Home | History | Annotate | Line # | Download | only in epoc32
      1 /*	$NetBSD: machdep.c,v 1.9 2023/04/20 08:28:03 skrll Exp $	*/
      2 /*
      3  * Copyright (c) 2012, 2013 KIYOHARA Takashi
      4  * All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     18  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     19  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     25  * POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.9 2023/04/20 08:28:03 skrll Exp $");
     30 
     31 #include "clpscom.h"
     32 #include "clpslcd.h"
     33 #include "wmcom.h"
     34 #include "wmlcd.h"
     35 #include "epockbd.h"
     36 #include "ksyms.h"
     37 #include "opt_ddb.h"
     38 #include "opt_md.h"
     39 #include "opt_modular.h"
     40 
     41 #include <sys/types.h>
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/bus.h>
     45 #include <sys/kernel.h>
     46 #include <sys/lwp.h>
     47 #include <sys/pmf.h>
     48 #include <sys/reboot.h>
     49 #include <sys/termios.h>
     50 
     51 #include <uvm/uvm_extern.h>
     52 
     53 #include <dev/cons.h>
     54 #include <dev/md.h>
     55 
     56 #include <arm/locore.h>
     57 #include <arm/undefined.h>
     58 #include <arm/arm32/machdep.h>
     59 #include <arm/arm32/pmap.h>
     60 
     61 #include <machine/bootconfig.h>
     62 #include <machine/bootinfo.h>
     63 #include <machine/epoc32.h>
     64 
     65 #include <arm/clps711x/clpssocvar.h>
     66 #include <epoc32/windermere/windermerevar.h>
     67 #include <epoc32/windermere/windermerereg.h>
     68 #include <epoc32/dev/epockbdvar.h>
     69 
     70 #include <machine/db_machdep.h>
     71 #include <ddb/db_extern.h>
     72 
     73 #define KERNEL_OFFSET		0x00030000
     74 #define KERNEL_TEXT_BASE	(KERNEL_BASE + KERNEL_OFFSET)
     75 #ifndef KERNEL_VM_BASE
     76 #define KERNEL_VM_BASE		(KERNEL_BASE + 0x00300000)
     77 #endif
     78 #define KERNEL_VM_SIZE		0x04000000	/* XXXX 64M */
     79 
     80 /* Define various stack sizes in pages */
     81 #define IRQ_STACK_SIZE	1
     82 #define ABT_STACK_SIZE	1
     83 #define UND_STACK_SIZE	1
     84 
     85 
     86 BootConfig bootconfig;		/* Boot config storage */
     87 static char bootargs[256];
     88 char *boot_args = NULL;
     89 
     90 vaddr_t physical_start;
     91 vaddr_t physical_freestart;
     92 vaddr_t physical_freeend;
     93 vaddr_t physical_end;
     94 u_int free_pages;
     95 
     96 paddr_t msgbufphys;
     97 
     98 enum {
     99 	KERNEL_PT_SYS = 0,	/* Page table for mapping proc0 zero page */
    100 	KERNEL_PT_KERNEL,	/* Page table for mapping kernel and VM */
    101 
    102 	NUM_KERNEL_PTS
    103 };
    104 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    105 
    106 char epoc32_model[256];
    107 int epoc32_fb_width;
    108 int epoc32_fb_height;
    109 int epoc32_fb_addr;
    110 
    111 /*
    112  * Static device mappings. These peripheral registers are mapped at
    113  * fixed virtual addresses very early in initarm() so that we can use
    114  * them while booting the kernel, and stay at the same address
    115  * throughout whole kernel's life time.
    116  *
    117  * We use this table twice; once with bootstrap page table, and once
    118  * with kernel's page table which we build up in initarm().
    119  *
    120  * Since we map these registers into the bootstrap page table using
    121  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
    122  * registers segment-aligned and segment-rounded in order to avoid
    123  * using the 2nd page tables.
    124  */
    125 
    126 static const struct pmap_devmap epoc32_devmap[] = {
    127 	DEVMAP_ENTRY(
    128 		ARM7XX_INTRREG_VBASE,		/* included com, lcd-ctrl */
    129 		ARM7XX_INTRREG_BASE,
    130 		ARM7XX_INTRREG_SIZE
    131 	),
    132 
    133 	DEVMAP_ENTRY_END
    134 };
    135 static const struct pmap_devmap epoc32_fb_devmap[] = {
    136 	DEVMAP_ENTRY(
    137 		ARM7XX_FB_VBASE,
    138 		ARM7XX_FB_BASE,
    139 		ARM7XX_FB_SIZE
    140 	),
    141 
    142 	DEVMAP_ENTRY_END
    143 };
    144 
    145 /*
    146  * vaddr_t initarm(...)
    147  *
    148  * Initial entry point on startup. This gets called before main() is
    149  * entered.
    150  * It should be responsible for setting up everything that must be
    151  * in place when main is called.
    152  * This includes
    153  *   Taking a copy of the boot configuration structure.
    154  *   Initialising the physical console so characters can be printed.
    155  *   Setting up page tables for the kernel
    156  *   Relocating the kernel to the bottom of physical memory
    157  */
    158 vaddr_t
    159 initarm(void *arg)
    160 {
    161 	extern char _end[];
    162 	extern vaddr_t startup_pagetable;
    163 	extern struct btinfo_common bootinfo;
    164 	struct btinfo_common *btinfo = &bootinfo;
    165 	struct btinfo_model *model = NULL;
    166 	struct btinfo_memory *memory = NULL;
    167 	struct btinfo_video *video = NULL;
    168 	struct btinfo_bootargs *args = NULL;
    169 	u_int l1pagetable, _end_physical;
    170 	int loop, loop1, n, i;
    171 
    172 	/*
    173 	 * Heads up ... Setup the CPU / MMU / TLB functions
    174 	 */
    175 	if (set_cpufuncs())
    176 		panic("cpu not recognized!");
    177 
    178 	/* map some peripheral registers at static I/O area. */
    179 	pmap_devmap_bootstrap(startup_pagetable, epoc32_devmap);
    180 
    181 	bootconfig.dramblocks = 0;
    182 	while (btinfo->type != BTINFO_NONE) {
    183 		switch (btinfo->type) {
    184 		case BTINFO_MODEL:
    185 			model = (struct btinfo_model *)btinfo;
    186 			btinfo = &(model + 1)->common;
    187 			strncpy(epoc32_model, model->model,
    188 			    sizeof(epoc32_model));
    189 			break;
    190 
    191 		case BTINFO_MEMORY:
    192 			memory = (struct btinfo_memory *)btinfo;
    193 			btinfo = &(memory + 1)->common;
    194 
    195 			/*
    196 			 * Fake bootconfig structure for the benefit of pmap.c
    197 			 */
    198 			i = bootconfig.dramblocks;
    199 			bootconfig.dram[i].address = memory->address;
    200 			bootconfig.dram[i].pages = memory->size / PAGE_SIZE;
    201 			bootconfig.dramblocks++;
    202 			break;
    203 
    204 		case BTINFO_VIDEO:
    205 			video = (struct btinfo_video *)btinfo;
    206 			btinfo = &(video + 1)->common;
    207 			epoc32_fb_width = video->width;
    208 			epoc32_fb_height = video->height;
    209 			break;
    210 
    211 		case BTINFO_BOOTARGS:
    212 			args = (struct btinfo_bootargs *)btinfo;
    213 			btinfo = &(args + 1)->common;
    214 			memcpy(bootargs, args->bootargs,
    215 			    uimin(sizeof(bootargs), sizeof(args->bootargs)));
    216 			bootargs[sizeof(bootargs) - 1] = '\0';
    217 			boot_args = bootargs;
    218 			break;
    219 
    220 		default:
    221 #define NEXT_BOOTINFO(bi) (struct btinfo_common *)((char *)bi + (bi)->len)
    222 
    223 			btinfo = NEXT_BOOTINFO(btinfo);
    224 		}
    225 	}
    226 	if (bootconfig.dramblocks == 0)
    227 		panic("BTINFO_MEMORY not found");
    228 
    229 	consinit();
    230 
    231 	if (boot_args != NULL)
    232 		parse_mi_bootargs(boot_args);
    233 
    234 	physical_start = bootconfig.dram[0].address;
    235 	physical_freestart = bootconfig.dram[0].address;
    236 	physical_freeend = KERNEL_TEXT_BASE;
    237 
    238 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    239 
    240 	/* Define a macro to simplify memory allocation */
    241 #define valloc_pages(var, np)				\
    242 	alloc_pages((var).pv_pa, (np));			\
    243 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    244 
    245 #define alloc_pages(var, np)				\
    246 	physical_freeend -= ((np) * PAGE_SIZE);		\
    247 	if (physical_freeend < physical_freestart)	\
    248 		panic("initarm: out of memory");	\
    249 	(var) = physical_freeend;			\
    250 	free_pages -= (np);				\
    251 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    252 
    253 	loop1 = 0;
    254 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    255 		/* Are we 16KB aligned for an L1 ? */
    256 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    257 		    && kernel_l1pt.pv_pa == 0) {
    258 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    259 		} else {
    260 			valloc_pages(kernel_pt_table[loop1],
    261 			    L2_TABLE_SIZE / PAGE_SIZE);
    262 			++loop1;
    263 		}
    264 	}
    265 
    266 	/* This should never be able to happen but better confirm that. */
    267 	if (!kernel_l1pt.pv_pa ||
    268 	    (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
    269 		panic("initarm: Failed to align the kernel page directory");
    270 
    271 	/*
    272 	 * Allocate a page for the system page mapped to V0x00000000
    273 	 * This page will just contain the system vectors and can be
    274 	 * shared by all processes.
    275 	 */
    276 	alloc_pages(systempage.pv_pa, 1);
    277 
    278 	/* Allocate stacks for all modes */
    279 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    280 	valloc_pages(abtstack, ABT_STACK_SIZE);
    281 	valloc_pages(undstack, UND_STACK_SIZE);
    282 	valloc_pages(kernelstack, UPAGES);
    283 
    284 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    285 
    286 	/*
    287 	 * Now we start construction of the L1 page table
    288 	 * We start by mapping the L2 page tables into the L1.
    289 	 * This means that we can replace L1 mappings later on if necessary
    290 	 */
    291 	l1pagetable = kernel_l1pt.pv_va;
    292 
    293 	/* Map the L2 pages tables in the L1 page table */
    294 	pmap_link_l2pt(l1pagetable, 0x00000000,
    295 	    &kernel_pt_table[KERNEL_PT_SYS]);
    296 	pmap_link_l2pt(l1pagetable, KERNEL_BASE,
    297 	    &kernel_pt_table[KERNEL_PT_KERNEL]);
    298 
    299 	/* update the top of the kernel VM */
    300 	pmap_curmaxkvaddr = KERNEL_VM_BASE;
    301 
    302 	/* Now we fill in the L2 pagetable for the kernel static code/data */
    303 	{
    304 		extern char etext[];
    305 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    306 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
    307 		size_t datasize;
    308 		PhysMem *dram = bootconfig.dram;
    309 		u_int logical, physical, size;
    310 
    311 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    312 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    313 		datasize = totalsize - textsize;	/* data and bss */
    314 
    315 		logical = KERNEL_OFFSET;	/* offset of kernel in RAM */
    316 		physical = KERNEL_OFFSET;
    317 		i = 0;
    318 		size = dram[i].pages * PAGE_SIZE - physical;
    319 		/* Map kernel text section. */
    320 		while (1 /*CONSTINT*/) {
    321 			size = pmap_map_chunk(l1pagetable,
    322 			    KERNEL_BASE + logical, dram[i].address + physical,
    323 			    textsize < size ? textsize : size,
    324 			    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    325 			logical += size;
    326 			physical += size;
    327 			textsize -= size;
    328 			if (physical >= dram[i].pages * PAGE_SIZE) {
    329 				i++;
    330 				size = dram[i].pages * PAGE_SIZE;
    331 				physical = 0;
    332 			}
    333 			if (textsize == 0)
    334 				break;
    335 		}
    336 		size = dram[i].pages * PAGE_SIZE - physical;
    337 		/* Map data and bss section. */
    338 		while (1 /*CONSTINT*/) {
    339 			size = pmap_map_chunk(l1pagetable,
    340 			    KERNEL_BASE + logical, dram[i].address + physical,
    341 			    datasize < size ? datasize : size,
    342 			    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    343 			logical += size;
    344 			physical += size;
    345 			datasize -= size;
    346 			if (physical >= dram[i].pages * PAGE_SIZE) {
    347 				i++;
    348 				size = dram[i].pages * PAGE_SIZE;
    349 				physical = 0;
    350 			}
    351 			if (datasize == 0)
    352 				break;
    353 		}
    354 		_end_physical = dram[i].address + physical;
    355 		n = i;
    356 		physical_end = dram[n].address + dram[n].pages * PAGE_SIZE;
    357 		n++;
    358 	}
    359 
    360 	/* Map the stack pages */
    361 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    362 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    363 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    364 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    365 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    366 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    367 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    368 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
    369 
    370         pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    371 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
    372 
    373 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop)
    374 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    375 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    376 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    377 
    378 	/* Map the vector page. */
    379 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
    380 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    381 
    382 	pmap_devmap_bootstrap(l1pagetable, epoc32_devmap);
    383 	pmap_devmap_bootstrap(l1pagetable, epoc32_fb_devmap);
    384 	epoc32_fb_addr = ARM7XX_FB_VBASE;
    385 
    386 	/*
    387 	 * Now we have the real page tables in place so we can switch to them.
    388 	 * Once this is done we will be running with the REAL kernel page
    389 	 * tables.
    390 	 */
    391 
    392 	/* Switch tables */
    393 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    394 	cpu_setttb(kernel_l1pt.pv_pa, true);
    395 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    396 
    397 	/*
    398 	 * Moved from cpu_startup() as data_abort_handler() references
    399 	 * this during uvm init
    400 	 */
    401 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
    402 
    403 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
    404 
    405 	/*
    406 	 * Pages were allocated during the secondary bootstrap for the
    407 	 * stacks for different CPU modes.
    408 	 * We must now set the r13 registers in the different CPU modes to
    409 	 * point to these stacks.
    410 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
    411 	 * of the stack memory.
    412 	 */
    413 
    414 	set_stackptr(PSR_IRQ32_MODE,
    415 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
    416 	set_stackptr(PSR_ABT32_MODE,
    417 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
    418 	set_stackptr(PSR_UND32_MODE,
    419 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
    420 
    421 	/*
    422 	 * Well we should set a data abort handler.
    423 	 * Once things get going this will change as we will need a proper
    424 	 * handler. Until then we will use a handler that just panics but
    425 	 * tells us why.
    426 	 * Initialisation of the vectors will just panic on a data abort.
    427 	 * This just fills in a slightly better one.
    428 	 */
    429 	data_abort_handler_address = (u_int)data_abort_handler;
    430 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
    431 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
    432 
    433 	/* Initialise the undefined instruction handlers */
    434 	undefined_init();
    435 
    436         /* Load memory into UVM. */
    437 	uvm_md_init();
    438 	uvm_page_physload(
    439 	    atop(_end_physical), atop(physical_end),
    440 	    atop(_end_physical), atop(physical_end),
    441 	    VM_FREELIST_DEFAULT);
    442 	physmem = bootconfig.dram[0].pages;
    443 	for (i = 1; i < n; i++)
    444 		physmem += bootconfig.dram[i].pages;
    445 	if (physmem < 0x400000)
    446 		physical_end = 0;
    447 	for (loop = n; loop < bootconfig.dramblocks; loop++) {
    448 		size_t start = bootconfig.dram[loop].address;
    449 		size_t size = bootconfig.dram[loop].pages * PAGE_SIZE;
    450 
    451 		uvm_page_physload(atop(start), atop(start + size),
    452 		    atop(start), atop(start + size), VM_FREELIST_DEFAULT);
    453 		physmem += bootconfig.dram[loop].pages;
    454 
    455 		if (physical_end == 0 && physmem >= 0x400000 / PAGE_SIZE)
    456 			/* Fixup physical_end for Series5. */
    457 			physical_end = start + size;
    458 	}
    459 
    460 	/* Boot strap pmap telling it where managed kernel virtual memory is */
    461 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
    462 
    463 #ifdef __HAVE_MEMORY_DISK__
    464 	md_root_setconf(memory_disk, sizeof memory_disk);
    465 #endif
    466 
    467 #if NKSYMS || defined(DDB) || defined(MODULAR)
    468 	/* Firmware doesn't load symbols. */
    469 	ddb_init(0, NULL, NULL);
    470 #endif
    471 
    472 #ifdef DDB
    473 	db_machine_init();
    474 	if (boothowto & RB_KDB)
    475 		Debugger();
    476 #endif
    477 
    478 	/* We return the new stack pointer address */
    479 	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
    480 }
    481 
    482 void
    483 cpu_reboot(int howto, char *bootstr)
    484 {
    485 
    486 #ifdef DIAGNOSTIC
    487 	/* info */
    488 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    489 #endif
    490 
    491 	/*
    492 	 * If we are still cold then hit the air brakes
    493 	 * and crash to earth fast
    494 	 */
    495 	if (cold) {
    496 		doshutdownhooks();
    497 		pmf_system_shutdown(boothowto);
    498 		printf("The operating system has halted.\n");
    499 		printf("Please press any key to reboot.\n\n");
    500 		cngetc();
    501 		printf("rebooting...\n");
    502 		cpu_reset();
    503 		/*NOTREACHED*/
    504 	}
    505 
    506 	/*
    507 	 * If RB_NOSYNC was not specified sync the discs.
    508 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    509 	 * unmount.  It looks like syslogd is getting woken up only to find
    510 	 * that it cannot page part of the binary in as the filesystem has
    511 	 * been unmounted.
    512 	 */
    513 	if (!(howto & RB_NOSYNC))
    514 		bootsync();
    515 
    516 	/* Say NO to interrupts */
    517 	splhigh();
    518 
    519 	/* Do a dump if requested. */
    520 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    521 		dumpsys();
    522 
    523 	/* Run any shutdown hooks */
    524 	doshutdownhooks();
    525 
    526 	pmf_system_shutdown(boothowto);
    527 
    528 	/* Make sure IRQ's are disabled */
    529 	IRQdisable;
    530 
    531 	if (howto & RB_HALT) {
    532 		printf("The operating system has halted.\n");
    533 		printf("Please press any key to reboot.\n\n");
    534 		cngetc();
    535 	}
    536 
    537 	printf("rebooting...\n");
    538 	cpu_reset();
    539 	/*NOTREACHED*/
    540 }
    541 
    542 void
    543 consinit(void)
    544 {
    545 	static int consinit_called = 0;
    546 #if (NWMCOM + NCLPSCOM) > 0
    547 	const tcflag_t mode = (TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8;
    548 #endif
    549 
    550 	if (consinit_called)
    551 		return;
    552 	consinit_called = 1;
    553 
    554 	if (strcmp(epoc32_model, "SERIES5 R1") == 0) {
    555 #if NCLPSLCD > 0
    556 		if (clpslcd_cnattach() == 0) {
    557 #if NEPOCKBD > 0
    558 			epockbd_cnattach();
    559 #endif
    560 			return;
    561 		}
    562 #endif
    563 #if NCLPSCOM > 0
    564 		if (clpscom_cnattach(ARM7XX_INTRREG_VBASE, 115200, mode) == 0)
    565 			return;
    566 #endif
    567 	}
    568 	if (strcmp(epoc32_model, "SERIES5mx") == 0) {
    569 		vaddr_t vbase = ARM7XX_INTRREG_VBASE;
    570 #if NWMCOM > 0
    571 		vaddr_t offset;
    572 		volatile uint8_t *gpio;
    573 		int irda;
    574 #endif
    575 
    576 #if NWMLCD > 0
    577 		if (wmlcd_cnattach() == 0) {
    578 #if NEPOCKBD > 0
    579 			epockbd_cnattach();
    580 #endif
    581 			return;
    582 		}
    583 #endif
    584 #if NWMCOM > 0
    585 		gpio = (uint8_t *)ARM7XX_INTRREG_VBASE + WINDERMERE_GPIO_OFFSET;
    586 		if (0) {
    587 			/* Enable UART0 to PCDR */
    588 			*(gpio + 0x08) |= 1 << 5;
    589 			offset = WINDERMERE_COM0_OFFSET;
    590 			irda = 1;			/* IrDA */
    591 		} else {
    592 			/* Enable UART1 to PCDR */
    593 			*(gpio + 0x08) |= 1 << 3;
    594 			offset = WINDERMERE_COM1_OFFSET;
    595 			irda = 0;			/* UART */
    596 		}
    597 
    598 		if (wmcom_cnattach(vbase + offset, 115200, mode, irda) == 0)
    599 			return;
    600 #endif
    601 	}
    602 	if (strcmp(epoc32_model, "SERIES7") == 0) {
    603 	}
    604 	panic("can't init console");
    605 }
    606