Home | History | Annotate | Line # | Download | only in net
      1 /*	$NetBSD: if_ethersubr.c,v 1.332 2025/10/04 04:44:19 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)if_ethersubr.c	8.2 (Berkeley) 4/4/96
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.332 2025/10/04 04:44:19 thorpej Exp $");
     65 
     66 #ifdef _KERNEL_OPT
     67 #include "opt_inet.h"
     68 #include "opt_atalk.h"
     69 #include "opt_mbuftrace.h"
     70 #include "opt_mpls.h"
     71 #include "opt_gateway.h"
     72 #include "opt_pppoe.h"
     73 #include "opt_net_mpsafe.h"
     74 #endif
     75 
     76 #include "vlan.h"
     77 #include "pppoe.h"
     78 #include "bridge.h"
     79 #include "arp.h"
     80 #include "agr.h"
     81 
     82 #include <sys/sysctl.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/mutex.h>
     85 #include <sys/ioctl.h>
     86 #include <sys/errno.h>
     87 #include <sys/device.h>
     88 #include <sys/entropy.h>
     89 #include <sys/rndsource.h>
     90 #include <sys/cpu.h>
     91 #include <sys/kmem.h>
     92 #include <sys/hook.h>
     93 
     94 #include <net/if.h>
     95 #include <net/route.h>
     96 #include <net/if_llc.h>
     97 #include <net/if_dl.h>
     98 #include <net/if_types.h>
     99 #include <net/pktqueue.h>
    100 
    101 #include <net/if_media.h>
    102 #include <dev/mii/mii.h>
    103 #include <dev/mii/miivar.h>
    104 
    105 #if NARP == 0
    106 /*
    107  * XXX there should really be a way to issue this warning from within config(8)
    108  */
    109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
    110 #endif
    111 
    112 #include <net/bpf.h>
    113 
    114 #include <net/if_ether.h>
    115 #include <net/if_vlanvar.h>
    116 
    117 #if NPPPOE > 0
    118 #include <net/if_pppoe.h>
    119 #endif
    120 
    121 #if NAGR > 0
    122 #include <net/ether_slowprotocols.h>
    123 #include <net/agr/ieee8023ad.h>
    124 #include <net/agr/if_agrvar.h>
    125 #endif
    126 
    127 #if NBRIDGE > 0
    128 #include <net/if_bridgevar.h>
    129 #endif
    130 
    131 #include <netinet/in.h>
    132 #ifdef INET
    133 #include <netinet/in_var.h>
    134 #endif
    135 #include <netinet/if_inarp.h>
    136 
    137 #ifdef INET6
    138 #ifndef INET
    139 #include <netinet/in.h>
    140 #endif
    141 #include <netinet6/in6_var.h>
    142 #include <netinet6/nd6.h>
    143 #endif
    144 
    145 #include "carp.h"
    146 #if NCARP > 0
    147 #include <netinet/ip_carp.h>
    148 #endif
    149 
    150 #ifdef NETATALK
    151 #include <netatalk/at.h>
    152 #include <netatalk/at_var.h>
    153 #include <netatalk/at_extern.h>
    154 
    155 #define llc_snap_org_code llc_un.type_snap.org_code
    156 #define llc_snap_ether_type llc_un.type_snap.ether_type
    157 
    158 extern u_char	at_org_code[3];
    159 extern u_char	aarp_org_code[3];
    160 #endif /* NETATALK */
    161 
    162 #ifdef MPLS
    163 #include <netmpls/mpls.h>
    164 #include <netmpls/mpls_var.h>
    165 #endif
    166 
    167 CTASSERT(sizeof(struct ether_addr) == 6);
    168 CTASSERT(sizeof(struct ether_header) == 14);
    169 
    170 #ifdef DIAGNOSTIC
    171 static struct timeval bigpktppslim_last;
    172 static int bigpktppslim = 2;	/* XXX */
    173 static int bigpktpps_count;
    174 static kmutex_t bigpktpps_lock __cacheline_aligned;
    175 #endif
    176 
    177 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
    178     { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
    179 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
    180     { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
    181 #define senderr(e) { error = (e); goto bad;}
    182 
    183 static pktq_rps_hash_func_t ether_pktq_rps_hash_p;
    184 
    185 /*
    186  * Attempt to get the Ethernet address from device properties.
    187  *
    188  * We generally follow the Device Tree specification with regard
    189  * to the property names, but that's OK because the property names
    190  * are pretty generic.
    191  */
    192 bool
    193 ether_getaddr(device_t dev, uint8_t enaddr[ETHER_ADDR_LEN])
    194 {
    195 	/*
    196 	 * Check first for the "mac-address" property.  The bindings
    197 	 * say that this would be used only if it is different then the
    198 	 * "local-mac-address" property.  But if it's the same, then
    199 	 * using it is exactly the same as using "local-mac-address". So,
    200 	 * we first look for "mac-address", and if that's not there, then
    201 	 * we look for "local-mac-address".
    202 	 */
    203 	if (device_getprop_data(dev, "mac-address", enaddr,
    204 				ETHER_ADDR_LEN) == ETHER_ADDR_LEN ||
    205 	    device_getprop_data(dev, "local-mac-address", enaddr,
    206 				ETHER_ADDR_LEN) == ETHER_ADDR_LEN) {
    207 		return true;
    208 	}
    209 	return false;
    210 }
    211 
    212 /*
    213  * Ethernet output routine.
    214  * Encapsulate a packet of type family for the local net.
    215  * Assumes that ifp is actually pointer to ethercom structure.
    216  */
    217 static int
    218 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
    219     const struct sockaddr * const dst, const struct rtentry *rt)
    220 {
    221 	uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
    222 	uint16_t etype = 0;
    223 	int error = 0, hdrcmplt = 0;
    224 	struct mbuf *m = m0;
    225 	struct mbuf *mcopy = NULL;
    226 	struct ether_header *eh;
    227 	struct ifnet *ifp = ifp0;
    228 #ifdef INET
    229 	struct arphdr *ah;
    230 #endif
    231 #ifdef NETATALK
    232 	struct at_ifaddr *aa;
    233 #endif
    234 
    235 #ifdef MBUFTRACE
    236 	m_claimm(m, ifp->if_mowner);
    237 #endif
    238 
    239 #if NCARP > 0
    240 	if (ifp->if_type == IFT_CARP) {
    241 		struct ifaddr *ifa;
    242 		int s = pserialize_read_enter();
    243 
    244 		/* loop back if this is going to the carp interface */
    245 		if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
    246 		    (ifa = ifa_ifwithaddr(dst)) != NULL) {
    247 			if (ifa->ifa_ifp == ifp0) {
    248 				pserialize_read_exit(s);
    249 				return looutput(ifp0, m, dst, rt);
    250 			}
    251 		}
    252 		pserialize_read_exit(s);
    253 
    254 		ifp = ifp->if_carpdev;
    255 		/* ac = (struct arpcom *)ifp; */
    256 
    257 		if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
    258 		    (IFF_UP | IFF_RUNNING))
    259 			senderr(ENETDOWN);
    260 	}
    261 #endif
    262 
    263 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
    264 		senderr(ENETDOWN);
    265 
    266 	switch (dst->sa_family) {
    267 
    268 #ifdef INET
    269 	case AF_INET:
    270 		if (m->m_flags & M_BCAST) {
    271 			memcpy(edst, etherbroadcastaddr, sizeof(edst));
    272 		} else if (m->m_flags & M_MCAST) {
    273 			ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
    274 		} else {
    275 			error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst));
    276 			if (error)
    277 				return (error == EWOULDBLOCK) ? 0 : error;
    278 		}
    279 		/* If broadcasting on a simplex interface, loopback a copy */
    280 		if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
    281 			mcopy = m_copypacket(m, M_DONTWAIT);
    282 		etype = htons(ETHERTYPE_IP);
    283 		break;
    284 
    285 	case AF_ARP:
    286 		ah = mtod(m, struct arphdr *);
    287 		if (m->m_flags & M_BCAST) {
    288 			memcpy(edst, etherbroadcastaddr, sizeof(edst));
    289 		} else {
    290 			void *tha = ar_tha(ah);
    291 
    292 			if (tha == NULL) {
    293 				/* fake with ARPHRD_IEEE1394 */
    294 				m_freem(m);
    295 				return 0;
    296 			}
    297 			memcpy(edst, tha, sizeof(edst));
    298 		}
    299 
    300 		ah->ar_hrd = htons(ARPHRD_ETHER);
    301 
    302 		switch (ntohs(ah->ar_op)) {
    303 		case ARPOP_REVREQUEST:
    304 		case ARPOP_REVREPLY:
    305 			etype = htons(ETHERTYPE_REVARP);
    306 			break;
    307 
    308 		case ARPOP_REQUEST:
    309 		case ARPOP_REPLY:
    310 		default:
    311 			etype = htons(ETHERTYPE_ARP);
    312 		}
    313 		break;
    314 #endif
    315 
    316 #ifdef INET6
    317 	case AF_INET6:
    318 		if (m->m_flags & M_BCAST) {
    319 			memcpy(edst, etherbroadcastaddr, sizeof(edst));
    320 		} else if (m->m_flags & M_MCAST) {
    321 			ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
    322 			    edst);
    323 		} else {
    324 			error = nd6_resolve(ifp0, rt, m, dst, edst,
    325 			    sizeof(edst));
    326 			if (error)
    327 				return (error == EWOULDBLOCK) ? 0 : error;
    328 		}
    329 		etype = htons(ETHERTYPE_IPV6);
    330 		break;
    331 #endif
    332 
    333 #ifdef NETATALK
    334 	case AF_APPLETALK: {
    335 		struct ifaddr *ifa;
    336 		int s;
    337 
    338 		KERNEL_LOCK(1, NULL);
    339 
    340 		if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
    341 			KERNEL_UNLOCK_ONE(NULL);
    342 			return 0;
    343 		}
    344 
    345 		/*
    346 		 * ifaddr is the first thing in at_ifaddr
    347 		 */
    348 		s = pserialize_read_enter();
    349 		ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
    350 		if (ifa == NULL) {
    351 			pserialize_read_exit(s);
    352 			KERNEL_UNLOCK_ONE(NULL);
    353 			senderr(EADDRNOTAVAIL);
    354 		}
    355 		aa = (struct at_ifaddr *)ifa;
    356 
    357 		/*
    358 		 * In the phase 2 case, we need to prepend an mbuf for the
    359 		 * llc header.
    360 		 */
    361 		if (aa->aa_flags & AFA_PHASE2) {
    362 			struct llc llc;
    363 
    364 			M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
    365 			if (m == NULL) {
    366 				pserialize_read_exit(s);
    367 				KERNEL_UNLOCK_ONE(NULL);
    368 				senderr(ENOBUFS);
    369 			}
    370 
    371 			llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
    372 			llc.llc_control = LLC_UI;
    373 			memcpy(llc.llc_snap_org_code, at_org_code,
    374 			    sizeof(llc.llc_snap_org_code));
    375 			llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
    376 			memcpy(mtod(m, void *), &llc, sizeof(struct llc));
    377 		} else {
    378 			etype = htons(ETHERTYPE_ATALK);
    379 		}
    380 		pserialize_read_exit(s);
    381 		KERNEL_UNLOCK_ONE(NULL);
    382 		break;
    383 	}
    384 #endif /* NETATALK */
    385 
    386 	case pseudo_AF_HDRCMPLT:
    387 		hdrcmplt = 1;
    388 		memcpy(esrc,
    389 		    ((const struct ether_header *)dst->sa_data)->ether_shost,
    390 		    sizeof(esrc));
    391 		/* FALLTHROUGH */
    392 
    393 	case AF_UNSPEC:
    394 		memcpy(edst,
    395 		    ((const struct ether_header *)dst->sa_data)->ether_dhost,
    396 		    sizeof(edst));
    397 		/* AF_UNSPEC doesn't swap the byte order of the ether_type. */
    398 		etype = ((const struct ether_header *)dst->sa_data)->ether_type;
    399 		break;
    400 
    401 	default:
    402 		rt_unhandled(__func__, ifp, dst);
    403 		senderr(EAFNOSUPPORT);
    404 	}
    405 
    406 #ifdef MPLS
    407 	{
    408 		struct m_tag *mtag;
    409 		mtag = m_tag_find(m, PACKET_TAG_MPLS);
    410 		if (mtag != NULL) {
    411 			/* Having the tag itself indicates it's MPLS */
    412 			etype = htons(ETHERTYPE_MPLS);
    413 			m_tag_delete(m, mtag);
    414 		}
    415 	}
    416 #endif
    417 
    418 	if (mcopy)
    419 		(void)looutput(ifp, mcopy, dst, rt);
    420 
    421 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    422 
    423 	/*
    424 	 * If no ether type is set, this must be a 802.2 formatted packet.
    425 	 */
    426 	if (etype == 0)
    427 		etype = htons(m->m_pkthdr.len);
    428 
    429 	/*
    430 	 * Add local net header. If no space in first mbuf, allocate another.
    431 	 */
    432 	M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
    433 	if (m == NULL)
    434 		senderr(ENOBUFS);
    435 
    436 	eh = mtod(m, struct ether_header *);
    437 	/* Note: etype is already in network byte order. */
    438 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
    439 	memcpy(eh->ether_dhost, edst, sizeof(edst));
    440 	if (hdrcmplt) {
    441 		memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
    442 	} else {
    443 	 	memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
    444 		    sizeof(eh->ether_shost));
    445 	}
    446 
    447 #if NCARP > 0
    448 	if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
    449 		/* update with virtual MAC */
    450 		memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
    451 		    sizeof(eh->ether_shost));
    452 	}
    453 #endif
    454 
    455 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
    456 		return error;
    457 	if (m == NULL)
    458 		return 0;
    459 
    460 #if NBRIDGE > 0
    461 	/*
    462 	 * Bridges require special output handling.
    463 	 */
    464 	if (ifp->if_bridge)
    465 		return bridge_output(ifp, m, NULL, NULL);
    466 #endif
    467 
    468 #if NCARP > 0
    469 	if (ifp != ifp0)
    470 		if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN);
    471 #endif
    472 
    473 #ifdef ALTQ
    474 	KERNEL_LOCK(1, NULL);
    475 	/*
    476 	 * If ALTQ is enabled on the parent interface, do
    477 	 * classification; the queueing discipline might not
    478 	 * require classification, but might require the
    479 	 * address family/header pointer in the pktattr.
    480 	 */
    481 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
    482 		altq_etherclassify(&ifp->if_snd, m);
    483 	KERNEL_UNLOCK_ONE(NULL);
    484 #endif
    485 	return ifq_enqueue(ifp, m);
    486 
    487 bad:
    488 	if_statinc(ifp, if_oerrors);
    489 	m_freem(m);
    490 	return error;
    491 }
    492 
    493 #ifdef ALTQ
    494 /*
    495  * This routine is a slight hack to allow a packet to be classified
    496  * if the Ethernet headers are present.  It will go away when ALTQ's
    497  * classification engine understands link headers.
    498  *
    499  * XXX: We may need to do m_pullups here. First to ensure struct ether_header
    500  * is indeed contiguous, then to read the LLC and so on.
    501  */
    502 void
    503 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
    504 {
    505 	struct ether_header *eh;
    506 	struct mbuf *mtop = m;
    507 	uint16_t ether_type;
    508 	int hlen, af, hdrsize;
    509 	void *hdr;
    510 
    511 	KASSERT((mtop->m_flags & M_PKTHDR) != 0);
    512 
    513 	hlen = ETHER_HDR_LEN;
    514 	eh = mtod(m, struct ether_header *);
    515 
    516 	ether_type = htons(eh->ether_type);
    517 
    518 	if (ether_type < ETHERMTU) {
    519 		/* LLC/SNAP */
    520 		struct llc *llc = (struct llc *)(eh + 1);
    521 		hlen += 8;
    522 
    523 		if (m->m_len < hlen ||
    524 		    llc->llc_dsap != LLC_SNAP_LSAP ||
    525 		    llc->llc_ssap != LLC_SNAP_LSAP ||
    526 		    llc->llc_control != LLC_UI) {
    527 			/* Not SNAP. */
    528 			goto bad;
    529 		}
    530 
    531 		ether_type = htons(llc->llc_un.type_snap.ether_type);
    532 	}
    533 
    534 	switch (ether_type) {
    535 	case ETHERTYPE_IP:
    536 		af = AF_INET;
    537 		hdrsize = 20;		/* sizeof(struct ip) */
    538 		break;
    539 
    540 	case ETHERTYPE_IPV6:
    541 		af = AF_INET6;
    542 		hdrsize = 40;		/* sizeof(struct ip6_hdr) */
    543 		break;
    544 
    545 	default:
    546 		af = AF_UNSPEC;
    547 		hdrsize = 0;
    548 		break;
    549 	}
    550 
    551 	while (m->m_len <= hlen) {
    552 		hlen -= m->m_len;
    553 		m = m->m_next;
    554 		if (m == NULL)
    555 			goto bad;
    556 	}
    557 
    558 	if (m->m_len < (hlen + hdrsize)) {
    559 		/*
    560 		 * protocol header not in a single mbuf.
    561 		 * We can't cope with this situation right
    562 		 * now (but it shouldn't ever happen, really, anyhow).
    563 		 */
    564 #ifdef DEBUG
    565 		printf("altq_etherclassify: headers span multiple mbufs: "
    566 		    "%d < %d\n", m->m_len, (hlen + hdrsize));
    567 #endif
    568 		goto bad;
    569 	}
    570 
    571 	m->m_data += hlen;
    572 	m->m_len -= hlen;
    573 
    574 	hdr = mtod(m, void *);
    575 
    576 	if (ALTQ_NEEDS_CLASSIFY(ifq)) {
    577 		mtop->m_pkthdr.pattr_class =
    578 		    (*ifq->altq_classify)(ifq->altq_clfier, m, af);
    579 	}
    580 	mtop->m_pkthdr.pattr_af = af;
    581 	mtop->m_pkthdr.pattr_hdr = hdr;
    582 
    583 	m->m_data -= hlen;
    584 	m->m_len += hlen;
    585 
    586 	return;
    587 
    588 bad:
    589 	mtop->m_pkthdr.pattr_class = NULL;
    590 	mtop->m_pkthdr.pattr_hdr = NULL;
    591 	mtop->m_pkthdr.pattr_af = AF_UNSPEC;
    592 }
    593 #endif /* ALTQ */
    594 
    595 #if defined (LLC) || defined (NETATALK)
    596 static void
    597 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh)
    598 {
    599 	pktqueue_t *pktq = NULL;
    600 	struct llc *l;
    601 
    602 	if (m->m_len < sizeof(*eh) + sizeof(struct llc))
    603 		goto error;
    604 
    605 	l = (struct llc *)(eh+1);
    606 	switch (l->llc_dsap) {
    607 #ifdef NETATALK
    608 	case LLC_SNAP_LSAP:
    609 		switch (l->llc_control) {
    610 		case LLC_UI:
    611 			if (l->llc_ssap != LLC_SNAP_LSAP)
    612 				goto error;
    613 
    614 			if (memcmp(&(l->llc_snap_org_code)[0],
    615 			    at_org_code, sizeof(at_org_code)) == 0 &&
    616 			    ntohs(l->llc_snap_ether_type) ==
    617 			    ETHERTYPE_ATALK) {
    618 				pktq = at_pktq2;
    619 				m_adj(m, sizeof(struct ether_header)
    620 				    + sizeof(struct llc));
    621 				break;
    622 			}
    623 
    624 			if (memcmp(&(l->llc_snap_org_code)[0],
    625 			    aarp_org_code,
    626 			    sizeof(aarp_org_code)) == 0 &&
    627 			    ntohs(l->llc_snap_ether_type) ==
    628 			    ETHERTYPE_AARP) {
    629 				m_adj(m, sizeof(struct ether_header)
    630 				    + sizeof(struct llc));
    631 				aarpinput(ifp, m); /* XXX queue? */
    632 				return;
    633 			}
    634 
    635 		default:
    636 			goto error;
    637 		}
    638 		break;
    639 #endif
    640 	default:
    641 		goto noproto;
    642 	}
    643 
    644 	KASSERT(pktq != NULL);
    645 	if (__predict_false(!pktq_enqueue(pktq, m, 0))) {
    646 		m_freem(m);
    647 	}
    648 	return;
    649 
    650 noproto:
    651 	m_freem(m);
    652 	if_statinc(ifp, if_noproto);
    653 	return;
    654 error:
    655 	m_freem(m);
    656 	if_statinc(ifp, if_ierrors);
    657 	return;
    658 }
    659 #endif /* defined (LLC) || defined (NETATALK) */
    660 
    661 /*
    662  * Process a received Ethernet packet;
    663  * the packet is in the mbuf chain m with
    664  * the ether header.
    665  */
    666 void
    667 ether_input(struct ifnet *ifp, struct mbuf *m)
    668 {
    669 #if NVLAN > 0 || defined(MBUFTRACE)
    670 	struct ethercom *ec = (struct ethercom *) ifp;
    671 #endif
    672 	pktqueue_t *pktq = NULL;
    673 	uint16_t etype;
    674 	struct ether_header *eh;
    675 	size_t ehlen;
    676 	static int earlypkts;
    677 
    678 	/* No RPS for not-IP. */
    679 	pktq_rps_hash_func_t rps_hash = NULL;
    680 
    681 	KASSERT(!cpu_intr_p());
    682 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    683 
    684 	if ((ifp->if_flags & IFF_UP) == 0)
    685 		goto drop;
    686 
    687 #ifdef MBUFTRACE
    688 	m_claimm(m, &ec->ec_rx_mowner);
    689 #endif
    690 
    691 	if (__predict_false(m->m_len < sizeof(*eh))) {
    692 		if ((m = m_pullup(m, sizeof(*eh))) == NULL) {
    693 			if_statinc(ifp, if_ierrors);
    694 			return;
    695 		}
    696 	}
    697 
    698 	eh = mtod(m, struct ether_header *);
    699 	etype = ntohs(eh->ether_type);
    700 	ehlen = sizeof(*eh);
    701 
    702 	if (__predict_false(earlypkts < 100 ||
    703 		entropy_epoch() == (unsigned)-1)) {
    704 		rnd_add_data(NULL, eh, ehlen, 0);
    705 		earlypkts++;
    706 	}
    707 
    708 	/*
    709 	 * Determine if the packet is within its size limits. For MPLS the
    710 	 * header length is variable, so we skip the check.
    711 	 */
    712 	if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
    713 	    ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
    714 #ifdef DIAGNOSTIC
    715 		mutex_enter(&bigpktpps_lock);
    716 		if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
    717 		    bigpktppslim)) {
    718 			printf("%s: discarding oversize frame (len=%d)\n",
    719 			    ifp->if_xname, m->m_pkthdr.len);
    720 		}
    721 		mutex_exit(&bigpktpps_lock);
    722 #endif
    723 		goto error;
    724 	}
    725 
    726 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
    727 		/*
    728 		 * If this is not a simplex interface, drop the packet
    729 		 * if it came from us.
    730 		 */
    731 		if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
    732 		    memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
    733 		    ETHER_ADDR_LEN) == 0) {
    734 			goto drop;
    735 		}
    736 
    737 		if (memcmp(etherbroadcastaddr,
    738 		    eh->ether_dhost, ETHER_ADDR_LEN) == 0)
    739 			m->m_flags |= M_BCAST;
    740 		else
    741 			m->m_flags |= M_MCAST;
    742 		if_statinc(ifp, if_imcasts);
    743 	}
    744 
    745 	/* If the CRC is still on the packet, trim it off. */
    746 	if (m->m_flags & M_HASFCS) {
    747 		m_adj(m, -ETHER_CRC_LEN);
    748 		m->m_flags &= ~M_HASFCS;
    749 	}
    750 
    751 	if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
    752 
    753 	if (!vlan_has_tag(m) && etype == ETHERTYPE_VLAN) {
    754 		m = ether_strip_vlantag(m);
    755 		if (m == NULL) {
    756 			if_statinc(ifp, if_ierrors);
    757 			return;
    758 		}
    759 
    760 		eh = mtod(m, struct ether_header *);
    761 		etype = ntohs(eh->ether_type);
    762 		ehlen = sizeof(*eh);
    763 	}
    764 
    765 	if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
    766 	    (ifp->if_flags & IFF_PROMISC) != 0 &&
    767 	    memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
    768 	     ETHER_ADDR_LEN) != 0) {
    769 		m->m_flags |= M_PROMISC;
    770 	}
    771 
    772 	if ((m->m_flags & M_PROMISC) == 0) {
    773 		if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
    774 			return;
    775 		if (m == NULL)
    776 			return;
    777 
    778 		eh = mtod(m, struct ether_header *);
    779 		etype = ntohs(eh->ether_type);
    780 	}
    781 
    782 	/*
    783 	 * Processing a logical interfaces that are able
    784 	 * to configure vlan(4).
    785 	*/
    786 #if NAGR > 0
    787 	if (ifp->if_lagg != NULL &&
    788 	    __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
    789 		m->m_flags &= ~M_PROMISC;
    790 		agr_input(ifp, m);
    791 		return;
    792 	}
    793 #endif
    794 
    795 	/*
    796 	 * VLAN processing.
    797 	 *
    798 	 * VLAN provides service delimiting so the frames are
    799 	 * processed before other handlings. If a VLAN interface
    800 	 * does not exist to take those frames, they're returned
    801 	 * to ether_input().
    802 	 */
    803 
    804 	if (vlan_has_tag(m)) {
    805 		if (EVL_VLANOFTAG(vlan_get_tag(m)) == 0) {
    806 			if (etype == ETHERTYPE_VLAN ||
    807 			     etype == ETHERTYPE_QINQ)
    808 				goto drop;
    809 
    810 			/* XXX we should actually use the prio value? */
    811 			m->m_flags &= ~M_VLANTAG;
    812 		} else {
    813 #if NVLAN > 0
    814 			if (ec->ec_nvlans > 0) {
    815 				m = vlan_input(ifp, m);
    816 
    817 				/* vlan_input() called ether_input() recursively */
    818 				if (m == NULL)
    819 					return;
    820 			}
    821 #endif
    822 			/* drop VLAN frames not for this port. */
    823 			goto noproto;
    824 		}
    825 	}
    826 
    827 #if NCARP > 0
    828 	if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
    829 		/*
    830 		 * Clear M_PROMISC, in case the packet comes from a
    831 		 * vlan.
    832 		 */
    833 		m->m_flags &= ~M_PROMISC;
    834 		if (carp_input(m, (uint8_t *)&eh->ether_shost,
    835 		    (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
    836 			return;
    837 	}
    838 #endif
    839 
    840 	/*
    841 	 * Handle protocols that expect to have the Ethernet header
    842 	 * (and possibly FCS) intact.
    843 	 */
    844 	switch (etype) {
    845 #if NPPPOE > 0
    846 	case ETHERTYPE_PPPOEDISC:
    847 		pppoedisc_input(ifp, m);
    848 		return;
    849 
    850 	case ETHERTYPE_PPPOE:
    851 		pppoe_input(ifp, m);
    852 		return;
    853 #endif
    854 
    855 	case ETHERTYPE_SLOWPROTOCOLS: {
    856 		uint8_t subtype;
    857 
    858 		if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype))
    859 			goto error;
    860 
    861 		m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
    862 		switch (subtype) {
    863 #if NAGR > 0
    864 		case SLOWPROTOCOLS_SUBTYPE_LACP:
    865 			if (ifp->if_lagg != NULL) {
    866 				ieee8023ad_lacp_input(ifp, m);
    867 				return;
    868 			}
    869 			break;
    870 
    871 		case SLOWPROTOCOLS_SUBTYPE_MARKER:
    872 			if (ifp->if_lagg != NULL) {
    873 				ieee8023ad_marker_input(ifp, m);
    874 				return;
    875 			}
    876 			break;
    877 #endif
    878 
    879 		default:
    880 			if (subtype == 0 || subtype > 10) {
    881 				/* illegal value */
    882 				goto noproto;
    883 			}
    884 			/* unknown subtype */
    885 			break;
    886 		}
    887 	}
    888 	/* FALLTHROUGH */
    889 	default:
    890 		if (m->m_flags & M_PROMISC)
    891 			goto drop;
    892 	}
    893 
    894 	/* If the CRC is still on the packet, trim it off. */
    895 	if (m->m_flags & M_HASFCS) {
    896 		m_adj(m, -ETHER_CRC_LEN);
    897 		m->m_flags &= ~M_HASFCS;
    898 	}
    899 
    900 	/* etype represents the size of the payload in this case */
    901 	if (etype <= ETHERMTU + sizeof(struct ether_header)) {
    902 		KASSERT(ehlen == sizeof(*eh));
    903 #if defined (LLC) || defined (NETATALK)
    904 		ether_input_llc(ifp, m, eh);
    905 		return;
    906 #else
    907 		/* ethertype of 0-1500 is regarded as noproto */
    908 		goto noproto;
    909 #endif
    910 	}
    911 
    912 	/* For ARP packets, store the source address so that
    913 	 * ARP DAD probes can be validated. */
    914 	if (etype == ETHERTYPE_ARP) {
    915 		struct m_tag *mtag;
    916 
    917 		mtag = m_tag_get(PACKET_TAG_ETHERNET_SRC, ETHER_ADDR_LEN,
    918 		    M_NOWAIT);
    919 		if (mtag != NULL) {
    920 			memcpy(mtag + 1, &eh->ether_shost, ETHER_ADDR_LEN);
    921 			m_tag_prepend(m, mtag);
    922 		}
    923 	}
    924 
    925 	/* Strip off the Ethernet header. */
    926 	m_adj(m, ehlen);
    927 
    928 	switch (etype) {
    929 #ifdef INET
    930 	case ETHERTYPE_IP:
    931 #ifdef GATEWAY
    932 		if (ipflow_fastforward(m))
    933 			return;
    934 #endif
    935 		pktq = ip_pktq;
    936 		rps_hash = atomic_load_relaxed(&ether_pktq_rps_hash_p);
    937 		break;
    938 
    939 	case ETHERTYPE_ARP:
    940 		pktq = arp_pktq;
    941 		break;
    942 
    943 	case ETHERTYPE_REVARP:
    944 		revarpinput(m);	/* XXX queue? */
    945 		return;
    946 #endif
    947 
    948 #ifdef INET6
    949 	case ETHERTYPE_IPV6:
    950 		if (__predict_false(!in6_present))
    951 			goto noproto;
    952 #ifdef GATEWAY
    953 		if (ip6flow_fastforward(&m))
    954 			return;
    955 #endif
    956 		pktq = ip6_pktq;
    957 		rps_hash = atomic_load_relaxed(&ether_pktq_rps_hash_p);
    958 		break;
    959 #endif
    960 
    961 #ifdef NETATALK
    962 	case ETHERTYPE_ATALK:
    963 		pktq = at_pktq1;
    964 		break;
    965 
    966 	case ETHERTYPE_AARP:
    967 		aarpinput(ifp, m); /* XXX queue? */
    968 		return;
    969 #endif
    970 
    971 #ifdef MPLS
    972 	case ETHERTYPE_MPLS:
    973 		pktq = mpls_pktq;
    974 		break;
    975 #endif
    976 
    977 	default:
    978 		goto noproto;
    979 	}
    980 
    981 	KASSERT(pktq != NULL);
    982 	const uint32_t h = rps_hash ? pktq_rps_hash(&rps_hash, m) : 0;
    983 	if (__predict_false(!pktq_enqueue(pktq, m, h))) {
    984 		m_freem(m);
    985 	}
    986 	return;
    987 
    988 drop:
    989 	m_freem(m);
    990 	if_statinc(ifp, if_iqdrops);
    991 	return;
    992 noproto:
    993 	m_freem(m);
    994 	if_statinc(ifp, if_noproto);
    995 	return;
    996 error:
    997 	m_freem(m);
    998 	if_statinc(ifp, if_ierrors);
    999 	return;
   1000 }
   1001 
   1002 static void
   1003 ether_bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction)
   1004 {
   1005 	struct ether_vlan_header evl;
   1006 	struct m_hdr mh, md;
   1007 
   1008 	KASSERT(bp != NULL);
   1009 
   1010 	if (!vlan_has_tag(m)) {
   1011 		bpf_mtap3(bp, m, direction);
   1012 		return;
   1013 	}
   1014 
   1015 	memcpy(&evl, mtod(m, char *), ETHER_HDR_LEN);
   1016 	evl.evl_proto = evl.evl_encap_proto;
   1017 	evl.evl_encap_proto = htons(ETHERTYPE_VLAN);
   1018 	evl.evl_tag = htons(vlan_get_tag(m));
   1019 
   1020 	md.mh_flags = 0;
   1021 	md.mh_data = m->m_data + ETHER_HDR_LEN;
   1022 	md.mh_len = m->m_len - ETHER_HDR_LEN;
   1023 	md.mh_next = m->m_next;
   1024 
   1025 	mh.mh_flags = 0;
   1026 	mh.mh_data = (char *)&evl;
   1027 	mh.mh_len = sizeof(evl);
   1028 	mh.mh_next = (struct mbuf *)&md;
   1029 
   1030 	bpf_mtap3(bp, (struct mbuf *)&mh, direction);
   1031 }
   1032 
   1033 /*
   1034  * Convert Ethernet address to printable (loggable) representation.
   1035  */
   1036 char *
   1037 ether_sprintf(const u_char *ap)
   1038 {
   1039 	static char etherbuf[3 * ETHER_ADDR_LEN];
   1040 	return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
   1041 }
   1042 
   1043 char *
   1044 ether_snprintf(char *buf, size_t len, const u_char *ap)
   1045 {
   1046 	char *cp = buf;
   1047 	size_t i;
   1048 
   1049 	for (i = 0; i < len / 3; i++) {
   1050 		*cp++ = hexdigits[*ap >> 4];
   1051 		*cp++ = hexdigits[*ap++ & 0xf];
   1052 		*cp++ = ':';
   1053 	}
   1054 	*--cp = '\0';
   1055 	return buf;
   1056 }
   1057 
   1058 /*
   1059  * Perform common duties while attaching to interface list
   1060  */
   1061 void
   1062 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
   1063 {
   1064 	struct ethercom *ec = (struct ethercom *)ifp;
   1065 	char xnamebuf[HOOKNAMSIZ];
   1066 
   1067 	if (lla != NULL && ETHER_IS_MULTICAST(lla))
   1068 		aprint_error("The multicast bit is set in the MAC address. "
   1069 			"It's wrong.\n");
   1070 
   1071 	ifp->if_type = IFT_ETHER;
   1072 	ifp->if_hdrlen = ETHER_HDR_LEN;
   1073 	ifp->if_dlt = DLT_EN10MB;
   1074 	ifp->if_mtu = ETHERMTU;
   1075 	ifp->if_output = ether_output;
   1076 	ifp->_if_input = ether_input;
   1077 	if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
   1078 		ifp->if_bpf_mtap = ether_bpf_mtap;
   1079 	if (ifp->if_baudrate == 0)
   1080 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
   1081 
   1082 	if (lla != NULL)
   1083 		if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
   1084 
   1085 	LIST_INIT(&ec->ec_multiaddrs);
   1086 	SIMPLEQ_INIT(&ec->ec_vids);
   1087 	ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
   1088 	ec->ec_flags = 0;
   1089 	ifp->if_broadcastaddr = etherbroadcastaddr;
   1090 	bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
   1091 	snprintf(xnamebuf, sizeof(xnamebuf),
   1092 	    "%s-ether_ifdetachhooks", ifp->if_xname);
   1093 	ec->ec_ifdetach_hooks = simplehook_create(IPL_NET, xnamebuf);
   1094 #ifdef MBUFTRACE
   1095 	mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx");
   1096 	mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx");
   1097 	MOWNER_ATTACH(&ec->ec_tx_mowner);
   1098 	MOWNER_ATTACH(&ec->ec_rx_mowner);
   1099 	ifp->if_mowner = &ec->ec_tx_mowner;
   1100 #endif
   1101 }
   1102 
   1103 void
   1104 ether_ifdetach(struct ifnet *ifp)
   1105 {
   1106 	struct ethercom *ec = (void *) ifp;
   1107 	struct ether_multi *enm;
   1108 
   1109 	IFNET_ASSERT_UNLOCKED(ifp);
   1110 	/*
   1111 	 * Prevent further calls to ioctl (for example turning off
   1112 	 * promiscuous mode from the bridge code), which eventually can
   1113 	 * call if_init() which can cause panics because the interface
   1114 	 * is in the process of being detached. Return device not configured
   1115 	 * instead.
   1116 	 */
   1117 	ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *),
   1118 	    enxio);
   1119 
   1120 	simplehook_dohooks(ec->ec_ifdetach_hooks);
   1121 	KASSERT(!simplehook_has_hooks(ec->ec_ifdetach_hooks));
   1122 	simplehook_destroy(ec->ec_ifdetach_hooks);
   1123 
   1124 	bpf_detach(ifp);
   1125 
   1126 	ETHER_LOCK(ec);
   1127 	KASSERT(ec->ec_nvlans == 0);
   1128 	while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
   1129 		LIST_REMOVE(enm, enm_list);
   1130 		kmem_free(enm, sizeof(*enm));
   1131 		ec->ec_multicnt--;
   1132 	}
   1133 	ETHER_UNLOCK(ec);
   1134 
   1135 	mutex_obj_free(ec->ec_lock);
   1136 	ec->ec_lock = NULL;
   1137 
   1138 	ifp->if_mowner = NULL;
   1139 	MOWNER_DETACH(&ec->ec_rx_mowner);
   1140 	MOWNER_DETACH(&ec->ec_tx_mowner);
   1141 }
   1142 
   1143 void *
   1144 ether_ifdetachhook_establish(struct ifnet *ifp,
   1145     void (*fn)(void *), void *arg)
   1146 {
   1147 	struct ethercom *ec;
   1148 	khook_t *hk;
   1149 
   1150 	if (ifp->if_type != IFT_ETHER)
   1151 		return NULL;
   1152 
   1153 	ec = (struct ethercom *)ifp;
   1154 	hk = simplehook_establish(ec->ec_ifdetach_hooks,
   1155 	    fn, arg);
   1156 
   1157 	return (void *)hk;
   1158 }
   1159 
   1160 void
   1161 ether_ifdetachhook_disestablish(struct ifnet *ifp,
   1162     void *vhook, kmutex_t *lock)
   1163 {
   1164 	struct ethercom *ec;
   1165 
   1166 	if (vhook == NULL)
   1167 		return;
   1168 
   1169 	ec = (struct ethercom *)ifp;
   1170 	simplehook_disestablish(ec->ec_ifdetach_hooks, vhook, lock);
   1171 }
   1172 
   1173 #if 0
   1174 /*
   1175  * This is for reference.  We have a table-driven version
   1176  * of the little-endian crc32 generator, which is faster
   1177  * than the double-loop.
   1178  */
   1179 uint32_t
   1180 ether_crc32_le(const uint8_t *buf, size_t len)
   1181 {
   1182 	uint32_t c, crc, carry;
   1183 	size_t i, j;
   1184 
   1185 	crc = 0xffffffffU;	/* initial value */
   1186 
   1187 	for (i = 0; i < len; i++) {
   1188 		c = buf[i];
   1189 		for (j = 0; j < 8; j++) {
   1190 			carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
   1191 			crc >>= 1;
   1192 			c >>= 1;
   1193 			if (carry)
   1194 				crc = (crc ^ ETHER_CRC_POLY_LE);
   1195 		}
   1196 	}
   1197 
   1198 	return (crc);
   1199 }
   1200 #else
   1201 uint32_t
   1202 ether_crc32_le(const uint8_t *buf, size_t len)
   1203 {
   1204 	static const uint32_t crctab[] = {
   1205 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
   1206 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
   1207 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
   1208 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
   1209 	};
   1210 	uint32_t crc;
   1211 	size_t i;
   1212 
   1213 	crc = 0xffffffffU;	/* initial value */
   1214 
   1215 	for (i = 0; i < len; i++) {
   1216 		crc ^= buf[i];
   1217 		crc = (crc >> 4) ^ crctab[crc & 0xf];
   1218 		crc = (crc >> 4) ^ crctab[crc & 0xf];
   1219 	}
   1220 
   1221 	return (crc);
   1222 }
   1223 #endif
   1224 
   1225 uint32_t
   1226 ether_crc32_be(const uint8_t *buf, size_t len)
   1227 {
   1228 	uint32_t c, crc, carry;
   1229 	size_t i, j;
   1230 
   1231 	crc = 0xffffffffU;	/* initial value */
   1232 
   1233 	for (i = 0; i < len; i++) {
   1234 		c = buf[i];
   1235 		for (j = 0; j < 8; j++) {
   1236 			carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
   1237 			crc <<= 1;
   1238 			c >>= 1;
   1239 			if (carry)
   1240 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
   1241 		}
   1242 	}
   1243 
   1244 	return (crc);
   1245 }
   1246 
   1247 #ifdef INET
   1248 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
   1249     { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
   1250 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
   1251     { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
   1252 #endif
   1253 #ifdef INET6
   1254 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
   1255     { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
   1256 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
   1257     { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
   1258 #endif
   1259 
   1260 /*
   1261  * ether_aton implementation, not using a static buffer.
   1262  */
   1263 int
   1264 ether_aton_r(u_char *dest, size_t len, const char *str)
   1265 {
   1266 	const u_char *cp = (const void *)str;
   1267 	u_char *ep;
   1268 
   1269 #define atox(c)	(((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
   1270 
   1271 	if (len < ETHER_ADDR_LEN)
   1272 		return ENOSPC;
   1273 
   1274 	ep = dest + ETHER_ADDR_LEN;
   1275 
   1276 	while (*cp) {
   1277 		if (!isxdigit(*cp))
   1278 			return EINVAL;
   1279 
   1280 		*dest = atox(*cp);
   1281 		cp++;
   1282 		if (isxdigit(*cp)) {
   1283 			*dest = (*dest << 4) | atox(*cp);
   1284 			cp++;
   1285 		}
   1286 		dest++;
   1287 
   1288 		if (dest == ep)
   1289 			return (*cp == '\0') ? 0 : ENAMETOOLONG;
   1290 
   1291 		switch (*cp) {
   1292 		case ':':
   1293 		case '-':
   1294 		case '.':
   1295 			cp++;
   1296 			break;
   1297 		}
   1298 	}
   1299 	return ENOBUFS;
   1300 }
   1301 
   1302 /*
   1303  * Convert a sockaddr into an Ethernet address or range of Ethernet
   1304  * addresses.
   1305  */
   1306 int
   1307 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
   1308     uint8_t addrhi[ETHER_ADDR_LEN])
   1309 {
   1310 #ifdef INET
   1311 	const struct sockaddr_in *sin;
   1312 #endif
   1313 #ifdef INET6
   1314 	const struct sockaddr_in6 *sin6;
   1315 #endif
   1316 
   1317 	switch (sa->sa_family) {
   1318 
   1319 	case AF_UNSPEC:
   1320 		memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
   1321 		memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
   1322 		break;
   1323 
   1324 #ifdef INET
   1325 	case AF_INET:
   1326 		sin = satocsin(sa);
   1327 		if (sin->sin_addr.s_addr == INADDR_ANY) {
   1328 			/*
   1329 			 * An IP address of INADDR_ANY means listen to
   1330 			 * or stop listening to all of the Ethernet
   1331 			 * multicast addresses used for IP.
   1332 			 * (This is for the sake of IP multicast routers.)
   1333 			 */
   1334 			memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
   1335 			memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
   1336 		} else {
   1337 			ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
   1338 			memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
   1339 		}
   1340 		break;
   1341 #endif
   1342 #ifdef INET6
   1343 	case AF_INET6:
   1344 		sin6 = satocsin6(sa);
   1345 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
   1346 			/*
   1347 			 * An IP6 address of 0 means listen to or stop
   1348 			 * listening to all of the Ethernet multicast
   1349 			 * address used for IP6.
   1350 			 * (This is used for multicast routers.)
   1351 			 */
   1352 			memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
   1353 			memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
   1354 		} else {
   1355 			ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
   1356 			memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
   1357 		}
   1358 		break;
   1359 #endif
   1360 
   1361 	default:
   1362 		return EAFNOSUPPORT;
   1363 	}
   1364 	return 0;
   1365 }
   1366 
   1367 /*
   1368  * Add an Ethernet multicast address or range of addresses to the list for a
   1369  * given interface.
   1370  */
   1371 int
   1372 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
   1373 {
   1374 	struct ether_multi *enm, *_enm;
   1375 	u_char addrlo[ETHER_ADDR_LEN];
   1376 	u_char addrhi[ETHER_ADDR_LEN];
   1377 	int error = 0;
   1378 
   1379 	/* Allocate out of lock */
   1380 	enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
   1381 
   1382 	ETHER_LOCK(ec);
   1383 	error = ether_multiaddr(sa, addrlo, addrhi);
   1384 	if (error != 0)
   1385 		goto out;
   1386 
   1387 	/*
   1388 	 * Verify that we have valid Ethernet multicast addresses.
   1389 	 */
   1390 	if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
   1391 		error = EINVAL;
   1392 		goto out;
   1393 	}
   1394 
   1395 	/*
   1396 	 * See if the address range is already in the list.
   1397 	 */
   1398 	_enm = ether_lookup_multi(addrlo, addrhi, ec);
   1399 	if (_enm != NULL) {
   1400 		/*
   1401 		 * Found it; just increment the reference count.
   1402 		 */
   1403 		++_enm->enm_refcount;
   1404 		error = 0;
   1405 		goto out;
   1406 	}
   1407 
   1408 	/*
   1409 	 * Link a new multicast record into the interface's multicast list.
   1410 	 */
   1411 	memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
   1412 	memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
   1413 	enm->enm_refcount = 1;
   1414 	LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
   1415 	ec->ec_multicnt++;
   1416 
   1417 	/*
   1418 	 * Return ENETRESET to inform the driver that the list has changed
   1419 	 * and its reception filter should be adjusted accordingly.
   1420 	 */
   1421 	error = ENETRESET;
   1422 	enm = NULL;
   1423 
   1424 out:
   1425 	ETHER_UNLOCK(ec);
   1426 	if (enm != NULL)
   1427 		kmem_free(enm, sizeof(*enm));
   1428 	return error;
   1429 }
   1430 
   1431 /*
   1432  * Delete a multicast address record.
   1433  */
   1434 int
   1435 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
   1436 {
   1437 	struct ether_multi *enm;
   1438 	u_char addrlo[ETHER_ADDR_LEN];
   1439 	u_char addrhi[ETHER_ADDR_LEN];
   1440 	int error;
   1441 
   1442 	ETHER_LOCK(ec);
   1443 	error = ether_multiaddr(sa, addrlo, addrhi);
   1444 	if (error != 0)
   1445 		goto error;
   1446 
   1447 	/*
   1448 	 * Look up the address in our list.
   1449 	 */
   1450 	enm = ether_lookup_multi(addrlo, addrhi, ec);
   1451 	if (enm == NULL) {
   1452 		error = ENXIO;
   1453 		goto error;
   1454 	}
   1455 	if (--enm->enm_refcount != 0) {
   1456 		/*
   1457 		 * Still some claims to this record.
   1458 		 */
   1459 		error = 0;
   1460 		goto error;
   1461 	}
   1462 
   1463 	/*
   1464 	 * No remaining claims to this record; unlink and free it.
   1465 	 */
   1466 	LIST_REMOVE(enm, enm_list);
   1467 	ec->ec_multicnt--;
   1468 	ETHER_UNLOCK(ec);
   1469 	kmem_free(enm, sizeof(*enm));
   1470 
   1471 	/*
   1472 	 * Return ENETRESET to inform the driver that the list has changed
   1473 	 * and its reception filter should be adjusted accordingly.
   1474 	 */
   1475 	return ENETRESET;
   1476 
   1477 error:
   1478 	ETHER_UNLOCK(ec);
   1479 	return error;
   1480 }
   1481 
   1482 void
   1483 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
   1484 {
   1485 	ec->ec_ifflags_cb = cb;
   1486 }
   1487 
   1488 void
   1489 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb)
   1490 {
   1491 
   1492 	ec->ec_vlan_cb = cb;
   1493 }
   1494 
   1495 static int
   1496 ether_ioctl_reinit(struct ethercom *ec)
   1497 {
   1498 	struct ifnet *ifp = &ec->ec_if;
   1499 	int error;
   1500 
   1501 	KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
   1502 
   1503 	switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
   1504 	case IFF_RUNNING:
   1505 		/*
   1506 		 * If interface is marked down and it is running,
   1507 		 * then stop and disable it.
   1508 		 */
   1509 		if_stop(ifp, 1);
   1510 		break;
   1511 	case IFF_UP:
   1512 		/*
   1513 		 * If interface is marked up and it is stopped, then
   1514 		 * start it.
   1515 		 */
   1516 		return if_init(ifp);
   1517 	case IFF_UP | IFF_RUNNING:
   1518 		error = 0;
   1519 		if (ec->ec_ifflags_cb != NULL) {
   1520 			error = (*ec->ec_ifflags_cb)(ec);
   1521 			if (error == ENETRESET) {
   1522 				/*
   1523 				 * Reset the interface to pick up
   1524 				 * changes in any other flags that
   1525 				 * affect the hardware state.
   1526 				 */
   1527 				return if_init(ifp);
   1528 			}
   1529 		} else
   1530 			error = if_init(ifp);
   1531 		return error;
   1532 	case 0:
   1533 		break;
   1534 	}
   1535 
   1536 	return 0;
   1537 }
   1538 
   1539 /*
   1540  * Common ioctls for Ethernet interfaces.  Note, we must be
   1541  * called at splnet().
   1542  */
   1543 int
   1544 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1545 {
   1546 	struct ethercom *ec = (void *)ifp;
   1547 	struct eccapreq *eccr;
   1548 	struct ifreq *ifr = (struct ifreq *)data;
   1549 	struct if_laddrreq *iflr = data;
   1550 	const struct sockaddr_dl *sdl;
   1551 	static const uint8_t zero[ETHER_ADDR_LEN];
   1552 	int error;
   1553 
   1554 	switch (cmd) {
   1555 	case SIOCINITIFADDR:
   1556 	    {
   1557 		struct ifaddr *ifa = (struct ifaddr *)data;
   1558 		if (ifa->ifa_addr->sa_family != AF_LINK
   1559 		    && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
   1560 		       (IFF_UP | IFF_RUNNING)) {
   1561 			ifp->if_flags |= IFF_UP;
   1562 			if ((error = if_init(ifp)) != 0)
   1563 				return error;
   1564 		}
   1565 #ifdef INET
   1566 		if (ifa->ifa_addr->sa_family == AF_INET)
   1567 			arp_ifinit(ifp, ifa);
   1568 #endif
   1569 		return 0;
   1570 	    }
   1571 
   1572 	case SIOCSIFMTU:
   1573 	    {
   1574 		int maxmtu;
   1575 
   1576 		if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
   1577 			maxmtu = ETHERMTU_JUMBO;
   1578 		else
   1579 			maxmtu = ETHERMTU;
   1580 
   1581 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
   1582 			return EINVAL;
   1583 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
   1584 			return error;
   1585 		else if (ifp->if_flags & IFF_UP) {
   1586 			/* Make sure the device notices the MTU change. */
   1587 			return if_init(ifp);
   1588 		} else
   1589 			return 0;
   1590 	    }
   1591 
   1592 	case SIOCSIFFLAGS:
   1593 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1594 			return error;
   1595 		return ether_ioctl_reinit(ec);
   1596 	case SIOCGIFFLAGS:
   1597 		error = ifioctl_common(ifp, cmd, data);
   1598 		if (error == 0) {
   1599 			/* Set IFF_ALLMULTI for backcompat */
   1600 			ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ?
   1601 			    IFF_ALLMULTI : 0;
   1602 		}
   1603 		return error;
   1604 	case SIOCGETHERCAP:
   1605 		eccr = (struct eccapreq *)data;
   1606 		eccr->eccr_capabilities = ec->ec_capabilities;
   1607 		eccr->eccr_capenable = ec->ec_capenable;
   1608 		return 0;
   1609 	case SIOCSETHERCAP:
   1610 		eccr = (struct eccapreq *)data;
   1611 		if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
   1612 			return EINVAL;
   1613 		if (eccr->eccr_capenable == ec->ec_capenable)
   1614 			return 0;
   1615 #if 0 /* notyet */
   1616 		ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
   1617 		    | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
   1618 #else
   1619 		ec->ec_capenable = eccr->eccr_capenable;
   1620 #endif
   1621 		return ether_ioctl_reinit(ec);
   1622 	case SIOCADDMULTI:
   1623 		return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
   1624 	case SIOCDELMULTI:
   1625 		return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
   1626 	case SIOCSIFMEDIA:
   1627 	case SIOCGIFMEDIA:
   1628 		if (ec->ec_mii != NULL)
   1629 			return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media,
   1630 			    cmd);
   1631 		else if (ec->ec_ifmedia != NULL)
   1632 			return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd);
   1633 		else
   1634 			return ENOTTY;
   1635 		break;
   1636 	case SIOCALIFADDR:
   1637 		sdl = satocsdl(sstocsa(&iflr->addr));
   1638 		if (sdl->sdl_family != AF_LINK)
   1639 			;
   1640 		else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
   1641 			return EINVAL;
   1642 		else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
   1643 			return EINVAL;
   1644 		/*FALLTHROUGH*/
   1645 	default:
   1646 		return ifioctl_common(ifp, cmd, data);
   1647 	}
   1648 	return 0;
   1649 }
   1650 
   1651 /*
   1652  * Enable/disable passing VLAN packets if the parent interface supports it.
   1653  * Return:
   1654  * 	 0: Ok
   1655  *	-1: Parent interface does not support vlans
   1656  *	>0: Error
   1657  */
   1658 int
   1659 ether_enable_vlan_mtu(struct ifnet *ifp)
   1660 {
   1661 	int error;
   1662 	struct ethercom *ec = (void *)ifp;
   1663 
   1664 	/* Parent does not support VLAN's */
   1665 	if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
   1666 		return -1;
   1667 
   1668 	/*
   1669 	 * Parent supports the VLAN_MTU capability,
   1670 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
   1671 	 * enable it.
   1672 	 */
   1673 	ec->ec_capenable |= ETHERCAP_VLAN_MTU;
   1674 
   1675 	/* Interface is down, defer for later */
   1676 	if ((ifp->if_flags & IFF_UP) == 0)
   1677 		return 0;
   1678 
   1679 	if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
   1680 		return 0;
   1681 
   1682 	ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
   1683 	return error;
   1684 }
   1685 
   1686 int
   1687 ether_disable_vlan_mtu(struct ifnet *ifp)
   1688 {
   1689 	int error;
   1690 	struct ethercom *ec = (void *)ifp;
   1691 
   1692 	/* We still have VLAN's, defer for later */
   1693 	if (ec->ec_nvlans != 0)
   1694 		return 0;
   1695 
   1696 	/* Parent does not support VLAB's, nothing to do. */
   1697 	if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
   1698 		return -1;
   1699 
   1700 	/*
   1701 	 * Disable Tx/Rx of VLAN-sized frames.
   1702 	 */
   1703 	ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
   1704 
   1705 	/* Interface is down, defer for later */
   1706 	if ((ifp->if_flags & IFF_UP) == 0)
   1707 		return 0;
   1708 
   1709 	if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
   1710 		return 0;
   1711 
   1712 	ec->ec_capenable |= ETHERCAP_VLAN_MTU;
   1713 	return error;
   1714 }
   1715 
   1716 /*
   1717  * Add and delete VLAN TAG
   1718  */
   1719 int
   1720 ether_add_vlantag(struct ifnet *ifp, uint16_t vtag, bool *vlanmtu_status)
   1721 {
   1722 	struct ethercom *ec = (void *)ifp;
   1723 	struct vlanid_list *vidp;
   1724 	bool vlanmtu_enabled;
   1725 	uint16_t vid = EVL_VLANOFTAG(vtag);
   1726 	int error;
   1727 
   1728 	vlanmtu_enabled = false;
   1729 
   1730 	/* Add a vid to the list */
   1731 	vidp = kmem_alloc(sizeof(*vidp), KM_SLEEP);
   1732 	vidp->vid = vid;
   1733 
   1734 	ETHER_LOCK(ec);
   1735 	ec->ec_nvlans++;
   1736 	SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidp, vid_list);
   1737 	ETHER_UNLOCK(ec);
   1738 
   1739 	if (ec->ec_nvlans == 1) {
   1740 		IFNET_LOCK(ifp);
   1741 		error = ether_enable_vlan_mtu(ifp);
   1742 		IFNET_UNLOCK(ifp);
   1743 
   1744 		if (error == 0) {
   1745 			vlanmtu_enabled = true;
   1746 		} else if (error != -1) {
   1747 			goto fail;
   1748 		}
   1749 	}
   1750 
   1751 	if (ec->ec_vlan_cb != NULL) {
   1752 		error = (*ec->ec_vlan_cb)(ec, vid, true);
   1753 		if (error != 0)
   1754 			goto fail;
   1755 	}
   1756 
   1757 	if (vlanmtu_status != NULL)
   1758 		*vlanmtu_status = vlanmtu_enabled;
   1759 
   1760 	return 0;
   1761 fail:
   1762 	ETHER_LOCK(ec);
   1763 	ec->ec_nvlans--;
   1764 	SIMPLEQ_REMOVE(&ec->ec_vids, vidp, vlanid_list, vid_list);
   1765 	ETHER_UNLOCK(ec);
   1766 
   1767 	if (vlanmtu_enabled) {
   1768 		IFNET_LOCK(ifp);
   1769 		(void)ether_disable_vlan_mtu(ifp);
   1770 		IFNET_UNLOCK(ifp);
   1771 	}
   1772 
   1773 	kmem_free(vidp, sizeof(*vidp));
   1774 
   1775 	return error;
   1776 }
   1777 
   1778 int
   1779 ether_del_vlantag(struct ifnet *ifp, uint16_t vtag)
   1780 {
   1781 	struct ethercom *ec = (void *)ifp;
   1782 	struct vlanid_list *vidp;
   1783 	uint16_t vid = EVL_VLANOFTAG(vtag);
   1784 
   1785 	ETHER_LOCK(ec);
   1786 	SIMPLEQ_FOREACH(vidp, &ec->ec_vids, vid_list) {
   1787 		if (vidp->vid == vid) {
   1788 			SIMPLEQ_REMOVE(&ec->ec_vids, vidp,
   1789 			    vlanid_list, vid_list);
   1790 			ec->ec_nvlans--;
   1791 			break;
   1792 		}
   1793 	}
   1794 	ETHER_UNLOCK(ec);
   1795 
   1796 	if (vidp == NULL)
   1797 		return ENOENT;
   1798 
   1799 	if (ec->ec_vlan_cb != NULL) {
   1800 		(void)(*ec->ec_vlan_cb)(ec, vidp->vid, false);
   1801 	}
   1802 
   1803 	if (ec->ec_nvlans == 0) {
   1804 		IFNET_LOCK(ifp);
   1805 		(void)ether_disable_vlan_mtu(ifp);
   1806 		IFNET_UNLOCK(ifp);
   1807 	}
   1808 
   1809 	kmem_free(vidp, sizeof(*vidp));
   1810 
   1811 	return 0;
   1812 }
   1813 
   1814 int
   1815 ether_inject_vlantag(struct mbuf **mp, uint16_t etype, uint16_t tag)
   1816 {
   1817 	static const size_t min_data_len =
   1818 	    ETHER_MIN_LEN - ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
   1819 	/* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
   1820 	static const char vlan_zero_pad_buff[ETHER_MIN_LEN] = { 0 };
   1821 
   1822 	struct ether_vlan_header *evl;
   1823 	struct mbuf *m = *mp;
   1824 	int error;
   1825 
   1826 	error = 0;
   1827 
   1828 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_DONTWAIT);
   1829 	if (m == NULL) {
   1830 		error = ENOBUFS;
   1831 		goto out;
   1832 	}
   1833 
   1834 	if (m->m_len < sizeof(*evl)) {
   1835 		m = m_pullup(m, sizeof(*evl));
   1836 		if (m == NULL) {
   1837 			error = ENOBUFS;
   1838 			goto out;
   1839 		}
   1840 	}
   1841 
   1842 	/*
   1843 	 * Transform the Ethernet header into an
   1844 	 * Ethernet header with 802.1Q encapsulation.
   1845 	 */
   1846 	memmove(mtod(m, void *),
   1847 	    mtod(m, char *) + ETHER_VLAN_ENCAP_LEN,
   1848 	    sizeof(struct ether_header));
   1849 	evl = mtod(m, struct ether_vlan_header *);
   1850 	evl->evl_proto = evl->evl_encap_proto;
   1851 	evl->evl_encap_proto = htons(etype);
   1852 	evl->evl_tag = htons(tag);
   1853 
   1854 	/*
   1855 	 * To cater for VLAN-aware layer 2 ethernet
   1856 	 * switches which may need to strip the tag
   1857 	 * before forwarding the packet, make sure
   1858 	 * the packet+tag is at least 68 bytes long.
   1859 	 * This is necessary because our parent will
   1860 	 * only pad to 64 bytes (ETHER_MIN_LEN) and
   1861 	 * some switches will not pad by themselves
   1862 	 * after deleting a tag.
   1863 	 */
   1864 	if (m->m_pkthdr.len < min_data_len) {
   1865 		m_copyback(m, m->m_pkthdr.len,
   1866 		    min_data_len - m->m_pkthdr.len,
   1867 		    vlan_zero_pad_buff);
   1868 	}
   1869 
   1870 	m->m_flags &= ~M_VLANTAG;
   1871 
   1872 out:
   1873 	*mp = m;
   1874 	return error;
   1875 }
   1876 
   1877 struct mbuf *
   1878 ether_strip_vlantag(struct mbuf *m)
   1879 {
   1880 	struct ether_vlan_header *evl;
   1881 
   1882 	if (m->m_len < sizeof(*evl) &&
   1883 	    (m = m_pullup(m, sizeof(*evl))) == NULL) {
   1884 		return NULL;
   1885 	}
   1886 
   1887 	if (m_makewritable(&m, 0, sizeof(*evl), M_DONTWAIT)) {
   1888 		m_freem(m);
   1889 		return NULL;
   1890 	}
   1891 
   1892 	evl = mtod(m, struct ether_vlan_header *);
   1893 	KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
   1894 
   1895 	vlan_set_tag(m, ntohs(evl->evl_tag));
   1896 
   1897 	/*
   1898 	 * Restore the original ethertype.  We'll remove
   1899 	 * the encapsulation after we've found the vlan
   1900 	 * interface corresponding to the tag.
   1901 	 */
   1902 	evl->evl_encap_proto = evl->evl_proto;
   1903 
   1904 	/*
   1905 	 * Remove the encapsulation header and append tag.
   1906 	 * The original header has already been fixed up above.
   1907 	 */
   1908 	vlan_set_tag(m, ntohs(evl->evl_tag));
   1909 	memmove((char *)evl + ETHER_VLAN_ENCAP_LEN, evl,
   1910 	    offsetof(struct ether_vlan_header, evl_encap_proto));
   1911 	m_adj(m, ETHER_VLAN_ENCAP_LEN);
   1912 
   1913 	return m;
   1914 }
   1915 
   1916 static int
   1917 ether_multicast_sysctl(SYSCTLFN_ARGS)
   1918 {
   1919 	struct ether_multi *enm;
   1920 	struct ifnet *ifp;
   1921 	struct ethercom *ec;
   1922 	int error = 0;
   1923 	size_t written;
   1924 	struct psref psref;
   1925 	int bound;
   1926 	unsigned int multicnt;
   1927 	struct ether_multi_sysctl *addrs;
   1928 	int i;
   1929 
   1930 	if (namelen != 1)
   1931 		return EINVAL;
   1932 
   1933 	bound = curlwp_bind();
   1934 	ifp = if_get_byindex(name[0], &psref);
   1935 	if (ifp == NULL) {
   1936 		error = ENODEV;
   1937 		goto out;
   1938 	}
   1939 	if (ifp->if_type != IFT_ETHER) {
   1940 		if_put(ifp, &psref);
   1941 		*oldlenp = 0;
   1942 		goto out;
   1943 	}
   1944 	ec = (struct ethercom *)ifp;
   1945 
   1946 	if (oldp == NULL) {
   1947 		if_put(ifp, &psref);
   1948 		*oldlenp = ec->ec_multicnt * sizeof(*addrs);
   1949 		goto out;
   1950 	}
   1951 
   1952 	/*
   1953 	 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
   1954 	 * is sleepable, while holding it. Copy data to a local buffer first
   1955 	 * with the lock taken and then call sysctl_copyout without holding it.
   1956 	 */
   1957 retry:
   1958 	multicnt = ec->ec_multicnt;
   1959 
   1960 	if (multicnt == 0) {
   1961 		if_put(ifp, &psref);
   1962 		*oldlenp = 0;
   1963 		goto out;
   1964 	}
   1965 
   1966 	addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
   1967 
   1968 	ETHER_LOCK(ec);
   1969 	if (multicnt != ec->ec_multicnt) {
   1970 		/* The number of multicast addresses has changed */
   1971 		ETHER_UNLOCK(ec);
   1972 		kmem_free(addrs, sizeof(*addrs) * multicnt);
   1973 		goto retry;
   1974 	}
   1975 
   1976 	i = 0;
   1977 	LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
   1978 		struct ether_multi_sysctl *addr = &addrs[i];
   1979 		addr->enm_refcount = enm->enm_refcount;
   1980 		memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
   1981 		memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
   1982 		i++;
   1983 	}
   1984 	ETHER_UNLOCK(ec);
   1985 
   1986 	error = 0;
   1987 	written = 0;
   1988 	for (i = 0; i < multicnt; i++) {
   1989 		struct ether_multi_sysctl *addr = &addrs[i];
   1990 
   1991 		if (written + sizeof(*addr) > *oldlenp)
   1992 			break;
   1993 		error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
   1994 		if (error)
   1995 			break;
   1996 		written += sizeof(*addr);
   1997 		oldp = (char *)oldp + sizeof(*addr);
   1998 	}
   1999 	kmem_free(addrs, sizeof(*addrs) * multicnt);
   2000 
   2001 	if_put(ifp, &psref);
   2002 
   2003 	*oldlenp = written;
   2004 out:
   2005 	curlwp_bindx(bound);
   2006 	return error;
   2007 }
   2008 
   2009 static void
   2010 ether_sysctl_setup(struct sysctllog **clog)
   2011 {
   2012 	const struct sysctlnode *rnode = NULL;
   2013 
   2014 	sysctl_createv(clog, 0, NULL, &rnode,
   2015 		       CTLFLAG_PERMANENT,
   2016 		       CTLTYPE_NODE, "ether",
   2017 		       SYSCTL_DESCR("Ethernet-specific information"),
   2018 		       NULL, 0, NULL, 0,
   2019 		       CTL_NET, CTL_CREATE, CTL_EOL);
   2020 
   2021 	sysctl_createv(clog, 0, &rnode, NULL,
   2022 		       CTLFLAG_PERMANENT,
   2023 		       CTLTYPE_NODE, "multicast",
   2024 		       SYSCTL_DESCR("multicast addresses"),
   2025 		       ether_multicast_sysctl, 0, NULL, 0,
   2026 		       CTL_CREATE, CTL_EOL);
   2027 
   2028 	sysctl_createv(clog, 0, &rnode, NULL,
   2029 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   2030 		       CTLTYPE_STRING, "rps_hash",
   2031 		       SYSCTL_DESCR("Interface rps hash function control"),
   2032 		       sysctl_pktq_rps_hash_handler, 0, (void *)&ether_pktq_rps_hash_p,
   2033 		       PKTQ_RPS_HASH_NAME_LEN,
   2034 		       CTL_CREATE, CTL_EOL);
   2035 }
   2036 
   2037 void
   2038 etherinit(void)
   2039 {
   2040 
   2041 #ifdef DIAGNOSTIC
   2042 	mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
   2043 #endif
   2044 	ether_pktq_rps_hash_p = pktq_rps_hash_default;
   2045 	ether_sysctl_setup(NULL);
   2046 }
   2047