c59x) indicates an external
    131  * MII connector (for connecting an external PHY) ... I think.  Treat
    132  * it as `manual' on these chips.
    133  *
    134  * Any Boomerang (3c90x) chips with MII really do have an internal
    135  * MII and real PHYs attached; no `native' media.
    136  */
    137 const struct ep_media ep_vortex_media[] = {
    138 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER | IFM_10_T,
    139 	  ELINKMEDIA_10BASE_T },
    140 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER | IFM_10_T | IFM_FDX,
    141 	  ELINKMEDIA_10BASE_T },
    142 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER | IFM_10_5,
    143 	  ELINKMEDIA_AUI },
    144 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER | IFM_10_2,
    145 	  ELINKMEDIA_10BASE_2 },
    146 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER | IFM_100_TX,
    147 	  ELINKMEDIA_100BASE_TX },
    148 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER | IFM_100_TX|IFM_FDX,
    149 	  ELINKMEDIA_100BASE_TX },
    150 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER | IFM_100_FX,
    151 	  ELINKMEDIA_100BASE_FX },
    152 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER | IFM_MANUAL,
    153 	  ELINKMEDIA_MII },
    154 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER | IFM_100_T4,
    155 	  ELINKMEDIA_100BASE_T4 },
    156 	{ 0,			NULL,		0,
    157 	  0 },
    158 };
    159 
    160 /*
    161  * Media table for the older 3Com Etherlink III chipset, used
    162  * in the 3c509, 3c579, and 3c589.
    163  */
    164 const struct ep_media ep_509_media[] = {
    165 	{ ELINK_W0_CC_UTP,	"10baseT",	IFM_ETHER | IFM_10_T,
    166 	  ELINKMEDIA_10BASE_T },
    167 	{ ELINK_W0_CC_AUI,	"10base5",	IFM_ETHER | IFM_10_5,
    168 	  ELINKMEDIA_AUI },
    169 	{ ELINK_W0_CC_BNC,	"10base2",	IFM_ETHER | IFM_10_2,
    170 	  ELINKMEDIA_10BASE_2 },
    171 	{ 0,			NULL,		0,
    172 	  0 },
    173 };
    174 
    175 void	ep_internalconfig(struct ep_softc *sc);
    176 void	ep_vortex_probemedia(struct ep_softc *sc);
    177 void	ep_509_probemedia(struct ep_softc *sc);
    178 
    179 static void eptxstat(struct ep_softc *);
    180 static int epstatus(struct ep_softc *);
    181 int	epinit(struct ifnet *);
    182 void	epstop(struct ifnet *, int);
    183 int	epioctl(struct ifnet *, u_long, void *);
    184 void	epstart(struct ifnet *);
    185 void	epwatchdog(struct ifnet *);
    186 void	epreset(struct ep_softc *);
    187 static bool epshutdown(device_t, int);
    188 void	epread(struct ep_softc *);
    189 struct mbuf *epget(struct ep_softc *, int);
    190 void	epmbuffill(void *);
    191 void	epmbufempty(struct ep_softc *);
    192 void	epsetfilter(struct ep_softc *);
    193 void	ep_roadrunner_mii_enable(struct ep_softc *);
    194 void	epsetmedia(struct ep_softc *);
    195 
    196 /* ifmedia callbacks */
    197 int	ep_media_change(struct ifnet *ifp);
    198 void	ep_media_status(struct ifnet *ifp, struct ifmediareq *req);
    199 
    200 /* MII callbacks */
    201 int	ep_mii_readreg(device_t, int, int, uint16_t *);
    202 int	ep_mii_writereg(device_t, int, int, uint16_t);
    203 void	ep_statchg(struct ifnet *);
    204 
    205 void	ep_tick(void *);
    206 
    207 static int epbusyeeprom(struct ep_softc *);
    208 u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
    209 static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg);
    210 static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
    211 static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
    212 static inline int ep_w1_reg(struct ep_softc *, int);
    213 
    214 /*
    215  * MII bit-bang glue.
    216  */
    217 u_int32_t ep_mii_bitbang_read(device_t);
    218 void ep_mii_bitbang_write(device_t, u_int32_t);
    219 
    220 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
    221 	ep_mii_bitbang_read,
    222 	ep_mii_bitbang_write,
    223 	{
    224 		PHYSMGMT_DATA,		/* MII_BIT_MDO */
    225 		PHYSMGMT_DATA,		/* MII_BIT_MDI */
    226 		PHYSMGMT_CLK,		/* MII_BIT_MDC */
    227 		PHYSMGMT_DIR,		/* MII_BIT_DIR_HOST_PHY */
    228 		0,			/* MII_BIT_DIR_PHY_HOST */
    229 	}
    230 };
    231 
    232 /*
    233  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
    234  * Window 1 registers offset!
    235  */
    236 static inline int
    237 ep_w1_reg(struct ep_softc *sc, int reg)
    238 {
    239 
    240 	switch (sc->ep_chipset) {
    241 	case ELINK_CHIPSET_CORKSCREW:
    242 		return (reg + 0x10);
    243 
    244 	case ELINK_CHIPSET_ROADRUNNER:
    245 		switch (reg) {
    246 		case ELINK_W1_FREE_TX:
    247 		case ELINK_W1_RUNNER_RDCTL:
    248 		case ELINK_W1_RUNNER_WRCTL:
    249 			return (reg);
    250 		}
    251 		return (reg + 0x10);
    252 	}
    253 
    254 	return (reg);
    255 }
    256 
    257 /*
    258  * Wait for any pending reset to complete.
    259  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
    260  * but older hardware doesn't implement it and we must delay.
    261  */
    262 static inline void
    263 ep_finish_reset(bus_space_tag_t iot, bus_space_handle_t ioh)
    264 {
    265 	int i;
    266 
    267 	for (i = 0; i < 10000; i++) {
    268 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
    269 		    COMMAND_IN_PROGRESS) == 0)
    270 			break;
    271 		DELAY(10);
    272 	}
    273 }
    274 
    275 /*
    276  * Issue a (reset) command, and be sure it has completed.
    277  * Used for global reset, TX_RESET, RX_RESET.
    278  */
    279 static inline void
    280 ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg)
    281 {
    282 	bus_space_tag_t iot = sc->sc_iot;
    283 	bus_space_handle_t ioh = sc->sc_ioh;
    284 
    285 	bus_space_write_2(iot, ioh, cmd, arg);
    286 	ep_finish_reset(iot, ioh);
    287 }
    288 
    289 
    290 static inline void
    291 ep_discard_rxtop(bus_space_tag_t iot, bus_space_handle_t ioh)
    292 {
    293 	int i;
    294 
    295 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
    296 
    297         /*
    298 	 * Spin for about 1 msec, to avoid forcing a DELAY() between
    299 	 * every received packet (adding latency and  limiting pkt-recv rate).
    300 	 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
    301 	 * is about right.
    302 	 */
    303 	for (i = 0; i < 8000; i++) {
    304 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
    305 		    COMMAND_IN_PROGRESS) == 0)
    306 		    return;
    307 	}
    308 
    309 	/*  Didn't complete in a hurry. Do DELAY()s. */
    310 	ep_finish_reset(iot, ioh);
    311 }
    312 
    313 /*
    314  * Back-end attach and configure.
    315  */
    316 int
    317 epconfig(struct ep_softc *sc, u_short chipset, u_int8_t *enaddr)
    318 {
    319 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    320 	bus_space_tag_t iot = sc->sc_iot;
    321 	bus_space_handle_t ioh = sc->sc_ioh;
    322 	struct mii_data *mii = &sc->sc_mii;
    323 	u_int16_t i;
    324 	u_int8_t myla[ETHER_ADDR_LEN];
    325 
    326 	callout_init(&sc->sc_mii_callout, 0);
    327 	callout_setfunc(&sc->sc_mii_callout, ep_tick, sc);
    328 
    329 	callout_init(&sc->sc_mbuf_callout, 0);
    330 	callout_setfunc(&sc->sc_mbuf_callout, epmbuffill, sc);
    331 
    332 	sc->ep_chipset = chipset;
    333 
    334 	/*
    335 	 * We could have been groveling around in other register
    336 	 * windows in the front-end; make sure we're in window 0
    337 	 * to read the EEPROM.
    338 	 */
    339 	GO_WINDOW(0);
    340 
    341 	if (enaddr == NULL) {
    342 		/*
    343 		 * Read the station address from the eeprom.
    344 		 */
    345 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
    346 			u_int16_t x = ep_read_eeprom(sc, i);
    347 			myla[(i << 1)] = x >> 8;
    348 			myla[(i << 1) + 1] = x;
    349 		}
    350 		enaddr = myla;
    351 	}
    352 
    353 	/*
    354 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
    355 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
    356 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
    357 	 * packet length.
    358 	 * Commands to these cards implicitly upshift a packet size
    359 	 * or threshold by 2 bits.
    360 	 * To detect  cards with large-packet support, we probe by setting
    361 	 * the transmit threshold register, then change windows and
    362 	 * read back the threshold register directly, and see if the
    363 	 * threshold value was shifted or not.
    364 	 */
    365 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    366 	    SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
    367 	GO_WINDOW(5);
    368 	i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
    369 	GO_WINDOW(1);
    370 	switch (i) {
    371 	case ELINK_LARGEWIN_PROBE:
    372 	case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
    373 		sc->ep_pktlenshift = 0;
    374 		break;
    375 
    376 	case (ELINK_LARGEWIN_PROBE << 2):
    377 		sc->ep_pktlenshift = 2;
    378 		break;
    379 
    380 	default:
    381 		aprint_error_dev(sc->sc_dev,
    382 		    "wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
    383 		    "Interface disabled\n",
    384 		    ELINK_LARGEWIN_PROBE, (int) i);
    385 		return (1);
    386 	}
    387 
    388 	/*
    389 	 * Ensure Tx-available interrupts are enabled for
    390 	 * start the interface.
    391 	 * XXX should be in epinit()?
    392 	 */
    393 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    394 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    395 
    396 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    397 	ifp->if_softc = sc;
    398 	ifp->if_start = epstart;
    399 	ifp->if_ioctl = epioctl;
    400 	ifp->if_watchdog = epwatchdog;
    401 	ifp->if_init = epinit;
    402 	ifp->if_stop = epstop;
    403 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    404 	IFQ_SET_READY(&ifp->if_snd);
    405 
    406 	if_attach(ifp);
    407 	ether_ifattach(ifp, enaddr);
    408 
    409 	/*
    410 	 * Finish configuration:
    411 	 * determine chipset if the front-end couldn't do so,
    412 	 * show board details, set media.
    413 	 */
    414 
    415 	/*
    416 	 * Print RAM size.  We also print the Ethernet address in here.
    417 	 * It's extracted from the ifp, so we have to make sure it's
    418 	 * been attached first.
    419 	 */
    420 	ep_internalconfig(sc);
    421 	GO_WINDOW(0);
    422 
    423 	/*
    424 	 * Display some additional information, if pertinent.
    425 	 */
    426 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
    427 		aprint_normal_dev(sc->sc_dev, "RoadRunner FIFO buffer enabled\n");
    428 
    429 	/*
    430 	 * Initialize our media structures and MII info.  We'll
    431 	 * probe the MII if we discover that we have one.
    432 	 */
    433 	mii->mii_ifp = ifp;
    434 	mii->mii_readreg = ep_mii_readreg;
    435 	mii->mii_writereg = ep_mii_writereg;
    436 	mii->mii_statchg = ep_statchg;
    437 	sc->sc_ethercom.ec_mii = mii;
    438 	ifmedia_init(&mii->mii_media, IFM_IMASK, ep_media_change,
    439 	    ep_media_status);
    440 
    441 	/*
    442 	 * All CORKSCREW chips have MII.
    443 	 */
    444 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
    445 		sc->ep_flags |= ELINK_FLAGS_MII;
    446 
    447 	/*
    448 	 * Now, determine which media we have.
    449 	 */
    450 	switch (sc->ep_chipset) {
    451 	case ELINK_CHIPSET_ROADRUNNER:
    452 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    453 			ep_roadrunner_mii_enable(sc);
    454 			GO_WINDOW(0);
    455 		}
    456 		/* FALLTHROUGH */
    457 
    458 	case ELINK_CHIPSET_CORKSCREW:
    459 	case ELINK_CHIPSET_BOOMERANG:
    460 		/*
    461 		 * If the device has MII, probe it.  We won't be using
    462 		 * any `native' media in this case, only PHYs.  If
    463 		 * we don't, just treat the Boomerang like the Vortex.
    464 		 */
    465 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    466 			mii_attach(sc->sc_dev, mii, 0xffffffff,
    467 			    MII_PHY_ANY, MII_OFFSET_ANY, 0);
    468 			if (LIST_FIRST(&mii->mii_phys) == NULL) {
    469 				ifmedia_add(&mii->mii_media,
    470 				    IFM_ETHER | IFM_NONE, 0, NULL);
    471 				ifmedia_set(&mii->mii_media,
    472 				    IFM_ETHER | IFM_NONE);
    473 			} else {
    474 				ifmedia_set(&mii->mii_media,
    475 				    IFM_ETHER | IFM_AUTO);
    476 			}
    477 			break;
    478 		}
    479 		/* FALLTHROUGH */
    480 
    481 	case ELINK_CHIPSET_VORTEX:
    482 		ep_vortex_probemedia(sc);
    483 		break;
    484 
    485 	default:
    486 		ep_509_probemedia(sc);
    487 		break;
    488 	}
    489 
    490 	GO_WINDOW(1);		/* Window 1 is operating window */
    491 
    492 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    493 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    494 
    495 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
    496 
    497 	/*  Establish callback to reset card when we reboot. */
    498 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, epshutdown))
    499 		pmf_class_network_register(sc->sc_dev, ifp);
    500 	else
    501 		aprint_error_dev(sc->sc_dev,
    502 		    "couldn't establish power handler\n");
    503 
    504 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    505 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    506 
    507 	/* The attach is successful. */
    508 	sc->sc_flags |= ELINK_FLAGS_ATTACHED;
    509 	return (0);
    510 }
    511 
    512 
    513 /*
    514  * Show interface-model-independent info from window 3
    515  * internal-configuration register.
    516  */
    517 void
    518 ep_internalconfig(struct ep_softc *sc)
    519 {
    520 	bus_space_tag_t iot = sc->sc_iot;
    521 	bus_space_handle_t ioh = sc->sc_ioh;
    522 
    523 	u_int config0;
    524 	u_int config1;
    525 
    526 	int  ram_size, ram_width, ram_split;
    527 	/*
    528 	 * NVRAM buffer Rx:Tx config names for busmastering cards
    529 	 * (Demon, Vortex, and later).
    530 	 */
    531 	const char *const onboard_ram_config[] = {
    532 		"5:3", "3:1", "1:1", "3:5" };
    533 
    534 	GO_WINDOW(3);
    535 	config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
    536 	config1 = (u_int)bus_space_read_2(iot, ioh,
    537 	    ELINK_W3_INTERNAL_CONFIG + 2);
    538 	GO_WINDOW(0);
    539 
    540 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
    541 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
    542 
    543 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
    544 
    545 	aprint_normal_dev(sc->sc_dev, "address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
    546 	       ether_sprintf(CLLADDR(sc->sc_ethercom.ec_if.if_sadl)),
    547 	       8 << ram_size,
    548 	       (ram_width) ? "word" : "byte",
    549 	       onboard_ram_config[ram_split]);
    550 }
    551 
    552 
    553 /*
    554  * Find supported media on 3c509-generation hardware that doesn't have
    555  * a "reset_options" register in window 3.
    556  * Use the config_cntrl register  in window 0 instead.
    557  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
    558  * that implement  CONFIG_CTRL.  We don't have a good way to set the
    559  * default active medium; punt to ifconfig  instead.
    560  */
    561 void
    562 ep_509_probemedia(struct ep_softc *sc)
    563 {
    564 	bus_space_tag_t iot = sc->sc_iot;
    565 	bus_space_handle_t ioh = sc->sc_ioh;
    566 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    567 	u_int16_t ep_w0_config, port;
    568 	const struct ep_media *epm;
    569 	const char *sep = "", *defmedianame = NULL;
    570 	int defmedia = 0;
    571 
    572 	GO_WINDOW(0);
    573 	ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
    574 
    575 	aprint_normal_dev(sc->sc_dev, "");
    576 
    577 	/* Sanity check that there are any media! */
    578 	if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
    579 		aprint_error("no media present!\n");
    580 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
    581 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
    582 		return;
    583 	}
    584 
    585 	/*
    586 	 * Get the default media from the EEPROM.
    587 	 */
    588 	port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
    589 
    590 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
    591 
    592 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
    593 		if (ep_w0_config & epm->epm_mpbit) {
    594 			/*
    595 			 * This simple test works because 509 chipsets
    596 			 * don't do full-duplex.
    597 			 */
    598 			if (epm->epm_epmedia == port || defmedia == 0) {
    599 				defmedia = epm->epm_ifmedia;
    600 				defmedianame = epm->epm_name;
    601 			}
    602 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    603 			    NULL);
    604 			PRINT(epm->epm_name);
    605 		}
    606 	}
    607 
    608 #undef PRINT
    609 
    610 #ifdef DIAGNOSTIC
    611 	if (defmedia == 0)
    612 		panic("ep_509_probemedia: impossible");
    613 #endif
    614 
    615 	aprint_normal(" (default %s)\n", defmedianame);
    616 	ifmedia_set(ifm, defmedia);
    617 }
    618 
    619 /*
    620  * Find media present on large-packet-capable elink3 devices.
    621  * Show onboard configuration of large-packet-capable elink3 devices
    622  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
    623  * Use media and card-version info in window 3 instead.
    624  */
    625 void
    626 ep_vortex_probemedia(struct ep_softc *sc)
    627 {
    628 	bus_space_tag_t iot = sc->sc_iot;
    629 	bus_space_handle_t ioh = sc->sc_ioh;
    630 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    631 	const struct ep_media *epm;
    632 	u_int config1;
    633 	int reset_options;
    634 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
    635 	int defmedia = 0;
    636 	const char *sep = "", *defmedianame = NULL;
    637 
    638 	GO_WINDOW(3);
    639 	config1 = (u_int)bus_space_read_2(iot, ioh,
    640 	    ELINK_W3_INTERNAL_CONFIG + 2);
    641 	reset_options = (int)bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
    642 	GO_WINDOW(0);
    643 
    644 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
    645 
    646 	aprint_normal_dev(sc->sc_dev, "");
    647 
    648 	/* Sanity check that there are any media! */
    649 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
    650 		aprint_error("no media present!\n");
    651 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
    652 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
    653 		return;
    654 	}
    655 
    656 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
    657 
    658 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
    659 		if (reset_options & epm->epm_mpbit) {
    660 			/*
    661 			 * Default media is a little more complicated
    662 			 * on the Vortex.  We support full-duplex which
    663 			 * uses the same reset options bit.
    664 			 *
    665 			 * XXX Check EEPROM for default to FDX?
    666 			 */
    667 			if (epm->epm_epmedia == default_media) {
    668 				if ((epm->epm_ifmedia & IFM_FDX) == 0) {
    669 					defmedia = epm->epm_ifmedia;
    670 					defmedianame = epm->epm_name;
    671 				}
    672 			} else if (defmedia == 0) {
    673 				defmedia = epm->epm_ifmedia;
    674 				defmedianame = epm->epm_name;
    675 			}
    676 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    677 			    NULL);
    678 			PRINT(epm->epm_name);
    679 		}
    680 	}
    681 
    682 #undef PRINT
    683 
    684 #ifdef DIAGNOSTIC
    685 	if (defmedia == 0)
    686 		panic("ep_vortex_probemedia: impossible");
    687 #endif
    688 
    689 	aprint_normal(" (default %s)\n", defmedianame);
    690 	ifmedia_set(ifm, defmedia);
    691 }
    692 
    693 /*
    694  * One second timer, used to tick the MII.
    695  */
    696 void
    697 ep_tick(void *arg)
    698 {
    699 	struct ep_softc *sc = arg;
    700 	int s;
    701 
    702 #ifdef DIAGNOSTIC
    703 	if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
    704 		panic("ep_tick");
    705 #endif
    706 
    707 	if (!device_is_active(sc->sc_dev))
    708 		return;
    709 
    710 	s = splnet();
    711 	mii_tick(&sc->sc_mii);
    712 	splx(s);
    713 
    714 	callout_schedule(&sc->sc_mii_callout, hz);
    715 }
    716 
    717 /*
    718  * Bring device up.
    719  *
    720  * The order in here seems important. Otherwise we may not receive
    721  * interrupts. ?!
    722  */
    723 int
    724 epinit(struct ifnet *ifp)
    725 {
    726 	struct ep_softc *sc = ifp->if_softc;
    727 	bus_space_tag_t iot = sc->sc_iot;
    728 	bus_space_handle_t ioh = sc->sc_ioh;
    729 	int i, error;
    730 	const u_int8_t *addr;
    731 
    732 	if (!sc->enabled && (error = epenable(sc)) != 0)
    733 		return (error);
    734 
    735 	/* Make sure any pending reset has completed before touching board */
    736 	ep_finish_reset(iot, ioh);
    737 
    738 	/*
    739 	 * Cancel any pending I/O.
    740 	 */
    741 	epstop(ifp, 0);
    742 
    743 	if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
    744 	    && sc->bustype != ELINK_BUS_MCA) {
    745 		GO_WINDOW(0);
    746 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
    747 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
    748 		    ENABLE_DRQ_IRQ);
    749 	}
    750 
    751 	if (sc->bustype == ELINK_BUS_PCMCIA) {
    752 		bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
    753 	}
    754 
    755 	GO_WINDOW(2);
    756 	/* Reload the ether_addr. */
    757 	addr = CLLADDR(ifp->if_sadl);
    758 	for (i = 0; i < 6; i += 2)
    759 		bus_space_write_2(iot, ioh, ELINK_W2_ADDR_0 + i,
    760 		    (addr[i] << 0) | (addr[i + 1] << 8));
    761 
    762 	/*
    763 	 * Reset the station-address receive filter.
    764 	 * A bug workaround for busmastering (Vortex, Demon) cards.
    765 	 */
    766 	for (i = 0; i < 6; i += 2)
    767 		bus_space_write_2(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
    768 
    769 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    770 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    771 
    772 	GO_WINDOW(1);		/* Window 1 is operating window */
    773 	for (i = 0; i < 31; i++)
    774 		(void)bus_space_read_2(iot, ioh,
    775 				       ep_w1_reg(sc, ELINK_W1_TX_STATUS));
    776 
    777 	/* Set threshold for Tx-space available interrupt. */
    778 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    779 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    780 
    781 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
    782 		/*
    783 		 * Enable options in the PCMCIA LAN COR register, via
    784 		 * RoadRunner Window 1.
    785 		 *
    786 		 * XXX MAGIC CONSTANTS!
    787 		 */
    788 		u_int16_t cor;
    789 
    790 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
    791 
    792 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
    793 		if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
    794 			cor |= 0x10;
    795 		if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
    796 			cor |= 0x20;
    797 		bus_space_write_2(iot, ioh, 0, cor);
    798 
    799 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
    800 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
    801 
    802 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    803 			ep_roadrunner_mii_enable(sc);
    804 			GO_WINDOW(1);
    805 		}
    806 	}
    807 
    808 	/* Enable interrupts. */
    809 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    810 	    SET_RD_0_MASK | WATCHED_INTERRUPTS);
    811 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    812 	    SET_INTR_MASK | WATCHED_INTERRUPTS);
    813 
    814 	/*
    815 	 * Attempt to get rid of any stray interrupts that occurred during
    816 	 * configuration.  On the i386 this isn't possible because one may
    817 	 * already be queued.  However, a single stray interrupt is
    818 	 * unimportant.
    819 	 */
    820 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
    821 
    822 	epsetfilter(sc);
    823 	epsetmedia(sc);
    824 
    825 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
    826 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
    827 
    828 	epmbuffill(sc);
    829 
    830 	/* Interface is now `running', with no output active. */
    831 	ifp->if_flags |= IFF_RUNNING;
    832 	ifp->if_flags &= ~IFF_OACTIVE;
    833 
    834 	if (sc->ep_flags & ELINK_FLAGS_MII) {
    835 		/* Start the one second clock. */
    836 		callout_schedule(&sc->sc_mii_callout, hz);
    837 	}
    838 
    839 	/* Attempt to start output, if any. */
    840 	epstart(ifp);
    841 
    842 	return (0);
    843 }
    844 
    845 
    846 /*
    847  * Set multicast receive filter.
    848  * elink3 hardware has no selective multicast filter in hardware.
    849  * Enable reception of all multicasts and filter in software.
    850  */
    851 void
    852 epsetfilter(struct ep_softc *sc)
    853 {
    854 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    855 
    856 	GO_WINDOW(1);		/* Window 1 is operating window */
    857 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
    858 	    SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
    859 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
    860 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
    861 }
    862 
    863 int
    864 ep_media_change(struct ifnet *ifp)
    865 {
    866 	struct ep_softc *sc = ifp->if_softc;
    867 
    868 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
    869 		epreset(sc);
    870 
    871 	return (0);
    872 }
    873 
    874 /*
    875  * Reset and enable the MII on the RoadRunner.
    876  */
    877 void
    878 ep_roadrunner_mii_enable(struct ep_softc *sc)
    879 {
    880 	bus_space_tag_t iot = sc->sc_iot;
    881 	bus_space_handle_t ioh = sc->sc_ioh;
    882 
    883 	GO_WINDOW(3);
    884 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    885 	    ELINK_PCI_100BASE_MII | ELINK_RUNNER_ENABLE_MII);
    886 	delay(1000);
    887 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    888 	    ELINK_PCI_100BASE_MII | ELINK_RUNNER_MII_RESET |
    889 	    ELINK_RUNNER_ENABLE_MII);
    890 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    891 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    892 	delay(1000);
    893 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    894 	    ELINK_PCI_100BASE_MII | ELINK_RUNNER_ENABLE_MII);
    895 }
    896 
    897 /*
    898  * Set the card to use the specified media.
    899  */
    900 void
    901 epsetmedia(struct ep_softc *sc)
    902 {
    903 	bus_space_tag_t iot = sc->sc_iot;
    904 	bus_space_handle_t ioh = sc->sc_ioh;
    905 
    906 	/* Turn everything off.  First turn off linkbeat and UTP. */
    907 	GO_WINDOW(4);
    908 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
    909 
    910 	/* Turn off coax */
    911 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
    912 	delay(1000);
    913 
    914 	/*
    915 	 * If the device has MII, select it, and then tell the
    916 	 * PHY which media to use.
    917 	 */
    918 	if (sc->ep_flags & ELINK_FLAGS_MII) {
    919 		int config0, config1;
    920 
    921 		GO_WINDOW(3);
    922 
    923 		if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
    924 			int resopt;
    925 
    926 			resopt = bus_space_read_2(iot, ioh,
    927 			    ELINK_W3_RESET_OPTIONS);
    928 			bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    929 			    resopt | ELINK_RUNNER_ENABLE_MII);
    930 		}
    931 
    932 		config0 = (u_int)bus_space_read_2(iot, ioh,
    933 		    ELINK_W3_INTERNAL_CONFIG);
    934 		config1 = (u_int)bus_space_read_2(iot, ioh,
    935 		    ELINK_W3_INTERNAL_CONFIG + 2);
    936 
    937 		config1 = config1 & ~CONFIG_MEDIAMASK;
    938 		config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
    939 
    940 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
    941 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
    942 		    config1);
    943 		GO_WINDOW(1);	/* back to operating window */
    944 
    945 		mii_mediachg(&sc->sc_mii);
    946 		return;
    947 	}
    948 
    949 	/*
    950 	 * Now turn on the selected media/transceiver.
    951 	 */
    952 	GO_WINDOW(4);
    953 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
    954 	case IFM_10_T:
    955 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    956 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
    957 		break;
    958 
    959 	case IFM_10_2:
    960 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
    961 		DELAY(1000);	/* 50ms not enmough? */
    962 		break;
    963 
    964 	case IFM_100_TX:
    965 	case IFM_100_FX:
    966 	case IFM_100_T4:		/* XXX check documentation */
    967 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    968 		    LINKBEAT_ENABLE);
    969 		DELAY(1000);	/* not strictly necessary? */
    970 		break;
    971 
    972 	case IFM_10_5:
    973 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    974 		    SQE_ENABLE);
    975 		DELAY(1000);	/* not strictly necessary? */
    976 		break;
    977 
    978 	case IFM_MANUAL:
    979 		/*
    980 		 * Nothing to do here; we are actually enabling the
    981 		 * external PHY on the MII port.
    982 		 */
    983 		break;
    984 
    985 	case IFM_NONE:
    986 		printf("%s: interface disabled\n", device_xname(sc->sc_dev));
    987 		return;
    988 
    989 	default:
    990 		panic("epsetmedia: impossible");
    991 	}
    992 
    993 	/*
    994 	 * Tell the chip which port to use.
    995 	 */
    996 	switch (sc->ep_chipset) {
    997 	case ELINK_CHIPSET_VORTEX:
    998 	case ELINK_CHIPSET_BOOMERANG:
    999 	    {
   1000 		int mctl, config0, config1;
   1001 
   1002 		GO_WINDOW(3);
   1003 		config0 = (u_int)bus_space_read_2(iot, ioh,
   1004 		    ELINK_W3_INTERNAL_CONFIG);
   1005 		config1 = (u_int)bus_space_read_2(iot, ioh,
   1006 		    ELINK_W3_INTERNAL_CONFIG + 2);
   1007 
   1008 		config1 = config1 & ~CONFIG_MEDIAMASK;
   1009 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
   1010 		    CONFIG_MEDIAMASK_SHIFT);
   1011 
   1012 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
   1013 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
   1014 		    config1);
   1015 
   1016 		mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
   1017 		if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
   1018 			mctl |= MAC_CONTROL_FDX;
   1019 		else
   1020 			mctl &= ~MAC_CONTROL_FDX;
   1021 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
   1022 		break;
   1023 	    }
   1024 	default:
   1025 	    {
   1026 		int w0_addr_cfg;
   1027 
   1028 		GO_WINDOW(0);
   1029 		w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
   1030 		w0_addr_cfg &= 0x3fff;
   1031 		bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
   1032 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
   1033 		DELAY(1000);
   1034 		break;
   1035 	    }
   1036 	}
   1037 
   1038 	GO_WINDOW(1);		/* Window 1 is operating window */
   1039 }
   1040 
   1041 /*
   1042  * Get currently-selected media from card.
   1043  * (if_media callback, may be called before interface is brought up).
   1044  */
   1045 void
   1046 ep_media_status(struct ifnet *ifp, struct ifmediareq *req)
   1047 {
   1048 	struct ep_softc *sc = ifp->if_softc;
   1049 	bus_space_tag_t iot = sc->sc_iot;
   1050 	bus_space_handle_t ioh = sc->sc_ioh;
   1051 
   1052 	if (sc->enabled == 0) {
   1053 		req->ifm_active = IFM_ETHER | IFM_NONE;
   1054 		req->ifm_status = 0;
   1055 		return;
   1056 	}
   1057 
   1058 	/*
   1059 	 * If we have MII, go ask the PHY what's going on.
   1060 	 */
   1061 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   1062 		mii_pollstat(&sc->sc_mii);
   1063 		req->ifm_active = sc->sc_mii.mii_media_active;
   1064 		req->ifm_status = sc->sc_mii.mii_media_status;
   1065 		return;
   1066 	}
   1067 
   1068 	/*
   1069 	 * Ok, at this point we claim that our active media is
   1070 	 * the currently selected media.  We'll update our status
   1071 	 * if our chipset allows us to detect link.
   1072 	 */
   1073 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1074 	req->ifm_status = 0;
   1075 
   1076 	switch (sc->ep_chipset) {
   1077 	case ELINK_CHIPSET_VORTEX:
   1078 	case ELINK_CHIPSET_BOOMERANG:
   1079 		GO_WINDOW(4);
   1080 		req->ifm_status = IFM_AVALID;
   1081 		if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
   1082 		    LINKBEAT_DETECT)
   1083 			req->ifm_status |= IFM_ACTIVE;
   1084 		GO_WINDOW(1);	/* back to operating window */
   1085 		break;
   1086 	}
   1087 }
   1088 
   1089 
   1090 
   1091 /*
   1092  * Start outputting on the interface.
   1093  * Always called as splnet().
   1094  */
   1095 void
   1096 epstart(struct ifnet *ifp)
   1097 {
   1098 	struct ep_softc *sc = ifp->if_softc;
   1099 	bus_space_tag_t iot = sc->sc_iot;
   1100 	bus_space_handle_t ioh = sc->sc_ioh;
   1101 	struct mbuf *m, *m0;
   1102 	int sh, len, pad;
   1103 	bus_size_t txreg;
   1104 
   1105 	/* Don't transmit if interface is busy or not running */
   1106 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1107 		return;
   1108 
   1109 startagain:
   1110 	/* Sneak a peek at the next packet */
   1111 	IFQ_POLL(&ifp->if_snd, m0);
   1112 	if (m0 == 0)
   1113 		return;
   1114 
   1115 	/* We need to use m->m_pkthdr.len, so require the header */
   1116 	if ((m0->m_flags & M_PKTHDR) == 0)
   1117 		panic("epstart: no header mbuf");
   1118 	len = m0->m_pkthdr.len;
   1119 
   1120 	pad = (4 - len) & 3;
   1121 
   1122 	/*
   1123 	 * The 3c509 automatically pads short packets to minimum ethernet
   1124 	 * length, but we drop packets that are too large. Perhaps we should
   1125 	 * truncate them instead?
   1126 	 */
   1127 	if (len + pad > ETHER_MAX_LEN) {
   1128 		/* packet is obviously too large: toss it */
   1129 		if_statinc(ifp, if_oerrors);
   1130 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1131 		m_freem(m0);
   1132 		goto readcheck;
   1133 	}
   1134 
   1135 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
   1136 	    len + pad + 4) {
   1137 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
   1138 		    SET_TX_AVAIL_THRESH |
   1139 		    ((len + pad + 4) >> sc->ep_pktlenshift));
   1140 		/* not enough room in FIFO */
   1141 		ifp->if_flags |= IFF_OACTIVE;
   1142 		return;
   1143 	} else {
   1144 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
   1145 		    SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
   1146 	}
   1147 
   1148 	IFQ_DEQUEUE(&ifp->if_snd, m0);
   1149 	if (m0 == 0)		/* not really needed */
   1150 		return;
   1151 
   1152 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
   1153 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
   1154 
   1155 	bpf_mtap(ifp, m0, BPF_D_OUT);
   1156 
   1157 	/*
   1158 	 * Do the output at a high interrupt priority level so that an
   1159 	 * interrupt from another device won't cause a FIFO underrun.
   1160 	 * We choose splsched() since that blocks essentially everything
   1161 	 * except for interrupts from serial devices (which typically
   1162 	 * lose data if their interrupt isn't serviced fast enough).
   1163 	 *
   1164 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
   1165 	 */
   1166 	sh = splsched();
   1167 
   1168 	txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
   1169 
   1170 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
   1171 		/*
   1172 		 * Prime the FIFO buffer counter (number of 16-bit
   1173 		 * words about to be written to the FIFO).
   1174 		 *
   1175 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1176 		 * COUNTER IS NON-ZERO!
   1177 		 */
   1178 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
   1179 		    (len + pad) >> 1);
   1180 	}
   1181 
   1182 	bus_space_write_2(iot, ioh, txreg, len);
   1183 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
   1184 	if (ELINK_IS_BUS_32(sc->bustype)) {
   1185 		for (m = m0; m;) {
   1186 			if (m->m_len > 3) {
   1187 				/* align our reads from core */
   1188 				if (mtod(m, u_long) & 3) {
   1189 					u_long count =
   1190 					    4 - (mtod(m, u_long) & 3);
   1191 					bus_space_write_multi_1(iot, ioh,
   1192 					    txreg, mtod(m, u_int8_t *), count);
   1193 					m->m_data =
   1194 					    (void *)(mtod(m, u_long) + count);
   1195 					m->m_len -= count;
   1196 				}
   1197 				bus_space_write_multi_stream_4(iot, ioh,
   1198 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
   1199 				m->m_data = (void *)(mtod(m, u_long) +
   1200 					(u_long)(m->m_len & ~3));
   1201 				m->m_len -= m->m_len & ~3;
   1202 			}
   1203 			if (m->m_len) {
   1204 				bus_space_write_multi_1(iot, ioh,
   1205 				    txreg, mtod(m, u_int8_t *), m->m_len);
   1206 			}
   1207 			m = m0 = m_free(m);
   1208 		}
   1209 	} else {
   1210 		for (m = m0; m;) {
   1211 			if (m->m_len > 1) {
   1212 				if (mtod(m, u_long) & 1) {
   1213 					bus_space_write_1(iot, ioh,
   1214 					    txreg, *(mtod(m, u_int8_t *)));
   1215 					m->m_data =
   1216 					    (void *)(mtod(m, u_long) + 1);
   1217 					m->m_len -= 1;
   1218 				}
   1219 				bus_space_write_multi_stream_2(iot, ioh,
   1220 				    txreg, mtod(m, u_int16_t *),
   1221 				    m->m_len >> 1);
   1222 			}
   1223 			if (m->m_len & 1) {
   1224 				bus_space_write_1(iot, ioh, txreg,
   1225 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
   1226 			}
   1227 			m = m0 = m_free(m);
   1228 		}
   1229 	}
   1230 	while (pad--)
   1231 		bus_space_write_1(iot, ioh, txreg, 0);
   1232 
   1233 	splx(sh);
   1234 
   1235 	if_statinc(ifp, if_opackets);
   1236 
   1237 readcheck:
   1238 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
   1239 	    ERR_INCOMPLETE) == 0) {
   1240 		/* We received a complete packet. */
   1241 		u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1242 
   1243 		if ((status & INTR_LATCH) == 0) {
   1244 			/*
   1245 			 * No interrupt, read the packet and continue
   1246 			 * Is  this supposed to happen? Is my motherboard
   1247 			 * completely busted?
   1248 			 */
   1249 			epread(sc);
   1250 		} else {
   1251 			/* Got an interrupt, return so that it gets serviced. */
   1252 			return;
   1253 		}
   1254 	} else {
   1255 		/* Check if we are stuck and reset [see XXX comment] */
   1256 		if (epstatus(sc)) {
   1257 			if (ifp->if_flags & IFF_DEBUG)
   1258 				printf("%s: adapter reset\n",
   1259 				    device_xname(sc->sc_dev));
   1260 			epreset(sc);
   1261 		}
   1262 	}
   1263 
   1264 	goto startagain;
   1265 }
   1266 
   1267 
   1268 /*
   1269  * XXX: The 3c509 card can get in a mode where both the fifo status bit
   1270  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
   1271  *	We detect this situation and we reset the adapter.
   1272  *	It happens at times when there is a lot of broadcast traffic
   1273  *	on the cable (once in a blue moon).
   1274  */
   1275 static int
   1276 epstatus(struct ep_softc *sc)
   1277 {
   1278 	bus_space_tag_t iot = sc->sc_iot;
   1279 	bus_space_handle_t ioh = sc->sc_ioh;
   1280 	u_int16_t fifost;
   1281 
   1282 	/*
   1283 	 * Check the FIFO status and act accordingly
   1284 	 */
   1285 	GO_WINDOW(4);
   1286 	fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
   1287 	GO_WINDOW(1);
   1288 
   1289 	if (fifost & FIFOS_RX_UNDERRUN) {
   1290 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1291 			printf("%s: RX underrun\n", device_xname(sc->sc_dev));
   1292 		epreset(sc);
   1293 		return 0;
   1294 	}
   1295 
   1296 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
   1297 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1298 			printf("%s: RX Status overrun\n", device_xname(sc->sc_dev));
   1299 		return 1;
   1300 	}
   1301 
   1302 	if (fifost & FIFOS_RX_OVERRUN) {
   1303 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1304 			printf("%s: RX overrun\n", device_xname(sc->sc_dev));
   1305 		return 1;
   1306 	}
   1307 
   1308 	if (fifost & FIFOS_TX_OVERRUN) {
   1309 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1310 			printf("%s: TX overrun\n", device_xname(sc->sc_dev));
   1311 		epreset(sc);
   1312 		return 0;
   1313 	}
   1314 
   1315 	return 0;
   1316 }
   1317 
   1318 
   1319 static void
   1320 eptxstat(struct ep_softc *sc)
   1321 {
   1322 	bus_space_tag_t iot = sc->sc_iot;
   1323 	bus_space_handle_t ioh = sc->sc_ioh;
   1324 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1325 	int i;
   1326 
   1327 	/*
   1328 	 * We need to read+write TX_STATUS until we get a 0 status
   1329 	 * in order to turn off the interrupt flag.
   1330 	 */
   1331 	while ((i = bus_space_read_2(iot, ioh,
   1332 	     ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
   1333 		bus_space_write_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
   1334 		    0x0);
   1335 
   1336 		if (i & TXS_JABBER) {
   1337 			if_statinc(ifp, if_oerrors);
   1338 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1339 				printf("%s: jabber (%x)\n",
   1340 				       device_xname(sc->sc_dev), i);
   1341 			epreset(sc);
   1342 		} else if (i & TXS_UNDERRUN) {
   1343 			if_statinc(ifp, if_oerrors);
   1344 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1345 				printf("%s: fifo underrun (%x) @%d\n",
   1346 				       device_xname(sc->sc_dev), i,
   1347 				       sc->tx_start_thresh);
   1348 			if (sc->tx_succ_ok < 100)
   1349 				    sc->tx_start_thresh = uimin(ETHER_MAX_LEN,
   1350 					    sc->tx_start_thresh + 20);
   1351 			sc->tx_succ_ok = 0;
   1352 			epreset(sc);
   1353 		} else if (i & TXS_MAX_COLLISION) {
   1354 			if_statinc(ifp, if_collisions);
   1355 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
   1356 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1357 		} else
   1358 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
   1359 	}
   1360 }
   1361 
   1362 int
   1363 epintr(void *arg)
   1364 {
   1365 	struct ep_softc *sc = arg;
   1366 	bus_space_tag_t iot = sc->sc_iot;
   1367 	bus_space_handle_t ioh = sc->sc_ioh;
   1368 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1369 	u_int16_t status;
   1370 	int ret = 0;
   1371 
   1372 	if (sc->enabled == 0 || !device_is_active(sc->sc_dev))
   1373 		return (0);
   1374 
   1375 
   1376 	for (;;) {
   1377 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1378 
   1379 		if ((status & WATCHED_INTERRUPTS) == 0) {
   1380 			if ((status & INTR_LATCH) == 0) {
   1381 #if 0
   1382 				printf("%s: intr latch cleared\n",
   1383 				       device_xname(sc->sc_dev));
   1384 #endif
   1385 				break;
   1386 			}
   1387 		}
   1388 
   1389 		ret = 1;
   1390 
   1391 		/*
   1392 		 * Acknowledge any interrupts.  It's important that we do this
   1393 		 * first, since there would otherwise be a race condition.
   1394 		 * Due to the i386 interrupt queueing, we may get spurious
   1395 		 * interrupts occasionally.
   1396 		 */
   1397 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
   1398 		    (status & (INTR_LATCH | ALL_INTERRUPTS)));
   1399 
   1400 #if 0
   1401 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1402 
   1403 		printf("%s: intr%s%s%s%s\n", device_xname(sc->sc_dev),
   1404 		       (status & RX_COMPLETE)?" RX_COMPLETE":"",
   1405 		       (status & TX_COMPLETE)?" TX_COMPLETE":"",
   1406 		       (status & TX_AVAIL)?" TX_AVAIL":"",
   1407 		       (status & CARD_FAILURE)?" CARD_FAILURE":"");
   1408 #endif
   1409 
   1410 		if (status & RX_COMPLETE) {
   1411 			epread(sc);
   1412 		}
   1413 		if (status & TX_AVAIL) {
   1414 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1415 			epstart(&sc->sc_ethercom.ec_if);
   1416 		}
   1417 		if (status & CARD_FAILURE) {
   1418 			printf("%s: adapter failure (%x)\n",
   1419 			    device_xname(sc->sc_dev), status);
   1420 #if 1
   1421 			epinit(ifp);
   1422 #else
   1423 			epreset(sc);
   1424 #endif
   1425 			return (1);
   1426 		}
   1427 		if (status & TX_COMPLETE) {
   1428 			eptxstat(sc);
   1429 			epstart(ifp);
   1430 		}
   1431 
   1432 		if (status)
   1433 			rnd_add_uint32(&sc->rnd_source, status);
   1434 	}
   1435 
   1436 	/* no more interrupts */
   1437 	return (ret);
   1438 }
   1439 
   1440 void
   1441 epread(struct ep_softc *sc)
   1442 {
   1443 	bus_space_tag_t iot = sc->sc_iot;
   1444 	bus_space_handle_t ioh = sc->sc_ioh;
   1445 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1446 	struct mbuf *m;
   1447 	int len;
   1448 
   1449 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
   1450 
   1451 again:
   1452 	if (ifp->if_flags & IFF_DEBUG) {
   1453 		int err = len & ERR_MASK;
   1454 		const char *s = NULL;
   1455 
   1456 		if (len & ERR_INCOMPLETE)
   1457 			s = "incomplete packet";
   1458 		else if (err == ERR_OVERRUN)
   1459 			s = "packet overrun";
   1460 		else if (err == ERR_RUNT)
   1461 			s = "runt packet";
   1462 		else if (err == ERR_ALIGNMENT)
   1463 			s = "bad alignment";
   1464 		else if (err == ERR_CRC)
   1465 			s = "bad crc";
   1466 		else if (err == ERR_OVERSIZE)
   1467 			s = "oversized packet";
   1468 		else if (err == ERR_DRIBBLE)
   1469 			s = "dribble bits";
   1470 
   1471 		if (s)
   1472 			printf("%s: %s\n", device_xname(sc->sc_dev), s);
   1473 	}
   1474 
   1475 	if (len & ERR_INCOMPLETE)
   1476 		return;
   1477 
   1478 	if (len & ERR_RX) {
   1479 		if_statinc(ifp, if_ierrors);
   1480 		goto abort;
   1481 	}
   1482 
   1483 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
   1484 
   1485 	/* Pull packet off interface. */
   1486 	m = epget(sc, len);
   1487 	if (m == 0) {
   1488 		if_statinc(ifp, if_ierrors);
   1489 		goto abort;
   1490 	}
   1491 
   1492 	if_percpuq_enqueue(ifp->if_percpuq, m);
   1493 
   1494 	/*
   1495 	 * In periods of high traffic we can actually receive enough
   1496 	 * packets so that the fifo overrun bit will be set at this point,
   1497 	 * even though we just read a packet. In this case we
   1498 	 * are not going to receive any more interrupts. We check for
   1499 	 * this condition and read again until the fifo is not full.
   1500 	 * We could simplify this test by not using epstatus(), but
   1501 	 * rechecking the RX_STATUS register directly. This test could
   1502 	 * result in unnecessary looping in cases where there is a new
   1503 	 * packet but the fifo is not full, but it will not fix the
   1504 	 * stuck behavior.
   1505 	 *
   1506 	 * Even with this improvement, we still get packet overrun errors
   1507 	 * which are hurting performance. Maybe when I get some more time
   1508 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
   1509 	 */
   1510 	if (epstatus(sc)) {
   1511 		len = bus_space_read_2(iot, ioh,
   1512 		    ep_w1_reg(sc, ELINK_W1_RX_STATUS));
   1513 		/* Check if we are stuck and reset [see XXX comment] */
   1514 		if (len & ERR_INCOMPLETE) {
   1515 			if (ifp->if_flags & IFF_DEBUG)
   1516 				printf("%s: adapter reset\n",
   1517 				    device_xname(sc->sc_dev));
   1518 			epreset(sc);
   1519 			return;
   1520 		}
   1521 		goto again;
   1522 	}
   1523 
   1524 	return;
   1525 
   1526 abort:
   1527 	ep_discard_rxtop(iot, ioh);
   1528 
   1529 }
   1530 
   1531 struct mbuf *
   1532 epget(struct ep_softc *sc, int totlen)
   1533 {
   1534 	bus_space_tag_t iot = sc->sc_iot;
   1535 	bus_space_handle_t ioh = sc->sc_ioh;
   1536 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1537 	struct mbuf *m;
   1538 	bus_size_t rxreg;
   1539 	int len, remaining;
   1540 	int s;
   1541 	void *newdata;
   1542 	u_long offset;
   1543 
   1544 	m = sc->mb[sc->next_mb];
   1545 	sc->mb[sc->next_mb] = 0;
   1546 	if (m == 0) {
   1547 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1548 		if (m == 0)
   1549 			return 0;
   1550 	} else {
   1551 		/* If the queue is no longer full, refill. */
   1552 		if (sc->last_mb == sc->next_mb)
   1553 			callout_schedule(&sc->sc_mbuf_callout, 1);
   1554 
   1555 		/* Convert one of our saved mbuf's. */
   1556 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
   1557 		m->m_data = m->m_pktdat;
   1558 		m->m_flags = M_PKTHDR;
   1559 		memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
   1560 	}
   1561 	m_set_rcvif(m, ifp);
   1562 	m->m_pkthdr.len = totlen;
   1563 	len = MHLEN;
   1564 
   1565 	/*
   1566 	 * Allocate big enough space to hold whole packet, to avoid
   1567 	 * allocating new mbufs on splsched().
   1568 	 */
   1569 	if (totlen + ALIGNBYTES > len) {
   1570 		if (totlen + ALIGNBYTES > MCLBYTES) {
   1571 			len = ALIGN(totlen + ALIGNBYTES);
   1572 			MEXTMALLOC(m, len, M_DONTWAIT);
   1573 		} else {
   1574 			len = MCLBYTES;
   1575 			MCLGET(m, M_DONTWAIT);
   1576 		}
   1577 		if ((m->m_flags & M_EXT) == 0) {
   1578 			m_free(m);
   1579 			return 0;
   1580 		}
   1581 	}
   1582 
   1583 	/* align the struct ip header */
   1584 	newdata = (char *)ALIGN(m->m_data + sizeof(struct ether_header))
   1585 	    - sizeof(struct ether_header);
   1586 	m->m_data = newdata;
   1587 	m->m_len = totlen;
   1588 
   1589 	rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
   1590 	remaining = totlen;
   1591 	offset = mtod(m, u_long);
   1592 
   1593 	/*
   1594 	 * We read the packet at a high interrupt priority level so that
   1595 	 * an interrupt from another device won't cause the card's packet
   1596 	 * buffer to overflow.  We choose splsched() since that blocks
   1597 	 * essentially everything except for interrupts from serial
   1598 	 * devices (which typically lose data if their interrupt isn't
   1599 	 * serviced fast enough).
   1600 	 *
   1601 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
   1602 	 */
   1603 	s = splsched();
   1604 
   1605 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
   1606 		/*
   1607 		 * Prime the FIFO buffer counter (number of 16-bit
   1608 		 * words about to be read from the FIFO).
   1609 		 *
   1610 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1611 		 * COUNTER IS NON-ZERO!
   1612 		 */
   1613 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
   1614 	}
   1615 
   1616 	if (ELINK_IS_BUS_32(sc->bustype)) {
   1617 		/*
   1618 		 * Read bytes up to the point where we are aligned.
   1619 		 * (We can align to 4 bytes, rather than ALIGNBYTES,
   1620 		 * here because we're later reading 4-byte chunks.)
   1621 		 */
   1622 		if ((remaining > 3) && (offset & 3)) {
   1623 			int count = (4 - (offset & 3));
   1624 			bus_space_read_multi_1(iot, ioh,
   1625 			    rxreg, (u_int8_t *) offset, count);
   1626 			offset += count;
   1627 			remaining -= count;
   1628 		}
   1629 		if (remaining > 3) {
   1630 			bus_space_read_multi_stream_4(iot, ioh,
   1631 			    rxreg, (u_int32_t *) offset,
   1632 				    remaining >> 2);
   1633 			offset += remaining & ~3;
   1634 			remaining &= 3;
   1635 		}
   1636 		if (remaining) {
   1637 			bus_space_read_multi_1(iot, ioh,
   1638 			    rxreg, (u_int8_t *) offset, remaining);
   1639 		}
   1640 	} else {
   1641 		/* (offset & 1) == 0 since IP header is aligned */
   1642 		if (remaining > 1) {
   1643 			bus_space_read_multi_stream_2(iot, ioh,
   1644 			    rxreg, (u_int16_t *) offset,
   1645 			    remaining >> 1);
   1646 			offset += remaining & ~1;
   1647 		}
   1648 		if (remaining & 1) {
   1649 			*(uint8_t *)offset =
   1650 			    bus_space_read_1(iot, ioh, rxreg);
   1651 		}
   1652 	}
   1653 
   1654 	ep_discard_rxtop(iot, ioh);
   1655 
   1656 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
   1657 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
   1658 	splx(s);
   1659 
   1660 	return (m);
   1661 }
   1662 
   1663 int
   1664 epioctl(struct ifnet *ifp, u_long cmd, void *data)
   1665 {
   1666 	struct ep_softc *sc = ifp->if_softc;
   1667 	int s, error = 0;
   1668 
   1669 	s = splnet();
   1670 
   1671 	switch (cmd) {
   1672 	case SIOCADDMULTI:
   1673 	case SIOCDELMULTI:
   1674 		if (sc->enabled == 0) {
   1675 			error = EIO;
   1676 			break;
   1677 		}
   1678 
   1679 		/* FALLTHROUGH */
   1680 	default:
   1681 		error = ether_ioctl(ifp, cmd, data);
   1682 
   1683 		if (error == ENETRESET) {
   1684 			/*
   1685 			 * Multicast list has changed; set the hardware filter
   1686 			 * accordingly.
   1687 			 */
   1688 			if (ifp->if_flags & IFF_RUNNING)
   1689 				epreset(sc);
   1690 			error = 0;
   1691 		}
   1692 		break;
   1693 	}
   1694 
   1695 	splx(s);
   1696 	return (error);
   1697 }
   1698 
   1699 void
   1700 epreset(struct ep_softc *sc)
   1701 {
   1702 	int s;
   1703 
   1704 	s = splnet();
   1705 	epinit(&sc->sc_ethercom.ec_if);
   1706 	splx(s);
   1707 }
   1708 
   1709 void
   1710 epwatchdog(struct ifnet *ifp)
   1711 {
   1712 	struct ep_softc *sc = ifp->if_softc;
   1713 
   1714 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   1715 	if_statinc(ifp, if_oerrors);
   1716 
   1717 	epreset(sc);
   1718 }
   1719 
   1720 void
   1721 epstop(struct ifnet *ifp, int disable)
   1722 {
   1723 	struct ep_softc *sc = ifp->if_softc;
   1724 	bus_space_tag_t iot = sc->sc_iot;
   1725 	bus_space_handle_t ioh = sc->sc_ioh;
   1726 
   1727 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   1728 		/* Stop the one second clock. */
   1729 		callout_stop(&sc->sc_mbuf_callout);
   1730 
   1731 		/* Down the MII. */
   1732 		mii_down(&sc->sc_mii);
   1733 	}
   1734 
   1735 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
   1736 		/*
   1737 		 * Clear the FIFO buffer count, thus halting
   1738 		 * any currently-running transactions.
   1739 		 */
   1740 		GO_WINDOW(1);		/* sanity */
   1741 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
   1742 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
   1743 	}
   1744 
   1745 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
   1746 	ep_discard_rxtop(iot, ioh);
   1747 
   1748 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
   1749 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
   1750 
   1751 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
   1752 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
   1753 
   1754 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
   1755 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
   1756 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
   1757 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
   1758 
   1759 	epmbufempty(sc);
   1760 
   1761 	if (disable)
   1762 		epdisable(sc);
   1763 
   1764 	ifp->if_flags &= ~IFF_RUNNING;
   1765 }
   1766 
   1767 
   1768 /*
   1769  * Before reboots, reset card completely.
   1770  */
   1771 static bool
   1772 epshutdown(device_t self, int howto)
   1773 {
   1774 	struct ep_softc *sc = device_private(self);
   1775 	int s = splnet();
   1776 
   1777 	if (sc->enabled) {
   1778 		epstop(&sc->sc_ethercom.ec_if, 0);
   1779 		ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
   1780 		epdisable(sc);
   1781 		sc->enabled = 0;
   1782 	}
   1783 	splx(s);
   1784 
   1785 	return true;
   1786 }
   1787 
   1788 /*
   1789  * We get eeprom data from the id_port given an offset into the
   1790  * eeprom.  Basically; after the ID_sequence is sent to all of
   1791  * the cards; they enter the ID_CMD state where they will accept
   1792  * command requests. 0x80-0xbf loads the eeprom data.  We then
   1793  * read the port 16 times and with every read; the cards check
   1794  * for contention (ie: if one card writes a 0 bit and another
   1795  * writes a 1 bit then the host sees a 0. At the end of the cycle;
   1796  * each card compares the data on the bus; if there is a difference
   1797  * then that card goes into ID_WAIT state again). In the meantime;
   1798  * one bit of data is returned in the AX register which is conveniently
   1799  * returned to us by bus_space_read_2().  Hence; we read 16 times getting one
   1800  * bit of data with each read.
   1801  *
   1802  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
   1803  */
   1804 u_int16_t
   1805 epreadeeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset)
   1806 {
   1807 	u_int16_t data = 0;
   1808 	int i;
   1809 
   1810 	bus_space_write_2(iot, ioh, 0, 0x80 + offset);
   1811 	delay(1000);
   1812 	for (i = 0; i < 16; i++)
   1813 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
   1814 	return (data);
   1815 }
   1816 
   1817 static int
   1818 epbusyeeprom(struct ep_softc *sc)
   1819 {
   1820 	bus_space_tag_t iot = sc->sc_iot;
   1821 	bus_space_handle_t ioh = sc->sc_ioh;
   1822 	bus_size_t eecmd;
   1823 	int i = 100, j;
   1824 	uint16_t busybit;
   1825 
   1826 	if (sc->bustype == ELINK_BUS_PCMCIA) {
   1827 		delay(1000);
   1828 		return 0;
   1829 	}
   1830 
   1831 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
   1832 		eecmd = CORK_ASIC_EEPROM_COMMAND;
   1833 		busybit = CORK_EEPROM_BUSY;
   1834 	} else {
   1835 		eecmd = ELINK_W0_EEPROM_COMMAND;
   1836 		busybit = EEPROM_BUSY;
   1837 	}
   1838 
   1839 	j = 0;		/* bad GCC flow analysis */
   1840 	while (i--) {
   1841 		j = bus_space_read_2(iot, ioh, eecmd);
   1842 		if (j & busybit)
   1843 			delay(100);
   1844 		else
   1845 			break;
   1846 	}
   1847 	if (i == 0) {
   1848 		aprint_normal("\n");
   1849 		aprint_error_dev(sc->sc_dev, "eeprom failed to come ready\n");
   1850 		return (1);
   1851 	}
   1852 	if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
   1853 	    (j & EEPROM_TST_MODE) != 0) {
   1854 		/* XXX PnP mode? */
   1855 		printf("\n%s: erase pencil mark!\n", device_xname(sc->sc_dev));
   1856 		return (1);
   1857 	}
   1858 	return (0);
   1859 }
   1860 
   1861 u_int16_t
   1862 ep_read_eeprom(struct ep_softc *sc, u_int16_t offset)
   1863 {
   1864 	bus_size_t eecmd, eedata;
   1865 	u_int16_t readcmd;
   1866 
   1867 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
   1868 		eecmd = CORK_ASIC_EEPROM_COMMAND;
   1869 		eedata = CORK_ASIC_EEPROM_DATA;
   1870 	} else {
   1871 		eecmd = ELINK_W0_EEPROM_COMMAND;
   1872 		eedata = ELINK_W0_EEPROM_DATA;
   1873 	}
   1874 
   1875 	/*
   1876 	 * RoadRunner has a larger EEPROM, so a different read command
   1877 	 * is required.
   1878 	 */
   1879 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
   1880 		readcmd = READ_EEPROM_RR;
   1881 	else
   1882 		readcmd = READ_EEPROM;
   1883 
   1884 	if (epbusyeeprom(sc))
   1885 		return (0);		/* XXX why is eeprom busy? */
   1886 
   1887 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
   1888 
   1889 	if (epbusyeeprom(sc))
   1890 		return (0);		/* XXX why is eeprom busy? */
   1891 
   1892 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
   1893 }
   1894 
   1895 void
   1896 epmbuffill(void *v)
   1897 {
   1898 	struct ep_softc *sc = v;
   1899 	struct mbuf *m;
   1900 	int s, i;
   1901 
   1902 	s = splnet();
   1903 	i = sc->last_mb;
   1904 	do {
   1905 		if (sc->mb[i] == 0) {
   1906 			MGET(m, M_DONTWAIT, MT_DATA);
   1907 			if (m == 0)
   1908 				break;
   1909 			sc->mb[i] = m;
   1910 		}
   1911 		i = (i + 1) % MAX_MBS;
   1912 	} while (i != sc->next_mb);
   1913 	sc->last_mb = i;
   1914 	/* If the queue was not filled, try again. */
   1915 	if (sc->last_mb != sc->next_mb)
   1916 		callout_schedule(&sc->sc_mbuf_callout, 1);
   1917 	splx(s);
   1918 }
   1919 
   1920 void
   1921 epmbufempty(struct ep_softc *sc)
   1922 {
   1923 	int s, i;
   1924 
   1925 	s = splnet();
   1926 	for (i = 0; i < MAX_MBS; i++) {
   1927 		m_freem(sc->mb[i]);
   1928 		sc->mb[i] = NULL;
   1929 	}
   1930 	sc->last_mb = sc->next_mb = 0;
   1931 	callout_stop(&sc->sc_mbuf_callout);
   1932 	splx(s);
   1933 }
   1934 
   1935 int
   1936 epenable(struct ep_softc *sc)
   1937 {
   1938 
   1939 	if (sc->enabled == 0 && sc->enable != NULL) {
   1940 		if ((*sc->enable)(sc) != 0) {
   1941 			aprint_error_dev(sc->sc_dev, "device enable failed\n");
   1942 			return (EIO);
   1943 		}
   1944 	}
   1945 
   1946 	sc->enabled = 1;
   1947 	return (0);
   1948 }
   1949 
   1950 void
   1951 epdisable(struct ep_softc *sc)
   1952 {
   1953 
   1954 	if (sc->enabled != 0 && sc->disable != NULL) {
   1955 		(*sc->disable)(sc);
   1956 		sc->enabled = 0;
   1957 	}
   1958 }
   1959 
   1960 /*
   1961  * ep_activate:
   1962  *
   1963  *	Handle device activation/deactivation requests.
   1964  */
   1965 int
   1966 ep_activate(device_t self, enum devact act)
   1967 {
   1968 	struct ep_softc *sc = device_private(self);
   1969 
   1970 	switch (act) {
   1971 	case DVACT_DEACTIVATE:
   1972 		if_deactivate(&sc->sc_ethercom.ec_if);
   1973 		return 0;
   1974 	default:
   1975 		return EOPNOTSUPP;
   1976 	}
   1977 }
   1978 
   1979 /*
   1980  * ep_detach:
   1981  *
   1982  *	Detach a elink3 interface.
   1983  */
   1984 int
   1985 ep_detach(device_t self, int flags)
   1986 {
   1987 	struct ep_softc *sc = device_private(self);
   1988 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1989 
   1990 	/* Succeed now if there's no work to do. */
   1991 	if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
   1992 		return (0);
   1993 
   1994 	epdisable(sc);
   1995 
   1996 	callout_stop(&sc->sc_mii_callout);
   1997 	callout_stop(&sc->sc_mbuf_callout);
   1998 
   1999 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   2000 		/* Detach all PHYs */
   2001 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2002 	}
   2003 
   2004 	rnd_detach_source(&sc->rnd_source);
   2005 	ether_ifdetach(ifp);
   2006 	if_detach(ifp);
   2007 
   2008 	/* Delete all remaining media. */
   2009 	ifmedia_fini(&sc->sc_mii.mii_media);
   2010 
   2011 	pmf_device_deregister(sc->sc_dev);
   2012 
   2013 	return (0);
   2014 }
   2015 
   2016 u_int32_t
   2017 ep_mii_bitbang_read(device_t self)
   2018 {
   2019 	struct ep_softc *sc = device_private(self);
   2020 
   2021 	/* We're already in Window 4. */
   2022 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
   2023 	    ELINK_W4_BOOM_PHYSMGMT));
   2024 }
   2025 
   2026 void
   2027 ep_mii_bitbang_write(device_t self, u_int32_t val)
   2028 {
   2029 	struct ep_softc *sc = device_private(self);
   2030 
   2031 	/* We're already in Window 4. */
   2032 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
   2033 	    ELINK_W4_BOOM_PHYSMGMT, val);
   2034 }
   2035 
   2036 int
   2037 ep_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   2038 {
   2039 	struct ep_softc *sc = device_private(self);
   2040 	int rv;
   2041 
   2042 	GO_WINDOW(4);
   2043 
   2044 	rv = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg, val);
   2045 
   2046 	GO_WINDOW(1);
   2047 
   2048 	return rv;
   2049 }
   2050 
   2051 int
   2052 ep_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   2053 {
   2054 	struct ep_softc *sc = device_private(self);
   2055 	int rv;
   2056 
   2057 	GO_WINDOW(4);
   2058 
   2059 	rv = mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
   2060 
   2061 	GO_WINDOW(1);
   2062 
   2063 	return rv;
   2064 }
   2065 
   2066 void
   2067 ep_statchg(struct ifnet *ifp)
   2068 {
   2069 	struct ep_softc *sc = ifp->if_softc;
   2070 	bus_space_tag_t iot = sc->sc_iot;
   2071 	bus_space_handle_t ioh = sc->sc_ioh;
   2072 	int mctl;
   2073 
   2074 	GO_WINDOW(3);
   2075 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
   2076 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   2077 		mctl |= MAC_CONTROL_FDX;
   2078 	else
   2079 		mctl &= ~MAC_CONTROL_FDX;
   2080 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
   2081 	GO_WINDOW(1);	/* back to operating window */
   2082 }
   2083 
   2084 void
   2085 ep_power(int why, void *arg)
   2086 {
   2087 	struct ep_softc *sc = arg;
   2088 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2089 	int s;
   2090 
   2091 	s = splnet();
   2092 	switch (why) {
   2093 	case PWR_SUSPEND:
   2094 	case PWR_STANDBY:
   2095 		epstop(ifp, 1);
   2096 		break;
   2097 	case PWR_RESUME:
   2098 		if (ifp->if_flags & IFF_UP) {
   2099 			(void)epinit(ifp);
   2100 		}
   2101 		break;
   2102 	case PWR_SOFTSUSPEND:
   2103 	case PWR_SOFTSTANDBY:
   2104 	case PWR_SOFTRESUME:
   2105 		break;
   2106 	}
   2107 	splx(s);
   2108 }
   2109